
Please cite as follows: V. Vyatkin, “Software Engineering in Factory and Energy Automation: State of the Art Review”,

IEEE Transactions on Industrial Informatics, 2013, doi: 10.1109/TII.2013.2258165

Abstract – This paper presents one perspective on recent

developments related to software engineering in the industrial

automation sector that spans from manufacturing factory

automation to process control systems and energy automation

systems. The survey’s methodology is based on the classic

SWEBOK reference document that comprehensively defines

the taxonomy of software engineering domain. This is mixed

with classic automation artefacts, such as the set of most

influential international standards and dominating industrial

practices. The survey focuses mainly on research publications

which are believed to be representative of advanced industrial

practices as well.

Keywords: Software engineering, Industrial automation.

I. INTRODUCTION

There are numerous evidences on the growing complexity

and importance of software in industrial automation

systems. For example, the German Engineering Federation

VDMA has presented the growing ratio of software

development in the costs of machinery [1]. The ratio of

software has doubled in one decade from 20% to 40%. If

this trend continues, the main activity of automation

systems suppliers and developers will be software

engineering.

Software engineering is an established industry with its

methods, traditions and curriculum. Most of such methods

and tools are applicable across different domains, from

information processing applications, such as databases,

trade, and Web-commerce, to real-time control of energy

and transportation systems and manufacturing automation.

The IEEE Computer Society defines software engineering

in [2] as follows:

(1) The application of a systematic, disciplined, quantifiable

approach to the development, operation, and maintenance

of software; that is, the application of engineering to

software.

(2) The study of approaches as in (1).

Reflecting on the trend of growing importance of software

in automation, there is a great number of research projects

and corresponding publications addressing various aspects

of software development process in industrial automation

domain. The main driving forces of these developments are

lifecycle costs, dependability and performance. The cost

issues are addressed through the entire lifecycle of

software, from requirements capturing to phasing the

software out. The dependability-related challenges focus on

the methods and activities ensuring functional safety of

computer systems through guaranteeing certain safety

properties of the software. The performance – related

developments aim at ensuring sufficient execution speed

and lower memory footprint of the code. These

characteristics can be interdependent, for example, certain

dependability guarantees may depend on sufficient

performance, and higher performance of software (achieved

on account of more efficient coding or compilation, etc.)

can reduce the overall costs of automation system by using

lower spec hardware. All these characteristics of computer

hardware and software certainly impact on the performance

and reliability of systems being automated.

The goal of this article is to review the software

engineering approaches used in the automation domain and

put the automation research into the context of mainstream

software engineering. In the author’s opinion this will help

the researchers to transfer the knowledge across the

different domains of computer systems and identify

appropriate development methods for particular tasks.

The rest of this article is structured in the following way.

Section II introduces basic terminology of the area, Section

III presents scope of the survey aligned with the areas of

software engineering. Section IV gives a brief overview of

the most important standards related to software

development in automation. Section V is dedicated to

requirements engineering. Section VI reviews

developments related to software design, in particular on

structures and architectures. Section VII specifically

focuses on several design strategies and methods, and on

software construction issues, such as programming

languages. Section VIII discusses most notable

developments related to software testing, maintenance and

evolution, as well as to software configuration management

and software engineering management, software process

and software quality. Section IX provides discussion on

current and future challenges. Section X concludes the

article.

II. TERMINOLOGY

The ARC advisory group, a respected consultancy and

trends observer in industrial automation, distinguishes

several classes of automation products [3] as shown in

Figure 1 (left hand side). Most of these products are

software-intensive in the sense that their functionality is

largely determined by the software executed on embedded

computers. The automation software is classically (e.g. in

[4]) divided into three categories presented in the right hand

side of the Figure. This review is focusing on the

developments related to the factory floor systems and

manufacturing execution systems. However, numeric

control systems (CNCs), which also belong to the factory

Software Engineering in Industrial Automation:

State of the Art Review
Valeriy Vyatkin, IEEE Senior Member

Copyright © 2013 IEEE. Personal use of this material is

permitted. However, permission to use this material for

any other must be obtained from the IEEE by sending a

request to pubs-permissions@ieee.org.

Please cite as follows: V. Vyatkin, “Software Engineering in Factory and Energy Automation: State of the Art Review”,

IEEE Transactions on Industrial Informatics, 2013, doi: 10.1109/TII.2013.2258165

floor level, are excluded from the survey due to their very

specific nature. The reader is referred to [5, 6] for more

information on this subject.

Automation Products Automation Software
Categories

1. Enterprise Asset Management

2. Collaborative Production Management

3. Computer Numerical Controls (CNC)

4. General Motion Control

5. High and Low Power AC Drives

6. Human Machine Interface Software

7. Machine Safeguarding Solutions

8. Programmable Logic Controllers

1.Enterprise resource planning (ERP) ;

2.Manufacturing execution systems (MES);

3.Factory floor systems, implementing

continuous or discrete control;

Figure 1. Relation of automation products to software categories.

One can get an idea of the factory floor automation

software typical functionalities from the traditional

centralized automation system structure presented in Figure

2. As one can see, there are four types of data processing

devices communicating via networks: engineering station

with simulation, database and programming software, HMI

device (e.g. touchscreen computer) with visualisation and

human interface software, programmable logic controller

(PLC) with control software, and one or several motor

drives controlling speed of various moving parts.

Figure 2 Typical hardware architecture of factory
floor automation systems and software allocations.

The Programmable Logic Controllers (PLC) are often

considered as the main workhorses of industrial automation

systems. They are connected with the plant peripherals,

such as sensors and actuators, via direct electric wiring to

their input/output (I/O) ports, or via remote I/O modules

which communicate with the PLC via field area networks

(fieldbuses).

III. AREAS OF SOFTWARE ENGINEERING

This survey is structured according to the key areas of

software engineering as suggested in the “Guide to the

Software Engineering Body of Knowledge” [7] as follows:

requirements, software design and construction, testing,

maintenance, configuration management, software

engineering management, software engineering process,

tools and methods and software quality.

Another classification line can be conditionally drawn

between the so called traditional vs. emergent software

engineering methodologies. Examples of the relatively

traditional ones include component-based design

architectures, object-oriented and aspect-oriented design

methods and agile development. These methods aim at

more efficient construction of software. The emergent ones

include the technologies aiming at automatic composition

of software functionalities (on-line or off-line) achieved on

account of multi-agent collaboration, the use of web-

services, or automatic reasoning. These technologies

provide for flexibility and plug-and-play composition of

software which is enabled by such mechanisms as multi-

agent collaboration and service discoveries.

One of the few available surveys on the topic is done by

Dubey [8] and provides evaluation of software engineering

methods in the context of automation applications. This

work presents the phases of the automation application

development life cycle (AADLC) as shown in Figure 3.

The paper describes the AADLC with four major phases:

(1) Requirements and design, (2) Development, (3) Testing,

and (4) Deployment and commissioning. Figure 3 shows

phases, artifacts (involved or generated) in each phase, and

roles responsible to drive each phase. There is also a long

maintenance phase after the commissioning phase (which is

not shown in the Figure).

Figure 3 The automation application development life cycle according to

[8].

Other focused sources of reference are the special sessions

on software engineering in automation that have been co-

organized by the author at international conferences INDIN

2010 and 2011 and INCOM 2009, as well as a variety of

IEEE and IFAC publications.

IV. ROLE OF STANDARDS AND NORMS

Standards and norms are very influential in the

development of industrial automation software. In this

section we briefly review the most relevant ones.

A. IEC 61131-3

The IEC 61131-3 standard [9] for PLC programming

languages has been one of the most successful global

standards for industrial control software. The standard has

captured the most common ways of thinking of control

engineers. The standard contributes to portability of

Please cite as follows: V. Vyatkin, “Software Engineering in Factory and Energy Automation: State of the Art Review”,

IEEE Transactions on Industrial Informatics, 2013, doi: 10.1109/TII.2013.2258165

automation software by suggesting four programming

languages and sequential function charts (SFC). The

standard helps to migrate software developed for one PLC

type to PLCs of other vendors.

The standard is constantly developing to reflect the latest

trends in the development practice. Its third edition includes

extensions towards object-oriented programming, as

preliminary discussed by Werner in [10].

The critique of IEC 61131-3 mentions its semantic

ambiguities [11] and difficult integration into distributed,

flexible automation systems [12]. The centralized

programmable control model of PLCs may cause

unpredictable results and overheads when two or more

controllers communicate via network, and its centralized,

cyclically scanned program execution model limits the

reuse of the components in case of reconfiguration.

B. ISA 88/95

According to [13], the ISA-88 standard is intended to

provide solutions for application configuration and system

integration problems. It is designed to be used with batch

process control systems, but it can also be applied to

discrete, continuous, hybrid and storage process control. It

is internationally standardized as IEC 61512 [14].

The ISA-95 standard for enterprise-control system

integration (standardised internationally as IEC 62264 [4])

defines the interface between control functions and other

enterprise functions, effectively between the ERP and MES

levels.

C. IEC 61499

The IEC 61499 reference architecture [15] has been

conceived to facilitate the development of distributed

automation systems with decentralized logic. The standard

presents a reference architecture that exploits the familiarity

among control engineers accustomed to a block-diagram

way of thinking. The main design artefact, function block

(FB), has been extended from the subroutine-like structure

in IEC 61131-3, to the process–like abstraction used in the

theory of distributed computing systems where it represents

an independent computational activity with its own set of

variables (context) and communication with other processes

via messages. The event interface of FB is well suited to

modelling of inter-process message-based communication.

For a state-of-the art survey on IEC 61499 the reader is

referred to [16]. The standard directly addresses the trend of

the increasing importance of software in automation

systems design by improving portability, configurability

and interoperability of automation systems. This standard is

in early stages of its adoption, with three commercial

Integrated Development Environments (IDE) released on

the market. This standard has been criticized for a number

of weaknesses, such as semantic ambiguities, high learning

threshold and insufficient harmonization with existing PLC

technologies. However, most of these issues have been

addressed in the second edition released in 2011.

D. IEC 61804

The IEC 61804 standard draft (technical report) [17],

describes the specification and requirements of distributed

process control systems based on function blocks. As noted

by Diedrich et al. in [17], a part of the proposed standard is

Electronic Device Description Language (EDDL) - a

language that describes the properties of automation system

components, such as vendor information, version of

firmware/hardware and data format, etc. Through this

language, all the information will be carried between the

devices (controllers, sensors, actuators and engineering

stations, etc.) by a fieldbus. This language fills in the gap

between the Function Block specification and product

implementation by allowing manufacturers to use the same

description method for devices of different technologies

and platforms.

E. IEC 61850

The IEC 61850 standard — Communication Networks and

Systems in Substation [18] — addresses the interfacing

issues and standardizes communication to avoid the use of

vendor-specific protocols in power systems automation.

Along with communication, it suggests an object-oriented

model for this domain. According to [19], IEC 61850

decomposes power substation, including functions for

monitoring, control, and protection and primary devices,

down to objects, thus obtaining object-oriented

representation of the power system. The smallest object is a

“data attribute” which is encapsulated into a “common

data” object. These are the data used by devices and

functions when they operate. The data and data attribute are

the information models for the automation functions and

primary devices, which are “wrapped” into a set and

represented as a logical node (LN). LNs can be described

by the data that they consume and produce. A logical

device can be populated by a number of LNs to perform a

particular function. In turn, the logical device can perform

more than one function.

Higgins et al. in [20] pointed out a deficiency of this

standard related to encapsulation of programmable logic

into LNs and suggested using function blocks for this

purpose. This approach has been successfully applied by

Strasser et al. [21] towards closed-loop simulation of power

automation systems with distributed intelligence. It was

used by Zhabelova in [19] to propose a multi-agent

architecture for power distribution automation.

V. REQUIREMENTS ENGINEERING

The domain of software requirements includes the

fundamentals such as product vs. process, functional vs.

non-functional, as well as emergent properties of the

software. As such, it addresses requirements process,

elicitation, analysis, specification, and validation. Proper

requirements management is becoming also important as a

part of dependability certification.

Functional requirements to automation software are often

extracted from product specifications, recipes, etc.

However, nowadays non-functional requirements play

increasingly important role. One of the major current trends

in non-functional requirements of automation systems

concerns with their flexibility which is needed to react on

the ever-changing market demands. According to [22],

there are two major approaches to achieve flexibility,

Please cite as follows: V. Vyatkin, “Software Engineering in Factory and Energy Automation: State of the Art Review”,

IEEE Transactions on Industrial Informatics, 2013, doi: 10.1109/TII.2013.2258165

known as reconfigurable manufacturing systems (RMS)

and flexible manufacturing systems (FMS). In RMS

machine components, machines, cells, or material handling

units can be added, removed, modified, or interchanged as

needed to respond quickly to changing requirements, while

FMS change its position or state to accommodate for

changes in manufacturing requirements. The key

characteristics of RMS are defined to be modularity,

integrability, flexibility, scalability, convertibility, and

diagnosability. The goal of software developers is to

minimize the effort in re-designing RMS software at every

reconfiguration attempt.

An approach proposed by Ryssel et al. [23] targets

automatic reconfiguration of the existing software

components from a library to achieve an automation

application that satisfies the user’s requirements. The

proposed technique takes into account not only

compatibility of components at the syntactical level but also

at the semantic level, e.g. to achieve interoperability of the

assembled application. The Semantic Web technologies

[24] were used to formally specify the requirements and

allow the generator to interpret their meanings.

One more very important non-functional requirement is

time. As pointed out in [25], specifically in distributed

systems, timing characteristics strongly depend on

application relations and chosen communication means.

The authors describe a method for supporting engineers in

their choices to meet non-functional requirements when

designing distributed control systems and report on the on-

going development work towards the corresponding tool.

Ljungkrantz et al. [26] propose reusable automation

components containing not only the implementation details

but also a formal specification defining the correct usage

and behaviour of the component. This intends to shorten

modification times as well as reduce number of

programming errors. This formal specification uses

temporal logic to describe time-related properties and has a

special structure developed to meet industrial control needs.

Runde et al. [27] address the requirement engineering

issues in the domain of building automation systems (BAS)

by proposing a novel knowledge-based process also

supported by means of Semantic Web technologies. The

paper states that today’s approach to elicitation of

requirements for BAS depends on customers’ requests and

on the planner knowledge. The paper describes a novel

“intelligent” software tool that supports the planner at

requirements elicitation.

Hirsch [28] addresses the problem of requirements

engineering in automation by employing the popular

SysML technology. The author presents an extended case

study of a modular automated manufacturing system design

and shows the pathway of refining the requirements into a

fully working automation code that is compliant with the

IEC 61499 standard. The work describes the entire process

of specifying an automation system including textual

descriptions of the requirements, graphical descriptions of

the structure and its behaviour. A subset of SysML design

structures has been identified which is sufficient for

supporting the proposed design process. It is outlined in the

work that the use of SysML can substantially ease some of

automation problem solutions and help to embed model-

based design methodologies in a broader context of

embedded control systems.

VI. SOFTWARE DESIGN

The software design domain encompasses such areas as:

structure and architecture, design strategies and methods,

design quality analysis, along with evaluation and software

design notations.

The relevant publications in the industrial automation

domain often deal with a combination of these areas, for

example, proposing a certain custom architecture,

accompanied with the corresponding design strategies or

methods. Therefore, in this section several architectures

will be discussed along with related quality analysis and

notations. The next section VII will exemplify several

design strategies and methods.

A. Model-driven engineering

Model-driven engineering (MDE) is a software

development methodology which exploits domain models

rather than pure computing or algorithmic concepts. MDE

has been promoted as a solution to handle the complexity of

software development by raising the abstraction level and

automating labour-intensive and error-prone tasks.

The Object Management Group (OMG) is an influential

standardisation organisation in business IT that defined a

number of standards for MDE, in particular Model-Driven

Architecture (MDA), based on MetaObject Facility (MOF)

and Unified Modelling Language (UML). UML provides a

number of diagram types for requirements capturing and

refinement to executable code. SysML is a UML derivative

for engineering applications that is getting increasingly

popular. In particular, SysML supports such design phases

as requirements capturing and formalization of

specifications.

Bonfé and Fantuzzi [29] have introduced the use of UML in

automation providing methodology of PLC code design by

refining UML specification. Thramboulidis proposed in

[30] generation of IEC 61499 function blocks from UML

diagrams. Dubinin et al. described the UML-FB

architecture with both ways of generation of UML

diagrams from function block designs and vice versa in

[31]. In [32] Thramboulidis proposed IEC 61499-based

concept of model-integrated mechatronic architecture for

automation systems design. The concept of intelligent

mechatronic components (abbr. IMC) [33] stems from the

ideas of object-oriented automation systems design [12]

further enriched with embedded simulation and other

functionalities. The IMC further develops the concept of

Automation Object (AO), following [34] and [35].

A UML automation profile [36] was introduced by Ritala

and Kuikka by extending UML v2 with various automation

domain specific concepts for modelling automation

applications in an efficient way. Another similar

development by Katzke and Vogel-Heuser [37] delivered

the UML for Process Automation (UML-PA) modelling

language. It is claimed that UML-PA allowed developers to

Please cite as follows: V. Vyatkin, “Software Engineering in Factory and Energy Automation: State of the Art Review”,

IEEE Transactions on Industrial Informatics, 2013, doi: 10.1109/TII.2013.2258165

identify plant relationships and apply these to UML-PA

elements much quicker compared to the traditional UML.

Further tests compare the application of UML and

Idiomatic Control Language (IDL) which is another type of

description language for modelling industrial systems.

However, as noted by Mohagheghi and Gehen [38], very

few efforts have been made at collecting evidence to

evaluate MDE benefits and limitations. From that

perspective, such works in the automation domain are

especially valuable. Thus, a test reported in [37] was done

using some test subjects and showed that subjects applying

UML-PA recognised plant characteristics and their

application almost 50% faster than those attempting to use

traditional UML. Vogel-Heuser et al. [39] present an

interesting field experiment on teaching of 85 trainees to

two different approaches to PLC programming, UML and

the Function Block Diagrams of IEC 61131-3. This paper

focuses on the educational aspects of the training using both

approaches, discussing the correlations found between the

modelling and/or programming performance and cognitive

abilities, interest, workload, expertise, and school grades of

the trainees. However, the paper does not provide

comprehensive analysis of the design efficiency for these

technologies.

Witsch et al. have proposed in [40] a tool-supported

approach for a bidirectional mapping of hybrid function

blocks defined in the object-oriented extension of IEC

61131-3 to UML class diagrams. While most of MDE

applications are related to control at the shop-floor level,

Witsch and Vogel-Heuser [41] apply UML to higher level

of the automation pyramid: manufacturing execution

system (MES) design, and report on the qualitative and

quantitative benefits observed. They state the MDE as an

important formalisation step, first introducing formal syntax

and then formal semantics of the MES to be designed.

Thramboulidis and Frey investigate MDE in the IEC

61131-3 context in [42] aiming at increase of productivity

and reliability of the development process of industrial

automation systems. Piping and instrumentation diagrams

(P&ID) are considered as source of requirements for

process control engineering (PCE). The paper proposes the

corresponding SysML profile for PLC programming to

allow the developer to work in higher layers of abstraction

than the one supported by IEC 61131-3 and effectively

move from requirement specifications into the

implementation model of the system. This work is

remarkable for using a domain-specific model of P&ID

rather than models provided by UML/SysML for

representing requirements. In particular, the authors refer to

the IEC 62424 standard [43] that defines how PCE requests

should be represented in a P&ID to facilitate the automatic

transfer of data between P&ID and PCE tool and to avoid

misinterpretation of graphical P&ID symbols for PCE.

An important foundation for holistic system engineering

and automatic program generation is availability of unified

data formats for the artifacts used in the engineering

process. AutomationML [44] provides such a generic data

exchange mechanism to support the interoperability among

various manufacturing engineering tools. The foundation of

AutomationML is the Computer-Aided Engineering

eXchange (CAEX) file format defined in the IEC 62424

standard. CAEX establishes a flexible object-oriented meta-

model for data storage, where static object information can

be structured and correlated. AutomationML further

specifies concrete usages of the CAEX concepts for

manufacturing plant engineering. The plant topology is

defined using basic CAEX constructs. The geometry,

kinematics, and control logic of each plant object are stored

in their specific file formats. For example, in the current

version of AutomationML, control logic is specified in

PLCopen XML [45]. These data are then integrated into

AutomationML using the linking mechanism provided by

CAEX. As a result, all the required domain-specific views

of the plant are unified in the AutomationML model.

A MDA-based design approach aiming at automatic

generation of automation programs [46] has been explored

by Estevez and Marcos who proposed an XML-based

Industrial Control System Description Language in [47] to

consolidate the modelling methodologies used to support

the development phases. In their approach, three domain

specific views have been identified to describe an industrial

control system, including control hardware, electric

circuitry, and software. Software components are described

in a form that is suitable for generation of IEC 61131-3

PLC based applications. Hardware components consist of

hardware from a variety of vendors. The mapping between

software components is done using an XML style sheet

(XSL) which does the transformation between domains and

can help in portability of code between different PLC

vendors.

The specific of industrial automation dictates special

requirements to model driven development. UML and

SysML models would have limited applicability during

systems commissioning at the shop floor if round-trip

engineering is not supported by tools (i.e. once PLC code is

generated from UML models, it may undergo “manual”

modifications, after which the models cannot be

reconstructed). That is why these ideas are still rarely used

in practice. 3S Software presented an attempt to address

this issue in Professional Developer Edition of CoDeSys.

This tool supports 3 types of UML diagrams, two of which,

State Charts and Activity Diagrams, were made fully

executable up to the level of PLC programming language.

However, design processes in different industry branches,

such as automotive, chemical or energy, differ

substantially, and the potential of MDE acceptance, in the

author’s opinion, can also be different in these sectors.

Therefore, finding a proper set of models which would

represent equilibrium between UML diagrams and PLC

languages still remains an open problem.

B. Component-based

Component-based software engineering (CBSE) in a

broader sense is a reuse-based approach to defining,

implementing and composing loosely coupled independent

components into systems. An individual software

component is a software unit that can be re-used without

any modifications in different software systems similar to

such hardware components as integrated circuits.

Please cite as follows: V. Vyatkin, “Software Engineering in Factory and Energy Automation: State of the Art Review”,

IEEE Transactions on Industrial Informatics, 2013, doi: 10.1109/TII.2013.2258165

Two major aspects of component-based development for

automation are being discussed in the literature and are

often confused: implementation-level issues and

application-level issues.

On the implementation side, the main goal is masking

particular details of component’s location, which can be a

remote server, connected by a variety of networks and

controlled by an operating system different from that of the

client. Middleware is commonly used as an implementation

mechanism supporting this transparency, examples of

which include CORBA [48] and DCOM [49] -- common

component implementation models used in the general ICT.

There are other examples, such as Object Management

Facility (OMF) reported in [50], and Data Distribution

Service that provides time-related Quality of Service,

investigated in [51] in the IEC 61499 context.

There are examples of industrial development toward

integration of PLCs into systems communicating via

networks by proposing integration component architectures,

such as Modbus-IDA [52] and PROFInet-CBA [53] based

on the DCOM architecture.

The main implementation challenge is achieving execution

properties such as determinism and real-time guarantees

when using middleware.

Another aspect of component-based design is related to

modularity planning at the application level. Designing,

developing and maintaining components for reuse is a very

complex process which places high requirements not only

for the component functionality and flexibility, but also for

the development organization.

Maga et al. [54] attempted to define appropriate levels of

granularity for reusable models. Depending on modelled

aspects and on the purpose of the model, a fine, a medium

or a coarse-grained model can be more appropriate. The

decision, which granularity is appropriate for a reusable

model depends on both the considered domain and the

intended reuse of the concerned model. As general

recommendation, the authors suggest to use well-

documented, hierarchical, nested models, which provide

different levels of granularity depending on the required

functionality.

Szer-Ming et al. [55] describe the implementation of a

distributed network-based industrial control system for an

assembly automation system. The authors stress limitations

of the common component models, such as lack of real-

time guarantees and high complexity. They propose own

component model for distributed automation, where the

component encapsulates a state machine. The control

system is composed of autonomous, intelligent components

which have the capability of participating in the automation

control without the need for a master controller. It is

envisaged by the authors that assembly automation system

that adopt this control approach can have greater agility,

reusability and reduction in development cost.

The development of component-based automation

architecture of the IEC 61499 standard has stipulated the

large number of research works. For example, Strasser et al.

[56] study the use of graphical programming languages in

the automation domain to handle increasingly complex

applications with the goal to reduce engineering costs for

their establishment and maintenance. They use the concept

of subapplications to provide a cost-effective solution for

component-based industrial automation applications. The

paper introduces a simple but effective engineering

approach to structure large scale distributed control

programs based on a hierarchical plant structure model with

IEC 61499 subapplications. Proponents of the IEC 61499

approach see its model as a proper equilibrium balancing

MDE and component-based features with the legacy of

PLC programming. However, the critics point out the lack

of implementation support, similar to that of component-

based middleware.

The evolution of requirements for products generates new

requirements for components, such as planning the

component life cycle where the component first reaches its

stability and later degenerates in an asset that is difficult to

use, difficult to adapt and maintain.

Crnkovic and Larsson discuss in [50] both implementation

and application aspects of component-based design

referring to industrial experience. Different levels of

component reuse have been identified along with certain

aspects of component development in the context of

industrial process control, including questions related to use

of standard and de-facto standard components. As an

illustration of reuse issues, a successful implementation of a

component-based industrial process control system is

presented. The authors conclude that the growing adoption

of component architectures raises new questions such as:

component generality and efficiency, compatibility

problems, the demands on development environment and

maintenance. For example, as far as compatibility concerns,

the authors outline several levels, such as compatibility

between different versions of components, between their

implementations for different platforms, one aspect of

which is compatibility of graphical user interfaces. Despite

the existence of several popular component implementation

models, often they are not equally supported on all required

hardware-software platforms, which raises the problem of

components’ migration.

C. Design based on formal models

Formal models of software systems create a firm

foundation of software engineering, and this is especially

true for industrial automation. The purpose of such design

is to create dependable software with properties that can be

guaranteed by design. The specifics of automation systems

is that in most cases they are control systems where the

dynamics of the plant matters and must be taken into

account when control software is designed. Moreover, it

can be used as an advantage helping in automatic software

design.

In [57], Hanisch introduced a comprehensive framework

for applying formal methods in automation based on the

closed-loop plant - controller interaction. That work

reviewed some of the basic design patterns of control

engineering and shows the differences and similarities of

the control engineering approach and methodologies taken

from computer science and technology. In that work, the

Please cite as follows: V. Vyatkin, “Software Engineering in Factory and Energy Automation: State of the Art Review”,

IEEE Transactions on Industrial Informatics, 2013, doi: 10.1109/TII.2013.2258165

author proclaimed the goal of synthesising formally

controllers of industrial systems with subsequent code

generation from the formal model.

The PLC code generation from a formal model is a

relatively easy part of this proposition as compared to the

formal model synthesis, and has been explored by many

researchers. For example, Cutts and Rattigan in [58] used

Petri nets, Frey [59] used Signal Interpreted Petri nets, an

example of PLC code generation from a modular Petri-net

dialect has been demonstrated by Thieme and Hanisch in

[60].

The progress in formal synthesis of control algorithms

based on specifications and constraints has been reviewed

in [61]. The general difficulty of formal synthesis is high

computational complexity of the process. Other hurdles

include the need of formal specifications and their possible

conflicts. Winkler et al. [62] present a new methodology to

enhance the synthesis process by application of new

structural analysis methods. The used formal modelling

language is safe Net Condition/Event Systems (sNCES). A

new kind of model structure based on graphical meta-

description of the model behaviour is introduced. This

graphical representation allows system behaviour analysis

without exploring the whole state space that reduces

performance requirements and extends applicability of the

method.

However, the practical use of formal models in industrial

practice is not yet common. Knowledge of formal methods

is not common among automation and control engineers,

while their application is associated with high

computational complexity.

D. Multi-agent architecture

According to Woodbridge [63], multi-agent system (MAS)

approach constitutes a novel software engineering paradigm

that offers a new alternative to design decision-making

systems based on the decentralization of functions over a

set of distributed entities. Research on application of multi-

agent systems in industrial automation presents a rich body

of results and has been subject of several surveys, e.g. [64-

66]. As pointed out in [67], distributed agents are

increasingly adopted in automation control systems, where

they are used for monitoring, data collection, fault

diagnosis and control. Distributed multi-agent systems are

an appropriate concept to meet the emerging requirements

to software development: they enable a modular, scalable

and flexible software design, allow for distributed data

collection and local pre-processing. They also provide on-

site reactivity and intelligence for remote control scenarios,

where the network channel is not capable of transporting

each and every control command. Finally, they offer an

abstraction level, when accessing proprietary devices for

monitoring and control.

However, Theiss et al. [67] stress that existing agent

platforms do not always fulfil the requirements of practical

automation applications in respect of real-time properties

and resource usage, leading to significant overhead in

respect of design effort and runtime resources. To meet the

specific requirements of the automation domain, a resource-

efficient agent platform AMES was developed by the

authors, which relies on established concepts of agent

platforms, but modifies and supplements them accordingly.

This platform is implemented in Java and in several C++

variants.

Herrera et al. [68] present the integration of the intelligent

agent concept along with the service oriented architecture

(SOA) concept for industrial control software. A particular

focus is on reconfigurable manufacturing systems and their

ability to add/remove components on the fly. It is said that

there is a strong synergy between MAS and SOA due to

their goal of providing a platform neutral software

component implementations. A standard protocol for MAS

communication is developed by the Foundation for

Intelligent Physical Agents (FIPA) and is said to be the

current de-facto standard. A language provided by the FIPA

group is the Agent Communication Language (ACL) and is

essentially a protocol that agent based solutions should

implement if they want to advertise that they are FIPA

compliant. JADE was selected as a framework for MAS

development. OWL-S which is an upper ontology for

service descriptions is used in that work to provide

semantic description of services. It defines their inputs,

outputs and pre-conditions. Next, using ACL it is described

how some MAS components and features can be mapped to

their corresponding abstractions in the SOA domain.

E. Service-oriented architecture

Semantic Web services are seen by many researchers as a

way to overcome challenge of rapid reconfigurability in

order to evolve and adapt manufacturing systems to mass

customization. This includes the use of ontologies that

enables performing logical reasoning to infer sufficient

knowledge on the classification of processes that machines

offer, and on how to execute and compose those processes

to carry out manufacturing orchestration autonomously.

Lastra and Delamer in [69] provide a series of motivating

utilization scenarios and present the corresponding research

roadmap.

According to Erl [70], the service-oriented architecture

establishes an architectural model that aims at enhancement

of the efficiency, agility, and productivity of an enterprise

by positioning services as the primary means through which

solution logic is represented in support of the realization of

strategic goals associated with service-oriented computing.

SOAs are getting increasingly important in general purpose

computing and influence the corresponding developments

in the automation world.

Jammes and Smit [71] outline opportunities and challenges

in the development of next-generation embedded devices,

applications, and services, resulting from their increasing

intelligence. The work plots future directions for intelligent

device networking based on service-oriented high-level

protocols and outlines the approach adopted by the

SIRENA research project.

The work by Cannata et al. [72] presents results of the

follow-up SOCRADES project. Particularly the link

between manufacturing systems and their corresponding

business management components is focused upon. The

Please cite as follows: V. Vyatkin, “Software Engineering in Factory and Energy Automation: State of the Art Review”,

IEEE Transactions on Industrial Informatics, 2013, doi: 10.1109/TII.2013.2258165

authors propose the use of SOA at the device level to

complement its capabilities at the enterprise level. This

proposal adds vertical integration level required for device

level all the way up to enterprise systems. Some features of

SOA outlined in this paper are as follows:

 Loose coupling, since software modules provide

services to other modules they are designed in a

relatively generic format. Communication between

components is asynchronous and only done when

required.

 Modularisation of software components. Control is not

programmed for the entire system, rather only for

individual components resulting in natural control

distribution.

 Common communication protocol, which is particularly

important since service providers are abstracted from

the low level all the way to the high level, so that

implementation makes no differentiation of hardware

devices or enterprise systems.

Potential qualitative measurements for using SOA are

claimed as cost reduction, potential to hire less skilled

labour, interoperability (cross-platform and cross-company)

and implementation speed.

Candido et al. in [73] present a service - oriented

infrastructure to support the deployment of evolvable

production systems (EPS). This work exploits the

association of EPS and SOA paradigms in the pursuit of a

common architectural solution to support the different

phases of the device lifecycle. The result is a modular,

adaptive and open infrastructure forming a complete SOA

ecosystem that will make use of the embedded capabilities

supported by the proposed device model.

Mendes et al. [74] discuss another approach to SOA in

automation in which components in the system (that are

referred to as 'bots') can be service requesters and providers,

either pure software or providing hardware functions such

as sensors and actuators. A particular requirement of this

work was to maintain compatibility with automation

standards IEC 61131-3 and IEC 61499. The composition of

a typical bot is defined to have functionality encapsulated

into a software module which may be composed of multiple

sub-modules. A framework called the Continuum Bot

Framework provides the class description required to

realise the abstraction of services into a module. Petri-nets

were used as the formal language to develop the bot

functionality.

F. Design patterns and generative programming

A design pattern is a general reusable solution to a

commonly occurring problem within a given context in

software design. A design pattern is not a finished design

that can be transformed directly into code but rather a

description or template for how to solve a problem that can

be used in many different situations.

Dibowski et al. [75] propose a novel automatic software

design approach for large Building Automation Systems

(BAS). The design of large BASs with thousands of devices

is a laborious task with a lot of recurrent works for identical

automated rooms. The usage of prefabricated off-the-shelf

devices and design patterns can simplify this task but

creates new interoperability problems. The proposed

method covers the device selection, interoperability

evaluation, and composition of BASs. It follows a

continuous top-down design with different levels of

abstraction starting at requirement engineering and ending

at a fully developed and industry-spanning BAS design.

Faldella et al. [76] introduce a set of new components that

abstractly model the behaviour of manifold field devices

commonly used within automated manufacturing systems,

regardless their nature, intrinsic features and specific

functional purposes. These components, called generalized

devices, are basic logic controllers/diagnosers, which play

the role of keeping cleanly distinct higher-level control

policies from low-level mechanisms dealing with actuators

and sensors. This development intends to contribute to a

reference framework comprising a comprehensive set of

highly reusable logic control components that may help the

designers in the process of modelling and structuring their

applications according to the specific needs.

Serna et al. [77] present a way to ease the development of

IEC 61499 based applications identifying and

characterizing "extended function blocks", adding semantic

artefacts to basic function blocks. Specific design patterns

are built from those extended function blocks, which match

elements of the problem domain. Two specific design

patterns are presented which allow dealing with failure

management, a common topic in control applications.

The Model-View-Control (MVC) design pattern [78], was

adapted by Christensen in [79] to the domain of industrial

automation and integrated with the IEC 61499 standard

architecture. According to [33], a software component

composed following the MVC pattern is organized from

two core sub-components connected in closed-loop:

 Controller, implementing a set of operations, published

as services, and

 Model of the object’s behavior;

The combination of these two functions enables simulation

of the system in closed-loop with the actual, ready for

deployment control code. Moreover, the simulation model

is obtained with a high degree of components’ re-use.

Additionally, the View component supports interactive

simulation by rendering the system’s status based on the

parameters provided by the Model. Other functions, such as

Diagnostics and Database Logger are also fed by the data

from the Object or the Model, and the Human-Machine

Interface (HMI) component can be connected in the closed-

loop with the controller.

The successes in development of component architectures,

agents and design patterns gave rise to the development of

generative programming applications in automation where

the automation software is automatically generated rather

than manually written.

For example, Shutzt et al. [80] propose a pathway to semi-

automatic generation of PLC-based multi-agent control of a

flexible manufacturing system. The approach includes first

extraction of the machine properties and generation of

hierarchical SysML model which is used to instantiate and

Please cite as follows: V. Vyatkin, “Software Engineering in Factory and Energy Automation: State of the Art Review”,

IEEE Transactions on Industrial Informatics, 2013, doi: 10.1109/TII.2013.2258165

connect agents into a system. The approach is evaluated on

a flexible fixture device.

The earlier mentioned work [23] by Ryssel et al. also

contributes to the generative approach to automatically

create the controls of domain-specific automation systems

based on a generic knowledge base.

Dubinin et al. [81], address the problem of semantic

incompatibilities between different implementations of

programming languages, on a particular example of IEC

61499 standard for which several execution models exists.

To achieve a degree of execution model independence,

design patterns are suggested that make applications robust

to changes of execution semantics. A semantic-robust

pattern is defined for a particular source execution model.

The patterns themselves are implemented by means of the

same function block language apparatus and therefore are

universal. The patterns can be formally defined and

implemented using the function block transformations

expressed in terms of Attributed Graph Grammars. An

obvious downside of this approach is performance

overheads in the transformed applications.

G. Comparisons and critical remarks

The area of software design clearly stands out by the

number and variety of investigations conducted and results

achieved. The downside of this variety is the difficulty to

extract clear suggestions and recommendations to

practitioners. Table 1 presents an attempt to collate target

characteristics of different design approaches. Arguably,

almost all of the characteristics chosen for comparison are

interdependent in some cases, nevertheless they seem to

represent a possible comparison basis.

When research and piloting of certain concepts reaches

some maturity, it is a good idea to proceed with

standardisation which will add necessary unification and

would help practitioners to benefit from the research

results. However, the process does not always go in this

direction. For example, there was an attempt to standardize

the Automation Object concept in IEC standardisation

activity, but the process got stalled due to insufficient

critical mass of development.

VII. SOFTWARE DESIGN STRATEGIES, METHODS AND

SOFTWARE CONSTRUCTION

Examples of software design strategies and methods

include function-oriented design, object-oriented design

(subsection A) and aspect-oriented design (B). The former

one is quite traditional in PLC programming with functions

and function blocks being main reusable program artefacts.

However, the limitations of those structures raised interest

in more modern design methods discussed as follows.

The term software construction, according to [2], refers to

the detailed creation of working, meaningful software

through a combination of coding, verification, unit testing,

integration testing, and debugging. In particular, the related

topics include programming languages (C) and the concept

of software product line (D).

A. Object-oriented programming

Object-oriented programming (OOP) is a popular

programming paradigm using "objects" to design

applications and computer programs. An object stands for a

data structure consisting of data fields and data-processing

methods. Distinct features of OOP are data abstraction,

encapsulation, messaging, modularity, polymorphism, and

inheritance. The benefits of using OOP are in a more

efficient code reuse and increased safety and stability of

software.

Many general purpose programming languages, such as

Java, C++ and Python, support some or all OOP features.

As noted above, the third edition of IEC 61131-3 also

introduces OOP features. For the time being, CoDeSys is

the only known programming environment to support these,

therefore it is early to judge whether this paradigm will find

broad application in automation. In particular, the OOP

concepts of polymorphism and inheritance raise serious

concerns in safety and dependability of applications. On the

other hand, IEC 61499 provides light-weight OOP features

in the new function block concept, which strongly

encapsulates data and where events can be regarded as

methods.

B. Aspect-oriented programming

In computing, aspect-oriented programming (AOP) is a

programming paradigm which aims to increase modularity

Table 1. Comparison of software design approaches by their target characteristics. Legend: P – primary concern, C – contributes to.

 Lifecycle characteristics Operation

performance

Dependability

Design effort Scalability Interoperability Flexibility Distribution

Model-based engineering P C C

Formal models C P

Multi-agent architectures C P C P C

Service-oriented
architecture

C C P C P C

Component-based design C C C P

Design patterns and

generative programming
P C C

Please cite as follows: V. Vyatkin, “Software Engineering in Factory and Energy Automation: State of the Art Review”,

IEEE Transactions on Industrial Informatics, 2013, doi: 10.1109/TII.2013.2258165

by allowing the separation of cross-cutting concerns. AOP

forms a basis for aspect-oriented software development.

Tangermann et al. [82] present an aspect-oriented approach

for weaving the communication related code into the

distributed control application code by means of AspectJ,

an extension for aspect-oriented programming with Java.

The paper gives a comparison to other approaches.

Wehrmeister [83] applies concepts of the aspect-oriented

paradigm in order to improve the treatment of non-

functional requirements in the design of distributed

embedded real-time systems. A tool named GenERTiCA,

which generates source code from UML diagrams and also

weaves aspect adaptations, has been developed to support

such an approach. This paper presents results regarding the

use of this tool to generate code and implement aspects

(from a high-level framework of aspect) for distributed

embedded real-time systems.

Binotto et al. [84] introduce the use of software aspect-

oriented paradigms to perform machines’ monitoring and a

self-rescheduling strategy of tasks to address non-functional

timing constraints. As a case study, tasks for a production

line of aluminium ingots are designed.

C. Programming languages

The usual set of programming languages for PLCs is

standardised in IEC 61131-3 and includes two textual ones:

Structured Text (ST) and Instruction List (IL), and two

diagrammatic ones: Function Block Diagrams (FBD),

Ladder Logic Diagrams (LLD); and Sequential Function

Charts (SFC) for overall configuration. In addition to these,

tool vendors and OEMs provide proprietary languages,

such as flow-charts and continuous function charts.

The general purpose programming languages are also used

in programming of automation and control applications.

Some programming environments, such as ISaGRAF, allow

programming in C along with the IEC 61131-3 languages.

Lüder et al. [85] state that object-oriented programming

concepts and languages like Java become more and more

interesting for all levels of automation, but mainly for non-

real time applications. Java is a high-level, object-oriented

programming language with a strong type system. Java

enables platform-independent application design. Java

programs are executable on every platform that can run

Java Virtual Machine which opens many possibilities for

reusability of code and provides a high stability of

applications realized by extensive checks during compile-,

load-, and run time. To overcome real-time limitations,

there is Real Time Java Specification (RTSJ).

Thramboulidis and Doukas [86] describe an approach for

the transparent use of real-time Java in control and

automation. The proposed approach, which is in the context

of the model integrated mechatronics paradigm, exploits the

function block construct for the design model and the real-

time Java specification for the implementation model.

Development of many Domain Specific Languages (DSL)

targeting particular sectors of automation is reported in

literature. A typical DSL example is Habitation language

for home automation discussed in [87]. DSLs are envisaged

in model-driven engineering, aiming at more intuitive

descriptions of the system using graphic models, and, as

such, facilitating software development by domain

specialists rather than software engineers. However,

practical impact of DSL in automation does not seem to be

significant.

D. Software product line

The concept of software product lines (SPL) relying on

UML technology have been a breakthrough in software

reuse in the IT domain. In [88], SPL is introduced in the

industrial automation domain. The object-oriented

extensions of IEC 61131-3 are used in SPL architecture and

product specifications are expressed as UML class

diagrams, which serve as straightforward specifications for

configuring PLC control application with OO extensions.

A product configurator tool has been developed to support

the generation of an executable PLC application according

to chosen product options. The approach is demonstrated

using a mobile elevating working platform as a case study.

An important challenge is cost-effective migration of

legacy systems towards product lines. Breivold and Larsson

[89] present a number of specific recommendations for the

transition process covering four perspectives: business,

organization, product development processes and

technology.

VIII. TESTING, MANAGEMENT, EVOLUTION AND QUALITY

A. Software Testing

Software testing is the process of revealing software defects

and evaluating software quality by executing the software.

Wang and Tan describe fundamentals of software testing

for safety critical automation systems in [90]. The software

testing comprises of both functional and performance

testing. The former includes conventional black-box and

white-box testing, while the latter is made up of testing for

software availability, reliability, survivability, flexibility,

durability, security, reusability, and maintainability. In [90]

a case study of automated testing of control rotating-turbine

machinery is presented.

As software components become more complex to

construct and test, test-driven development (TDD) of

software systems has been successfully used for agile

development of business software systems. Test cases guide

the system implementation and can be executed

automatically after software changes (continuous

integration & build strategy). Hametner et al. [91]

investigate application of TDD processes in control

automation systems engineering. They introduce an adapted

TDD process identifying a set of UML models that enable

the systematic derivation of test cases, and evaluate the

adapted TDD process in an industrial use case. Results of

the study show that UML models enabled effective test case

derivation.

B. Software Maintenance and Evolution

Software engineering considers the entire life cycle of

software which includes its maintenance and evolution.

Software maintenance is defined by the IEEE 1219

standard [92] as “the modification of a software product

Please cite as follows: V. Vyatkin, “Software Engineering in Factory and Energy Automation: State of the Art Review”,

IEEE Transactions on Industrial Informatics, 2013, doi: 10.1109/TII.2013.2258165

after delivery to correct faults, to improve performance or

other attributes, or to adapt the product to a modified

environment”.

Bennett and Rajlich [93] define the goal of software

evolution as to adapt the application to the ever changing

user requirements and operating environment.

PLC software, for example, is commonly maintained by

users rather than its developers. This explains the use of

such relict programing languages as ladder logic diagrams

in many automation projects: programs in this language can

be maintained by the factory floor electricians.

Software migration is the process of moving from the use

of one operating environment to another operating

environment. Migration is an important part of software

maintenance. Standards facilitate migration between

compliant platforms, but as it is noted e.g. by Bauer [11],

there are many compatibility issues between different

implementations of IEC 61131-3. Hussain and Frey [94],

Dai et al. [95] and Wenger et al. [96, 97], study the problem

of automatic migration from PLCs to IEC 61499.

Code refactoring [98] is a disciplined technique for

restructuring an existing body of code, altering its internal

structure without changing its external behaviour.

Refactoring is commonly used in software maintenance to

improve usability of the code. Advantages include

improved code readability and reduced complexity to

improve the maintainability of the source code, as well as a

more expressive internal architecture or object model to

improve extensibility. Dubinin et al. [99] propose extended

refactoring of execution control charts in basic function

blocks of the IEC 61499 standard that also aims at fixing

semantic problems.

Froschauer et al. [100] address the life-cycle management

of large-scale, component-based automation systems. The

paper presents an approach based on the product line

variability models to manage the lifecycle of industrial

automation systems and to automate the maintenance and

reconfiguration process. The paper suggests complementing

the IEC 61499 standard with a variability modelling

approach to support both initial deployment and runtime

reconfiguration.

C. Software Configuration and Engineering management

According to Pressman [101], software configuration

management (SCM) is a set of activities designed to control

change by identifying the work products that are likely to

change, establishing relationships among them, defining

mechanisms for managing different versions of these work

products, controlling the changes imposed, and auditing and

reporting on the changes made.

Driven by the manufacturing agility and reconfigurability

challenges [22], Suender et al. have developed an original

SCM approach called downtimeless evolution in [102].

These works address the often need to change the

automation software during the operation of production

facility without stopping the automated production process

(i.e. without downtime). Implementation of this

requirement asks for several fundamental changes on the

run-time level and on the tool side, including the need to

respect real-time properties of the devices during this

process.

Moser et al. in [103] present a novel idea of supporting

automation systems development with the help of

Engineering Cockpit, a social-network-style collaboration

platform for automation system engineering project

managers and engineers, which provides a role-specific

single entry point for project monitoring, collaboration, and

management. A prototype implementation of the

Engineering Cockpit is presented and discussed. Major

results are that the Engineering Cockpit increases the

teamawareness of engineers and provides project-specific

information across engineering discipline boundaries.

D. Software Process and Tools

Design of automation software is supported by integrated

development environments (IDE), provided by the vendors

of PLC hardware. Large vendors, such as SIEMENS,

Rockwell Automation, Schneider Electric, Omron, and

others, develop such tools in house. Many smaller original

equipment manufacturers (OEM) license the tools from

independent software tools vendors, such as ISaGRAF, 3S

Software or KW Software and others, and provide to their

customers with or without proprietary camouflage. Figure 4

presents a snapshot of ISaGRAF IDE v.6.0 where one can

see a ladder logic program, data log in form of waveforms,

and network of connected devices. The tools of independent

vendors are compliant with international standards IEC

61131-3 and IEC 61499. For the latter, ISaGRAF supports

both standards which implied some engineering trade-offs

and limitations in IEC 61499 part, while NxtControl has

developed a tool NxtStudio that is purely IEC 61499

compliant.

Figure 4. ISaGRAF workbench screenshot.

Such standards as IEC 61499 have motivated and provided

the opportunity for many researchers and developers to

come up with own tools. For example, Thramboulidis and

Tranoris [104] presents an engineering tool compliant with

IEC 61499 standard based on a four-layer architecture that

successfully unifies the FB concept with UML. Another

example is 4DIAC-IDE, an IEC 61499 compliant, open-

source tool and run-time environment.

E. Software quality

Functional safety is an important quality characteristic,

defined in [105] as a part of the overall system safety

Please cite as follows: V. Vyatkin, “Software Engineering in Factory and Energy Automation: State of the Art Review”,

IEEE Transactions on Industrial Informatics, 2013, doi: 10.1109/TII.2013.2258165

relating to the control system which depends on the correct

functioning of the programmable electronic safety-related

systems, other technology safety-related systems and

external risk reduction facilities.

Von Krosigk [106] presents several practices to address

functional safety of automation systems software, both

proprietary and based on international standards.

The generic standard IEC 61508 [105] and the automation

industry-specific standard IEC 62061 “Safety of

machinery” address the vast variety of safety related

processes, in particular, related to the design pathway from

hazard and risk analysis up to the specification of safety

requirements of the control system. The IEC 61508 defines

safety integrity levels (SIL) that are specified by

requirements for the probability of failures of the safety

related system. The probability of failure of a system can be

calculated with mathematical methods.

Another, even more rigorous quality assurance method is

called formal verification. An early survey by Frey [107]

overviews formal method use in PLC programming for

their verification and validation. Johnson provides [108] an

interesting overview of key milestones and prospects for

the use of formal verification methods in achieving

enhanced dependability of future manufacturing software.

Hanisch et al. have written a focused survey on formal

verification of IEC 61499 [109]. Yoong et al. [110] propose

implementation of IEC 61499 with the synchronous

semantics similar to that of synchronous programming

languages such as Esterel. This method allows for

combination of benefits from IEC 61499 model-driven

design and dependable deterministic execution. However,

industrial adoption of such methods is hindered by their

high computational complexity, as well as lack of user-

friendly tools oriented on automation domain.

IX. DISCUSSION

A. Lessons learned

The conducted study fully confirms the “hypothesis” on the

growing importance of software engineering in automation.

Research works in virtually every domain specified by the

SWEBOK reference document have been identified with

clear dominance of works related to design concepts.

Cost reduction remains the main driving force in

automation. As one can conclude from Table 1, the

development of software engineering areas in automation

has been mostly concerned with improvement of software

lifecycle efficiency and dependability, rather than with

performance issues. The same applies to the downstream

methods, languages and processes: very few of them were

developed in response of insufficient performance of

automation systems. Moreover, as noted by some

researchers, many advanced software engineering methods

can bring substantial performance overhead.

On the other hand, the application of distributed computing

architectures is often driven by performance issues among

other motives. The same applies to such architectures, as

the multi-agent one, which often aim and achieve

performance improvement on account of local data

processing.

An important research method in industrial automation is to

adopt developments from the general computing area. This

is the case for virtually any software-related technology,

e.g. component-orientation, service-orientation or model-

based engineering, to mention a few. This allows the

developers to take advantage of the huge investments into

such technologies and rely on proven solutions rather than

re-inventing the wheel. One of the latest examples of this

sort is “re-use” of Semantic Web technologies reported in

many automation-related works. These technologies are

aiming at knowledge representation and automatic

manipulation and can be useful for enhancing the

performance of software development processes.

A potential downside of this research method is the slow

take-up, or low applicability, of the results in industrial

practice. Often researchers contributing to the progress of

industrial automation in this way may have little industrial

experience. Examples used in such projects are often from

university laboratories. Such research may be the enabler

by which new and innovative solutions can emerge,

particularly in the long-term, but it may also sometimes

suffer from limited industrial applicability and impact. The

situation is similar to the gap at times observed between

academic computer science and software development

practice.

One of the reasons for using Semantic Web technologies in

automation was related to the development of service-

oriented architectures that required mechanisms to declare,

discover and orchestrate services. But the potential of these

technologies in software engineering is much greater. As

identified by Breslin et al. [24] the value proposition of

such technologies is multi-fold, related to software

development phase, infrastructure, information exchange

and interoperability, and software behaviour. As further

exemplified by Gašević et al. [111] and Happel et al. [112],

the mechanism of ontologies, widely used for semantic

knowledge representation and management, can be used

for generation of software similarly to model-based

engineering approach. Initial application of semantics

enhanced engineering and model reasoning for control

application development has been demonstrated by

Hästbacka and Kuikka in [113].

There are many promises in making software solutions

more intelligent and easier integrated into systems by using

Semantic Web technologies. For example, wider

application of intelligent agents with reasoning capabilities

will raise the issue of proper knowledge representation for

reasoning and semantic interoperability in such multi-agent

systems. These can be achieved by using common domain

ontologies. Semantic Web technologies provide not only

such mechanisms, but are going even further, by providing

languages such as SWRL to describe reasoning over the

knowledge concepts.

B. Industrial adoption of advanced software concepts

Along with industrial practices, this review discussed

several advanced engineering concepts being investigated

Please cite as follows: V. Vyatkin, “Software Engineering in Factory and Energy Automation: State of the Art Review”,

IEEE Transactions on Industrial Informatics, 2013, doi: 10.1109/TII.2013.2258165

by researchers. For many of them prospects of their wide

industrial adoption are still unclear. Many of such concepts

represent disruptive design paradigm shifts therefore their

adoption in the industry is quite slow. Such technologies

include distributed automation architectures, such as multi-

agent, service-oriented, as well as IEC 61499.

In the author’s opinion, one of the reasons slowing their

adoption is the lack of integral view on the matter leading

to confusion among practitioners. Often in the literature

these approaches are unnecessarily separated and

antagonized, although they rather represent complementary

features and their synergies need to be explored. There are

corresponding examples. For instance, the function block

architecture of IEC 61499 has been used to implement

multi-agent control concepts in works by Black [114],

Lepuschitz [115] and Hegny [116]. The added value of

such a combination is in system level representation of the

entire distributed system for verification and validation, and

in simplified maintenance and reconfiguration. Similar

arguments would apply in the context of service-oriented

architectures. This is especially true in view of the number

of engineering concepts and tools discussed in this paper as

related to maintenance and evolution. The presence of

standardized distributed software architecture would

drastically simplify industrial application of those advanced

software concepts.

Another roadblock is higher complexity and education

threshold requiring training of engineers in new unfamiliar

software topics. The situation is changing but slowly: the

new generation of graduates are often aware of many

emergent software technologies and ready to apply them in

practice.

C. Open issues for future research

The list of open issues could be long, only the most

compelling ones will be discussed.

There are encouraging examples of model-driven software

engineering in automation which explore not only software

“mainstream” models of UML/SysML, but also “genuine”

automation models, such as P&ID. These works surely

need to be continued and extended towards formalisation of

such models and their “morphing” into software models.

Standardisation of such diagrammatic specifications on the

semantic level is becoming an urgent task.

Also, there are plenty unresolved challenges related to

combining legacy PLC programming (e.g. in ladder and

function block diagrams) with autonomous behaviour of

agents, synchronisation of distrib uted processes or

knowledge-based reasoning within one programming

framework. The challenges concern both expressive power

of programming languages along with performance,

determinism and guaranteed reactivity of applications.

The increasing demands of dependability, stemming from

various safety requirements and certification procedures,

will increase the demand for formal methods application in

automation software engineering. This will require a new

generation of software tools to make such methods more

approachable by control and software engineers.

In the testing domain, usual testing and code debugging

techniques need to be integrated with simulation and

emulation environments, as well as with formal verification

tools. Again, defining common standardised models to

bridge control and simulation worlds would be very helpful

for enabling such integrated solutions.

Convincing proof of benefits for many presented novel

design approaches can be done only in real industrial pilot

projects and in comparison with each other and existing

technologies. Such developments and comparisons are

rarely done yet. It would be the task of major research

funding bodies to include the corresponding priorities of

comparison and evaluation for several research-mature

technologies in the future calls in order to enable such

comparative pilot studies, rather than funding development

of new fancy ideas. The candidate technologies can include

multi-agent control, service-oriented architectures and IEC

61499 to mention a few. The industrial and economic

impact of such studies can be very substantial.

On the other hand, practices in many automation companies

include most advanced software engineering methods, but

they are rarely reported in academic publications. This

situation is being overcome by new instruments such as

“tools special sessions” at major international conferences,

but more can be done.

X. CONCLUSION

Despite the colloquial opinion of software design in

automation mainly consisting of PLC programming in

ladder logic done in front of the machine, the presented

survey proves that it is a large and growing area with a rich

body of knowledge. One should note that the paper only

scratched the surface and (due to size limitations) could not

address and reflect all the related developments in the

industrial automation software engineering. Many

interesting and important developments were unfortunately

left behind. These include, for example, agile development

and generative programming. The main purpose of this

work was to introduce a reference basis bridging the gap

between automation and software engineering worlds.

Hopefully, it will be useful for more focused studies in the

future.

Software engineering is an integral part of systems

engineering, and this is especially true in automation.

Proposing holistic system design processes in which

software engineering is tightly intertwined is a compelling

challenge, but the progress observed and reflected in this

review provides convincing evidences in the feasibility of

this goal.

XI. REFERENCES

[1] R. Stetter. (2011, Software im Maschinenbau –lästiges

Anhängsel oder Chance zur Marktführerschaft ? VDMA,

ITQ. Available: http://www.software-

kompetenz.de/servlet/is/21700/Stetter-

SW_im_Maschinenbau.pdf?command=downloadContent&f

ilename=Stetter-SW_im_Maschinenbau.pdf

[2] IEEE, "IEEE Standard Glossary of Software Engineering

Terminology," ed, 1990.

http://www.software-kompetenz.de/servlet/is/21700/Stetter-SW_im_Maschinenbau.pdf?command=downloadContent&filename=Stetter-SW_im_Maschinenbau.pdf
http://www.software-kompetenz.de/servlet/is/21700/Stetter-SW_im_Maschinenbau.pdf?command=downloadContent&filename=Stetter-SW_im_Maschinenbau.pdf
http://www.software-kompetenz.de/servlet/is/21700/Stetter-SW_im_Maschinenbau.pdf?command=downloadContent&filename=Stetter-SW_im_Maschinenbau.pdf
http://www.software-kompetenz.de/servlet/is/21700/Stetter-SW_im_Maschinenbau.pdf?command=downloadContent&filename=Stetter-SW_im_Maschinenbau.pdf

Please cite as follows: V. Vyatkin, “Software Engineering in Factory and Energy Automation: State of the Art Review”,

IEEE Transactions on Industrial Informatics, 2013, doi: 10.1109/TII.2013.2258165

[3] ARC. (2012). Automation Expenditures for Discrete

Industries. Available: http://www.arcweb.com/market-

studies/pages/automation-systems-for-discrete-

industries.aspx

[4] "International Standard IEC 62264-1: Enterprise - Control

System Integration Part 1: Models and Terminology," ed.

Geneva: International Electrotechnical Commission, 2003.

[5] X. Xu, H. Wang, J. Mao, S. Newman, T. Kramer, F.

Proctor, et al., "STEP-compliant NC research: the search for

intelligent CAD/CAPP/CAM/CNC integration,"

International Journal of Production Research, vol. 43, pp.

3703-3743, 2005.

[6] J. K. Chaar, D. Teichroew, and R. A. Volz, "Developing

manufacturing control software: A survey and critique,"

International journal of flexible manufacturing systems, vol.

5, pp. 53-88, 1993.

[7] A. Abran, J. W. Moore, P. Bourque, R. Dupuis, and L. L.

Tripp, Eds., SWEBOK: Guide to the Software Engineering

Body of Knowledge. IEEE Computer Society, 2004, p.^pp.

Pages.

[8] A. Dubey, "Evaluating software engineering methods in the

context of automation applications," in Industrial

Informatics (INDIN), 9th IEEE International Conference

on, 2011, pp. 585-590.

[9] "International Standard IEC 61131-3: Programmable

Controller - Part 3: Programming Languages," ed. Geneva:

International Electrotechnical Commission, 1993, p. 230.

[10] B. Werner, "Object-oriented extensions for IEC 61131-3,"

Industrial Electronics Magazine, IEEE, vol. 3, pp. 36-39,

2009.

[11] N. Bauer, R. Huuck, B. Lukoschus, and S. Engell, "A

Unifying Semantics for Sequential Function Charts

Integration of Software Specification Techniques for

Applications in Engineering." vol. 3147, H. Ehrig, W.

Damm, J. Desel, M. Große-Rhode, W. Reif, E. Schnieder, et

al., Eds., ed: Springer Berlin / Heidelberg, 2004, pp. 400-

418.

[12] V. Vyatkin, J. H. Christensen, and J. L. M. Lastra,

"OOONEIDA: an open, object-oriented knowledge

economy for intelligent industrial automation," Industrial

Informatics, IEEE Transactions on, vol. 1, pp. 4-17, 2005.

[13] J. Virta, I. Seilonen, A. Tuomi, and K. Koskinen, "SOA-

Based integration for batch process management with OPC

UA and ISA-88/95," in Emerging Technologies and Factory

Automation (ETFA), IEEE Conference on, Bilbao, Spain,

2010, pp. 1-8.

[14] "International Standard IEC 61512-1: Batch Control - Part

1: Models and Terminology," ed. Geneva: International

Electrotechnical Commission, 1997.

[15] "International Standard IEC61499-1: Function Blocks -

Part 1 Architecture," First ed. Geneva: International

Electrotechnical Commission, 2005.

[16] V. Vyatkin, "IEC 61499 as Enabler of Distributed and

Intelligent Automation: State of the Art Review," IEEE

Transactions on Industrial Informatics, vol. 7, pp. 768-781,

2011.

[17] C. Diedrich, F. Russo, L. Winkel, and T. Blevins, "Function

block applications in control systems based on IEC 61804,"

ISA Transactions, vol. 43, pp. 123-131, 2004.

[18] "International Standard IEC 61850: Communication

Networks and Systems in Substations - part 7, Basic

information and communication structure," ed: International

Electrotechnical Commission, 2003.

[19] G. Zhabelova and V. Vyatkin, "Multi-agent Smart Grid

Automation Architecture based on IEC 61850/61499

Intelligent Logical Nodes," IEEE Transactions on Industrial

Electronics, vol. 59, pp. 2351 - 2362 2011.

[20] N. Higgins, V. Vyatkin, N. K. C. Nair, and K. Schwarz,

"Distributed Power System Automation With IEC 61850,

IEC 61499, and Intelligent Control," IEEE Transactions on

Systems Man and Cybernetics Part C-Applications and

Reviews, vol. 41, pp. 81-92, Jan 2011.

[21] T. Strasser, M. Stifter, F. Andren, D. Burnier de Castro, and

W. Hribernik, "Applying open standards and open source

software for smart grid applications: Simulation of

distributed intelligent control of power systems," in Power

and Energy Society General Meeting, 2011 IEEE, 2011, pp.

1-8.

[22] H. ElMaraghy, "Flexible and reconfigurable manufacturing

systems paradigms," International Journal of Flexible

Manufacturing Systems, vol. 17, pp. 261-276, 2005.

[23] U. Ryssel, H. Dibowski, and K. Kabitzsch, "Generation of

function block based designs using Semantic Web

technologies," in IEEE Conference on Emerging

Technologies and Factory Automation (ETFA'09), 2009.

[24] J. G. Breslin, D. O'Sullivan, A. Passant, and L. Vasiliu,

"Semantic Web computing in industry," Computers in

Industry, vol. 61, pp. 729-741, 2010.

[25] T. Hadlich, S. Höme, C. Diedrich, K. Eckert, T. Frank, A.

Fay, et al., "Time as non-functional requirement in

distributed control systems," in Emerging Technologies and

Factory Automation, Proceedings. ETFA '12. IEEE

Conference, 2012.

[26] O. Ljungkrantz, K. Åkesson, M. Fabian, and C. Yuan,

"Formal Specification and Verification of Industrial Control

Logic Components," IEEE Transactions on Automation

Science and Engineering, vol. 7, pp. 538 - 548, 2010.

[27] S. Runde, A. Fay, and W. O. Wutzke, "Knowledge-based

Requirement-Engineering of building automation systems

by means of Semantic Web technologies," in Industrial

Informatics, 7th IEEE International Conference on

(INDIN'09), Cardiff, Wales, 2009, pp. 267-272.

[28] M. Hirsch, Systematic Design of Distributed Industrial

Manufacturing Control Systems. Berlin: Logos Verlag

2010.

[29] C. Secchi, M. Bonfe, C. Fantuzzi, R. Borsari, and D.

Borghi, "Object-Oriented Modeling of Complex

Mechatronic Components for the Manufacturing Industry,"

Mechatronics, IEEE/ASME Transactions on, vol. 12, pp.

696-702, 2007.

[30] K. C. Thramboulidis, "Using UML in control and

automation: a model driven approach," in Industrial

Informatics, 2nd IEEE International Conference on, 2004,

pp. 587-593.

[31] V. Dubinin, V. Vyatkin, and T. Pfeiffer, "Engineering of

validatable automation systems based on an extension of

UML combined with function blocks of IEC 61499," IEEE

International Conference on Robotics and Automation

(ICRA'05), pp. 3996-4001, 2005.

[32] K. Thramboulidis, "Model-integrated mechatronics-toward

a new paradigm in the development of manufacturing

systems," Industrial Informatics, IEEE Transactions on,

vol. 1, pp. 54-61, 2005.

[33] V. Vyatkin, H. Hanisch, C. Pang, and C. Yang, "Closed-

loop modeling in future automation system engineering and

validation," IEEE Transactions on Systems, Man and

http://www.arcweb.com/market-studies/pages/automation-systems-for-discrete-industries.aspx
http://www.arcweb.com/market-studies/pages/automation-systems-for-discrete-industries.aspx
http://www.arcweb.com/market-studies/pages/automation-systems-for-discrete-industries.aspx

Please cite as follows: V. Vyatkin, “Software Engineering in Factory and Energy Automation: State of the Art Review”,

IEEE Transactions on Industrial Informatics, 2013, doi: 10.1109/TII.2013.2258165

Cybernetics Part C: Applications and Reviews, vol. 39, pp.

17-28, 2009.

[34] "IEC SB3/TC 65 working draft: Automation Objects for

industrial-process measurement and control systems,"

Geneva2002.

[35] R. Brennan, L. Ferrarini, J. L. M. Lastra, and V. Vyatkin,

"Automation objects: enabling embedded intelligence in

real-time mechatronic systems," International Journal of

Manufacturing Research, vol. 1, pp. 379-381, 2006.

[36] T. Ritala and S. Kuikka, "UML Automation Profile:

Enhancing the Efficiency of Software Development in the

Automation Industry," in Industrial Informatics, 2007 5th

IEEE International Conference on, 2007, pp. 885-890.

[37] U. Katzke and B. Vogel-Heuser, "Combining UML with

IEC 61131-3 languages to preserve the usability of

graphical notations in the software development of complex

automation systems," in Analysis, Design, and Evaluation of

Human-Machine Systems, 2007, pp. 90-94.

[38] P. Mohagheghi and V. Dehlen, "Where is the proof?-A

review of experiences from applying MDE in industry," in

Model Driven Architecture–Foundations and Applications,

2008, pp. 432-443.

[39] B. Vogel-Heuser, M. Obermeier, S. Braun, K. Sommer, F.

Jobst, and K. Schweizer, "Evaluation of a UML-Based

Versus an IEC 61131-3-Based Software Engineering

Approach for Teaching PLC Programming," IEEE

Transactions on Education, 2012.

[40] D. Witsch and B. Vogel-Heuser, "Close integration between

UML and IEC 61131-3: New possibilities through object-

oriented extensions," in Emerging Technologies & Factory

Automation, 2009. ETFA 2009. IEEE Conference on, 2009,

pp. 1-6.

[41] M. Witsch and B. Vogel-Heuser, "Towards a Formal

Specification Framework for Manufacturing Execution

Systems," Industrial Informatics, IEEE Transactions on,

vol. 8, pp. 311-320, 2012.

[42] K. Thramboulidis and G. Frey, "An MDD process for IEC

61131-based industrial automation systems," in Emerging

Technologies & Factory Automation (ETFA), 2011 IEEE

16th Conference on, Tolouse, France, 2011, pp. 1-8.

[43] "IEC International Standard IEC 62424: Representation of

process control engineering - Requests in P&I diagrams and

data exchange between P&ID tools and PCE-CAE tools,"

ed: International Electrotechnical Commission, 2008.

[44] L. Hundt, R. Drath, A. Lüder, and J. Peschke, "Seamless

Automation Engineering with AutomationML," in 14th

International Conference on Concurrent Enterprising (ICE

2008), Lisboa, Portugal, 2008, pp. 685-692.

[45] PLCopen Technical Commitee 6. (2009, 02/06/2012). XML

Formats for IEC 61131-3 [Online]. Available:

http://www.plcopen.org/pages/tc6_xml/downloads/tc6_xml

_v201_technical_doc.pdf

[46] E. Estévez, M. Marcos, and D. Orive, "Automatic

generation of PLC automation projects from component-

based models," The International Journal of Advanced

Manufacturing Technology, vol. 35, pp. 527-540, 2007.

[47] E. Estevez and M. Marcos, "Model based Validation of

Industrial Control Systems," Industrial Informatics, IEEE

Transactions on, vol. 8, pp. 302-310, 2011.

[48] S. Vinoski, "CORBA: Integrating diverse applications

within distributed heterogeneous environments,"

Communications Magazine, IEEE, vol. 35, pp. 46-55, 1997.

[49] R. Sessions, COM and DCOM: Microsoft's vision for

distributed objects: John Wiley & Sons, Inc., 1997.

[50] I. Crnkovic and M. Larsson, "A case study: demands on

component-based development," in Software Engineering,

Proceedings of the 2000 International Conference on, 2000,

pp. 23-31.

[51] I. Calvo, F. Perez, I. Etxeberria, and G. Moran, "Control

communications with DDS using IEC61499 Service

Interface Function Blocks," in Emerging Technologies and

Factory Automation (ETFA), 2010 IEEE Conference on,

2010, pp. 1-4.

[52] J. Camerini, A. Chauvet, and M. Brill, "Interface for

distributed automation: IDA," in Emerging Technologies

and Factory Automation, 2001. Proceedings. 2001 8th

IEEE International Conference on, 2001, pp. 515-518 vol.2.

[53] K. Trkaj, "Users introduce component based automation

solutions," Computing & Control Engineering Journal, vol.

15, pp. 32-37, 2004.

[54] C. R. Maga, N. Jazdi, and P. Göhner, "Reusable Models in

Industrial Automation: Experiences in Defining Appropriate

Levels of Granularity," in 18th World Congress of the

International Federation of Automatic Control (IFAC),

2011.

[55] L. Szer-Ming, R. Harrison, and A. A. West, "A component-

based distributed control system for assembly automation,"

in Industrial Informatics, INDIN '04. 2nd IEEE

International Conference on, 2004, pp. 33-38.

[56] T. Strasser, M. Rooker, G. Ebenhofer, A. Zoitl, C. Sunder,

A. Valentini, et al., "Structuring of large scale distributed

control programs with IEC 61499 subapplications and a

hierarchical plant structure model," 2008, pp. 934-941.

[57] H.-M. Hanisch, "Closed-Loop Modeling and Related

Problems of Embedded Control Systems in Engineering," in

ASM 2004: Abstract State Machines: advances in theory

and practice, Lutherstadt Wittenberg, 2004, pp. 24-28.

[58] G. Cutts and S. Rattigan, "Using Petri Nets to develop

programs for PLC systems," in Application and Theory of

Petri Nets vol. 616, K. Jensen, Ed., ed: Springer Berlin /

Heidelberg, 1992, pp. 368-372.

[59] G. Frey, "Automatic implementation of Petri net based

control algorithms on PLC," in American Control

Conference, Chicago, 2000, pp. 2819-2823.

[60] J. Thieme and H. M. Hanisch, "Model-based generation of

modular PLC code using IEC61131 function blocks," in

ISIE'02, Industrial Electronics, Proceedings of the 2002

IEEE International Symposium on, , 2002, pp. 199-204

vol.1.

[61] L. E. Pinzon, H. M. Hanisch, M. A. Jafari, and T. Boucher,

"A comparative study of synthesis methods for discrete

event controllers," Formal Methods in System Design, vol.

15, pp. 123-167, 1999.

[62] T. Winkler, H. C. Lapp, and H. M. Hanisch, "A new model

structure based synthesis approach for distributed discrete

process control," in Industrial Informatics (INDIN), 2011

9th IEEE International Conference on, Lisbon, Portugal,

2011, pp. 527-532.

[63] M. Wooldridge, An Introduction to Multi-Agent Systems:

John Wiley & Sons, 2002.

[64] P. Leitão, "Agent-based Distributed Manufacturing Control:

A State-of-the-art Survey," Engineering Applications of

Artificial Intelligence, vol. 22, pp. 979-991, 2009.

http://www.plcopen.org/pages/tc6_xml/downloads/tc6_xml_v201_technical_doc.pdf
http://www.plcopen.org/pages/tc6_xml/downloads/tc6_xml_v201_technical_doc.pdf

Please cite as follows: V. Vyatkin, “Software Engineering in Factory and Energy Automation: State of the Art Review”,

IEEE Transactions on Industrial Informatics, 2013, doi: 10.1109/TII.2013.2258165

[65] M. Metzger and G. Polaków, "A Survey on Applications of

Agent Technology in Industrial Process Control," IEEE

Trans. Industrial Informatics, vol. 7, pp. 570-581, 2011.

[66] M. Pechoucek and V. Marík, "Industrial Deployment of

Multi-Agent Technologies: Review and Selected Case

Studies," Autonomous Agents and Multi-Agent Systems, vol.

17, pp. 397-431, 2008.

[67] S. Theiss, V. Vasyutynskyy, and K. Kabitzsch, "Software

Agents in Industry: A Customized Framework in Theory

and Praxis," Industrial Informatics, IEEE Transactions on,

vol. 5, pp. 147-156, 2009.

[68] V. V. Herrera, A. Bepperling, A. Lobov, H. Smit, A. W.

Colombo, and J. Lastra, "Integration of Multi-Agent

Systems and Service-Oriented Architecture for industrial

automation," in Industrial Informatics, INDIN'08. 6th IEEE

International Conference on, 2008, pp. 768-773.

[69] J. L. M. Lastra and M. Delamer, "Semantic web services in

factory automation: fundamental insights and research

roadmap," Industrial Informatics, IEEE Transactions on,

vol. 2, pp. 1-11, 2006.

[70] T. Erl, Service-oriented architecture: concepts, technology,

and design: Prentice Hall PTR, 2005.

[71] F. Jammes and H. Smit, "Service-oriented paradigms in

industrial automation," Industrial Informatics, IEEE

Transactions on, vol. 1, pp. 62-70, 2005.

[72] A. Cannata, M. Gerosa, and M. Taisch, "SOCRADES: A

framework for developing intelligent systems in

manufacturing," in Industrial Engineering and Engineering

Management, 2008. IEEM 2008. IEEE International

Conference on, 2008, pp. 1904-1908.

[73] G. Candido, A. W. Colombo, J. Barata, and F. Jammes,

"Service-Oriented Infrastructure to Support the Deployment

of Evolvable Production Systems," Industrial Informatics,

IEEE Transactions on, vol. 7, pp. 759-767, 2011.

[74] J. M. Mendes, A. Bepperling, J. Pinto, P. Leitao, F. Restivo,

and A. W. Colombo, "Software Methodologies for the

Engineering of Service-Oriented Industrial Automation: The

Continuum Project," in Computer Software and

Applications Conference, COMPSAC '09. 33rd Annual

IEEE International, 2009, pp. 452-459.

[75] H. Dibowski, J. Ploennigs, and K. Kabitzsch, "Automated

Design of Building Automation Systems," Industrial

Electronics, IEEE Transactions on, vol. 57, pp. 3606-3613,

2010.

[76] E. Faldella, A. Paoli, A. Tilli, M. Sartini, and D. Guidi,

"Architectural design patterns for logic control of

manufacturing systems: The generalized device," in

Information, Communication and Automation Technologies,

ICAT 2009. XXII International Symposium on, 2009, pp. 1-

7.

[77] F. Serna, C. Catalan, A. Blesa, and J. M. Rams, "Design

patterns for Failure Management in IEC 61499 Function

Blocks," in Emerging Technologies and Factory

Automation (ETFA), 2010 IEEE Conference on, 2010, pp.

1-7.

[78] T. M. H. Reenskaug. (April). Model-View-Controller design

pattern. Available:

http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html

[79] J. H. Christensen, "Design patterns for systems engineering

with IEC 61499," in Verteilte Automatisierung - Modelle

und Methoden für Entwurf, Verifikation, Engineering und

Instrumentierung, Magdeburg, Germany, 2000.

[80] D. Schutz, M. Schraufstetter, J. Folmer, B. Vogel-Heuser,

T. Gmeiner, and K. Shea, "Highly reconfigurable

production systems controlled by real-time agents," in

Emerging Technologies & Factory Automation (ETFA'11),

16th IEEE Conference on, 2011, pp. 1-8.

[81] V. Dubinin and V. Vyatkin, "Semantics-robust Design

Patterns for IEC 61499," Industrial Informatics, IEEE

Transactions on, vol. 8, pp. 279-290, 2012.

[82] M. Tangermann, C. Schwab, A. Kalogeras, K. Lorentz, and

A. Prayati, "Aspect-Orientation of Control Application

Code for Distributed Automation Systems: The TORERO

Approach On The Move to Meaningful Internet Systems

2003: OTM 2003 Workshops." vol. 2889, R. Meersman and

Z. Tari, Eds., ed: Springer Berlin / Heidelberg, 2003, pp.

335-345.

[83] M. A. Wehrmeister, E. P. Freitas, C. E. Pereira, and F.

Rammig, "GenERTiCA: A Tool for Code Generation and

Aspects Weaving," in Object Oriented Real-Time

Distributed Computing (ISORC), 11th IEEE International

Symposium on, 2008, pp. 234-238.

[84] A. Binotto, E. P. Freitas, C. E. Pereira, and T. Larsson,

"Towards Dynamic Task Scheduling and Reconfiguration

Using an Aspect Oriented Approach Applied on Real-Time

Concerns of Industrial Systems," in Information Control

Problems in Manufacturing (INCOM'09), Moscow, 2009,

pp. 1423-1428.

[85] A. Luder, J. Peschke, and M. Heinze, "Control

programming using Java," Industrial Electronics Magazine,

IEEE, vol. 2, pp. 19-27, 2008.

[86] K. Thramboulidis and A. Zoupas, "Real-time Java in control

and automation: a model driven development approach," in

Emerging Technologies and Factory Automation, 2005.

ETFA 2005. 10th IEEE Conference on, Catania, Italy, 2005,

pp. 8 pp.-46.

[87] M. Jimenez, F. Rosique, P. Sanchez, B. Alvarez, and A.

Iborra, "Habitation: A Domain-Specific Language for Home

Automation," Software, IEEE, vol. 26, pp. 30-38, 2009.

[88] N. Papakonstantinou, S. Sierla, and K. Koskinen, "Object

oriented extensions of IEC 61131-3 as an enabling

technology of software product lines," in Emerging

Technologies & Factory Automation (ETFA), 16th IEEE

Conference on, Toulouse, 2011, pp. 1-8.

[89] H. P. Breivold, S. Larsson, and R. Land, "Migrating

Industrial Systems towards Software Product Lines:

Experiences and Observations through Case Studies," in

Software Engineering and Advanced Applications, SEAA

'08. 34th Euromicro Conference, 2008, pp. 232-239.

[90] L. F. Wang, K. C. Tan, X. D. Jiang, and Y. B. Chen, "A

flexible automatic test system for rotating-turbine

machinery," Automation Science and Engineering, IEEE

Transactions on, vol. 2, pp. 1-18, 2005.

[91] R. Hametner, D. Winkler, T. Ostreicher, S. Biffl, and A.

Zoitl, "The adaptation of test-driven software processes to

industrial automation engineering," in Industrial Informatics

(INDIN), 8th IEEE International Conference on, 2010, pp.

921-927.

[92] "IEEE Standard for Software Maintenance," IEEE Std 1219-

1998, p. i, 1998.

[93] V. T. Rajlich and K. H. Bennett, "A staged model for the

software life cycle," Computer, vol. 33, pp. 66-71, 2000.

[94] T. Hussain and G. Frey, "Migration of a PLC controller to

an IEC 61499 compliant distributed control system: Hands-

http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html

Please cite as follows: V. Vyatkin, “Software Engineering in Factory and Energy Automation: State of the Art Review”,

IEEE Transactions on Industrial Informatics, 2013, doi: 10.1109/TII.2013.2258165

on experiences," in IEEE International Conference on

Robotics and Automation (ICRA), 2005, pp. 3984-3989.

[95] W. Dai and V. Vyatkin, "Redesign Distributed PLC Control

Systems Using IEC 61499 Function Blocks," Automation

Science and Engineering, IEEE Transactions on, vol. 9, pp.

390-401, 2012.

[96] C. Suender, M. Wenger, C. Hanni, I. Gosetti, H. Steininger,

and J. Fritsche, "Transformation of existing IEC 61131-3

automation projects into control logic according to IEC

61499," 2008 IEEE International Conference on Emerging

Technologies and Factory Automation, Proceedings, pp.

369-376, 2008.

[97] M. Wenger, A. Zoitl, C. Sunder, and H. Steininger,

"Transformation of IEC 61131-3 to IEC 61499 based on a

model driven development approach," 7th IEEE

International Conference on Industrial Informatics, vol. 1,2,

pp. 715-720, 2009.

[98] M. Fowler and K. Beck, Refactoring: improving the design

of existing code: Addison-Wesley Professional, 1999.

[99] V. Vyatkin and V. Dubinin, "Refactoring of Execution

Control Charts in Basic Function Blocks of the IEC 61499

Standard," IEEE Transactions on Industrial Informatics,

vol. 6, pp. 155-165, May 2010.

[100] R. Froschauer, D. Dhungana, and P. Grunbacher,

"Managing the Life-cycle of Industrial Automation Systems

with Product Line Variability Models," in Software

Engineering and Advanced Applications,SEAA '08. 34th

Euromicro Conference, 2008, pp. 35-42.

[101] R. S. Pressman, Software engineering: a practitioner’s

approach, 7e ed.: McGraw-Hill, 2001.

[102] O. Hummer, C. Sunder, A. Zoitl, T. Strasser, M. N. Rooker,

and G. Ebenhofer, "Towards Zero-downtime Evolution of

Distributed Control Applications via Evolution Control

based on IEC 61499," in Emerging Technologies and

Factory Automation, ETFA '06. IEEE Conference on, 2006,

pp. 1285-1292.

[103] T. Moser, R. Mordinyi, D. Winkler, and S. Biffl,

"Engineering project management using the Engineering

Cockpit: A collaboration platform for project managers and

engineers," in Industrial Informatics (INDIN), 9th IEEE

International Conference on, Lisbon, Portugal, 2011, pp.

579-584.

[104] K. C. Thramboulidis and C. S. Tranoris, "Developing a

CASE tool for distributed control applications," The

International Journal of Advanced Manufacturing

Technology, vol. 24, pp. 24-31, 2004.

[105] "International Standard: IEC 61508 Functional safety of

electrical electronic programmable electronic safety related

systems," in Part1-Part7, ed. Geneva: International

Electrotechnical Commission, 1999-2000.

[106] H. Von Krosigk, "Functional safety in the field of industrial

automation. The influence of IEC 61508 on the

improvement of safety-related control systems," Computing

& Control Engineering Journal, vol. 11, pp. 13-18, 2000.

[107] G. Frey and L. Litz, "Formal methods in PLC

programming," in Systems, Man, and Cybernetics, 2000

IEEE International Conference on, 2000, pp. 2431-2436

vol.4.

[108] T. L. Johnson, "Improving automation software

dependability: A role for formal methods?," Control

Engineering Practice, vol. 15, pp. 1403-1415, 2007.

[109] H. M. Hanisch, M. Hirsch, D. Missal, S. Preuße, and C.

Gerber, "One Decade of IEC 61499 Modeling and

Verification-Results and Open Issues," in Information

Control Problems in Manufacturing (INCOM'09), Moscow,

2009.

[110] L. H. Yoong, P. S. Roop, V. Vyatkin, and Z. Salcic, "A

Synchronous Approach for IEC 61499 Function Block

Implementation," IEEE Transactions on Computers, pp.

1599-1614, 2009.

[111] D. Gašević, N. Kaviani, and M. Milanović, "Ontologies and

Software Engineering Handbook on Ontologies," S. Staab

and D. Rudi Studer, Eds., ed: Springer Berlin Heidelberg,

2009, pp. 593-615.

[112] H.-J. Happel and S. Seedorf, "Applications of Ontologies in

Software Engineering," in 2nd International Workshop on

Semantic Web Enabled Software Engineering (SWESE

2006), held at the 5th International Semantic Web

Conference (ISWC 2006), Athens, GA, USA, 2006.

[113] D. Hästbacka and S. Kuikka, "Semantics enhanced

engineering and model reasoning for control application

development," Multimedia Tools and Applications, pp. 1-

16.

[114] G. Black and V. Vyatkin, "Intelligent Component-Based

Automation of Baggage Handling Systems With IEC

61499," IEEE Transactions on Automation Science and

Engineering, vol. 7, pp. 337-351, Apr 2010.

[115] W. Lepuschitz, A. Zoitl, M. Valle, and M. Merdan, "Toward

Self-Reconfiguration of Manufacturing Systems Using

Automation Agents," Systems, Man, and Cybernetics, Part

C: Applications and Reviews, IEEE Transactions on, vol.

41, pp. 52-69, 2011.

[116] I. Hegny, O. Hummer, A. Zoitl, G. Koppensteiner, and M.

Merdan, "Integrating Software Agents and IEC 61499

Realtime Control for Reconfigurable Distributed

Manufacturing Systems," International Symposium on

Industrial Embedded Systems, pp. 249-252, 2008.

Valeriy Vyatkin is Chaired Professor of

Dependable Computation and

Communication Systems at Luleå

University of Technology, Sweden, and

visiting scholar at Cambridge University,

U.K., on leave from The University of

Auckland, New Zealand, where he has

been Associate Professor and Director of

the InfoMechatronics and Industrial

Automation lab (MITRA) at the

Department of Electrical and Computer Engineering. He

graduated with the Engineer degree in applied mathematics in

1988 from Taganrog State University of Radio Engineering

(TSURE), Taganrog, Russia. Later he received the Ph.D. (1992)

and Dr. Sci. degree (1998) from the same university, and the Dr.

Eng. Degree from Nagoya Institute of Technology, Nagoya,

Japan, in 1999. His previous faculty positions were with Martin

Luther University of Halle-Wittenberg in Germany (Senior

researcher and lecturer, 1999–2004), and with TSURE (Associate

Professor, Professor, 1991–2002).

Research interests of professor Vyatkin are in the area of

dependable distributed automation and industrial informatics,

including software engineering for industrial automation systems,

distributed architectures and multi-agent systems applied in

various industry sectors: Smart Grid, material handling, building

management systems, reconfigurable manufacturing, etc. Dr

Vyatkin is also active in research on dependability provisions for

industrial automation systems, such as methods of formal

verification and validation, and theoretical algorithms for

Please cite as follows: V. Vyatkin, “Software Engineering in Factory and Energy Automation: State of the Art Review”,

IEEE Transactions on Industrial Informatics, 2013, doi: 10.1109/TII.2013.2258165

improving their performance. In 2012, Prof Vyatkin has been

awarded Andrew P. Sage Award for best IEEE Transactions

paper.

