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Abstract – In this paper we discuss the problem of migration 

from the PLC control to the event-driven and component based 

architecture of IEC 61499 function blocks. We are using a 

conveyor system to illustrate three different migration methods: 

object-oriented in basic function block, object-oriented in 

composite function block and class-oriented in basic function 

block. The advantages and limitations are summarized and 

guideline for migration is provided. 

 
Index Terms—Automation and control systems, 

Manufacturing automation, IEC 61499, PLC, Migration 

I. INTRODUCTION 

With the increasing global competition, manufacturers are 

more concern to reduce the cost by improving the efficiency 

of their production systems. Also redundancy and safety are 

taken more serious consideration in the current automation 

world due to the increased complexity of the control systems. 

Distributed automation is considered as an advanced option 

to increase efficiency and provide redundancy to the 

manufacturing and logistics systems. However, the current 

automation paradigm, based on the use of programmable 

logic controllers (PLC), programmed according to the IEC 

61131-3 [1] standard, is not suitable for distributed system as 

it is defined for centralized control. 

 

IEC61499 [2], seen as the next generation automation 

systems standard, is designed to cover interoperability, 

portability and reconfigurability which are missing in IEC 

61131-3. The IEC 61499 architecture relies on the event-

driven paradigm of execution which seems to be a disruptive 

technology with respect to the cyclically executing PLC 

programs. The target benefits of IEC 61499 are manifold: the 

design related ones include the increased portability of event-

driven components, and the execution time ones include 

possibly better reaction time due to no need in cyclic scan 

execution of the whole PLC program.  

 

The migration of software from the currently dominating PLC 

software architectures to the newly emerging component-

based architecture of IEC 61499 is a very important issue for 

the success of the latter. There is no existing guideline clearly 

illustrating the migration strategy. Manufacturers are 

struggling with implementation of distributed system in IEC 

61131-3 PLCs and they are not able to investigate the IEC 

61499 solution due to the lack of resources and appropriate 

design tools and execution platforms, which increases the 

risks of the adoption.  

 

The questions of interest are:  

- Is it possible to re-use some PLC code in IEC 61499 

function block projects?  

- What would be the options for migrate the PLC code to 

IEC 61499? 

- What would be the best methodology for migration?  

- And, what are the limitations for the IEC 61499 function 

blocks? 

 

The paper is structured as follows. Section II points out the 

limitation of the current IEC 61131-3 compliant PLCs for 

distributed control system. Related work is reviewed in 

section III. An illustrative example and design methodology 

are given in Section IV and V for our migration studies. 

Section VI and VII provide the possible solutions for 

migration. The discussion including guidelines and 

limitations for migration from IEC 61131-3 PLC to IEC 

61499 function blocks is given in Section VIII. The last 

section concludes the paper and points out the future work 

directions. 

 

II. REQUIREMENTS AND LIMITATIONS OF USING IEC 

61131-3 PLC IN DISTRIBUTED SYSTEM 

In a complex automation system, for instance, material 

handling system, typically thousands of inputs and outputs 

pins are required. The input and output PLC modules are 

placed in different control panels on site. Those control 

panels are located remotely around the conveyors in order to 

minimize the length of power and signal cables used. The 

remote I/Os are connected to the PLCs located in the central 

control room via a field bus (for instance, ProfiNet [12], 

ControlNet[13] or Ethernet/IP[14]). This setup gives the best 

cost-effective model by reducing the hardware cost as much 

as possible.  

 

Also, the existing PLCs are not powerful enough to handle 

everything in a single PLC within a reasonably short scan 

time. In a large material handling system with hundreds of 

conveyors and other devices, the system has to be divided 

into several subsystems, each controlled by a PLC. 

 

There are several critical limitations when applying the IEC 

61131-3 standard to distributed PLC systems. The first issue 

is the conflicts of write access for outputs in multiple PLCs. 

In IEC 61131-3, each remote output module must be owned 

by a single PLC. All output pins from that output card only 

shall be turned on or off by that particular PLC. The original 

purpose of this design is to protect PLCs from unexpected 



actions and to ensure synchrony of the data. But this also 

greatly increases the engineering time to work out the owner 

of each output module.  

 

Beside the ownership issue, this design model also increases 

the complexity of software development. As a single output 

module cannot be owned by multiple PLCs, no more than one 

PLC can access the same output module. Instead, those 

output pins required by multiple PLCs must be assigned to 

one of those PLCs for first step. In the second step, the alias 

PLC tags of those output pins must be created in all other 

PLCs which need to access those pins. In the final step, those 

tags will be copied to the owner PLC of that output card via 

the field bus. This procedure involves lots of work time and 

care as the entire process must be done manually. 

 

Beyond that point, copying data over the field bus will 

significantly reduce the system performance and reliability 

and increase hardware costs. For time critical systems like 

airport baggage handling systems, the scan time of PLC must 

be under a certain threshold to ensure its correct operation. 

The communication overhead time between PLCs is 

increased heavily and the system may not behave correctly if 

updating data over field bus cannot be handled fast enough. 

Also, the entire reliance on the field bus reduces system’s 

reliability: if any of the field bus connection is lost, the 

system cannot continue operating until the connection is fixed. 

Single failure in the system can cost a long downtime and big 

economical losses for end-users. 

 

III. RELATED WORKS 

The importance of the migration from PLC programming 

architecture (IEC 61131-3) to IEC 61499 has been recently 

recognized by several researchers, for example [4], [5], [15], 

[7], [16], [17]. However, no work is known to us specifically 

tackling the distributed systems design issues. On the other 

hand, there has been interest developing in automation 

research to the service – oriented architectures as a possible 

solution for distributed systems. A few works in this direction 

are discussed as follows: 

 

In the paper [8], authors pointed out that a service is 

described by its interface and no concern of actual 

implementation is required. Also the fundamental concepts of 

service-oriented control architecture are reconfigurability and 

interoperability between various devices which is identical to 

the IEC 61499 standard. XML is recommended as a standard 

protocol for exchanging configuration or data among the 

service-oriented system. 

 

In the paper [9], a case study of distributed data warehouse is 

given using grid services-oriented architecture. In this paper, 

the issue of data ownership over service-oriented architecture 

is arisen and data scheduling optimization is also discussed.  

 

In the paper [10], authors provide the execution rules in a 

service-oriented architecture for distributed system. First-In 

First-Out (FIFO) and Shortest Queue (SPT) are used as the 

rules to compare the execution average time of service-

oriented architecture program. Earliest start time (EST), 

earliest finish time (EFT) and same recipe (SR) are applied in 

the execution as well. The results prove EFT-SPT is the best 

execution rule for distributed system in SOA. 

 

In the paper [11], authors provide the definition of service-

oriented architecture in industrial automation: An SOA is a 

set of architectural tenets for building autonomous yet 

interoperable systems. Authors also introduce the SOAP and 

SOA in web services into the industrial automation and 

recommend using Internet protocol for automation devices. 

 

One of the design methods introduced in this paper is inspired 

in a way by the service – oriented architectures: a class of 

services related to a group of devices is implemented in a 

single function block. We refer to this design method as 

class-oriented design approach.   

 

IV. ILLUSTRATIVE EXAMPLE  

To illustrate the function block design and execution rules we 

will use an example of a conveyor system as presented in 

Figure 1.  

 

 
Figure 1. A Conveyor System of a Simple Airport Baggage 

Handling System. 

 



The sample airport baggage handling system consists of total 

six subsystems: 2 Check-in system (CI1 and CI2) and 4 

Sortation systems (S1 to S4). Those subsystems form two 

fully redundant systems: CI1/S1/S2 and CI2/S3/S4. There are 

6 crossover pushers (CD1 to CD6) which are responsible for 

diverting bags to the other system. The check-in subsystem 

CI1 and CI2 are collecting bags from counters and conveying 

those bags to the sortation lines (S1/S2 and S3/S4). Pushers 

CD1 and CD2 will divert the bags to the other lines if any 

downstream conveyor is not operating normally. The 

sortation subsystems (S1 to S4) are responsible for delivering 

each bag to the flight it belongs to. In Figure 1, laterals L101 

to L108 are used for different flights. Bags will be pushed to 

their destination laterals by the diverters (DD1 to DD8). 

Crossover pushers (CD3 to CD6) will divert bags to the 

alternative line if any downstream conveyor is faulty or the 

other PLC in the same sortation line is down. For example, 

when the S4 PLC breaks down, pusher DD3 will 

automatically divert all bags to S1 line. 

 

The devices in each subsystem are listed below: 

 

Legends: (# - represents number index for the device) 

 

D### - Check-in Counter 

C###/S### - Conveyor 

CD# - Crossover Pusher 

DD# - Crossover Pusher 

SD# - Sortation Pusher 

L### - Lateral 

ATR# - Automatic Tag Reader 

 

Check-in 1(CI1) – D101 , D102, D103, D104, C101, C102, 

C103, C104, C105, CD1  

Check-in 2(CI2) – D201, D202, D203, D204, C201, C202, 

C203, C204, C205, CD2  

Sortation 1 (S1) – S101, S102, S103, S104, S105, ATR1, 

DD1  

Sortation 2 (S2) – S201, S202, S203, S204, S205, DD2, 

SD1, SD2, SD3, SD4, L101, L102, L103, L104  

Sortation 3 (S3) – S301, S302, S303, S304, S305, ATR2, 

DD3  

Sortation 4 (S4) – S401, S402, S403, S404, S405, DD4, 

SD5, SD6, SD7, SD8, L201, L202, L203, L204  

 

The subsystem redundancy is listed in the table below. 

Original 

Subsystem 

Destination 

Subsystem 

Via Push Name 

CI1 CI2 CD1 

CI2 CI1 CD2 

S1 S2 DD1 

S2 S1 DD2 

S3 S4 DD3 

S4 S3 DD4 

Table 1. Redundancy Crossover Pushers. 

 

 

V. DESIGN METHODOLOGY 

First, let us describe the PLC network design. In each 

subsystem, a main control panel is installed so that all cables 

from field devices are wired into the panel. Remote I/O 

modules located inside the main control panel are connecting 

to the field devices. All PLCs are sitting in a single rack in the 

main control room and communicating with remote I/O via 

Ethernet. Figure 2 illustrates this PLC network. 

 

 
Figure 2. PLC Network Diagram for BHS. 

 

One PLC is assigned for each subsystem. In each PLC, an 

individual subroutine is created in ladder diagram (LD) for 

each device. During each scan, PLC executes all the 

subroutines one by one. Figure 3 provides the structure of the 

PLC code. It is common in PLC code design that a function is 

developed for each device to provide control, service or 

interface. Then data tags required by each device are created 

and those data tags are considered as the instance of that 

device. The function will go through each device in order. 

This design follows in a way the service-oriented approach. 

 

 
Figure 3. PLC Code Structure for BHS. 

 

If we take a further look at the layout drawing of the BHS, 

beacons are installed all around the conveyors to indicate 

when a fault occurs or issue a warning that the system is 

starting. Some beacons are placed at the joint of two 

subsystems. Those beacons are designed to relay the status of 

downstream conveyors which belong to another subsystem. 

Also there are some beacons shared by two subsystems such 

as B101 at the check-in area which are shared by CI1 and 

CI2. 

 

In the IEC61131-3 PLC code, those beacons must be assigned 

to a single owner PLC. In Figure 4, the beacon B101 is lit on 

when conveyor C101 in CI1 or conveyor C201 in CI2 is in 

fault state. The physical beacon output is wired into the PLC 

output module that is owned by CI1 subsystem. When the 

conveyor C201 malfunctions, the B101_On output in CI2 



must be copied to CI1 over PLC interlink or via a field bus 

(ControlNet or Ethernet). Extra ladder logic code in CI1 is 

required to turn beacon B101 on when B101_on signal is 

raised from either CI1 or CI2. 

 

 
Figure 4. Beacon Indicators in IEC 61131-3 PLC Code 

 

Now let us consider how the PLC code could be encapsulated 

into event-driven function block of IEC 61499. There are two 

design principles that can be applied: object-oriented 

approach or class-oriented architecture. 

 

A. Object-Oriented Approach 

 

In the object-oriented approach by [18,19], function blocks 

are used as the fundamental programming unit that contains 

all related functions, variables and interfaces of a single 

device (object). Similar to the general concept of object-

oriented programming, when creating a new system in IEC 

61499, a separate instance of the function block would be 

created for each device in the system (for example, creating a 

FB instance of conveyor for each conveyor in the system). 

Eventually, those FB instances are connected together 

according to the physical layout position order. It is easy to 

demonstrate that the composite function block illustrated later 

in Figure 8 (under the stated assumptions) will have the 

behavior equivalent to the original PLC executing the ladder 

diagram cyclically for each device.  

 

B. Class-Oriented Architecture 

 

In the class-oriented approach, the basic function block is still 

the basic element of the program. Similarly to the object-

oriented approach, here the function block represents a class 

of devices and encapsulates all its functionalities. The 

difference is that a single instance of this function block 

serves all the devices of this class (for instance, all conveyors 

in the system will be processed in the same function block, or 

a particular group of such conveyors).  

In other words, all data and algorithms providing one 

particular service are encapsulated in a function block. This 

model ensures each function block is able to provide a service 

without invoking any other function blocks. 

 

We will illustrate both solutions by implementing them in 

nxtStudio IEC 61499 Editor [3]. 

 

VI. OBJECT-ORIENTED SOLUTION 

According to the object-oriented design method, the 

functionality of each physical device (conveyor, pusher, 

beacon, etc.) is implemented in a basic function block.  

 

The IEC 61131-3 subroutines/functions are encapsulated into 

algorithms of the FB. The conversion to algorithms is, 

however, not straightforward. We will illustrate the method 

using the conveyor control example in the baggage handling 

system context.  

 

A conveyor controller is typically designed as a finite state 

machine (FSM). The common states for a conveyor are off, 

startup, stop, run and fault. The finite state machine jumps 

states based on the changing values of PLC inputs. After the 

current state is switched, the logic of the new current state is 

activated and associated outputs are emitted. The FSM is 

implemented in a PLC programming language, for example 

in ladder logic diagram which may look like illustrated in 

Figure 5. The conveyor control subroutine divides into two 

major parts: FSM and outputs. In the FSM part, the 

transitions of states are defined. The subroutine will jump to 

the outputs part and regenerate output status based on the 

state of FSM. 

 

 
Figure 5. Conveyor control code structure in IEC 61131-3. 



To migrate this conveyor control into the IEC 61499 format, 

there are two approaches by applying the object-oriented 

concept. 

 

A. Convert PLC Code into ECC and EC State Algorithms 

 

The first choice is to convert the original FSM that precedes 

the PLC Code (refer to [20] for FSM recovery from PLC 

code) into the execution control chart (ECC) inside basic 

function block. The ECC is a state machine which is 

switching states based on input events triggering.  

 

For that, however, the original FSM needs to be known, or it 

can be recovered from the PLC ladder logic, for example 

following the ideas of [21],[22].  

 

First design step is to create one EC State for each state from 

the original finite state machine. In our case, we will create 5 

EC states in the new conveyor basic function block: off, 

startup, stop, run and fault. Secondly, the conditions of state 

transitions are mapped directly to the EC transitions 

conditions. For example, in the PLC code, the premise for 

jumping from off to startup state that there is no fault on the 

conveyor and start button is pressed is set as the new EC 

transition condition between EC State off and startup. Finally, 

the state actions are placed into the EC state algorithms. In 

figure 6, when the system is starting up, the beacon and 

sounder indicator will be turned on for warning. The beacon 

and sounder output command is lit in the startup state 

attached algorithm in ECC. 

 

 
Figure 6. Conveyor Basic Function Block - Converting PLC 

state machine to ECC 

 

B. Reuse Entire PLC Code 

 

In this method, no PLC code change is required at all, as it is 

encapsulated into the algorithm REQ. The new basic function 

block is a top level entity for detecting the changes of inputs 

when the REQ event is sent from the I/O capture Service 

Interface FB. When an input change happens, the basic 

function block will jump into the state REQ processing 

request. After the algorithm is executed, the new output data 

shall be updated. In Figure 7, the FB interface is identical 

with the previous model. But inside ECC, there are only two 

EC states - IDLE and REQ states. When the photo eye on the 

conveyor is flushed or any other inputs change their value, 

the FB wakes up from IDLE state, starts executing the 

algorithm in REQ state. Once the process is completed, the 

FB remains in IDLE state until any other input changes. 

 

 
Figure 7. Conveyor Basic Function Block - Reuse PLC Code 

 

After converting all subroutines/functions into function 

blocks, a composite function block is used to resemble a 

circuit of logic elements as in Figure 8. Function blocks are 

connected together relied on the physical layout. In this case, 

a single conveyor is connected to both upstream and 

downstream conveyor function blocks.  

 

For deployment, an IEC 61499 – compliant device is used for 

each subsystem which only contains conveyors and other 

devices belonging to this subsystem. Those devices are 

distributed and interoperable with each other. IEC 61499 

compiler will dynamically allocate IEC 61499 devices into 

various resources (processors). After all function blocks are 

compiled into executable binary files, this FB library will be 

deployed to those processors. The FB instances are created 

using the management commands (defined in IEC 61499) 

sent from the programming tool to the remote processors. The 

processors are updating their I/O data via remote I/O modules 

connected via field buses like Ethernet.  

 

Figure 8 demonstrates the IEC 61499 solution for CI1 

subsystem. Function block instances of C101 to C105, D101 



to D104 are created respectively. FB_Inputs are connected to 

every function block for updating inputs status as well as the 

FB_Database which provides global variables and constants. 

The push diverter CD1 and beacon B101 are also converted 

into function blocks in the new IEC 61499 models.  

 

 
Figure 8. Composite FB Network for CI1 Integration 

Solution. 

 

This solution required the development of several extra 

basic/service interface FB types, described as follows:  

FB_Database – stores all global variables and constants. This 

FB_Database is required by all FBs in the network. 

FB_Inputs – updates all physical inputs from the Input 

modules. This service interface function block is invoked 

every 50ms to read the values of all inputs. 

FB_Outputs – update all physical outputs to the output 

modules. This service interface function block is called by 

other function blocks when there is a request for output 

change. 

 

In this object-oriented approach example, a FB instance can 

be found in the composite function block for each device. 

Two feasible solutions for migration are also provided: 

reusing PLC code or converting PLC code to ECC with 

algorithms. Figure 9 provides an overview for the CI1 system 

in IEC 61499. 

 

 
Figure 9. Overview of the entire CI1 in IEC 61499. 

VII. CLASS-ORIENTED SOLUTION 

The other possible integration solution is using the class-

oriented architecture. Instead of creating a FB for each device, 

a basic function block is created for a class of such devices. 

For instance, FB_Conveyor in Figure 10 is servicing all 

conveyor control related algorithms. The FB interface is 

similar to the previous object-oriented model but with an 

array of the conveyor inputs. When some inputs change for 

the conveyors, the service interface function block FB_Inputs 

will update those values to FB_Conveyor immediately. 

According to the ECC, with REQ event raises, FB_Conveyor 

shall move to REQ state and read all inputs values into the 

local conveyors data which are stored as local variables inside 

the FB_Conveyor. Once the update process is completed, the 

ECC shall move to the PROCESS state, and inside the 

PROCESS state algorithm, conveyor logics will be looped for 

every conveyor in the memory. All original PLC code is 

reused
1
 in the PROCESS state algorithm without any major 

modification. The only step is to replace all conveyor instance 

variables in the algorithm with an indexed data array of 

conveyor (for example, Conv1 is now replaced with Conv[1]). 

The upstream and downstream conveyors data are easily 

accessible as its local to the current conveyor. 

 

 
Figure 10. Class Oriented Conveyor Basic Function Block. 

 

Similar to the object-oriented solution, FB_Inputs and 

FB_Outputs are still required for gathering inputs data and 

generating output data. To fulfill distributed control, an IEC 

61499 device is created for each subsystem which includes, a 

class function block for each device class (or a subgroup 

within the class). Those class function blocks contains all 

data required and only be invoked when the input data 

changes. Figure 11 illustrates the system overview for class-

oriented CI1 subsystem. FB_conveyor contains all conveyors 

including D101 to D104 and C101 to C105.  

 

                                                           
1  Provided that the PLC code has been already designed in a modular way 

and there is no direct use of variables of other conveyors within the code of a 

single conveyor (instead they are referred to via a kind of reference table).  



 
Figure 11. Class Oriented for CI1 Integration Solution. 

 

VIII. DISCUSSION 

In the object-oriented design, modular design concept is 

applied so that each physical device represented by a function 

block instance. It is convenient to identify each device in the 

function blocks network. This provides great convenience for 

debugging and easy understood by maintenance technicians 

or system operators.  

 

This approach can be also beneficial in terms of performance, 

as the event flow can be directed only to those FBs which are 

necessary to be involved in the reaction to a certain input 

event in the environment.  

 

And, this approach well fits to the vision of [18] when each 

part of the physical machinery is equipped with its own 

embedded controller running the corresponding controller FB. 

 

A typical PLC program code implementation is done either in 

sequential logic or using finite state machine. If the PLC code 

is controlling a series of actions or is sequential without 

nested structures, such PLC code is eligible for the reuse of 

the entire program in EC State algorithms. Converting the 

entire PLC code into the IEC 61499 as in [4] requires a lot of 

re-work time on coding and cannot achieve fully identical 

result.  Alternatively, re-use the entire PLC code is a much 

more cost-effective method. This minimizes the engineering 

time during the migration process [5]. This is also beneficial 

for IEC 61131-3 developers to quickly pick up IEC 61499 

design and helping manufacturers migrating IEC 61131-3 to 

IEC 61499 with minimum cost. 

 

The class-oriented architecture provides a different solution 

for converting the PLC code into function blocks. The key 

principle here is to consider the basic function block as 

representing a class of devices or encapsulating a class of 

services. The class FB stores all related data locally so no 

global variables or constants is required. This solves the issue 

that there is no definition of global variables and constants in 

IEC 61499 [7] which are commonly used in IEC 61131-3.  

 

IEC 61499 is invented to introduce distributed control into 

the existing automation world. Most of the current studies for 

IEC 61499 function block implementation are using the 

object-oriented concept due to the fact that physical machines 

are distributed and each machine is controlled by a processor.  

However, the class-oriented design may fit better to the 

migration of PLC code into IEC 61499 FB. In this case, the 

global variables still can be used in the program. All 

programs running on the IEC 61131-3 standard PLCs are 

executed cyclically. When a scan starts, PLC will read out all 

input modules data into the PLC memory, go through the 

entire active algorithms, and update all output modules at the 

end of each scan. Scan time is a critical factor of measuring 

the system performance. Missing input data due to the slow 

scan time would cause unexpected system behaviors. Those 

abnormal behaviors cannot be easily detected by engineers 

and also create safety issues on site. As IEC 61499 is based 

on event-driven function blocks, there is no concept of scan 

cycle time. Instead, FB_Inputs emits event whenever any 

input changes. This event will invoke the FBs downstream. 

 

In the object-oriented model, a device is recognized as an 

object and all data and methods are local within this function 

block instance. However, in a typical material handling 

system (for instance, airport baggage handling system), a 

conveyor cannot operate on its own. The statuses of upstream 

and downstream conveyors as well as the conveyors in the 

same zone are also required to determine the operation mode 

of each individual conveyor. As those status data are kept in 

their own conveyor function block instances, data connection 

must be created to pass all statuses variables back. Also the 

status of this conveyor might be requested by multiple 

conveyors as well. As a result, numerical data connections are 

established between all conveyor function block instances. 

During system operation, the extra overhead time for 

updating statuses is required that causes increase in the 

reaction computation. Therefore, the object-oriented approach 

may be not the best option for all distributed system designs. 

 

In the class-oriented design, conveyor status data, methods 

and relevant conveyor status data are all local and no 

overhead time for updating data variables is necessary. 

During the execution, the entire input data will be copied into 

this function block at a fixed period interval. After the input 

variables have been updated, those conveyors in the function 

block which have one or more updated inputs will be 

processed and related outputs will be regenerated after the 

execution of algorithms is completed. This is similar to IEC 

61131-3 program in PLC but different in the sense that in 

PLC all conveyor function blocks will be executed regardless 

of change of inputs. Compared to the object-oriented model, 



there is absolutely no overhead communication time in the 

class-oriented model. This will increase the efficiency 

significantly. Beside the overhead time, in normal IEC 

61131-3 PLC approach, if a variable is required by more than 

one program, that variable will be declared as a global 

variable. In IEC 61499, in order to obey the fundamental 

concept of encapsulation, there is no definition of global 

variables or constants. In the object-oriented approach, those 

global variables and constants must be stored in a separate 

function block. Then this function block will communicate 

with every block which has a demand for global variables and 

constants. This also creates inefficiency in execution. This 

issue is avoided in the class-oriented model, as all the 

required data variables are available locally.. 

 

Overall, the class-oriented architecture avoids using global 

variables and constants at the top level design. Re-use of the 

entire PLC code minimizes the migration time. No data is 

required to be passed around the function blocks, which will 

reduce the execution time of the program. Those features suit 

better for distributed system control. 

 

IX. CONCLUSION AND FUTURE WORK 

The IEC 61131-3 PLCs do not best suit the distributed 

control systems. We proposed two options for migration from 

IEC 61131-3 PLC control to the IEC 61499 distributed 

Function Block control: the object-oriented and the class-

oriented architectures. Benefits and drawbacks of both 

approaches have been presented and compared.   

The future work will concern with benchmarking the 

performance of IEC 61499 running the migrated IEC 61131-3 

programs. Also the behavior of the resulting IEC 61499 

programs must be verified. 
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