Recent Works on 61499

at

Saarland University

Prof. Dr.-Ing. Georg Frey

Chair of Automation

georg.frey@aut.uni-saarland.de
Overview

- Implementation on .NET
- Automatic Deployment
Expected advantages from Application of IEC 61499

• Abstraction from
 - Controller hardware
 - Automation infrastructure
 - Communication
 - Process interfacing

• Our target
 - Less effort for implementation (increased usability)

• Realization
 - Implementation of IEC 61499 runtime as middleware

• Prerequisite
 - Clarification of ambiguities in standard’s text
Identified ambiguities in the standard's text

- Ambiguities identified in standard
 - 1. Development process
 - 2. Synchronization of concurrency
 - 3. Event and data transport
 - 4. Invocation of FBs
 - 5. Sub-applications
 - 6. Composite FBs
 - 7. Consumption of events
 - 8. Publication of events

→ Eight Principles for use of IEC 61499
 → Two are discussed in the following
Principle 1: Application design is to be done independently of the actual implementation!
Sample application of the development process

• Non-distributed Application

• Distributed Application

Definition of semantics!

Influence on runtime behavior!

Automatically inserted!
Event and data transport

- Event transport
 - Publish-Subscriber mechanism
 - Multiple sources and multiple targets for events possible

- Data transport
 - Client-Server mechanism
 - One source and multiple targets for data possible
Principle 3: Event flow is based on the Publish-Subscriber model while data flow uses a Client-Server mechanism. The IEC 61499 runtime environment is in charge of delivering data and events on time!

NO EVENTS GET LOST!
Execution Order of Function Blocks

• Function block networks define a partial order of execution

• Some interpretations of IEC 61499 try to convert the partial order to a fully specified order
 ➢ Only works on resource level (contradiction to Principle 1)

➔ Principle 2: FBNs specify a partial order of FB execution. Synchronization between FBs has to be explicitly specified in the design!
• IEC 61499 runtime implementation based on .NET

• Features of .NET implementation
 ➢ Free choice of programming language: C#, Visual Basic, C++, ...
 ➢ .NET software library
 ➢ Visual Studio as development environment

• Framework specifics
 ➢ Clear distinction between definition of interface and algorithms
 ➢ Automatic insertion of communication SIFBs
 ➢ No compilation of interface and ECC of FBs

XML-File: Interface + ECC
.NET-File: Algorithms

FB Instance

interpretation (no compilation)
Deployment Formulation

- **Finding the optimal deployment:**
 - The problem is divided into two parts

Master problem

- One where the constraints are static
 - Residence: need of specific hardware or software facility
 - Co-residence: close dependence of certain artifacts so that those are to be on the same hardware
 - Exclusion: redundant elements created for the sake of fault-tolerance should be on different hardware (also need of specific hardware e.g. timer)
 - Utilization: for the sake of scheduling utilization should not exceed a pre-defined limit
 - Memory capacity
 - Network use

Sub-problem

- One where the constraints are dependent upon the dynamics
 - Time constraints (WCET)
 - Schedulability: the deployed tasks should have to be schedulable
Deployment Solution

• The master problem can be solved using simple constraint solving algorithm (i.e., backtracking search)

• Multiple solutions of the master problem are needed since they need to be compared with respect to its suitability to sub-problems

• For solving sub-problems response time analysis or schedulability analysis is needed.

• Master problem and sub-problems are inter-related and the inter-dependence can be learned through explanation-based learning

• Prototypical Implementation works
Conclusions and Outlook

- Utilization of IEC 61499 as middleware
 - Abstraction
 - Simplification of design and implementation

- Interpretation of standard’s text focused on usability
 - Clear distinction between design and deployment
 - Clarification of ambiguities (with focus on usability)

- Prototypical Implementation in .NET
 - Free choice of programming language
 - Visual Studio as development environment
 - Can be run on Windows and Linux (with project Mono)
 - Not necessarily in combination with 61131!

- Automatic Deployment is possible
Thank you!

Any questions?