
Model Transformation between MATLAB Simulink and Function Blocks 
Chia-han (John) Yang and Valeriy Vyatkin 

Department of Electrical and Computer Engineering 

University of Auckland 

cyan034@ec.auckland.ac.nz, v.vyatkin@auckland.ac.nz 

 
Abstract - This paper presents a new approach to 

modelling automation systems based on the combination and 

mutual transformation of IEC61499 Function Blocks and 

MATLAB Simulink. The reason for such transformation is 

the natural complementarity of these two models: MATLAB 

Simulink/Stateflow provides a nice environment for 

modelling and simulation of control and embedded systems, 

while Function Blocks are good for designing distributed 

control systems. An integrated software simulation 

environment with this transformation ability between these 

two tools will lead to a solution for the validation need for 

Function Blocks. This paper uses a motor example to 

demonstrate the transformation from a Simulink model to a 

Function Block model in Function Block Development Kit 

(FBDK). We discuss important issues of model 

transformation, such as semantics mapping, execution 

priorities and some guidelines for this transformation 

approach. An observer approach is introduced in order to 

make comparison of the results. This approach can also be 

used as part of the software simulation environment with the 

transformation approach. 

I.  INTRODUCTION 

Our earlier publication [1] has indicated that a system 

based on IEC61499 Function Blocks is urging for a need 

of a validation environment in order to deal with the 

complexity in the distributed design process. Due to this 

complexity, it is difficult to ensure the correctness and 

robustness of the system design. Also in the paper [2], we 

emphasised this importance of validating the design in a 

closed-loop modelling/simulation approach (Figure 1) and 

indicated that an integrated software environment for 

validation and verification is essential for designs based on 

Function Blocks. The closed-loop plant-controller 

modelling implies the need for systematic development of 

plant models in function blocks. Function Blocks are great 

for designing controllers based on distributed architecture 

with its direct deployment capability. However it is still 

waiting for a better software environment for design and 

modelling. This process is complex and resource 

consuming, but this problem can be solved by re-using 

models developed through some established modelling 

frameworks, or interface such frameworks from the “IEC 

61499 world”. 

 

 
Figure 1. Closed-loop model. 

Therefore, our proposed solution towards this 

complexity issue is by bridging Function Block model 

design with industrially established software tools such as 

MATLAB Simulink. MATLAB Simulink is a powerful 

tool for modelling and simulation, and is well-known by 

majority of researchers and industrial engineers in control 

system domain. MATLAB Simulink follows a block-

diagram modelling approach which is very similar to the 

modular design approach of Function Blocks. This link 

between two software tools may potentially increase the 

industrial recognition of the IEC61499 standard. This 

approach can be fulfilled by direct socket communication 

(such as UDP or TCP) between the tools, or a complete 

model transformation. Since there is still no readily usable 

validation tools for Function Block systems, such link can 

allow Function Block-based design to utilise Simulink’s 

validation functionality (simulation and data analysis). 

The work has been started with an automated model 

transformation of a MATLAB Simulink model based on 

“Stateflow” blocks to a Function Block model, as 

published in [1]. So this work is a follow-up from the 

previous work with a semi-automated approach for a 

complete model transformation from Simulink model (not 

just Stateflow blocks) to a Function Block model. The 

transformed Function Block models can be executed under 

different Function Block platforms (i.e. FBDK, nxtStudio 

etc) after a slight modification. 

In this paper, we will focus on the transformation 

approach that allows model transformation from 

MATLAB Simulink model to Function Block model. 

Section II describes the model transformation in details 

and states the semantics issues and the importance of the 

execution priority. The execution semantics are carefully 

considered without losing the nature of the models’ 

behaviours. Section III presents the guideline for 

constructing the corresponding Function Blocks. Section 

IV describes an observation layout used for obtaining the 

results. Section V presents the results following by a motor 

example. Section VI summarises the work and discusses 

some further work in this research. 

II. TRANSFORMATION APPROACH 

The model transformation follows a block-to-block 

approach. On top of the Stateflow blocks, Simulink has a 

library storing many blocks that are often used in 

modelling. For different types of system, it presents 

different corresponding packages.  

In order to perform the transformation, a corresponding 

Function Block library (Figure 2) for all the Simulink 

blocks used in the model must be constructed. The idea is 



to create a Function Block that has exactly the same 

inputs, outputs and parameters as its corresponding 

Simulink block. 

 

 
Figure 2. An example of Function Block library 

A. Semantics of the models 

Understanding the semantics of both MATLAB 

Simulink and Function Blocks is essential for performing 

model transformation between the two. Here is an 

overview of these two software tools. 

 

 
Figure 3. A simple Simulink system model 

Simulink is a software package from Mathworks Inc., 

which provides an environment for simulation and model-

based design of dynamic control or embedded systems. It 

is tightly integrated with MATLAB. Modelling in 

Simulink is done by creating a network of “blocks,” stored 

in the Simulink library. One example of a Simulink model 

can be found in Figure 3. This example contains not just a 

normal Simulink block but also a Stateflow block and a 

subsystem block. Simulink supports simulation for 

discrete, continuous and even hybrid systems through its 

corresponding solvers. It also supports hierarchical 

structuring of models by grouping the related blocks into 

“subsystems.” 

Simulink solver computes the states of the system at 

successive time steps over a specified time span. This time 

steps can be fixed or variable. Simulink provides a set of 

solvers, where each follows a specific approach in solving 

a model [3].  Fixed-step simulation is where the states of 

the system are calculated at fixed intervals. Variable-step 

simulation relies on the solver to determine the length of 

the time steps, and the time steps will vary over time. 

When the system variables are changing more rapidly, the 

step size will be decreased, and vice versa. The solvers are 

generally categorised into continuous solvers and discrete 

solvers. Continuous solvers compute the state of a system 

in the current time step by using numerical integration 

from the state of the system in the previous time step and 

the state derivatives. Discrete solvers primarily solve only 

discrete models. They rely on the model blocks to update 

the discrete states of the models. There is no single method 

that can solve all types of models. More detail information 

can be found in [4]. 

As mentioned previously, IEC61499 standard [5] 

introduces Function Blocks as a new modular way of 

designing controllers and modelling control systems. It is 

believed that modelling systems with a Function Blocks 

network will improve the flexibility, software reusability 

and reconfigurability in distributed control systems design 

[6]. Figure 4 shows an example of a function block model 

of two tank system with a pump and a valve. There are two 

controllers in this example where one is controlling the 

pump and the other is controlling the valve. The aim of 

this tank system is to maintain the water level of tank 1 at 

a specified level. The pump follows a PID control 

algorithm to pump water from tank 2 to tank 1 if the water 

level of tank 1 is lower than the specified level. The valve 

will direct the water from tank 1 back to tank 2 if the level 

is higher than the specified level. 

 

 
Figure 4. An example of FB network for a 2-tank system 

The IEC 61499 standard defines a few design artefacts, 

such as basic and composite function blocks. A basic 

Function Block is a single event-driven module. It contains 

an Execution Control Chart (ECC) which is a finite-state 

machine. Therefore the basic structure of a basic Function 

Block is very similar to a single MATLAB Stateflow 

block. ECC describes the conditions of transitions between 

states and algorithms associated with each state. An 

example of a basic Function Block and ECC can be found 

in Figure 5. A Function Block system supports 

hierarchical layout as well through the use of the 

“Composite Function Blocks,” which describe a subsystem 

of the whole Function Block network. 



 
Figure 5. Interface and ECC of the basic Function Block 

representing a tank system. 

Execution of Function Blocks is achieved by compiling 

them into executable code which works in conjunction 

with some pre-defined libraries. The code generation 

model plus the libraries are commonly referred to as run-

time environment. One of its important tasks is to dispatch 

events among Function Block network. Currently, there 

are several different run-time environments which are 

implemented with different execution models. In our 

current exercise, The Function Block Run Time (FBRT) 

and Function Block Development Kit (FBDK) [7] are 

used, simply for demonstration purpose. The Function 

Block Run Time (FBRT) has the longest history in the 

IEC61499 community. It uses “direct function calls” 

where an output event triggers the successive Function 

Blocks in a single thread. However, this mechanism may 

result in stack overflow in case of event feedback loop, or 

in starvation of some blocks because the execution process 

of the caller block will be halted until all other function 

blocks along the event propagation path have completed 

execution. There is one solution to this problem by the use 

of LOOP_END block, which will be described later in the 

paper. FBRT is written in Java, and is the built-in run-time 

of FBDK. 

B. Block-to-block mapping 

The transformation must be done in a way that 

preserves the natures of the entire system. The behaviour 

of the plant must remain the same in both Simulink and 

Function Block models. Taking a closed-loop system for 

example (see Figure 6), both controller and plant blocks 

can still remain separated after transformation. The idea is 

to maintain the same system modelling architecture. A 

block-to-block transformation is the easiest way to 

implement this concept. With exactly the same system 

layout, the behaviours of the models will be the same as 

long as the execution order is the same. 

 
Figure 6. Closed-loop model transformation between two 

domains 

Transforming a single Simulink block to a basic 

Function Block can be implemented directly as they can 

share exactly the same arithmetic interpretation of a 

model, which need to be captured in the syntax of both 

languages. A subsystem can be mapped to a composite 

Function Block. Eventually the Simulink model will be 

transformed into a Function Block network system. Figure 

7 is the transformed Function Block system of the example 

Simulink model shown in Figure 3. 

 

 
Figure 7. The transformed Function Block System 

From our previous work, a Stateflow block is also 

transformed into a basic Function Block (Figure 8). 

  
(a)                                                       (b) 

Figure 8. (a) Stateflow block is transformed into a basic FB. 

(b)  Stateflow’s FSM is mapped with a ECC 

C. Execution Priority 

Simulink follows a cyclic execution order and 

automatically assigns execution priority of the blocks, 

based on some fundamental rules. Basically the rules state 

that a block generally has higher priority than the one 

where its output data is connecting to (see Figure 9). 

However there are some exceptional cases which are not 

really documented well in the Simulink user guide. 

Therefore some manual modification to the transformed 

model is required in these cases.  

 

Figure 9. Execution priority in Simulink 

In order to map the cyclic execution order in Simulink, 

a “LOOP_END” block is introduced in all the FB 

environment which does not follow a cyclic execution (i.e. 

FBDK), with all the other Function Blocks connected in a 

sequential order (see Figure 7). This LOOP_END acts just 

like a DELAY Function Block but with zero delay time. 

Because of the threading effect of the DELAY block, it 

manages to set a break between function calls and 



therefore allows events to be connected in closed-loop in 

FBDK. However this DELAY block is not required in 

cyclic run-time environment. 

III. GUIDELINES FOR FUNCTION BLOCKS 

CONSTRUCTION 

The following guidelines are provided in order to use 

the transformation tool developed. Here, the Transfer 

Function block (Figure 10) is used as an example for 

creating the corresponding Function Block. Figure 11 

shows the corresponding Function Block created by 

following the guideline. 

 
Figure 10. Transfer Function block in Simulink 

Firstly, a simple database is required to allow the 

block-to-block mapping. The proposed database structure 

is shown in Table 1. In this database, each entry on the 

above table is separated by a “TAB” (or “\t”), while each 

line represents a single block transformation. This database 

information can simply be stored in a txt file, where the 

transformation software can just read from this file to 

determine the transformation decisions. 

 
Table 1: Database structure for Simulink block transformation 

 
 

Despite the names of the Simulink block and its 

corresponding Function Blocks, the input and output 

names must be listed, in the order according to the order 

inside Simulink. This is because Simulink only stores I/O 

port numbers but not the I/O port names in the model file. 

Parameter names must be also provided, because in our 

approach the internal parameters of the Simulink block are 

set as “data inputs” (instead of internal variables) of the 

corresponding Function Blocks (see Figure 11) in order to 

be graphically modifiable in the user interface.  

 
Figure 11. The corresponding Transfer Function FB 

Some Simulink blocks are associated with the sampling 

time of the system execution especially in the continuous 

time modelling. For these types of blocks, a “TIME” input 

parameter must be given for their corresponding Function 

Blocks. However this sampling time parameter here 

indicates a discretisation of the continuous data when 

running the model under the Function Block environment. 

Figure 12 presents the comparison of the output results of 

the Transfer Function Simulink block with its 

corresponding Function Block. The values are exactly the 

same only on its successive time step, followed by the 

sampling rate. 

 

 
     (a)                                                           (b) 

Figure 12. (a) Comparing the outputs of the Transfer Function 

Simulink block with its corresponding FB. (b) A close-up of 

the results comparison. 

When creating the corresponding FBs, WSTRING is 

used as the data type for all the “parameters” (but not for 

inputs and outputs). Also the naming of the blocks in the 

Simulink block must not contain “space” or “symbols.” 

All the Function Blocks will be created with an 

initialisation event I/O, associated with all the parameters 

and data I/O, and also a REQ/CNF event I/O pair for 

executing them in the correct priority order, associated 

with purely data I/O.  

IV. OBSERVER LAYOUT 

In this exercise, an observer layout has been introduced 

in order to compare the results of the transformed Function 

Block model with the original Simulink model, by the use 

of socket communication protocol (i.e. UDP or TCP) with 

full handshaking at every sampling time. There are two 

ways of using this observer layout. One is to directly 

compare the output results of the transformed Function 

Block model with the original Simulink model. Simulink 

has readily well designed interface for graphic display, so 

the output data of the Function Block model is sent to the 

Simulink environment for comparison. Then by the use of 

“Scope” block in Simulink, all the output data from both 

models can be compared graphically or in data form. An 

example layout is shown in Figure 13. 

Second one is used when only a subset of the Simulink 

model has been transformed into the Function Block 

model. This is very useful when only part of the original 

Simulink model is required for the new design under 

Function Block environment. This layout then allows us to 

test the transformed part of the model in a closed-loop 

manner with the remaining part of the original model. The 

layout can be seen in Figure 14. 

 



 
Figure 13. Compare data and simulation results by using 

socket communication   

 
Figure 14. Closed-loop simulation with the transformed 

system in Function Block environment 

 

V. RESULTS 

FBDK is chosen as our Function Block development 

tool, even though its execution semantics are not favoured 

by the industry. However it is sufficient enough for 

academic demonstration, at such early stage of the 

development. 

From the technical perspective, the transformation can 

be done with assistance of some existing APIs associated 

with MATLAB Simulink and Function Blocks. The work 

[8] provides a JAVA parser for the Simulink MDL file, and 

our research group has developed a Function Block to 

JAVA parser. Combining these two APIs together makes 

the development of the transformation easier.  

 

 
Figure 15. Motor Simulink model 

A motor Simulink model (see Figure 15) has been 

experimented with this transformation approach. The 

Simulink model of a motor has been successfully 

transformed into a Function Block model that can be 

executed under FBDK. The resultant Function Block 

model after the transformation can be shown in Figure 16. 



 
Figure 16. Trasnformed FB System of the motor model 

As described before, the priority order is determined by 

some basic rules in Simulink. However there are some 

exceptional cases. Therefore the transformed model may 

require some modification to the priority order before 

producing the desired results. Figure 19 shows the 

rearranged version of the transformed model. 

 

 
Figure 19. A “tidy-up” version of the transformed FB System 

The output result from the motor Simulink model can 

be seen in Figure 17. This result from the transformed 

model is obtained by using the observer layout approach 

mentioned in the previous section. The test environment is 

set up as shown in Figure 20. 

 

 
Figure 20. The observer setup for obtaining the results from 

the transformed FB model 

Figure 18 illustrates the resultAfter obtained by 

replacing the motor part of the original Simulink model 

with UDP sockets to the transformed FB model., Figure 

18 illustrates the obtained result. From inspection, the 

results are fairly identical where the purple line indicates 

the desired output. 

In order to explain the slight difference in the results, a 

simple experiment with the derivative Function Block in 

the motor model has been tested with the observer 

approach. Figure 21 shows the difference in the outputs of 

the derivative blocks. FBDK’s output is in purple and 

Simulink’s one is in yellow. Simulink’s output is quite 

smooth and the FBDK’s one has some “noise.” This result 

can be considered as normal due to the discretization. This 

result mayIt can be improved with using a more advanced 

modelling techniques or some averaging operation, when 

constructing the corresponding Function Blocks. This 

exercise also demonstrated the importance of the execution 

priority. The result varies (i.e. out of phase) if the block are 

executed in a completely different order. Also the accuracy 

of constructing the corresponding FBs is very important in 

this transformation approach. 

 

 
Figure 21. Result comparison of the derivative block in 

Simulink and FBDK 

VI. CONCLUSIONS AND FUTURE WORKS 

A transformation approach has been developed to 

create a simulation environment in order to help in design 

distributed systems with design complexity. This approach 

allows us to take advantage of the simulation and analysis 

capability of MATLAB Simulink to help in designs based 

on IEC61499 Function Blocks. 

Further work with this transformation approach will be 

experimented with other Function Block tools, run-times 

and compilers, in order to expand the usage of the new 

approach with the proposed simulation environment. 

REFERENCES 

[1] C.-H. Yang and V. Vyatkin, "Automated Model 

Transformation between MATLAB Simulink/Stateflow and 

Function Blocks," in INCOM, 2009. 
[2] V. Vyatkin, H. M. Hanisch, P. Cheng, and Y. Chia-Han, 

"Closed-Loop Modeling in Future Automation System 

Engineering and Validation," IEEE Transactions on Systems, 
Man, and Cybernetics, Part C: Applications and Reviews, vol. 

39, pp. 17-28, 2009. 

[3] R. Ray, "Automated Translation of MATLAB 
Simulink/Stateflow Models to an Intermediate Format in 

HyVisual," in Computer Science Department. vol. MSc 

Chennai: Chennai Mathematical Insitute, 2007. 
[4] "The MathWorks - MATLAB and Simulink for Technical 

Computing," http://www.mathworks.com. 

[5] "Function blocks: Internatinal Standard IEC61499," 

International Electrotechnical Commission. 

[6] V. Vyatkin, IEC 61499 function blocks for embedded and 
distributed control systems design. Research Triangle Park, 

NC: ISA-Instrumentation, Systems, and Automation Society, 

2007. 
[7] "Function Block Development Kit," Holobloc inc., 

http://www.holobloc.com. 

[8] "TUM Simulink Library," Lehrstuhl Software and Systems 
Engineering, http://www4.cs.tum.edu/~ccsm/simulink/. 


