
Redesign Distributed IEC 61131-3 PLC System in

IEC 61499 Function Blocks

Wenbin(William) Dai, The University of Auckland, New Zealand wdai005@aucklanduni.ac.nz

Valeriy Vyatkin, The University of Auckland, New Zealand v.vyatkin@auckland.ac.nz

Abstract – In this paper we discuss the problem of migration

from the PLC control to the event-driven and component based

architecture of IEC 61499 function blocks. We are using a

conveyor system to illustrate three different migration methods:

object-oriented in basic function block, object-oriented in

composite function block and class-oriented in basic function

block. The advantages and limitations are summarized and

guideline for migration is provided.

Index Terms—Automation and control systems,

Manufacturing automation, IEC 61499, PLC, Migration

I. INTRODUCTION

With the increasing global competition, manufacturers are

more concern to reduce the cost by improving the efficiency

of their production systems. Also redundancy and safety are

taken more serious consideration in the current automation

world due to the increased complexity of the control systems.

Distributed automation is considered as an advanced option

to increase efficiency and provide redundancy to the

manufacturing and logistics systems. However, the current

automation paradigm, based on the use of programmable

logic controllers (PLC), programmed according to the IEC

61131-3 [1] standard, is not suitable for distributed system as

it is defined for centralized control.

IEC61499 [2], seen as the next generation automation

systems standard, is designed to cover interoperability,

portability and reconfigurability which are missing in IEC

61131-3. The IEC 61499 architecture relies on the event-

driven paradigm of execution which seems to be a disruptive

technology with respect to the cyclically executing PLC

programs. The target benefits of IEC 61499 are manifold: the

design related ones include the increased portability of event-

driven components, and the execution time ones include

possibly better reaction time due to no need in cyclic scan

execution of the whole PLC program.

The migration of software from the currently dominating PLC

software architectures to the newly emerging component-

based architecture of IEC 61499 is a very important issue for

the success of the latter. There is no existing guideline clearly

illustrating the migration strategy. Manufacturers are

struggling with implementation of distributed system in IEC

61131-3 PLCs and they are not able to investigate the IEC

61499 solution due to the lack of resources and appropriate

design tools and execution platforms, which increases the

risks of the adoption.

The questions of interest are:

- Is it possible to re-use some PLC code in IEC 61499

function block projects?

- What would be the options for migrate the PLC code to

IEC 61499?

- What would be the best methodology for migration?

- And, what are the limitations for the IEC 61499 function

blocks?

The paper is structured as follows. Section II points out the

limitation of the current IEC 61131-3 compliant PLCs for

distributed control system. Related work is reviewed in

section III. An illustrative example and design methodology

are given in Section IV and V for our migration studies.

Section VI and VII provide the possible solutions for

migration. The discussion including guidelines and

limitations for migration from IEC 61131-3 PLC to IEC

61499 function blocks is given in Section VIII. The last

section concludes the paper and points out the future work

directions.

II. REQUIREMENTS AND LIMITATIONS OF USING IEC

61131-3 PLC IN DISTRIBUTED SYSTEM

In a complex automation system, for instance, material

handling system, typically thousands of inputs and outputs

pins are required. The input and output PLC modules are

placed in different control panels on site. Those control

panels are located remotely around the conveyors in order to

minimize the length of power and signal cables used. The

remote I/Os are connected to the PLCs located in the central

control room via a field bus (for instance, ProfiNet [12],

ControlNet[13] or Ethernet/IP[14]). This setup gives the best

cost-effective model by reducing the hardware cost as much

as possible.

Also, the existing PLCs are not powerful enough to handle

everything in a single PLC within a reasonably short scan

time. In a large material handling system with hundreds of

conveyors and other devices, the system has to be divided

into several subsystems, each controlled by a PLC.

There are several critical limitations when applying the IEC

61131-3 standard to distributed PLC systems. The first issue

is the conflicts of write access for outputs in multiple PLCs.

In IEC 61131-3, each remote output module must be owned

by a single PLC. All output pins from that output card only

shall be turned on or off by that particular PLC. The original

purpose of this design is to protect PLCs from unexpected

actions and to ensure synchrony of the data. But this also

greatly increases the engineering time to work out the owner

of each output module.

Beside the ownership issue, this design model also increases

the complexity of software development. As a single output

module cannot be owned by multiple PLCs, no more than one

PLC can access the same output module. Instead, those

output pins required by multiple PLCs must be assigned to

one of those PLCs for first step. In the second step, the alias

PLC tags of those output pins must be created in all other

PLCs which need to access those pins. In the final step, those

tags will be copied to the owner PLC of that output card via

the field bus. This procedure involves lots of work time and

care as the entire process must be done manually.

Beyond that point, copying data over the field bus will

significantly reduce the system performance and reliability

and increase hardware costs. For time critical systems like

airport baggage handling systems, the scan time of PLC must

be under a certain threshold to ensure its correct operation.

The communication overhead time between PLCs is

increased heavily and the system may not behave correctly if

updating data over field bus cannot be handled fast enough.

Also, the entire reliance on the field bus reduces system’s

reliability: if any of the field bus connection is lost, the

system cannot continue operating until the connection is fixed.

Single failure in the system can cost a long downtime and big

economical losses for end-users.

III. RELATED WORKS

The importance of the migration from PLC programming

architecture (IEC 61131-3) to IEC 61499 has been recently

recognized by several researchers, for example [4], [5], [15],

[7], [16], [17]. However, no work is known to us specifically

tackling the distributed systems design issues. On the other

hand, there has been interest developing in automation

research to the service – oriented architectures as a possible

solution for distributed systems. A few works in this direction

are discussed as follows:

In the paper [8], authors pointed out that a service is

described by its interface and no concern of actual

implementation is required. Also the fundamental concepts of

service-oriented control architecture are reconfigurability and

interoperability between various devices which is identical to

the IEC 61499 standard. XML is recommended as a standard

protocol for exchanging configuration or data among the

service-oriented system.

In the paper [9], a case study of distributed data warehouse is

given using grid services-oriented architecture. In this paper,

the issue of data ownership over service-oriented architecture

is arisen and data scheduling optimization is also discussed.

In the paper [10], authors provide the execution rules in a

service-oriented architecture for distributed system. First-In

First-Out (FIFO) and Shortest Queue (SPT) are used as the

rules to compare the execution average time of service-

oriented architecture program. Earliest start time (EST),

earliest finish time (EFT) and same recipe (SR) are applied in

the execution as well. The results prove EFT-SPT is the best

execution rule for distributed system in SOA.

In the paper [11], authors provide the definition of service-

oriented architecture in industrial automation: An SOA is a

set of architectural tenets for building autonomous yet

interoperable systems. Authors also introduce the SOAP and

SOA in web services into the industrial automation and

recommend using Internet protocol for automation devices.

One of the design methods introduced in this paper is inspired

in a way by the service – oriented architectures: a class of

services related to a group of devices is implemented in a

single function block. We refer to this design method as

class-oriented design approach.

IV. ILLUSTRATIVE EXAMPLE

To illustrate the function block design and execution rules we

will use an example of a conveyor system as presented in

Figure 1.

Figure 1. A Conveyor System of a Simple Airport Baggage

Handling System.

The sample airport baggage handling system consists of total

six subsystems: 2 Check-in system (CI1 and CI2) and 4

Sortation systems (S1 to S4). Those subsystems form two

fully redundant systems: CI1/S1/S2 and CI2/S3/S4. There are

6 crossover pushers (CD1 to CD6) which are responsible for

diverting bags to the other system. The check-in subsystem

CI1 and CI2 are collecting bags from counters and conveying

those bags to the sortation lines (S1/S2 and S3/S4). Pushers

CD1 and CD2 will divert the bags to the other lines if any

downstream conveyor is not operating normally. The

sortation subsystems (S1 to S4) are responsible for delivering

each bag to the flight it belongs to. In Figure 1, laterals L101

to L108 are used for different flights. Bags will be pushed to

their destination laterals by the diverters (DD1 to DD8).

Crossover pushers (CD3 to CD6) will divert bags to the

alternative line if any downstream conveyor is faulty or the

other PLC in the same sortation line is down. For example,

when the S4 PLC breaks down, pusher DD3 will

automatically divert all bags to S1 line.

The devices in each subsystem are listed below:

Legends: (# - represents number index for the device)

D### - Check-in Counter

C###/S### - Conveyor

CD# - Crossover Pusher

DD# - Crossover Pusher

SD# - Sortation Pusher

L### - Lateral

ATR# - Automatic Tag Reader

Check-in 1(CI1) – D101 , D102, D103, D104, C101, C102,

C103, C104, C105, CD1

Check-in 2(CI2) – D201, D202, D203, D204, C201, C202,

C203, C204, C205, CD2

Sortation 1 (S1) – S101, S102, S103, S104, S105, ATR1,

DD1

Sortation 2 (S2) – S201, S202, S203, S204, S205, DD2,

SD1, SD2, SD3, SD4, L101, L102, L103, L104

Sortation 3 (S3) – S301, S302, S303, S304, S305, ATR2,

DD3

Sortation 4 (S4) – S401, S402, S403, S404, S405, DD4,

SD5, SD6, SD7, SD8, L201, L202, L203, L204

The subsystem redundancy is listed in the table below.

Original

Subsystem

Destination

Subsystem

Via Push Name

CI1 CI2 CD1

CI2 CI1 CD2

S1 S2 DD1

S2 S1 DD2

S3 S4 DD3

S4 S3 DD4

Table 1. Redundancy Crossover Pushers.

V. DESIGN METHODOLOGY

First, let us describe the PLC network design. In each

subsystem, a main control panel is installed so that all cables

from field devices are wired into the panel. Remote I/O

modules located inside the main control panel are connecting

to the field devices. All PLCs are sitting in a single rack in the

main control room and communicating with remote I/O via

Ethernet. Figure 2 illustrates this PLC network.

Figure 2. PLC Network Diagram for BHS.

One PLC is assigned for each subsystem. In each PLC, an

individual subroutine is created in ladder diagram (LD) for

each device. During each scan, PLC executes all the

subroutines one by one. Figure 3 provides the structure of the

PLC code. It is common in PLC code design that a function is

developed for each device to provide control, service or

interface. Then data tags required by each device are created

and those data tags are considered as the instance of that

device. The function will go through each device in order.

This design follows in a way the service-oriented approach.

Figure 3. PLC Code Structure for BHS.

If we take a further look at the layout drawing of the BHS,

beacons are installed all around the conveyors to indicate

when a fault occurs or issue a warning that the system is

starting. Some beacons are placed at the joint of two

subsystems. Those beacons are designed to relay the status of

downstream conveyors which belong to another subsystem.

Also there are some beacons shared by two subsystems such

as B101 at the check-in area which are shared by CI1 and

CI2.

In the IEC61131-3 PLC code, those beacons must be assigned

to a single owner PLC. In Figure 4, the beacon B101 is lit on

when conveyor C101 in CI1 or conveyor C201 in CI2 is in

fault state. The physical beacon output is wired into the PLC

output module that is owned by CI1 subsystem. When the

conveyor C201 malfunctions, the B101_On output in CI2

must be copied to CI1 over PLC interlink or via a field bus

(ControlNet or Ethernet). Extra ladder logic code in CI1 is

required to turn beacon B101 on when B101_on signal is

raised from either CI1 or CI2.

Figure 4. Beacon Indicators in IEC 61131-3 PLC Code

Now let us consider how the PLC code could be encapsulated

into event-driven function block of IEC 61499. There are two

design principles that can be applied: object-oriented

approach or class-oriented architecture.

A. Object-Oriented Approach

In the object-oriented approach by [18,19], function blocks

are used as the fundamental programming unit that contains

all related functions, variables and interfaces of a single

device (object). Similar to the general concept of object-

oriented programming, when creating a new system in IEC

61499, a separate instance of the function block would be

created for each device in the system (for example, creating a

FB instance of conveyor for each conveyor in the system).

Eventually, those FB instances are connected together

according to the physical layout position order. It is easy to

demonstrate that the composite function block illustrated later

in Figure 8 (under the stated assumptions) will have the

behavior equivalent to the original PLC executing the ladder

diagram cyclically for each device.

B. Class-Oriented Architecture

In the class-oriented approach, the basic function block is still

the basic element of the program. Similarly to the object-

oriented approach, here the function block represents a class

of devices and encapsulates all its functionalities. The

difference is that a single instance of this function block

serves all the devices of this class (for instance, all conveyors

in the system will be processed in the same function block, or

a particular group of such conveyors).

In other words, all data and algorithms providing one

particular service are encapsulated in a function block. This

model ensures each function block is able to provide a service

without invoking any other function blocks.

We will illustrate both solutions by implementing them in

nxtStudio IEC 61499 Editor [3].

VI. OBJECT-ORIENTED SOLUTION

According to the object-oriented design method, the

functionality of each physical device (conveyor, pusher,

beacon, etc.) is implemented in a basic function block.

The IEC 61131-3 subroutines/functions are encapsulated into

algorithms of the FB. The conversion to algorithms is,

however, not straightforward. We will illustrate the method

using the conveyor control example in the baggage handling

system context.

A conveyor controller is typically designed as a finite state

machine (FSM). The common states for a conveyor are off,

startup, stop, run and fault. The finite state machine jumps

states based on the changing values of PLC inputs. After the

current state is switched, the logic of the new current state is

activated and associated outputs are emitted. The FSM is

implemented in a PLC programming language, for example

in ladder logic diagram which may look like illustrated in

Figure 5. The conveyor control subroutine divides into two

major parts: FSM and outputs. In the FSM part, the

transitions of states are defined. The subroutine will jump to

the outputs part and regenerate output status based on the

state of FSM.

Figure 5. Conveyor control code structure in IEC 61131-3.

To migrate this conveyor control into the IEC 61499 format,

there are two approaches by applying the object-oriented

concept.

A. Convert PLC Code into ECC and EC State Algorithms

The first choice is to convert the original FSM that precedes

the PLC Code (refer to [20] for FSM recovery from PLC

code) into the execution control chart (ECC) inside basic

function block. The ECC is a state machine which is

switching states based on input events triggering.

For that, however, the original FSM needs to be known, or it

can be recovered from the PLC ladder logic, for example

following the ideas of [21],[22].

First design step is to create one EC State for each state from

the original finite state machine. In our case, we will create 5

EC states in the new conveyor basic function block: off,

startup, stop, run and fault. Secondly, the conditions of state

transitions are mapped directly to the EC transitions

conditions. For example, in the PLC code, the premise for

jumping from off to startup state that there is no fault on the

conveyor and start button is pressed is set as the new EC

transition condition between EC State off and startup. Finally,

the state actions are placed into the EC state algorithms. In

figure 6, when the system is starting up, the beacon and

sounder indicator will be turned on for warning. The beacon

and sounder output command is lit in the startup state

attached algorithm in ECC.

Figure 6. Conveyor Basic Function Block - Converting PLC

state machine to ECC

B. Reuse Entire PLC Code

In this method, no PLC code change is required at all, as it is

encapsulated into the algorithm REQ. The new basic function

block is a top level entity for detecting the changes of inputs

when the REQ event is sent from the I/O capture Service

Interface FB. When an input change happens, the basic

function block will jump into the state REQ processing

request. After the algorithm is executed, the new output data

shall be updated. In Figure 7, the FB interface is identical

with the previous model. But inside ECC, there are only two

EC states - IDLE and REQ states. When the photo eye on the

conveyor is flushed or any other inputs change their value,

the FB wakes up from IDLE state, starts executing the

algorithm in REQ state. Once the process is completed, the

FB remains in IDLE state until any other input changes.

Figure 7. Conveyor Basic Function Block - Reuse PLC Code

After converting all subroutines/functions into function

blocks, a composite function block is used to resemble a

circuit of logic elements as in Figure 8. Function blocks are

connected together relied on the physical layout. In this case,

a single conveyor is connected to both upstream and

downstream conveyor function blocks.

For deployment, an IEC 61499 – compliant device is used for

each subsystem which only contains conveyors and other

devices belonging to this subsystem. Those devices are

distributed and interoperable with each other. IEC 61499

compiler will dynamically allocate IEC 61499 devices into

various resources (processors). After all function blocks are

compiled into executable binary files, this FB library will be

deployed to those processors. The FB instances are created

using the management commands (defined in IEC 61499)

sent from the programming tool to the remote processors. The

processors are updating their I/O data via remote I/O modules

connected via field buses like Ethernet.

Figure 8 demonstrates the IEC 61499 solution for CI1

subsystem. Function block instances of C101 to C105, D101

to D104 are created respectively. FB_Inputs are connected to

every function block for updating inputs status as well as the

FB_Database which provides global variables and constants.

The push diverter CD1 and beacon B101 are also converted

into function blocks in the new IEC 61499 models.

Figure 8. Composite FB Network for CI1 Integration

Solution.

This solution required the development of several extra

basic/service interface FB types, described as follows:

FB_Database – stores all global variables and constants. This

FB_Database is required by all FBs in the network.

FB_Inputs – updates all physical inputs from the Input

modules. This service interface function block is invoked

every 50ms to read the values of all inputs.

FB_Outputs – update all physical outputs to the output

modules. This service interface function block is called by

other function blocks when there is a request for output

change.

In this object-oriented approach example, a FB instance can

be found in the composite function block for each device.

Two feasible solutions for migration are also provided:

reusing PLC code or converting PLC code to ECC with

algorithms. Figure 9 provides an overview for the CI1 system

in IEC 61499.

Figure 9. Overview of the entire CI1 in IEC 61499.

VII. CLASS-ORIENTED SOLUTION

The other possible integration solution is using the class-

oriented architecture. Instead of creating a FB for each device,

a basic function block is created for a class of such devices.

For instance, FB_Conveyor in Figure 10 is servicing all

conveyor control related algorithms. The FB interface is

similar to the previous object-oriented model but with an

array of the conveyor inputs. When some inputs change for

the conveyors, the service interface function block FB_Inputs

will update those values to FB_Conveyor immediately.

According to the ECC, with REQ event raises, FB_Conveyor

shall move to REQ state and read all inputs values into the

local conveyors data which are stored as local variables inside

the FB_Conveyor. Once the update process is completed, the

ECC shall move to the PROCESS state, and inside the

PROCESS state algorithm, conveyor logics will be looped for

every conveyor in the memory. All original PLC code is

reused
1
 in the PROCESS state algorithm without any major

modification. The only step is to replace all conveyor instance

variables in the algorithm with an indexed data array of

conveyor (for example, Conv1 is now replaced with Conv[1]).

The upstream and downstream conveyors data are easily

accessible as its local to the current conveyor.

Figure 10. Class Oriented Conveyor Basic Function Block.

Similar to the object-oriented solution, FB_Inputs and

FB_Outputs are still required for gathering inputs data and

generating output data. To fulfill distributed control, an IEC

61499 device is created for each subsystem which includes, a

class function block for each device class (or a subgroup

within the class). Those class function blocks contains all

data required and only be invoked when the input data

changes. Figure 11 illustrates the system overview for class-

oriented CI1 subsystem. FB_conveyor contains all conveyors

including D101 to D104 and C101 to C105.

1 Provided that the PLC code has been already designed in a modular way

and there is no direct use of variables of other conveyors within the code of a

single conveyor (instead they are referred to via a kind of reference table).

Figure 11. Class Oriented for CI1 Integration Solution.

VIII. DISCUSSION

In the object-oriented design, modular design concept is

applied so that each physical device represented by a function

block instance. It is convenient to identify each device in the

function blocks network. This provides great convenience for

debugging and easy understood by maintenance technicians

or system operators.

This approach can be also beneficial in terms of performance,

as the event flow can be directed only to those FBs which are

necessary to be involved in the reaction to a certain input

event in the environment.

And, this approach well fits to the vision of [18] when each

part of the physical machinery is equipped with its own

embedded controller running the corresponding controller FB.

A typical PLC program code implementation is done either in

sequential logic or using finite state machine. If the PLC code

is controlling a series of actions or is sequential without

nested structures, such PLC code is eligible for the reuse of

the entire program in EC State algorithms. Converting the

entire PLC code into the IEC 61499 as in [4] requires a lot of

re-work time on coding and cannot achieve fully identical

result. Alternatively, re-use the entire PLC code is a much

more cost-effective method. This minimizes the engineering

time during the migration process [5]. This is also beneficial

for IEC 61131-3 developers to quickly pick up IEC 61499

design and helping manufacturers migrating IEC 61131-3 to

IEC 61499 with minimum cost.

The class-oriented architecture provides a different solution

for converting the PLC code into function blocks. The key

principle here is to consider the basic function block as

representing a class of devices or encapsulating a class of

services. The class FB stores all related data locally so no

global variables or constants is required. This solves the issue

that there is no definition of global variables and constants in

IEC 61499 [7] which are commonly used in IEC 61131-3.

IEC 61499 is invented to introduce distributed control into

the existing automation world. Most of the current studies for

IEC 61499 function block implementation are using the

object-oriented concept due to the fact that physical machines

are distributed and each machine is controlled by a processor.

However, the class-oriented design may fit better to the

migration of PLC code into IEC 61499 FB. In this case, the

global variables still can be used in the program. All

programs running on the IEC 61131-3 standard PLCs are

executed cyclically. When a scan starts, PLC will read out all

input modules data into the PLC memory, go through the

entire active algorithms, and update all output modules at the

end of each scan. Scan time is a critical factor of measuring

the system performance. Missing input data due to the slow

scan time would cause unexpected system behaviors. Those

abnormal behaviors cannot be easily detected by engineers

and also create safety issues on site. As IEC 61499 is based

on event-driven function blocks, there is no concept of scan

cycle time. Instead, FB_Inputs emits event whenever any

input changes. This event will invoke the FBs downstream.

In the object-oriented model, a device is recognized as an

object and all data and methods are local within this function

block instance. However, in a typical material handling

system (for instance, airport baggage handling system), a

conveyor cannot operate on its own. The statuses of upstream

and downstream conveyors as well as the conveyors in the

same zone are also required to determine the operation mode

of each individual conveyor. As those status data are kept in

their own conveyor function block instances, data connection

must be created to pass all statuses variables back. Also the

status of this conveyor might be requested by multiple

conveyors as well. As a result, numerical data connections are

established between all conveyor function block instances.

During system operation, the extra overhead time for

updating statuses is required that causes increase in the

reaction computation. Therefore, the object-oriented approach

may be not the best option for all distributed system designs.

In the class-oriented design, conveyor status data, methods

and relevant conveyor status data are all local and no

overhead time for updating data variables is necessary.

During the execution, the entire input data will be copied into

this function block at a fixed period interval. After the input

variables have been updated, those conveyors in the function

block which have one or more updated inputs will be

processed and related outputs will be regenerated after the

execution of algorithms is completed. This is similar to IEC

61131-3 program in PLC but different in the sense that in

PLC all conveyor function blocks will be executed regardless

of change of inputs. Compared to the object-oriented model,

there is absolutely no overhead communication time in the

class-oriented model. This will increase the efficiency

significantly. Beside the overhead time, in normal IEC

61131-3 PLC approach, if a variable is required by more than

one program, that variable will be declared as a global

variable. In IEC 61499, in order to obey the fundamental

concept of encapsulation, there is no definition of global

variables or constants. In the object-oriented approach, those

global variables and constants must be stored in a separate

function block. Then this function block will communicate

with every block which has a demand for global variables and

constants. This also creates inefficiency in execution. This

issue is avoided in the class-oriented model, as all the

required data variables are available locally..

Overall, the class-oriented architecture avoids using global

variables and constants at the top level design. Re-use of the

entire PLC code minimizes the migration time. No data is

required to be passed around the function blocks, which will

reduce the execution time of the program. Those features suit

better for distributed system control.

IX. CONCLUSION AND FUTURE WORK

The IEC 61131-3 PLCs do not best suit the distributed

control systems. We proposed two options for migration from

IEC 61131-3 PLC control to the IEC 61499 distributed

Function Block control: the object-oriented and the class-

oriented architectures. Benefits and drawbacks of both

approaches have been presented and compared.

The future work will concern with benchmarking the

performance of IEC 61499 running the migrated IEC 61131-3

programs. Also the behavior of the resulting IEC 61499

programs must be verified.

X. ACKNOWLEDGEMENTS

The authors are grateful to nxtControl GmbH, and personally

to Horst Mayer for providing the trial licenses for nxtStudio –

the IEC 61499 programming environment and to Arnold

Kopitar, Gernot Kolleger and Walter Oberndorfer for

providing valuable ongoing support.

XI. REFERENCES

[1] IEC 61131-3, Programmable controllers - Part 3: Programming

languages, International Standard, Second Edition, 2003

[2] IEC 61499, Function Blocks, International Standard, First Edition,
2005

[3] nxtControl GmbH, nxtControl - Next generation software for next
generation customers [Online, 2009, June]. Available:

http://www.nxtcontrol.com/

[4] M. Wenger, A. Zoitl, C. Sunder, H. Steininger, “Transformation of IEC
61131-3 to IEC 61499 based on a model driven development

approach”, 2009 7th IEEE International Conference on Industrial

Informatics, 23-26 June 2009, Page 715-720.

[5] T. Hussain and G. Frey, "Migration of a PLC Controller to an IEC

61499 Compliant Distributed Control System: Hands-on Experiences,"

in Robotics and Automation, 2005. ICRA 2005. Proceedings of the
2005 IEEE International Conference on, 2005, pp. 3984-3989

[6] V. Vyatkin, “Reuse of PLC Code and adding Safety features in IEC

61499”, Research Results Report, University of Auckland, 2010

[7] SOAP Specifications, retrieved from http://www.w3.org/TR/soap/ on

12th April 2010.

[8] W. Dai, V. Vyatkin, “A Case Study on migration from IEC 61131-3
PLC to IEC 61499 Function Control”, 2009 7th IEEE International

Conference on Industrial Informatics, 23-26 June 2009, Page 79-84.

[9] J. Mendes, P. Leitao, A.W. Colombo, F. Restivo, “Service-Oriented
Control Architecture for Reconfigurable Production Systems”, 2008 6th

IEEE International Conference on Industrial Informatics, 13 – 16 July

2008, Page 744 – 749.
[10] P. Wehrle, M. Miquel, A. Tchounikine, “A Grid Services-Oriented

Architecture for Efficient Operation of Distributed Data Warehouses on

Globus”, 2007 21st International Conference on Advanced Networking
and Application, 21-23 May 2007, Page 994-999.

[11] Y. Wang, S. Turner, “Rule Execution in a Service-Oriented

Architecture for Distributed Simulation on the Grid”, 2008 7th
International Conference on System Simulation and Scientific

Computing, 10-12 Oct 2008, Page 1151-1158.

[12] F. Jammes, H. Smit, “Service-Oriented Paradigms in Industrial
Automation”, IEEE Transactions on Industrial Informatics, Vol. 1, No.

1, FEB 2005.

[13] PROFINET, Retrieved from http://www.profinet.com
[14] ControlNet, Retrieved from http://www.controlnet.org

[15] Ethernet/IP, Retrieved from http://www.ethernet-ip.org

[16] M. Hirsch, C. Gerber, H, Hanisch, V. Vyatkin, “Design and
Implementation of Heterogeneous Distributed Controllers According to

the IEC 61499 standard – A Case Study”, 2007 5th IEEE International
Conference on Industrial Informatics, 23-27 June 2007, Page 829-834.

[17] W. Dai, V. Vyatkin, “On Migration from PLCs to IEC 61499:

Addressing the Data Handling Issues”, 2010 8th IEEE International
Conference on Industrial Informatics, 13-17 July 2010.

[18] G. Shaw, P. Roop, Z. Salcic, “Reengineering of IEC 61131 into IEC

61499 Function Blocks”, 2010 8th IEEE International Conference on
Industrial Informatics, 13-17 July 2010.

[19] G. Black, V. Vyatkin, “Intelligent Component – based Automation of

Baggage Handling Systems with IEC 61499”, IEEE Transactions on
Automation Science and Engineering, 2009, 6(3), doi:

10.1109/TASE.2008.2007216

[20] V. Vyatkin, P. Roop, Z. Salcic, J. Fitzgerald, “Now That’s Smart!”,
IEEE Industrial Electronics Magazine, 2007 Volume 1, Issue 4, Page

17-29.

[21] H.J. Kim, R. Harms, G. Seliger, “Automatic Control Sequence
Generation for a Hybrid Disassembly System”, IEEE Transactions on

Automation Science and Engineering, 2007 April, Volume 4, Issue 2,

Page 194 -205.
[22] Falcione, A. and Krogh, B. (1993), Design Recovery for Relay Ladder

Logic. IEEE Control Systems, 13, pp. 90-98.

http://www.nxtcontrol.com/
http://www.w3.org/TR/soap/
http://www.profinet.com/
http://www.controlnet.org/
http://www.ethernet-ip.org/

