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Introduction
This book is a practical guide to component-based development of distributed, embedded, and 
control systems proposed within the new IEC 61499 international standard. IEC 61499 defines 
a component-based modelling approach using function blocks.

At first glance, this model appears to be quite different from the component models of oth-
er software engineering approaches such as CORBA, DCOM, or .NET (Sünder et al., 2006). In 
fact, however, a function block possesses the required characteristics of a software component 
defined as “a unit of composition with contractually specified interfaces and explicit context 
dependencies only. A software component can be deployed independently and is subject to 
composition by third parties.” (C. Szyperski, 2006). This statement precisely describes a func-
tion block.

In other words, the expression function block is broader than software block insofar as 
a function block captures functionality that can be implemented as software or hardware or a 
combination of both. This robust character of the function block makes it appropriate for use in 
the broader embedded systems domain.

The IEC 61499 Standard for Function Blocks for Industrial Process Measurement and 
Control Systems (IPMCS) is the result of more than 10 years of work within Working Group 6 
(TC 65) of the International Electrotechnical Commission (IEC). Working Group 6 comprises 
leading experts in software architectures of industrial automation systems including among its 
members the biggest global vendors of automation products and solutions.

The standard was conceived because an increasing portion of the intellectual property (IP) 
related to the domain of industrial automation is now being expressed in the form of software. 
Efficient management of this IP becomes the key factor for answering the new challenges of 
markets that require flexibly reconfigurable production tailored to order. The efficient manage-
ment of this IP requires easy integration of components, as well as their re-configuration and 
re-use.

The automation software spans diverse functional domains, such as control, diagnostics, 
process rendering, modelling, human-machine interface, communication, and so on. Thus, 
component architectures destined for industrial automation applications need to fit not only the 
needs of control development but also to meet the diverse requirements of all the other domains 
referenced above.

The IEC 61499 standard is generally known for devising function blocks with a strange 
shape, having both a “head” and “body” as illustrated on the cover of this book. Those with a 
background in networks sometimes confuse the standard with a higher-level network protocol, 
since the standard refers to the domain of distributed systems. Control engineers sometimes 
understand it as a new programming language similar to those defined in IEC 61131-3. Some 
IT specialists take it as a concept for modelling distributed systems that can be implemented 
by means of existing software and hardware. These preconceptions reflect the “multi-faceted” 
nature of the standard.
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The IEC 61499 standard stimulates the development of new engineering technologies 
intended to economize design and enable faster and easier reconfiguration. The standard’s ap-
proach in dealing with architecture is unusual when compared to other standards and their use 
in the domain of control and automation.

IEC 61499 literally defines a “reference architecture” for distributed process measurement 
and control systems software (DPMCS). The standard incorporates advanced software technol-
ogies, such as the encapsulation of functionality, component-based design, event-driven execu-
tion, and distribution. As a result, specific implementations available from different providers 
of field devices, controller hardware, human-machine interfaces, communication networks, 
and so on, can be integrated into component-based, heterogeneous systems.

IEC 61499 consists of four parts:

- Part 61499-1 “Architecture” (IEC 61499-1, 2005) was voted and approved as an 
IEC Standard in July 2004 and published in 2005. Second Edition was published 
in 2012.

- Part 61499-2 “Software Tools Requirements” (IEC 61499, 2005) was also voted 
and approved as an IEC standard in July 2004 and published in 2005.

- Part 61499-3 “Application guidelines” was approved as a technical report (IEC 
61499-3, 2004).

- A voting draft of 61499-4 “Rules for compliance profiles” (IEC 61499-4, 2005) 
was approved in 2005.

The second edition of the IEC 61499 standard has been published in 2011. This book in-
cludes major additions and corrections that were included in the standard (see Appendix D). 

Introduction to the Second Edition
In the three years since the first edition, the position of IEC 61499 has considerably strength-
ened. Industry is keenly attuned to the potential of function block technology.

The first edition was introduced into the curricula of several Universities around the world 
(the author is aware of six). Hundreds of young engineers have learned the concept of function 
block programming, dozens of undergraduate and postgraduate projects have been completed. 
Based on this experience, many corrections have been suggested and implemented.

The following add-ons are worth mentioning:

- Chapter 4 outlines the benefits of adopting the IEC 61499 for programmable logic 
controller (PLC) users and for embedded systems users and developers.

- The discussion of tools that support function blocks has been extended into a 
separate Chapter 19.

- The tutorial material has been revised to conform to the latest version of Function 
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Block Development Kit (FBDK) software published in 2008.

- In Chapter 14, a new visualization library is described, which extends the capabil-
ities of standard FBDK visualization.

- New chapters have been added:

o Chapter 18 discusses problems and solutions related to function block 
semantics;

o Chapter 19 presents an extended overview of available tools;

- The bibliography has been expanded to include new works that have appeared in 
the last 3 years;

- Appendix C has been added to present corrections to the IEC 61499 standard, 
which have been accepted in 2011.

Introduction to the Third Edition
In the third edition of this book, the tutorial material has been re-implemented with the commer-
cial development tool nxtStudio (product of the company nxtControl GmbH (Austria)). This 
tool supports a wide range of hardware platforms and field buses and shows that IEC 61499 is 
a serious technology in the industrial sector. The transition from FBDK to nxtStudio has led to 
a certain change in the material selection. Chapter 12 presents now nxtStudio-specific ways to 
adapt the hardware peripherals. Chapter 14 is entirely new material on the implementation of 
human-machine interfaces and Chapter 16 offers a newly developed case study and a tutorial 
which deals with the development of a pick-and-place robot.

How to use this book
This book is intended for a systematic learning process within the context of a University 
course, industrial training, or self-study.

The learning approach has been tested during industry training sessions and during under-
graduate course delivery at the University of Auckland and at the Martin Luther University of 
Halle – Wittenberg in Germany.

The approach favours giving students hands-on experience by exploring numerous ex-
amples using the software tool NxtStudio. The book does not promote this software package 
over others that are also compliant with the 61499 standard. Rather, experience demonstrates 
that higher efficiency learning occurs when students can check and modify examples using the 
NxtStudio software tool.

Three tutorial guides in each of Chapters 7, 8, and 11 give the reader a step-by-step in-
troduction to the world of function blocks and systems. The book is designed such that each 
chapter is an independent study unit.
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Chapter 1 provides a quick introduction to the concept of function blocks using the ex-
ample of a simple FLASHER.

Chapter 2 discusses how this system could have been implemented with different gen-
erations of automation technologies—from the hardwired relay circuits of the past to 
the modern distributed embedded systems. This chapter presents the idea of function 
blocks from the historical perspective of industrial automation.

Chapter 3 continues this discussion, taking into account the challenges of modern man-
ufacturing systems that set the requirements for automation systems development.

Chapter 4 presents new technical opportunities provided by the adoption of IEC 61499 
in the context of emerging intelligent automation systems.

Chapter 5 introduces the fundamentals of the new function block concept. Most of the 
subsequent chapters depart from the examples in Chapter 5 and rely on using the 
software toolset NxtStudio. (Chapters 4 and 5 are included for specialists interested 
in a broader reference framework for industrial automation issues. These can be 
reviewed in a cursory manner or even skipped in more technically oriented courses).

Chapter 6 provides a crash course in the NxtStudio software toolset. The toolset is well 
documented, and the information given in Chapter 6 will help the reader understand 
its internal structure and access the documentation provided. This book is not meant 
as a substitute for the documentation, but as a complementary study guide.

Chapter 7 introduces the concept of a basic function block.

Chapter 8 introduces the concept of a composite function block.

Chapter 9 shows how to build applications from function blocks. (In conjunction with 
Chapters 7 and 8, Chapter 9 also provides enough material to learn the abstract defi-
nition of desired system behaviour with function blocks).

Chapter 10 discusses another cornerstone concept of distributed automation systems—a 
model of the device. After learning this material, the reader will be able to under-
stand an integral picture of an automation system.

Chapter 11 introduces a distributed system configuration model. The FLASHER sys-
tem is revisited here and is used to illustrate the distributed automation principles. 
At this stage the reader may want to learn more about lower level system issues, 
such as interfacing embedded hardware or visualization.

Chapter 12 introduces the service interface function blocks formally (although they 
have been used already in the examples in previous chapters).

Chapter 13 provides an example of a complete distributed control design for a simple 
mechatronic system.

Chapter 14 introduces the development of human-machine interfaces using function 
blocks. 

Chapter 15 introduces the development methodologies of automation systems. The 
object-oriented Model/View/Control (MVC) pattern is systematically introduced. 
The theory is accompanied by an example of a system that consists of a drill with 
feeding conveyors.

Chapter 16 discusses an extension of the MVC pattern into automation object design 
and illustrates this with the same example of a mechatronic system presented in 
Chapter 13.
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Chapter 17 shows how the adoption of IEC 61499 can change the business models 
of companies involved in the industrial automation business.

Chapter 18 contains an overview of available tools compliant with IEC 61499. In 
particular, it discusses in detail ISaGRAF integrated development environment, 
and lightly reviews 4DIAC-IDE and FBDK.

Appendix A lists the details of the standard event processing func-
tion blocks.

Appendix B provides some excerpts from the compliance profile 
of the standard. 

Appendix C presents a list of expected add-ons and corrections in the second edition of 
IEC 61499.

Book Web Site
For more information on this book, go to www.fb61499.com. This web site contains more 
teaching materials, text corrections of any reported errors, and a forum to clarify any further 
questions.
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Quick start
This chapter is a primer in the basic concepts of system development using IEC 61499 function 
blocks. An example of a distributed automation system (FLASHER) is used to highlight the key 
issues in the new standard. No background in industrial automation systems and/or software 
development is assumed.

System modelled with function blocks
This chapter illustrates some concepts of the IEC 61499 function block architecture using the 
example of a system that has been specified, modelled, and implemented within the IEC 61499 
architecture. This example will be re-visited in several subsequent chapters. Whereas the sys-
tem might look primitive for some readers, its simplicity clearly illustrates several important 
features and includes sufficient detail for the reader to understand. 

The system consists of four lamps blinking according to a required mode of operation as 
shown in Figure 1-1. Operation modes vary and include commands such as “blink all lamps 
together”, or “chase the light left or rightwards”, and so on. The lamps are “controlled” by a 
“black box” controller with four output control signals; each of which is connected to a lamp 
and serves as a switch, turning the lamp on and off.

Now we will consider a function block model that simulates this system working under 
automatic control. Later we will see that with minor changes the same model program can be 
used to control the physical device. 

Step 1 Open a solution file FLASHER.sln in the NxtStudio as shown in Figure 1-21. For that, 
choose menu items File-Open-Project/Solution. Next, click on the APP sign under the 
System sign in the navigation tree area (upper left side of the window) and you will see 
a screen similar to the one illustrated in Figure 1-2. This editor’s screen is divided into 

Figure 1-1 FLASHER controlled by a “black box” controller.
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three areas: 

•	 A navigation tree on the left shows the system’s structure.

•	 The worksheet on the right (the largest one) shows the “content” of system 
elements. Thus, in Figure 1-2 it shows the content of the resource RES1 in device 
FLASHER. 

•	 The service area in the bottom contains various tabs supplying service information, 
such as error messages, warnings, etc.

Step 2  To start the system one needs first to launch the runtime environment by starting the  

“nxtRT61499F-1“Windows application (with the following icon ) that 
is supplied with NxtStudio. After that, one needs to deploy the system to the 
runtime, clicking on using the “Devices menu” and on right click selecting 
“Deploy” item;

•	 Once the application is deployed, one needs to start visualisation screen. 
This is done by right clicking on the canvas “1280 X 980” item in the 
navigation tree and choosing the item “Test HMI Runtime on the local 
computer”

•	 After that you must see the new human-machine interface window appeared 
as in Figure 1-3.

Figure 1-2 FLASHER_TEST system configuration opened in the function block editor.

Now one can “play” with this model by starting or stopping the lights with Start and Stop radio 
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2   
 
Evolution of industrial automation tech-
nologies
In this chapter, the FLASHER example is used to illustrate the main features of several gener-
ations of industrial automation technologies, from hardwired relays to distributed embedded 
systems using field area networks.

Industrial automation technology has evolved through a number of generations. The transition 
from one generation to another has been marked by the following:

• The inability of previous technologies to meet new requirements emerging from new 
technological and economic realities;

• The availability of new technologies to meet the new requirements.

To understand better the trends discussed above, one must look back several decades. The au-
tomated FLASHER shown in Chapter 1 is a representative example of an automated product. 
Now we will try to follow the “imaginary evolution” of this product through the four genera-
tions of automation technologies.

First generation
In the first generation of the FLASHER (circa 1950s), the controller box would typically be 
realized as an electric circuit built using hardwired relay elements as shown in Figure 2-1. An 
additional internal relay element OFLO is used to implement a transition between states when 
the LED0 is ON and the state when all lamps are off. By simply switching the relays slowly, 
one could have implemented the desired “running lights” even without extra delay elements.

Let us assume that the vendor had three versions of this product with three different oper-
ating modes as follows:

• all lamps are flashing simultaneously,

• the lamps are flashing in the chasing-up mode, and

• the lamps are flashing in the chasing-down mode (as illustrated in Figure 2-1).

For each of these operating modes a separate relay circuit would have been required.
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Second generation
In the next product generation, hardwired relays or solid-state logic circuits are replaced by 
general- purpose computing devices, such as microcontrollers, or special-purpose devices, 
such as programmable logic controllers (PLCs). Control logic is now implemented in software 
rather than in fixed hardware (as shown in Figure 2-2).

PLCs have a flexible architecture with a variable number of input/output (I/O) modules. 
These can be added as needed to the central processing unit (CPU) in order to connect the 
CPU with sources of input data and destinations of output data (in our case the lamps). Thus, 
the structure can be customized according to the requirements of a particular application in a 
cost-effective way, since I/O modules are selected from a range of available standard modules. 
For example, the PLC in Figure 2-2 has only one output module with eight logic outputs, four 
of which are used.

Figure 2-1 Relay implementation of the FLASHER’s logic “chase down”.

Figure 2-2 A programmable FLASHER—the COUNT-UP algorithm programmed in 
Structured Text.

The CPU runs a program that implements the desired logic behaviour of the system. Thus, cre-
ating a device with new functionality does not require design of a new circuit board. Different 
behaviour could be achieved by programming, with the hardware part of the system remaining 
unchanged, meaning cheaper production and easier maintenance, etc. In our example, the use 
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Summary
The frontier of automation technology is characterized by the ability of automated machines to 
adapt to the ever-changing conditions of their environments. This chapter showed the progress 
of industrial automation—from primitive ladder logic to flexible distributed systems. Industrial 
automation technology has evolved through several generations. This chapter identified five 
of them. Each new generation saw increases in the flexibility of automation systems, along 
with higher efficiency. The legacy of past generations is carried into each new generation; for 
example, many controllers are still programmed in ladder logic. This progress is summarized 
in Table 2-1.

Table 2-1 Properties of the four past generations of industrial automation systems 
and prospective intelligent automation features

G
en

er
at

io
n 

1
R

el
ay

s

G
en

er
at

io
n 

2

PL
C

G
en

er
at

io
n 

3

H
ig

h-
en

d 
PL

C

G
en

er
at

io
n 

4

Em
be

dd
ed

 c
on

tro
l

G
en

er
at

io
n 

5

I
n

te
ll

ig
e

n
t  

Sy
st

em
s

Automated routine operations x x x x x

Programmability X X X X

Configurability X X X

Distributed flexible architecture X X

Self configurability X

Review questions for Chapter 2
1. The code in Figure 2-2 is simplified. Will it perform as intended? If not, why not? 

What corrections are needed to have it perform as intended?

2. Summarize the limitations of the first four generations of automation technologies.

3. Sketch the functions that intelligent components could provide in the FLASHER 
example.
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3   
 
Automation: From mass production to 
flexibility

This chapter discusses  the requirements for automation systems imposed by new manufac-
turing paradigms, such as production to order, small lot sizes and re-configurability. Current 
practices in industrial automation and key problems with centralized control within this con-
text are described. This discussion considers the list of specifications for the next generation 
of control systems.

Industrial trends
Flexibility has been a central theme of industrial and academic research in manufacturing since 
the latter half of the twentieth century. In the post-World War II United States, for example, 
the virtual lack of competition internationally combined with a domestic population eager for 
new products allowed manufacturers to focus myopically on production efficiency rather than 
on the consumer [Sipper and Bulfin, 1997]. In this environment, customers could be taken for 
granted (i.e., they were more than pleased to buy what was offered). As a result, mass-pro-
duction of high-quality, standardized goods was the norm and efficiency of production was 
all-important.1

The latter part of the twentieth century, however, saw more sophisticated consumers and 
an increase in foreign competition that quickly made this approach obsolete. Customers be-
came more demanding and started to seek more variety, lower costs, and superb quality; thus, 
they no longer had any qualms about where their products were manufactured. As a result, 
flexibility and responsiveness overtook efficiency of production as the key benchmarks for 
world-class manufacturing.

Among the first to address this issue in detail was the Massachusetts Institute of Technol-
ogy team, led by James Womak et al. (1991), which studied “the future of the automobile.” 
This group examined how Japan was able to dominate the automotive industry in the 1970s and 
1980s through their move from mass production to lean production.

Mass production differs from lean production in several ways. For example, mass produc-
tion sets limited “good enough” goals (e.g., “acceptable number of defects” and “acceptable 
low product variety”). Continuous improvement was never an important consideration. By 
contrast, lean production focuses on high performance goals, such as zero defects, declining 
costs, higher flexibility and more product variety, all of which are directly aligned with current 
customer requirements. In their study, Womack et al. (1991) focused on the importance of 
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produced. The machines themselves are usually equipped with a control device that executes 
pre-programmed functions; however, the integration with other machines may bring certain 
changes in the way the machine operates.

Internally, such machines are often composed of unified modules that are also controlled 
by embedded devices and capable of performing certain pre-defined operations. Even the mod-
ules inside can contain some intelligent mechatronic devices, like pneumatic cylinders or sen-
sors with network connection (even wireless), which are “intelligent” to a certain extent.

Figure 3-1 Typical modular production system from the light-assembly domain.2

Thus, the whole production system is very software and communication-intensive. Configuring 
and maintaining such production systems requires software tools that can access and program 
each device, download and upload software blocks, and perform dynamic remote debugging.

Naturally, this requires interoperability across tools, networks, and devices, or even bet-
ter—the ability to use a single tool to program and test all devices, which employs a middle-
ware that provides transparent communication independently of the particular combinations 
of networks and fieldbuses, and which has programmable compatibility of all embedded hard-
ware/software platforms.

The modular nature of current production systems has led to a set of specific needs for 
automation and control. In particular, these systems should be:

Adaptable to heterogeneous environments—They should cover the whole range of 
available and prospective hardware platforms from embedded on-chip controllers 
through the range of traditional programmable logic controllers (PLCs) and their 
followers, up to the level of industrial personal computers and PC-based devices.

Capable of working in distributed networks—They should provide transparent and 
reliable access to all sorts of the data from values of sensors and actuators via field 
buses up to the intranets of enterprises and the Web.

Based on a modular open architecture—The architecture should ensure interopera-
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• Human-Machine Interface (HMI) components, and

• software agent components.

Industrial automation and control systems have a huge base installed with physical equipment 
that may have a lifetime of 10 years or longer. Hence, an important requirement for timely 
adoption of any specific architecture will be its provisions for retrofit of existing systems and 
their migration to the new architecture over time.

The architecture must be open; that is, it must exhibit the following characteristics as 
illustrated in Figure 3-5:

• Portability—Software tools and agents can accept and correctly interpret library ele-
ments (software components and system configurations) produced by other software 
tools.

• Interoperability—Devices can operate together to perform the autonomous and/or 
cooperative functions specified by one or more distributed applications.

• Configurability—Devices and their software components can be dynamically con-
figured (selected, assigned locations, interconnected and parameterized) by multiple 
software tools and/or software agents.

Figure 3-5 Attributes of open industrial systems.3

Summary
Automation systems are becoming more and more software intensive, which increases their 
flexibility. But the increasing complexity of the software portion compromises flexibility and 
reconfigurability. The next generation of automated systems will be adaptable to heterogene-
ous environments, be capable of working in distributed networks, be based on a modular open 
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architecture, will incorporate human interfaces based on intelligent software and hardware, 
and be scalable and fault tolerant. The main workhorse of industrial automation systems are 
PLCs. But they were designed for centralized automation systems and are not easily integrated 
with the newly emerging distributed systems. The next-generation automation architecture will 
bring better encapsulation of automation-related intellectual property to software components 
and their portability, along with interoperability and configurability of automation devices.

Review questions for Chapter 3
1. What is the driving force behind the progress in industrial automation technologies?

2. What are the attributes of an open architecture?

3. Why do the general-purpose software technologies have only limited application in 
industrial automation?

Notes
1  The section “Industrial trends” was completely written by Robert Brennan, Professor 

at the University of Calgary, Canada.

2  Picture courtesy of Professor José Luis Martinez Lastra, Tampere University of Tech-
nology, Finland.

3  Picture courtesy of Dr. James Christensen, Holobloc Inc., USA.
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Horizons of distributed intelligent auto-
mation

This chapter discusses new technical opportunities that are provided by IEC 61499 from the 
perspective of intelligent automation systems.

Autonomous intelligent devices
The requirements of flexible manufacturing (e.g., the need for rapid integration) and reconfigu-
ration, as well as the growing information intensity of the production environments imply that 
manufacturing equipment is getting more autonomous and intelligent. Figure 4-1 exemplifies 
a list of functions that an intelligent device may need, using the boring mill as an illustration.

Intelligence at the device level is intended to increase functionality, performance, reliabil-
ity, and to facilitate the device’s integration into more complex production systems. Later on, 
this chapter will consider some of these functions and then discuss implementation challenges.

Connectivity and web services—Network connectivity is a very basic function of an in-
telligent device. An intelligent device must be capable of communicating with other intelligent 
devices, as well as with enterprise information systems and human operators. It is quite easy 
to imagine a web server embedded to the device, which can provide direct “remote control” 
access to authorized clients as illustrated in Figure 4-2. In applications where the Internet Pro-
tocol (IP) does not provide sufficient real-time properties, more specific industrial network 
protocols can be used, which are known as fieldbuses (e.g., Profibus, DeviceNet, Modbus, 
and many others; see Zurawski 2005 for details). More protocols can be supported with corre-
sponding software components. Thus, an intelligent device may need flexible mechanisms for 
adding more software components to extend its communication capabilities.

System modelling and simulation
Intelligent automation devices can be relatively autonomous. When integrated into a manu-
facturing system with other autonomous intelligent devices, however, several important issues 
must be considered:

Analysis—Properties of the resulting system must be checked before its operation can be 
started, and this can be done either by simulation or by formal verification1.

The simulation scenario can be implemented as illustrated in Figure 4-3. First, auton-
omous devices provide descriptions of their functionality in the form of function blocks for 
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Figure 4-6 Intelligent negotiation and formation of manufacturing cells.

Various business-related considerations may require the use of different automation hardware 
to control a manufacturing cell, as illustrated in the example below. This implies the need for 
portability and distribution of software components implementing functionality of autonomous 
intelligent devices. Ideally, it should not matter where the function blocks are physically exe-
cuted as long as they communicate via some transparent media.

Some extreme cases are shown in the following figures. In the hardware configuration 
shown in Figure 4-9,  a central controller collects the function blocks from the embedded data 
storage devices and executes them in a cyclic way like in PLCs. The data can be directly re-
ceived by the controller through its own peripheral modules or via a network. The use of IEC 
61499 function blocks would make the order of execution irrelevant, so that the configuration 
can be carried out even automatically as the mechatronic units are plugged into the net.
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the particular number and topology of computational resources, nor on their cyclic 
scans. This means that no additional synchronization between devices will be required. 
This will be true also for more complex applications that are represented as hierar-
chical networks of function blocks. Thus, system engineering can now be done in an 
implementation independent way.

Figure 4-11 Means of achieving open architecture in industrial automation provided by 
IEC 61499.2

• An abstract Device Model provides a mechanism for creating new device types as a set 
of resource types and function block libraries. This method of device modelling is very 
modular and uses a limited number of instruments. It allows modelling a great variety 
of system configurations with sufficient precision but without unnecessary detail.

• The open device management mechanism of IEC 61499 provides configurability of 
compliant devices by compliant software tools.

• Service Interface Function Blocks provide a mechanism for encapsulation of hardware 
dependent functions into the same language constructs as the rest of the application.

• Part 2 of the Standard defines the XML-based data format of function blocks and also 
provides compatibility on the level of source files.

• Specific protocols of device configuration or management may be defined as com-
pliance profiles to the standard. Part 4 of the Standard defines the rules regarding the 
organization of compliance profiles.

• The ASN.1 protocol enables platform independent data representation.
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• Main IEC 61499 benefits for PLC users

• Communication between parts of the program is based on events. This makes the logic 
clearer and independent from the components’ location with respect to one another in 
the program;

• Performance: reaction time of event-driven processing can be much faster than the 
scan-based execution of PLCs.

• Portability enabled by the open XML format of IEC 61499;

• Migration and maintenance: the algorithms in basic FBs still can be programmed in 
the familiar

• PLC languages simplifying the migration and maintenance.

Potential benefits of IEC 61499 for embedded control 
users
IEC 61499 is a system-level architecture widely sought after in the embedded systems world. 
The architecture enables design and re-design of distributed embedded control systems within 
a single development framework. It also provides some features of model-based software engi-
neering, such as state-machine programming of basic function blocks. These features increase 
the level and efficiency of programming when compared with the standard high level program-
ming languages, such as C or C#.

Programming in function blocks increases the re-use potential of the developed code and 
the potential of deploying it to various distributed hardware architectures. The code semantics 
becomes clearer thanks to the visual block—diagram and state machine representation.

Summary
Distributed automation will enable intelligent machines to implement a custom set of functions 
by means of adding/removing software components—called in IEC 61499 function blocks. 
These functions may include:

• System simulation and modelling,

• Programmability,

• Service provision mechanism, and

• Ability to be integrated with other intelligent machines in a seamless way.

The IEC 61499 architecture provides the ability to execute the same application on different 
distributed hardware structures with minimal or no change. The IEC 61499 provides a number 
of key technologies for encapsulation, portability, interoperability and configurability of heter-
ogeneous distributed automation systems.
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Review questions for Chapter 4

1. What is portability? How is it achieved in IEC 61499?

2. Explain the means by which the IEC 61499 standard fosters device interoperability.

3. Why is re-use important? What can be re-used? How does IEC 61499 facilitate re-use?

4. If several automation companies are supplying their devices for an automation project, 
what does interoperability mean for them? How does one achieve interoperability.

Notes
1  Formal verification is a validation technique that provides formal proof of certain 

properties of a system. For example, formal verification of IEC 61499 was addressed 
in (Vyatkin, Hanisch 2003).

2  Picture courtesy of Dr. James Christensen.
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Basic concepts of IEC 61499

This chapter presents the basic concepts of the IEC 61499 paradigm: the concept of event and 
of event- driven invocation of software components; types and instances of function blocks; 
and the interface of function blocks.

As shown in the previous chapter, the new generation of automation systems requires a better 
software component model than a program or a function block of IEC 61131-3. The component 
model proposed in IEC 61499 also bears the same name, function block, although its meaning 
is completely different. Before explaining the differences, a few new fundamental concepts 
must be introduced. One of these is event.

Events
In IEC 61499, a new concept of function block invocation is introduced, which is based on 
events. Information about events is passed from one function block to another by means of 
event variables. In a slightly different form, the event concept is also used in automation sys-
tems engineering as falling and rising edge variables, which indicate value changes introduced 
by a Boolean variable.

An event variable can have the same 0 or 1 value as Boolean variables, but value 1 can 
be taken only for instantaneous moments. For example, events may indicate changes of values 
in Boolean data as shown in Figure 5-1. Obviously, events have no duration. Event variables 
can be used in programming in the same way as Boolean data is used—you can check them in 
conditional operators like IF-THEN-ELSE.

Events can originate in the environment (in the controlled object) and then activate certain 
function blocks. Moreover, in the IEC 61499 function blocks can be activated only by events 
(event input variables).

Figure 5-1     Event versus Boolean variable.
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Function blocks
The function block of IEC 61499 is an abstraction that represents a component, which is usual-
ly implemented in the form of software, but can also take the form of hardware. That is why it 
is an abstract yet executable description of functionality, which is not dependent on a particular 
implementation.

The interface of a function block (Figure 5-2) is defined by the list of input event variables, 
input data variables and adapter sockets, output event variables, output data, and adapter plugs. 
In graphical representation, the block has “head” and “body.”1

Figure 5-2 Interface of a Function Block.

The upper part of the block’s interface is often referred to as the “head” and the lower as the 
“body” of the function block interface. Event input/outputs are listed in the head, while data 
inputs and outputs are connected to the body.

Events stand for the synchronization and the interactions among the execution control 
mechanisms in interconnected networks of function blocks. A block sending data must emit an 
event and pass it on to the receiving block in order to ensure the data are read.

The data are typed, as in any programming language. The 61499 standard refers particu-
larly to the data types of IEC 61131.

The definition of the function block’s external interface also includes an association be-
tween the events and relevant data. In the graphical representation of a function block, the 
association is denoted by vertical lines connecting an event and its associated data inputs/out-
puts. The association literally means that the values of the variables associated with a particular 
event (and only these!) will be updated when the event occurs.

Example 1 How the event/data association works at the data transfer between blocks.

In the example given in Figure 5-3 the event output “eo” of the function block FB1 is con-
nected by an event connection with the event input “ei” of the function block FB2. Once 
the block FB1 emits the event “eo”, it triggers the execution of the block FB2. The values 
of input parameters “d” and “e” will be updated before the execution starts because they 
are associated with the event input “ei”.
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NxtStudio Integrated Development En-
vironment

This chapter provides essential information about the NxtStudio function block tool. In the 
German edition of this book, NxtStudio has been selected as most representative tool based on 
IEC 61499. We discuss several other tools for function block design in Chapter 19.

General information on NxtStudio 
NxtStudio is an engineering support software tool for IEC 61499 software development. It 
is a product of the Austrian company nxtControl GmbH. As shown in Figure 6-1, it contains 
the integrated development environment NxtStudio and the run-time target nxtRT61499F. The 
integrated development environment (IDE) supports graphical development of function blocks 
and systems and their translation to executable code. The latter can be executed using nx-
tRT61499F.

Versions of the nxtRT61499F software run-time target are available for personal computer 
and for a number of embedded hardware platforms.

Figure 6-1   Structure of NxtControl software: NxtStudio IDE interacting with run-
time environment and libraries. 
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Figure 6-2 Testing environment for basic function blocks in NxtStudio.

The editor of composite function blocks and of applications implements several “tricks” im-
proving the readability of block diagrams. For example, it automatically creates connection 
points on event and data connection lines, to reduce duplication of such lines cluttering the 
diagram. This is illustrated in Figure 6-3.

Figure 6-3. A function block application in NxtStudio.
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Execution
For execution of function block applications, NxtStudio uses a modified open source run-time 
platform FORTE. NxtStudio compiler generates C++ code from function blocks, so that one 
function block type is compiled to one C++ class. C++ code of the entire application is com-
piled then to the particular target microprocessor code using a cross-compiler. It is linked with 
the run-time libraries responsible for scheduling events. 

Pilot applications
NxtControl has already applied their technology in a few dozens of projects in the domain of 
building automation. The largest project has been a training centre building with 19 control 
devices controlling about 2500 I/Os (heating, ventilation, air-condition, lighting, etc.) with IEC 
61499.

 The range of hardware platforms, compliant with NxtStudio includes industrial per-
sonal computers (IPC) of Siemens (MicroBox),  Beckhoff (CX 1020), and WAGO (IPC 871). 
Some of these devices are shown in Figure 19-29. Similarly to PLCs, these devices are hard-
ened and certified for use in tough industrial environments. 

a) b)

Figure 6-4   a) WAGO IPC 758-870; b) Beckhoff CX 1020.

Focusing on the European automation market, NxtControl has developed support of such field 
area networks as Profibus and Ethernet. Via these interfaces the compliant devices can commu-
nicate with a broad spectrum of automation devices, such as motion control devices. 

 The application areas where the use of NxtControl software can be especially efficient 
include the ones with highly modular machines, such as material handling systems. Figure 6-5 
shows an example of a material handling automation application implemented in NxtStudio. 
One can see a clear similarity between the structure of the physical part (right top) and the 
structure of the program (right bottom). The function blocks are CAT instances, implementing 
control and visualisation of a conveyor group. 



47 NxtStudio Integrated Development Environment  

Figure 6-5  Material handling application of NxtControl.

Summary
NxtStudio is a second generation IEC 61499 tool with well developed functionality and exten-
sive set of supported services. Along with that, the tool introduces several restrictions on the 
implemented features of IEC 61499: thus it does support only ST language for programming 
algorithms in basic function blocks and does not support user-defined data types. 
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Basic function blocks

This chapter introduces the basic function block concept, which is an abstraction for a soft-
ware capsule. It describes the interface, the execution control chart, the various ways to pro-
gram algorithms and the behaviour of basic function blocks.

Capsule for functions
Basic function blocks are software structures intended to be used in the implementation of 
basic functions of distributed control applications. A basic function block may have internal 
variables, one or several algorithms, and an execution control function, defined by means of the 
execution control chart (ECC), shown in Figure 7-1. A function block’s internal data cannot be 
accessed from outside and can be used only by the internal algorithms of the particular function 
block. An algorithm is a programming structure of the finest granularity. It represents a piece of 
software code operating on the common input, output and internal data of the function block. 

Figure 7-1      A basic function block: interface, execution control chart, algorithms, and 
internal variables.
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Figure 7-3 An example of a basic function block with its execution control chart.

Syntax of ECC transitions
Each state’s transitions are labelled with a condition that is a Boolean expression whose syntax 
is limited to one of the following forms:

event_input_name guard_condition

event_input_name (‘&’|’AND’) (guard_variable| ‘(‘ guard_con-
dition’)’)

The guard variable is an input, output or internal variable of the functional block of BOOL 
type. The guard_condition is a Boolean expression not containing events. It shall evaluate to a 
BOOL value. Examples of correct condition expressions for the function block type in Figure 
7-3 are as follows:

Form 1 Form 2 Form 3
REQ (PARAM=1) OR (PARAM>3) OR NOT QI 

This is a Boolean expression over input variables of in-
teger and Boolean type. It follows the syntax defined for 
Boolean expressions in Structured Text of IEC 61131-3

Figure 7-4 Forms of transition condition expressions.  
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Figure 7-9  Behaviour of an event demultiplexer function block. 

A straightforward (but incorrect) solution attempt, illustrated in  Figure 7-10, emits both output 
events simultaneously on the first occurrence of EI. Finding a correct solution is left to the 
reader as an exercise! 

Figure 7-10 Incorrect implementation of the “event demultiplexer”.

To facilitate implementation of such event behaviour NxtStudio provides an option of “clear-
ing” the event-input variables by assigning them with value FALSE. For example, one can cre-
ate an algorithm CLEAR with the content: EI:=FALSE and attach it to the action in STATE0. 

Standard libraries
The IEC 61499 defines a number of standard function blocks for manipulations with events, 
such as splitting or merging events, generation of events with delays or cycles, etc. Descrip-
tions of these blocks are provided in Appendix A.
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Tutorial 1: Creating a new basic function block type
The goal of this tutorial is to get practical experience of developing function blocks in NxtStu-
dio. 

In NxtStudio one cannot create just a function block type, but only within a solution that is a 
structure analogous to project in other programming environments. In more detail this structure 
will be discussed later, in Chapter 11.

Let us create a new solution with name ‘Tutorial’ as shown in Figure 7-11(a), then position 
the cursor at the Basic item in the solution tree, press right mouse button and select New Item 
from the pull down menu. In the appeared dialog assign name X2Y2 to this function block type. 

a) b)

Figure 7-11 (a) Creating a new solution; (b) Creating a new basic function block type 
in the solution.

You will see function block type created with a standard interface as shown in Figure 7-12(a). 
Drag the boundary of Interface pane to the right and edit the interface elements in the table, as 
shown in Figure 7-12(b). For that, we deleted event inputs INIT and INITO, and renamed data 
intputs QI and QO to X and OUT, changing their types to REAL. Then we added one more 
input Y, also of type REAL. 
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a) b)

Figure 7-12  (a) Opening the newly created FB type; (b) Modifying interface of the 
created FB type.

To create an association between an event input/output and data input/output, use field “With” 
in the interface table. 

Now, switch to the ECC tab and edit the ECC as illustrated in Figure 7-13. You will need 
to delete state INIT because in this simple example we don’t need initialization. To do so, hover 
mouse over the state and make a right click. Then select the “Delete” option from the menu. 
Alternatively, select the state with left mouse click and press Del key. After that, delete the al-
gorithm INIT (right click at the tab and select “Delete algorithm”) and edit the algorithm REQ 
as shown in Figure 7-13(b).

Figure 7-13  (a) Delete state INIT in ECC; (b) Modify algorithm REQ.
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Composite function blocks

This chapter describes the composite function block, which is needed to develop some func-
tions based on a modular combination of other function blocks and to encapsulate them into 
a single software component.

Along with basic function blocks, the composite function blocks are intended to be the main 
instruments of an application developer. The functionality of composite function blocks, in 
contrast to basic function blocks, is determined by a network of interconnected function blocks 
inside. Figure 8-1 illustrates the idea.

Figure 8-1     Composite function block.

More precisely, the network is built from instances of function block types. These can be basic 
function blocks, service interface function blocks, or other composite function blocks. Thus, 
hierarchical applications can be built as shown in Figure 8-2.

Composite function blocks have no internal variables, except for those storing the val-
ues of input and output events and data. Thus, the functionality of composite function blocks 
completely depends on the state and behaviour of the constituent function blocks and their 
interconnections by events and data.
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Applications and sub-applications

This chapter discusses applications and sub-applications. An application is a network of func-
tion blocks that completely defines the desired functionality  of an automation system but does 
not say anything about number and types of devices on which it will be executed. Thus, an 
application is still a machine-independent functionality description.

Application
An application is defined in IEC 61499 as a network of function block instances whose data 
inputs and outputs and event inputs and outputs are interconnected (Figure 9-1).

An application does not have an interface, nor does it own variables. Its behaviour is 
completely defined by the function block instances and their interconnections by event and 
data connections. Application is an abstract definition of the desired behaviour of a system. It 
defines the function explicitly but its execution semantics cannot be completely determined 
before function block instances are associated with particular resources and devices.

An application can be considered as an intermediate step in system development. Its role 
is to capture functional and structural properties of the system in a platform independent way.

Figure 9-1     An application is a network of function blocks.
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Models for devices and resources

This chapter discusses models for devices. In the context of this book, a device is understood 
as a functional unit like a computer, microcomputer, or an embedded chip that is capable of 
interacting with automation  equipment and  process  information. Examples of devices are 
programmable logic controllers, on-chip controllers, embedded chips of intelligent sensors 
and actuators, numeric controllers, network hubs, gateways, and so on (see Figure 10-1).

Device
A device in IEC 61499 is an abstract model that captures the information processing properties 
of embedded computing and control devices. A device is an atomic element of a system con-
figuration. The standard provides an architectural framework for creating models of devices, 
including their subdivision on computationally independent resources.

A device type (Figure 10-2) is specified by its process interface and communication inter-
faces. A device can contain zero or more resources (see the description of resource below) and 
a function block network (this option, however, is reserved for devices having no resources).

A “process interface” provides a mapping between the physical process (e.g., analog and 
discrete sensors and actuators) and the resources. Information received from the physical pro-
cess is presented to the resource as data, events, or both.

Figure 10-1 Examples of automation devices.
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Distributed system configurations

This chapter describes the concept of a system. A system configuration is the most complex 
structure of the IEC 61499 architecture. It includes instances of device types along with func-
tion block applications.

System configuration
A system configuration is described in IEC 61499 as a set of devices (instances of pre-defined 
device types) populated by function blocks in one or several applications, as illustrated in Fig-
ure 11-1. The devices can communicate with each other over communication networks. Also, 
the devices are linked with the controlled process via sensor and actor signals.

Figure 11-1   A system configuration.

Applications are said to be mapped on a particular architecture of devices, as illustrated by the 
arrows in Figure 11-1. This means that the function blocks of the application are assigned to the 
resources of the corresponding devices. In this way, a system configuration is formed.
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output values and sends them to the device DISPLAY, given the input parameters received from 
the CTL_PANEL. There are two communication flows: between CTL_PANEL and FLASHER 
device, and between FLASHER and DISPLAY devices.

The FLASHERR system configuration can be executed on a network of several (1 or 2) 
network connected devices. 

Figure 11-7    FLASHER implemented with three devices.

Figure 11-8  Devices of the FLASHER_TEST3D system: two local frame devices 
(CTL_PANEL and DISPLAY) and a remote device FLASHER.



97

12   
 
Service interface function blocks

This chapter describes the concept of service interface  function blocks, which are explicitly 
defined mechanisms for interacting function block applications with hardware  resources. For 
example, function blocks that read the values of input variables from peripheral input modules 
are service interfaces.

Services
In general-purpose programming languages, like C or JAVA, most of the structures work sim-
ilarly on different hardware and software platforms, while some of them, such as those com-
mands for reading input or displaying graphics require implementation specific to a particular 
operating system or hardware platform. The same is true for measurement and control appli-
cations. While the control logic can be the same, the functions that read values of sensors and 
set values to actuators will differ from platform to platform. Reading inputs is a service that a 
particular resource provides to the function blocks allocated to it.

The service interface function blocks serve this role, wrapping the hardware dependencies 
and allowing the application developer to focus on the application logic. Their implementation 
requires knowledge of the low-level details of particular hardware. Thus, in contrast to basic 
and composite function blocks, service interface function blocks are not intended to be devel-
oped by an application developer. They have to be provided by vendors of the corresponding 
equipment (e.g., of controllers, fieldbuses, remote input/ output modules, intelligent sensors, 
and so on).

To hide the implementation-specific details of the system from the application, the IEC 
61499 defines the concept of services the system provides to an application. A service is a func-
tional capability of a resource that is made available to an application.

A service interface function block is an abstraction of the software component imple-
menting the services. Figure 12-1 shows an example of a service interface function block RE-
QUESTER that provides some service to an application (examples of possible services include: 
read the values of sensors, increase the memory used by a resource, shut down a resource, send 
a message, access remote database, etc.). The IEC 61499 standard pre-defines some names for 
input/output parameters of service interface function blocks, such as INIT for initialization, 
INITO for confirmation of the initialization, QI for input qualifier, and so on.
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and adds a unique (for that device) port number at that location.

The CLIENT, located in Device 1, has an ID that is composed of two parts: IP address of 
the server’s device and the same port number as used in the SERVER’s ID.

Process interface: read inputs and write outputs
The process interface of a device is defined by service interface function blocks that can read 
values of sensors connected to the input ports and set values of actuators via the output ports. 
Figure 12-11 shows an example of using such service interface function blocks in a control 
application. In the Figure, inputs and outputs of the controller function block FEED_CTL are 
connected to the signals of controller ADAM 6650 via the corresponding service interface 
function block of type A6650. These function block type is supplied by the hardware vendor. 
The number of its data inputs and outputs corresponds to the number of input and output con-
tacts in the controller hardware. The IO function block will scan input modules of the controller 
every time interval as defined by the input variable DT (50 ms in this example). In case if any 
change is detected from the previous scan, the event IND will be emitted

Figure 12-11 Discrete inputs and outputs of the ADAM 6650 interfaced by A6650 func-
tion block.

Symbolic Links
Another method of interfacing peripheral modules is applied to control devices with modular 
structure of input/output modules. It is based on the concept of “Symbolic links”. The main 
benefits of this method as compared to the previously considered one are flexibility and more 
neat design avoiding “spaghetti” of connection arcs. 
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Simple application with decentralized 
control

This chapter applies function blocks to build a simple “component-based” system with de-
centralized control. The design of autonomous controllers and the idea of coordinating their 
activities without any external supervisor are illustrated. Moreover, it is demonstrated that this 
idea works for more complex hierarchical systems. The autonomous controllers are encapsu-
lated in basic function blocks. They receive input signals from sensors and set values to actu-
ators via service interface function blocks. When allocated to different devices, the controllers 
pass data to each other via communication function blocks.

Description of a controlled object
This chapter describes a small function block application that controls the mechatronic system 
Distribution Station shown in Figure 13-1. 

Figure 13-1 Controlled object: a simple mechatronic system.
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Programming User Interface with Com-
posite Automation Types

This chapter describes a specific mechanism for programming human-machine interface func-
tions in NxtStudio, called Composite Automation Types (CATs). This concept enables obe-
ject-oriented design, where both control logic and visualization functions can be encapsulated 
in the same software component.

HMI Architecture of NxtStudio
Process visualization and taking input from an operator are important parts of any industrial 
automation system. In the current systems, this part is usually developed using different soft-
ware tools from those used for programming controllers. NxtControl attempted to simplify this 
by combining developments of both control and visualization into one architecture. Therefore, 
a system architecture in NxtStudio always includes one more device, an implicit HMI panel, 
as illustrated in Figure 14-1. Here, the Cylinders application is distributed across two usual 
control devices, but it also interacts with the “implicit” HMI panel that visualizes the process 
and receives input from operator. 

Figure 14-1 System architecture with an implicit HMI device. 
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Object-oriented design of applications

This chapter introduces an object-based design of applications with artifacts of the function 
block architecture. It aims to facilitate the development of more complex automation systems, 
including visualization, simulation models, and human-machine interface along with the usual 
control and communication. 

Object-oriented Design
The concept of Object-Oriented Programming (OOP) in the general purpose software engi-
neering aims at higher efficiency of software development on account of reusing software 
components. Model-driven engineering (MDE), in particular, the Unified Modelling Language 
(UML), complements the object-oriented design, offering graphical representation for better 
capturing design features. 

The same goals are important in industrial automation, but there also specific require-
ments to design of complex automation systems, as follows:

• Integrate simulation and visualization of the controlled machine or process into the 
control and automation systems design process.

• Define a methodology to facilitate the transition from centralized to distributed and 
from simulated to physical systems.

• Incorporate facilities for machine and process diagnostics and fault recovery in the 
design pattern.

These and other requirements lead to object-oriented approach to the engineering of automa-
tion systems, which is similar but not identical to OOP. The goal of object-oriented automation 
system design will be to facilitate the development process making the structure of the software 
similar to the structure of the physical objects. The automation functions of physical objects are 
implemented by the corresponding hardware and software components.

The IEC 61499 architecture includes artifacts for implementing the most essential features 
of object-oriented design, such as encapsulation into function blocks, combined with support 
of higher level executable modes, such as state machines and block diagrams. However, the 
concept of object in automation need to be extended beyond only software part, to define a col-
lection of data and knowledge elements that belong to, or relevant to, and describe the physical 
building blocks of automated manufacturing systems, which can range from simple sensors to 
complex machine tools or manufacturing cells.
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Figure 15-3 Reconnection of function blocks.

The alternatives are illustrated in Figure 15-4, using the Transfer object as an example. The 
usual connection between the Model and the Controller is shown on the left side of Figure 15-
4, and the adapter connection is shown on the right. The right side of Figure 15-4 also shows 
the complexity of interconnections encapsulated in the adapter connection, which looks like a 
multi-wire cable. While encapsulation produces simpler looking components, the price paid for 
this simplicity is another layer of hierarchy between the actual controller function block and the 
composite function block having an adapter as a socket.

In cases where the blocks connected by adapter links have to be mapped to different de-
vices, the adapter interfaces can be transferred over communication networks. For this purpose, 
specific communication function blocks can be developed. The idea underlying such blocks 
is illustrated in Figure 15-5, where a pair of customized communication blocks with adapter 
interfaces as input and output implement the seamless passage of adapters across the commu-
nication channel.

Figure 15-4 Simplifying connections between Controller and Model function blocks.
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Case study: Modular Mechatronic Sys-
tem

In this chapter we consider in detail an example of modular software design with function 
blocks that will follow modularity and structure of the machinery under control. We will show 
how the function blocks architecture allows assembling a complete software solution for con-
trol, simulation and visualization from a library of predefined software components, and how 
different hardware and communication architectures can be explored. In particular, it will be 
shown how to check their impact on the functionality and performance of the system.  

Machine description
The machine used in this chapter for the case study is a simplified version of a pick and place 
manipulator with remote control, as shown in Figure 16-1. The manipulator is composed of 
two pneumatic cylinders, and a joystick for remote control (for the sake of simplicity, we will 
not consider the gripper part at all). Each cylinder is equipped with two valves enabling for-
ward and backward motion, and two end position sensors, indicating extended and retracted 
positions. There is great variety of valves and sensors that can be provided by suppliers, each 
of which may set specific requirements to control implementation. We will try to encapsulate 
these details into the corresponding software components, trying to demonstrate, how particu-
lars can be masked if they are not essential at the top integration level. For the purposes of this 
study, we will assume that each constituent part of the manipulator can have its own control 
and communication capabilities. To take the situation to extremes, we can even assume that 
communication is wireless, which is no longer impossible in industrial systems. 

Figure 16-1  Pick and place manipulator with remote control.
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As it was said above, each cylinder will be considered as composed of two valves, two sensors, 
and a piston freely moving in both directions. The valves will be flow control valves whose 
throttle can be set in the range of 0-100%. 

Desired functionality
With the joystick the operator determines the direction of motion in X and Y coordinates and 
the desired force to move. The control system receives the two parameters and translates them 
into speed of motion. The motion should stop if end positions are reached, as indicated by 
sensors. 

Range of hardware architectures
One can apply different control architectures in order to implement the desired functionality. 
The central controller architecture is on the one side of the spectrum. On the other extreme side, 
one can have a fully distributed solution where joystick and each sensor and valve is equipped 
with a microcontroller and wireless communication interface. These extremes are illustrated in 
Figure 16-2. 

Cylinder 1

Compressed air

Push 
valve

Sensor Sensor

Cylinder 2

Sensor

Sensor

Pop
valve

Microcontroller
SC21

Microcontroller
SC22

Microcontroller
VC11

Push valve

Microcontroller 
SC11

Microcontroller
SC12

Pop valve

Microcontroller
VC12

Microcontroller
VC22

Microcontroller
VC21

JoystickMicrocontroller
JC

a) b)
Figure 16-2 a) Central control architecture; b) Fully distributed control architecture.

The central control architecture in Figure 16-2, a) implies that all sensors and actuators of the 
manipulator are connected to the interface modules of one control device, such as a PLC or a 
Programmable Automation Controller (PAC) encountered in previous sections. 

The pneumatic connection diagram in Figure 16-2, b) illustrates another, distributed archi-
tecture. The diagram is also helpful to understand the nature of signals operated by the control 
system. Flow control of the valves is determined by an analog control signal in the range of 
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Figure 16-28  Observing values of variables.

Summary
This chapter presented a comprehensive case study of designing automation system following 
the object-based concept. The presented solution illustrates the potential of Model-View-Con-
trol architecture and CATs to achieve the plug and play goal of software design. The chapter has 
also illustrated the problem of automation systems design in an abstract way that can adapt to 
the variety of available mechatronic components and communication possibilities. 

Review questions for Chapter 16
1. How many different deployment scenarios exist for the application in Figure 16-6? What 

about the application in Figure 16-13?

2. Present arguments in favour and against the fully distributed architecture in Figure 16-
2,b.

3. Why is it said that Figure 16-5 presents an open-loop solution, although there are feed-
back lines from plant to the controller? What would be a proper closed-loop control dia-
gram? 

4. Explain how the iValve CAT is configured in order to implement push and pop valves. 





165

17     
New business models

This chapter shows the potential of open software architecture for creating a knowledge econ-
omy in automation. Business models are presented for tool and service providers,  device ven-
dors, system integrators and end users.1

Structure of the automation market
The distributed automation architecture presented in this book will be successful in the indus-
trial automation and control market if it substantially enhances the ability of each set of players 
to deliver added value by encapsulating, reusing, and deploying their specialized intellectual 
property (IP) at successively higher levels of integration, as illustrated in Figure 17-1.

The automation market exhibits the characteristics of the network economy described 
by Shapiro and Varian (1999). These characteristics include large network externalities (user 
economies of scale), where the value of a technology increases exponentially with the number 
of users and positive feedback, where successful application of the technology encourages ad-
ditional users and vendors to enter the market.

Figure 17-1    The value creation chain in industrial automation.2
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Figure 17-2    An example of a knowledge-based automation value creation chain in 
manufacturing (Auinger et al, 2005).

The vendor of these intelligent components may produce and maintain a range of similar de-
vices. The differences between them would lie in their basic structures and characteristics, as 
well as in the model and performance of embedded control device within the set of supported 
networks and protocols, etc. Since the basic components comply with the future automation 
object standard, design and maintenance of the whole product range is very much simplified. 
It will always be possible to substitute one component by another with minimal re-design and 
re-programming effort, because the automation object concept provides an abstraction level 
that hides unnecessary detail.

A vendor of intelligent production machines will use a range of available intelligent com-
ponents. With the help of their virtual representation, new machines will be designed and sim-
ulated.
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More tools for function block design

This chapter presents several other software tools compliant with IEC 61499: ISaGRAF, 
FBDK, and 4DIAC IDE.

ISaGRAF

Overview
ISaGRAF is a product of Rockwell Automation, Canada. Starting with version 5, released in 
2005, this IEC 61131-3 product has been enhanced with support for IEC 61499. It is now pos-
sible to develop distributed control applications in IEC 61499 together with application parts 
in IEC 61131-3.

ISaGRAF is the first fully fledged automation product supporting the complete design 
chain with IEC 61499. Based on the well-established IEC 61131 standard, this solution shows 
how the new standard can be incorporated. As shown in Figure 18-1, ISaGRAF consists of 
Workbench and portable firmware.

Figure 18-1   Structure of ISaGRAF: Workbench and Firmware for IEC 61499 and IEC 
61131-3 system development.

At the same time, not all concepts of IEC 61499 have been implemented. The communication 
between the application parts is achieved through network variables instead of service inter-
face FBs. The appearance of FBs in ISaGRAF follows IEC 61499, but their internals look a bit 
different. The Execution Control Chart of a basic FB, for example, is defined in a way similar 
to the IEC 61131-3 Sequential Function Chart language. The event-driven IEC 61499 FBs are 
executed on top of a cyclic-scanned and time-triggered IEC 61131-3 runtime system.
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ISaGRAF allows the use of the traditional PLC programming languages of the IEC 61131-3 
standard in function blocks; for example, it allows ladder logic, which is shown in Figure 18-2.

Reference example
The ‘LED Chaser’ reference example provided with the ISaGRAF demo kit (Figure 18-3) will 
be used to illustrate differences between this implementation and other tools, such as NxtStu-
dio and FBDK. The demo kit consists of 3 identical microprocessor devices with some input/
output ports connected with 2 buttons, 2 switches and four light emitting diodes (LED).

The ‘LedChaser’ application works as follows. On start up, the light begins ‘running’ from 
the left- most LED (LED3) to the right. The direction changes when the light reaches the right-
most LED, and so on. Pressing the B1 button on either device increases the speed of running, 
and pressing B2 decreases it. At any given time there is only one lit lamp in all three devices. 
An FB network controller for this system in the ISaGRAF version of IEC 61499 function 
blocks is shown in Figure 18-4. The control is decentralised; pressing a button in any device 
will immediately impact on the speed of the run, even when the light is already ‘running’ in 
another device.

If you press a button on device 3 while the light is in device 1, for example, the event 
will go to the PeriodManagement block, and then a new period will be transmitted to LedSe-
quence1. As a result, the speed (of the light movement in device 1) will change instantaneously.

The program includes six instances of the ‘ButtonManagement‘ FB, one per button. This 
FB detects a released button, and generates an event signal, which is sent to the ‘PeriodCalc’ 
FB, and that generates the value of time interval between the illuminations of two neighbour-
ing LEDs. This value is passed to the FBs responsible for sending signals to the lamps within 
one device. These are the three instances of the ‘LedSequence’FB type. This FB has two input 
events: ‘Inc’ and ‘Dec’. When Inc is received, the FB sequentially displays all 5 possible pat-
terns, in binary coding: ‘0000’, ‘1000’, ‘0100’, ‘0010’, ‘0001’ and ‘0000’, delaying the dura-
tion between each change of the output pattern.

The ’LedSequence’ is a basic function block, whose logic is defined by means of an Ex-
ecution Control Chart (ECC). In ISaGRAF, the ECC is implemented using a Sequential Func-
tion Chart (SFC) programming language. Apparently, ISaGRAF developers wanted to re-use 
the existing SFC editor, on account of control engineers’ familiarity with this language.



177	 More	tools	for	function	block	design		

Figure 18-2    ISaGRAF workbench enables the use of Ladder Logic to program algo-
rithms in basic function blocks.

Figure 18-3    LED Chaser system.

Despite the similar look, the ECC semantics is different from pure SFC semantics in IEC 
61131-3. In the “pure” SFC, no more than one transition per scan can occur. After a transition, 
SFC is “put on hold”.
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4DIAC IDE and Forte
The 4DIAC  consortium was formed in 2007 by several academic and industrial organizations 
with the goal of delivering open source design tools and run-time platforms for IEC 61499 
(4DIAC, 2009). The consortium clustered around the Odo Struger lab at Vienna Technical 
University and the research company PROFACTOR (Austria). 

4DIAC has developed an open source integrated development environment (IDE) under 
Eclipse (see Figure 18-18). It uses the plug-in mechanism of Eclipse to enable tool flexibility 
and extensibility. The tool can generate code for and execute function block applications on 
two run-time platforms: Forte and FBRT.

Forte is another deliverable of the 4DIAC consortium. It is a runtime environment written 
in C++. This admittedly makes it more efficient than FBRT (although some tests on a PC, sur-
prisingly, show the opposite result). Forte has been ported to a great range of hardware targets. 
It has proven to have real-time capabilities, as elaborated in Zoitl (2009). Figure 18-19 shows 
an example of such an application: a robot with 6 degrees of freedom and distributed function 
block control was created by PROFACTOR (Austria). The control system is implemented as 
three networking embedded controllers, each responsible for two axes.

Forte is used in the commercial tool-chain of NxtControl. In addition, 4DIAC-IDE and 
Forte represent a good alternative to FBDK/FBRT, especially for academic and training pur-
poses.

Figure 18-18  Screenshot of 4DIAC-IDE.
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Figure 18-19   Robot with 6 degrees of freedom and distributed function block control 
(PROFACTOR, Austria).
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Conclusion
Our journey through IEC 61499 is finally over! We have tried to touch upon all important arti-
facts of the IEC 61499 reference architecture. But the reader should bear in mind that this book 
is just an introduction to the distributed automation world of IEC 61499. For that reason, we 
could not cover many important issues.

First, the book is definitely not a reference for the IEC 61499 standard. It does not de-
scribe all the standard’s features in all its detail. The goal of the book was to help the reader 
understand the main concepts, get a hands-on feel for the standard and appreciate its potential. 
Accordingly, the material covered in this book is not sufficient for developing IEC 61499–com-
pliant devices and tools and proving their compliance—that requires more work with the text 
of the standard.

Secondly, we completely omitted discussion of such important issues as performance and 
networking. These are very important for automation systems. There are several sources where 
the reader can gain more knowledge on the subject. The book by Zoitl (2009) presents several 
interesting approaches to the real-time execution of IEC 61499. Another source is the chapter 
in Vyatkin, De Sousa and Zoitl (2010) that fills the gap in the details related to communication 
in IEC 61499 implementations.

The author hopes that this text will help promote IEC 61499. The author firmly believes 
that this standard can improve the software engineering practices in industrial automation and 
embedded control systems development!
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Appendix A: Event function blocks
The following table is taken from Table A1 of the IEC 61499 standard.

Split an event
Interface ECC/Algorithms/Service sequences

The occurrence of an event at EI causes the occurrence of events at EO1, EO2,..., EOn (n=2 in 
the above example).

Merge (OR) of multiple events

The occurrence of an event at any of the inputs EI1, EI2,...,EIn causes the occurrence of an 
event at EO (n=2 in the above example).

Rendezvous of two events
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Appendix B: IEC 61499 Compliance 
Profile for Feasibility Demonstrations 
The compliance profile (ITA, 2002) has been agreed on by several organisations participating 
in research around the IEC 61499 feasibility demonstration. In this appendix, we provide parts 
of that profile that are relevant to the device management.

Part 4. CONFIGURABILITY AGREEMENT
Parties to this agreement who are providers of software tools, and parties to this agreement who 
are providers of devices, mutually agree to the following conditions for the demonstration of 
configurability.

4.1 Software tools
Software tools shall be capable of utilizing the management capabilities of devices that are 

configured according to the functional equivalent of Figure 4.3-1.

EXAMPLE – The hostport value to access the management services in a remote device named 
m51568 would typically be represented as “m51568:61499”. If a Domain Name System (DNS) 
server were not available, but the remote device’s Internet Protocol (IP) address were known to 
be 161.153.19.227, the corresponding hostport value would be “161.153.19.227:61499”.

4.2 Device management services
The device management services to be implemented are provided by the functional equivalent 
of an instance of the DEV_MGR type shown in Figure 4.2-1.

The types and semantics of the inputs and outputs of the DEV_MGR type are identical 
to the correspondingly named inputs and outputs of the MANAGER type defined in subclause 
3.3.2 of IEC 61499-1, with the following differences:

The DST input designates the destination of the RQST input as follows:

•	 A value of “” (the empty string) designates the device;

•	 A value containing an IEC 61131-3 identifier designates a resource within the device;

•	 A value containing a sequence of IEC 61131-3 identifiers separate by periods (the 
“.” character) indicates a resource in a containment hierarchy of resources, with the 
leftmost identifier corresponding to the outermost resource and the rightmost identifier 
corresponding to the innermost resource.

EXAMPLE 1 - A DST value of “RES1” indicates that the RQST input is destined for a resource 
named RES1 contained in the managed device.

EXAMPLE 2 - A DST value of “MOTOR1.WINDING2” indicates that the RQST input is 
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