

Please cite as follows: C.-H. Yang, V. Vyatkin, C. Pang, “Model-driven Development of Control Software for Distributed

Automation: a Survey and an Approach”, IEEE Transactions on Systems, Man and Cybernetics, Part A, 2013, in print

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS

Abstract – This paper presents a survey on model-driven

design and validation approaches for distributed automation

and control systems with essentially decentralised logic. Driven

by the goals of flexibility and performance improvement,

researchers have explored several approaches to distributed

systems design, including multi-agent systems, middleware, and

distributed component architectures. This also results in several

international standards and reference architectures, such as

IEC 61499, OpenRTM, IEC 61804, etc. Verification and

validation of distributed systems is another grand challenge.

This survey presents methods of using traditional and novel

modelling and simulation tools in the context of distributed

systems. In particular, this paper then focuses on the

developments related to IEC 61499 standard, which displays a

range of research directions that aim to fill the gaps in the

distributed systems modelling, implementation and validation.
1

Keywords: Modelling, Distributed systems, Simulation, IEC

61499, Function Blocks.

I. INTRODUCTION

The ever increasing demand for flexibility and

reconfigurability of control system in manufacturing and

process industries is an undisputable fact, as indicated in

many publications, e.g. [1-3]. The requirement to react on the

ever changing market demands by producing small quantities

of many customised products rather than mass production of

a single product [2, 4, 5] implies modularity and

reconfigurability of production machinery and the

corresponding modularity and distribution of automation

hardware and software.

These trends have been seen in the past but on a limited

scale. For instance, the concept of distributed control systems

(DCS) is known in process industries since a few decades. It

was influenced by the spatial distribution of the plants. This

approach requires the use of field area networks (i.e.

Fieldbuses) to connect sensors, actuators and local regulators

with a centralised control unit implementing control

algorithm. However, while increasing the flexibility of

hardware maintenance, this traditional DCS approach has

little to do with flexibility of the production.

In the meantime, the discrete manufacturing industries

are facing similar market challenges. There was a substantial

body of research on the use of so called “intelligent

mechatronic components” in order to improve the flexibility

of the production systems [6-8]. Such components are

individually equipped with embedded controllers and can be

aggregated into machines and systems, arguably easier than

traditional mechanical and mechatronic components. This

results in easier reconfiguration. The use of such intelligent

components and object-oriented design promises to bring

essential benefits for design and re-configuration of

automated production systems thanks to encapsulation and

reuse of a good deal of intellectual property relevant to a

particular mechanical component, machine or system.

Combination of the decentralized control logic with its

distributed deployment results in a new approach to

automation that is often referred to as distributed intelligence

(DI). In the Webster’s dictionary, intelligence is defined as

“the ability to learn or understand or to deal with new or

trying situations”. However, in the industrial automation and

control context (for example, in [9]) this word is often used

to describe any system with decentralized logic, as opposed

to another kind of distributed architecture, where logic is

executed on one computer device, but sources of data are

distributed (e.g. a programmable controller with remote I/Os

connected via a fieldbus). The DI approach relies on

decentralised control hardware architecture with multiple

controllers in charge of individual mechatronic devices or

assemblies thereof. These controllers may communicate and

collaborate with each other through common communication

channels such as Ethernet and field area networks.

The existing design paradigms have shown their severe

limitations when it comes to implementation of the DI

concept in industry. The limitations pertain to all phases of

system engineering, from requirements formalisation,

software construction, verification and validation,

dependable execution and maintenance.

This paper provides a summary of various design and

validation concepts that are related to distributed control or

can help in achieving it. To this end, it also surveys modelling

frameworks that are used for verification and validation of

complex automation and control systems.

The rest of this paper is structured as follows. Section II

attempts to summarize various sources of distributed

intelligence in automation systems. This discussion is

followed by surveys in three major streams related to

distributed systems (Section III), model-driven software

engineering (Section IV), and model-driven verification and

validation (Section V). Section VI examines how the trends

from all these streams have been addressed in the

international standard IEC 61499. Section VII presents

elements of Intelligent Mechatronic Component (IMC)

architecture that uses IEC 61499 as an enabling technology

and attempts to combine best practices from the surveyed

engineering and control validation streams.

II. SOURCES OF DISTRIBUTED INTELLIGENCE AND MODEL-

DRIVEN DESIGN AND VALIDATION

Even traditional centralized automation systems include at

least four data processing device types communicating via

networks: engineering station with simulation, database and

programming software, human-machine interface (HMI)

device with visualisation and human interface software,

programmable logic controller (PLC) with control software

Model-driven Development of Control Software for

Distributed Automation: a Survey and an Approach

Chia-Han Yang, Valeriy Vyatkin, Cheng Pang

Please cite as follows: C.-H. Yang, V. Vyatkin, C. Pang, “Model-driven Development of Control Software for Distributed

Automation: a Survey and an Approach”, IEEE Transactions on Systems, Man and Cybernetics, Part A, 2013, in print

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS

and one or several motor drives implementing motion control

functionality. Ensuring correct operation of these

components requires addressing the issues of correct

coordination, synchronisation and access to shared resources.

The situation aggravates when several controllers need to be

integrated. There is vast theory of distributed computing

which addresses these issues. To mask the complexity of

distributed systems development [10], many distributed

programming languages [11] have been developed by

computer scientists, however none of these is implemented

on the existing PLC platforms.

Another approach is to implement the DI concept with

loosely coupled Programmable Logic Controllers (PLC)

interconnected via networks and middleware, e.g. [12], or

DCOM based PROFInet-CBA [13]. However, researchers

face various difficulties in software development for

distributed systems in this way. One of the challenges is the

lack of system-level view at heterogeneous automation

systems which is needed to validate properties of entire

systems rather than parts thereof. The fact that control

hardware and software in a distributed system may come

from different vendors implies portability and

interoperability requirements. These and other reasons

motivate the need of higher level software models similar to

those used in general purpose software development, e.g.

Unified Modelling Language (UML) [14] and its derivative,

SysML [15].

With the growing complexity of PLC controlled

systems, the software complexity is growing as well. To keep

up with the timing requirements, it is often needed to

distribute software across several concurrently running PLCs.

It would make sense to design automation applications as

logically distributed modular software systems with

components coordinating their actions only via message

passing. The next step would be to convert transparently

modular organisation of automation software to virtually and

physically distributed configurations. However, the existing

PLC programming architecture (standardized in the form of

IEC 61131-3 standard [16]) does not provide such

mechanisms.

The International Electrotechnical Commission has

addressed these issues in the IEC 61499 standard [17] by

defining a concept of distributed control system design using

event-driven modules called “Function Blocks” (FB). This

standard establishes a reference architecture for the

implementation of distributed control, allowing the design to

be software-centric and vendor-independent while achieving

flexibility in terms of both software and hardware.

Along with the software construction challenges,

another main challenge of distributed systems design is their

verification and validation. When controllers are independent

of each other and distributed across the system network, the

data exchange to the devices and the communication intensity

between the controllers certainly increase. This complicates

their testing. Even though the control design is more

manageable through the software module concept, it is still

challenging to grasp the overall behaviour of the distributed

system without computer-aided verification process,

especially when each controller in the system network is

designed by a different developer. The software design

environment with advanced validation and verification

capabilities that can tackle distributed systems is essential for

the successful designs of distributed systems.

Closed-loop modelling and simulation is standard in

control engineering. The “plant” model describes the

behaviour of the physical system. The controller sets control

inputs of the plant based on the control algorithms and

readings of the plant’s sensors. According to [18], the benefit

of verification and validation using closed-loop models is as

follows: “The validation of controller design by itself has no

meaning and does not guarantee the correct behaviour of the

systems. This simple truth has often (and is still)

misunderstood or even neglected. In fact, from verification

perspective, for example, no liveness property can be proven

by open-loop model”.

Formal verification and validation are techniques

complementary to manual debugging and simulation based

verification. The idea of formal verification is to prove

rigorously (with the help of software tools) that certain

properties hold in the execution of a control system. In several

recent works [19-22], the closed-loop concept has been also

brought into the formal verification.

Another major challenge comes from the system

engineering side. In order to be used in industry, the

perceived switching cost to the new distributed architectures

needs to be less than the perceived benefit. The costs of the

change can be very substantial especially in restructuring and

retraining to familiarise with the new design approach and

new design tools [23]. This problem also leads to an idea of

linking existing tools and languages with the new ones.

Therefore improving efficiency of verification and validation

can increase the industrial adoption of distributed automation.

One can conclude that there are three sources of

knowledge used to address inherited complexity of

distributed automation systems design. These include theory

and practice of distributed systems design, model-driven

software engineering and traditional control-engineering

approaches that imply software and hardware “in the loop”

validation and block-diagram model and code organisation.

The developments related to these streams will be surveyed

in the three subsequent sections.

III. DISTRIBUTED CONTROL

A. Challenges of Distributed Implementations

The idea of the truly distributed control systems originates

from the control implementation in process industry. This is

where each physical element such as heaters, motors, pumps

and valves is directly connected in closed-loop to its own

automatic control unit with a possible start/stop activation

from a central controller. There is a belief that the role of

central controller can be minimized and distributed control

nodes can eventually communicate in a peer-to-peer manner.

This will make the entire system more flexible and reliable.

In [1], the re-configurability was considered as the target of

distributed control.

Although various applications have been deployed based

on the distributed logic concept and the approach is

confirmed to be useful, the widespread adoption of this

concept by industry is still low. The following challenges

have been identified as the main reasons for that:

 The risks that accompany every new technology that has

not been proven in large scale industrial applications [24];

Please cite as follows: C.-H. Yang, V. Vyatkin, C. Pang, “Model-driven Development of Control Software for Distributed

Automation: a Survey and an Approach”, IEEE Transactions on Systems, Man and Cybernetics, Part A, 2013, in print

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS

 Lack of mature enough design and development tools for

industrial development [24];

 Paradigm misunderstanding due to the small number of

successful industrial applications [25];

 Increased complexity of the software structure. This is

due to the fact that distributed architecture requires each

distributed node to have accurate status of the

environment and corresponding mechanisms have to be

introduced to guarantee the correct functionality and

reliability of the system;

 Lack of methodologies that can simplify the integration of

the new technology;

 Lack of industrial recognition of the potentials of the new

technology, due to absence of publicity of successful

industrial projects [17].

According to [26], early implementations of distributed

automation systems involved splitting the control program

into separate pieces while keeping essentially the same code

structure. This code can be distributed physically throughout

the hardware linked in a communication network. Custom

joining code would then be written to knit the smaller

components into a complete system. While this approach

allowed certain degree of physical distribution, there was no

notion of logical separation of system’s functionality. Thus

this would give the same result as a tightly-coupled computer

cluster [27] that runs a single process.

The complexity of distributed systems design made the

researchers looking for self-organisation mechanisms, that

has given rise to the agent-based control concept [28]

discussed in the following section.

B. Multi-agent Systems (MAS)

Therefore more modern techniques have been investigated,

describing the notion of an intelligent, autonomous and goal-

oriented agent in a multi-agent system [29]. An agent is a

concept that represents an autonomous combination of

software and hardware interacting with the environment. A

multi-agent system is composed of multiple agents

communicating and working together in order to achieve a

common goal. An agent-based architecture provides

robustness and flexibility and is proven to be specifically

appropriate for dynamic distributed systems [30]. An agent-

based system may include both local and global controller

agents that collaboratively process the information obtained

from sensors and generate control reactions. As an example

in process industry, this approach is proven to be useful when

dealing with a system of networks of interconnected

continuous stirred tank reactors (CSTRs) [28]. A framework

for modelling agent-based control of service-enabled

manufacturing systems is presented in [31].

In a multi-agent system (MAS), each single agent

exchanges information with others in order to achieve its own

objectives. The functionality of agents is usually

distinguished as high level control or low level control such

as controlling subjacent physical machines. There are some

successfully adopted applications based on MAS in various

industries, for example, steel rod bar mill of BHP Billiton in

Melbourne [32], distributed control of ship equipment in US

Navy shipboard systems [33] and production control of

semiconductor wafer fabrication facilities called FABMAS

[34]. The low level of those systems comprises device-

specific implementations with IEC 61131-3 compliant PLCs

communicating via technologies such as DCOM (Distributed

Component Object Model) and Ethernet. Works [25, 35]

present examples of modelling distributed agents

communicating through a network for simulation purposes.

Another research stream has been dealing with making

multi-agent systems more intelligent based on biological

principles, for example, the holonic manufacturing concept

[30, 36]. The work [30] also presents some case studies of

MAS applications in process industry, including an

intelligent search system to provide a knowledge

management platform and a system to provide concurrent

process design to ease communication between system

engineers.

C. Summary of findings

In summary, one can conclude that existing PLC-based

architecture is not sufficient to achieve distributed automation

as it is insufficiently addresses various design transparencies

and introduces too much overhead in execution and design.

The attempts to address the coordination and self-

organisation issues via multi-agent architectures are

promising, but require the corresponding support in the lower

level architecture, i.e. an agent-ready next generation PLC.

IV. SOFTWARE MODELS AND ARCHITECTURES

A. Model-driven software development

Model-driven design is a dominating technology in general

software engineering. In control and automation, the specific

of this approach is that objects are often associated with some

components of the controlled plant.

Bonfé and Fantuzzi [37] have introduced the use of

UML in automation and Thramboulidis [38] in particular in

the IEC 61499 context. The latter work proposed generation

of function blocks from UML diagrams, while Dubinin in

[39] proposed the UML-FB architecture supporting round-

trip engineering of UML diagrams generation from function

block designs and vice versa.

One characteristic concept in the mentioned works is

encapsulation of hardware and software models of an

automation and control system (ACS) into a single design

artifact, which can be further reused by composition to more

complex artifacts. In particular, the software model can be

structured following the mechanical and functional structure

of the hardware model. Moreover, the software model

provides all the necessary domain specific information of the

ACS.

For example, the concept of Automation Object was

proposed in [7] as an abstraction unifying a mechatronic

component, an embedded control device, and a software

component. When designing new ACS, the automation

objects modelling the components are selected from a

knowledge repository and then hierarchically composed

following the desired physical structure. The resultant

automation object becomes the central knowledge base for

subsequent MDD phases. The automation object notion has

been subsequently extended and referred to as Intelligent

Mechatronic Component (IMC) in [18], where the closed-

loop modelling methodology and corresponding model

transformation approaches are introduced. Each IMC is

internally organized following the Model-View-Controller

Please cite as follows: C.-H. Yang, V. Vyatkin, C. Pang, “Model-driven Development of Control Software for Distributed

Automation: a Survey and an Approach”, IEEE Transactions on Systems, Man and Cybernetics, Part A, 2013, in print

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS

(MVC) design pattern [40]. Different languages and

formalisms are employed to develop the domain specific

models. For instance, Matlab/Simulink is used to create the

hybrid model capturing both continuous and discrete

dynamics of the IMC and IEC 61499 is used to model the

executable behaviour, which can be deployed to the

controllers directly. The Net Condition/Event System

formalism [41] was adopted to define the IMC’s formal

model for the purposes of formal verification.

Sünder et al. presented a similar idea in [42], where the

Automation Component concept as a variant of automation

object is proposed. The focus of automation component is the

universal component interface and unified hierarchical

architecture allowing flexible reconfiguration of ACSs. This

automation component model is later adopted and extended

in the MEDEIA project [43-45], which developed a meta-

design architecture allowing domain specific knowledge to be

expressed in its native form and then unified into the generic

automation component model. Thus, model transformation is

reduced to the bidirectional transformation between the

domain specific models and the automation component

model.

Thramboulidis introduced the Model-Integrated

Mechatronics paradigm in [46] for the model-driven

concurrent engineering of ACSs. The core of this paradigm is

the Mechatronic Component construct, which is the

composition of a mechanical part, an electronic part, and a

software part. The MDD process following this paradigm

starts with the modelling of mechatronic components in the

mechatronic layer, which is vertically projected to the

application layer for modelling the control software; the

resource layer for modelling the control system

infrastructure; and finally the mechanical process layer for

modelling the mechanical composition. The UML profile

introduced in [47, 48] is used to support this MDD process to

generate the control application developed in IEC 61499

function blocks.

A similar MDD idea has also been implemented in the

AUKOTON research project [49-51]. In AUKOTON, the

proposed UML Automation Profile is used to unify the

domain knowledge into a platform independent functional

model, from which PLCopen control code is generated.

SysML is a UML derivative for engineering

applications that is getting increasingly popular. In particular,

SysML supports such design phases as requirements

capturing and formalization of specifications. Hirsch et al.

[52, 53] provide a pathway for linking function block

technology with SysML.

B. Block-diagram design languages

The block-diagram way of thinking is traditional in control

engineering, and there are a number of languages and tools

that support it. For example, OpenRTM is a RT-middleware

proposed for robot system integration [54]. The term “RT”

represents “Robot Technology.” OpenRTM also uses a

component-based approach in designing robotics

applications. The component’s model is shown in Fig. 1.

Fig. 1. The proposed architecture of RT-Component model [55].

The functionality of the RT Component (RTC) is as follows:

 Component metadata for dynamic component assembly.

 Component action and execution context for business

logic execution.

 Data ports for data exchange between RTCs.

There are already various industrial application built based on

this framework, including 3D recognition, tracking, dynamic

simulation, learning systems, etc. Fig. 2 shows the 3D

recognition and tracking implementation example based on

OpenRTM. However, even though there are various

extensive works completed based on OpenRTM, this concept

has not been formally standardised and is so far only applied

in the robotics or related industries.

Fig. 2. 3D recognition and tracking using the proposed OpenRTM
development tools [55].

The IEC 61804 standard draft [56], describes the

specification and requirements of distributed process control

systems based on Function Blocks [57]. The Electronic

Device Description Language (EDDL) is the language that is

stated in the part 2 of IEC 61804 standard and describes the

properties of automation system component [56], such as

vendor information, version of firmware/hardware and data

format, etc. Through this language, all the information will be

carried between the devices (controllers, sensors, actuators

and engineering stations, etc.) by a fieldbus. This language

fills in the gap between the Function Block specification and

product implementation by allowing manufacturers to use the

same description method for devices of different technologies

and platforms. The Function Block design of a process

control system for example, is only an abstract representation

which may be implemented differently with different device

types [57], such as Field Devices (FD), PLCs, visualisation

stations and Device Description (DD).

There are also other popular modelling and simulation

tools such as LabView [58] and SCADE [59]. These tools all

follow the block-diagram based modelling approach. For

example, SCADE is a model based development environment

Please cite as follows: C.-H. Yang, V. Vyatkin, C. Pang, “Model-driven Development of Control Software for Distributed

Automation: a Survey and an Approach”, IEEE Transactions on Systems, Man and Cybernetics, Part A, 2013, in print

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS

dedicated to critical embedded software, a product of Esterel

technologies. With native integration of the synchronous

Scade language and its unified formal notation, SCADE

combines unique features for integrated design of safety

critical applications. It covers requirements management,

model-driven design, simulation, verification, certified code

generation, and provides interoperability with other

development tools and platforms. SCADE combines a

number of models, such as hierarchical state charts and block

diagrams as seen from Fig. 3.

However, despite strong marketing efforts of LabView

and Esterel technologies, their presence in the industrial

automation domain is marginal, partially due to the lack of

support for automation legacy ways of design.

Fig. 3. Block-diagram design in SCADE.

C. IEC 61499 Function Blocks

The international Electrotechnical Commission (IEC)

established the international standard IEC 61499 [17] to

provide a reference software and system architecture for truly

distributed control design. This architecture enhances the

interoperability and re-usability of components, aiming at

increasing flexibility and reconfigurability of the control

systems.

The IEC 61499 standard introduces the concept of

event-driven modules, known as Function Blocks (FB), to

address the increasing demand of flexibility, reusability,

reconfigurability and distributed control applications [60].

Function Block can enhance software-reusability and simple

reconfiguration through its object-oriented nature. IEC 61499

is appealing to developers because of the simplified

specification approach and benefits related to the language’s

abstraction. The basic design unit or function block provides

a graphical method for control flow design, and uses

algorithms written in any programming language, including

the PLC legacy ones.

With such distributable modules, it allows design to be

completed before considering physical hardware layout. This

is very different to the traditional design approach with PLC

where hardware layout needs to be considered prior to the

control software implementation. The Function Blocks

design can be broken down into different subsystems and

loaded onto different controllers where each controls an

individual device or a subsystem.

A number of works explored implementation of multi-

agent control with IEC 61499 distributed architecture. The

fully distributed approach to baggage handling systems

automation was demonstrated in [61]. A hierarchical multi-

agent architecture based on IEC 61499 which enables

elements of self-configuration in manufacturing systems was

developed in [62], and [63] investigates the use of IEC 61499

to implement multi-agent control in material handling

systems. The work [64] discusses the architectural solutions

for joining IEC 61499 lower-level agents into upper multi

agent manufacturing platform. In [65] multi-agent control for

SmartGrid automation was reported.

V. CONCEPTS AND ENVIRONMENTS FOR MODELLING AND

SIMULATION

A. Concepts

This section presents some concepts for modelling of

distributed automation and control systems. This discussion

is followed by a survey of several modelling tools.

In general, a system in process industry is not purely

discrete or purely continuous, as it may contain discrete

operations (such as sequences of valves openings along a

pipeline) as well as continuous control of flows or of some

chemical reactions. Such systems are also known as “hybrid”

[66]. In process industries, a batch processing is one example

of such a system. The process in the batch process reactor, for

example, can be described by both continuous variables (e.g.

temperature) and discrete variables (e.g. switches). Batch

processing was introduced first in the production of high

value, low volume products, such as pharmaceutical,

cosmetics and perfume products, and spread gradually to the

food processing and other industries. Modelling, verification

and validation of systems with hybrid, i.e. continuous and

discrete dynamics, executing intelligent control algorithms in

decentralised nodes, are highly sophisticated. A big challenge

will be incurred when introducing truly distributed control

approach into such process control systems.

Another emerging modelling and design concept is

called Cyber Physical System (CPS) [67]. A CPS is a class of

systems with a tight coupling and coordination between the

physical and computational elements. Thus the physical

processes of the system are monitored and controlled by their

corresponding computational processes. The abstractions

available in modern computing and software engineering

require significant advancement before they allow for full

description of a CPS. One example is lack of capabilities of

modelling adequately concurrent physical processes.

One more trend in modelling complex systems is

represented by the System of Systems (SoS) concept. SoS are

differentiated from large, complex, but monolithic systems in

several properties, which were first introduced in [4] and they

are stated as follows:

 Operational independence of the constituent systems;

 Managerial independence of the constituent systems;

 Geographic distribution;

 Emergent behaviours;

 Evolutionary and adaptive development.

Works [31, 68] introduced the SoS concept to the

domain of industrial automation, having demonstrated its

value for system-level parameters estimation.

Please cite as follows: C.-H. Yang, V. Vyatkin, C. Pang, “Model-driven Development of Control Software for Distributed

Automation: a Survey and an Approach”, IEEE Transactions on Systems, Man and Cybernetics, Part A, 2013, in print

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS

B. Modelling Tools

MATLAB is a numerical modelling environment developed

by MathWorks [69]. It allows matrix manipulations, plotting

of functions and data, implementation of algorithms, creation

of user interfaces, and interfacing with programs written in

other languages, including C, C++, and Fortran. Although

MATLAB is intended primarily for numerical computing,

there are toolboxes available, allowing accesses to symbolic

computing capabilities. An additional package, Simulink,

adds graphical multi-domain simulation and Model-Driven

Design for dynamic and embedded systems. Stateflow is a

package provided within Simulink, providing customizable

block described in a form of finite state machine (FSM).

MATLAB provides a well-developed environment for

validation and verification of models. For example,

CHECKMATE is a MATLAB-based tool for simulation and

verification of hybrid systems with non-linear continuous

dynamics, under Simulink environment [70].

A language called Hybrid System Modelling Language

(HSML) is created specifically for modelling hybrid systems.

It is able to construct state events and discrete time modules

in MATLAB and SIMULINK [71, 72]. In [72], it is indicated

that HSML is particularly useful for time- and state-event

handling. There are also some other software tools being

developed to handle simulation and verification of different

types of hybrid systems, such as HyTech [73] which uses

symbolic model checking techniques in continuous state

space to verify systems modelled with linear hybrid automata

(LHA) and VERDICT [74] that provides an environment for

modular modelling and simulation for timed and hybrid

systems.

The Ptolemy II modelling environment also aims at

modelling and simulation of hybrid systems [32]. Here, a

hybrid system can be modelled by a finite state machine

(FSM) with continuous time (CT) models. Ptolemy II is very

similar to Simulink as it is also a graphical tool and can build

system models by using a network of block-diagram

representation. Another claim of Ptolemy II is its ability to

model cyber-physical systems.

C. Simulation environments for Distributed Systems

The work [75] presents an industrial case study of a

distributed continuous process simulation of a beet sugar

factory. This simulation work is done by using distributed

component object model (DCOM) components written with

a modelling language called “EcosimPro.” DCOM is the

Microsoft solution for a component software bus. The work

[76] also presents an object-oriented framework for process

simulation.

Another example is distributed simulation (DS) toolbox

for Matlab [77]. The DS Toolbox for Simulink and Stateflow

enables the realization and simulation of distributed Simulink

or Stateflow models. It provides blocks with the same

structuring functionality but with additional features for

parallel and distributed simulation: subsystems are handled as

black-boxes in the master model and are implemented and

simulated in separate Simulink instances (slave models) on

the same or even on distant computers. The user can create

their models in the common way and distribute these on

several computers which are interconnected via a standard

network. During the simulation all connected models on all

computers run truly in parallel (co-simulation).

Mahalik and Kiseon [78] address specification of

requirement, design, and development of a hardware-in-the-

loop simulation (HILS)-based tool for the configuration,

validation, and management of distributed control systems.

The tool supports modularity, flexibility, user-friendliness,

and multiuser capability. The utility of the developed tool is

tested through case studies with two exemplar platforms such

as a printed circuit board drilling machine and

semiautonomous mobile robotic systems. In [79] this work is

extended by support of virtual distributed control systems

capturing specification, methodology, and prototype design

and capable of providing services to the proposed

management layer that integrates simulation platform, a top-

level ware, by using which distributed control network design

can be achieved.

D. Common Problems and Challenges

According to what has been described above, there is still no

single validation tool that is able to handle and provide both

simulation and verification of distributed control systems. It

would be beneficial if a software package contained pre-set

models specifically for process control (i.e. models for pipe-

line, valve, etc.). The tools handling hybrid systems only

work with their own modelling language and are not yet

combined for implementation purpose to the real system.

Therefore, a challenge here is to find a path of integrating

models for hybrid validation with programming codes for

deployment purpose, for distributed systems. This idea is also

suggested in [18].

Most of the tools described above can handle hybrid

systems, but they are not intended to deal with systems with

decentralised intelligence. This brings an opportunity for

Function Blocks, since the IEC 61499 standard and Function

Blocks are established specifically to handle decentralised

design with direct deployment functionality.

VI. IEC 61499 DISTRIBUTED FUNCTION BLOCK

ARCHITECTURE

A. Requirements

As a conclusion from the previous review, one can state that

development frameworks for distributed systems have to

support their efficient design and validation by providing the

following transparencies:

1. Description, coordination and deployment of

distributed processes;

2. Easy conversion of component organisation to

distributed organisation (i.e. from virtually distributed

to physically distributed systems);

3. Support of model-driven software engineering;

4. Support of legacy design approaches;

5. Ability to implement various functionalities of

automation systems;

6. Support of HiL or Software in the Loop (SiL)

simulation.

In the following parts of this section it will be shown how

these requirements are addressed in the IEC 61499

architecture as compared to the traditional PLC architecture.

Please cite as follows: C.-H. Yang, V. Vyatkin, C. Pang, “Model-driven Development of Control Software for Distributed

Automation: a Survey and an Approach”, IEEE Transactions on Systems, Man and Cybernetics, Part A, 2013, in print

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS

B. Addressing requirements and comparison with state of the

art

IEC 61499 is an open standard aimed at supplementing IEC

61131-3 [16] standard by adding modern design features and

hardware abstraction.

It is possible to build distributed systems with IEC

61131-3 PLCs, but with much increased performance and

design penalties and overheads. These include longer

engineering time to work out the ownership of the output

modules and heavily increased communication overhead time

between PLCs for data exchange over field bus, etc.

Other advantages of IEC 61499 over PLCs include:

 Mapping of IEC 61499 FB applications to different

devices is enhanced by tools which insert the required

communication code as required. This provides

platform independence as different controllers may be

selected at the end of development to deploy to. In the

case of typical PLC development, knowing the exact

layout of PLCs and connected I/Os is mandatory at the

beginning of development;

 The existence of global variables in PLCs makes it

difficult to design software in parallel by multiple

developers and re-use the developed components;

 Human-machine interfaces elements can be

encapsulated into software components along with

control logic, making the generation of the entire system

HMI simpler. This opportunity has been demonstrated

in the nxtStudio tool [80].

C. Pilot applications of IEC 61499

The benefits of the Function Block architecture are being

explored by researchers both in discrete manufacturing

systems and in the process industry [81]. For example in [4],

specific distributed process control programming tools for

Function Block description were developed, and the

problems occurring when introducing this new standard into

the process control domain were investigated. As a starting

point, researchers integrated models to a lab-scale model of

batch process such as the FESTO Mini Pulp Process (MPP)

model. From the results, the authors of [4] are seeking a

migration path to this recently developed standard for the

distributed batch process industry. In [82], another attempt to

exploit the IEC 61499 model in the batch process is

described. Here, a hybrid approach of integration IEC 61499

with UML is explored to address the current trends in

software engineering such as component based and model

driven development [83]. This approach aims to transform

and reduce switching cost from the ISA SP88 [84], an

industrially accepted family of standards in batch control, to

IEC 61499.

Also, the work [23] has specifically exploited the

possible migration path to IEC 61499 standard for the

distributed process industry by considering switching cost. It

stated that the adoption of this new standard is only possible

if the perceived switching cost is less than the perceived

benefits. From their previous experiments with professionals,

the switching cost is very high due to the bewildering range

of design decisions. Therefore direct adoption in the context

of IEC 61499 cannot be applied successfully. Their proposed

solution is to use SP88 standard as a specification and set up

formal rules or general guidelines to construct corresponding

IEC 61499 blocks [23, 85]. It is also suggested the component

based approach for the batch process industry presented in

[86] may ease the adoption. Even though switching cost is

highly reduced as a result, this approach introduces retraining

cost. Therefore improving the industrial acceptance of IEC

61499 in process industry still remains to be a challenge.

D. Tools

This section describes some design environments and design

approaches developed for IEC 61499 Function Blocks. Over

the years, several development tools and systems complying

with IEC 61499 were already presented to and even

introduced into the market. These tools include:

 Function Block Development Kit (FBDK) [87];

 Engineering Support System CORFU [88];

 4DIAC IDE [89];

 ISaGRAF workbench [90];

 nxtStudio [80];

 Synchronous Compiler [91];

 Cyclic run-time [92].

FBDK is one of the earliest well-developed tools for

Function Block development. Even though it is considered

mainly as a research tool, it is capable for demonstrating

various benefits of Function Blocks in practice, such as

distributed architecture and direct deployment. The tool is

Java-based and relies on a Java-based run-time called

Function Block Run Time (FBRT) in execution.

CORFU is an Engineering Support System that extends the

IEC 61499 model to cover requirements specifications using

UML. Thus CORFU adopts a hybrid approach for the

development of automation control systems that integrates

UML with the Function Block concept.

4DIAC is another pioneering open-source tool in

Function Block development that compiles function block

applications for execution on a C-based run-time called

FORTE. Both FBRT and FORTE can be used concurrently in

this tool.

ISaGRAF [90] is tool based on a combination of IEC

61131-3 and IEC 61499 standards. Due to this fact, the

specification of the Function Block execution model is based

on cyclic execution, similar to that the IEC 61131-3 PLC

programming environments.

The NxtStudio tool is developed by NxtControl [80]. The

tool uses a customized FORTE run-time. The tool introduces

a novel Composite Automation Type (CAT) that is a Function

Block including visualisation functionality for visualised

simulation purposes, by directly following the MVC concept.

The Synchronous Compiler compiles function block

applications into C code. This compiler is based on the

synchronous execution model [91] and is proven to be very

efficient in terms of the target code performance [93]. It can

be very useful in the context of distributed control where the

model can sometimes be big in size and resource consuming

in simulation. Such models can be transformed to the open

IEC 61499 form to be run efficiently on distributed or

centralized platforms.

E. Gaps

Great expectations for the IEC 61499 technology have been

partially cooled down by its slow adoption in industry and a

number of technical issues discovered through pilot

implementation and related research.

Please cite as follows: C.-H. Yang, V. Vyatkin, C. Pang, “Model-driven Development of Control Software for Distributed

Automation: a Survey and an Approach”, IEEE Transactions on Systems, Man and Cybernetics, Part A, 2013, in print

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS

The slow adoption can be explained by such factors, as

relatively small share of systems with essentially

decentralized logic, as compared to traditionally centralized

control. Changing the design paradigm from centralized to

distributed is a way to handle the design complexity, but

requires overcoming quite steep educational curve. Tools

supporting the new standard have to be mature enough to

compete with PLC tools that have been refined through

decades. This creates a classic “chicken and egg” situation:

there is insufficient investment to polish the tools, which is

possible only in real-life large scale development activities.

The IEC 61499 tools existing on the market do not address

properly the interoperability feature of IEC 61499,

nevertheless basic cross platform communications via

TCP/IP have been implemented.

The portability promise of IEC 61499 largely depends on

implementation of platform dependent interfaces to device

peripherals and networks.

There are certain semantic gaps in the IEC 61499 standard

as a consequence of the way of finding compromise between

several industrial players. For example, the message passing

communication in distributed systems creates a fundamental

determinism challenge. It is modelled in IEC 61499 by using

the event abstraction. However, its implementation at the low

level can be done in different ways.

Detailed discussion of the gaps is clearly outside the scope

of this survey. They are being discussed in the research

publications and solutions get implemented in the newer

generation of tools. Therefore, in the authors’ opinion, the

IEC 61499 architecture represents a sound base for bringing

the model-driven design to the distributed automation

practice.

VII. SYNERGY OF MODEL-DRIVEN CONCEPTS

As it can be concluded from the previous discussion, there are

attempts to address design complexity of automation systems

both in terms of model-driven software design, and in terms

of their model-driven verification and validation. In this

section, an attempt of synergy of these activities is presented

that results in the concept of Intelligent Mechatronic

Component (IMC) architecture. An IMC is composed

according to the MVC pattern described in the following

subsection.

A. MVC design pattern

Model-View-Control (MVC) design pattern [94] is adapted

by Christensen in [40] to the domain of industrial automation

and integrated with the IEC 61499 standard architecture.

According to the MVC pattern as indicated in Fig. 4, software

is organized from two core interconnected components and

several auxiliary ones. The core components are:

 Autonomous (low-level) Controller, which implements a

set of operations, published as services to be used directly

or by higher level controller-coordinator, and

 Object, which provides an interface to the input/output

signals of the IMC, or to one of the behavioural Models

included in its IP repository.

Fig. 4. MVC design pattern architecture [18].

The behavioural Models, provided in a repository, can

be used for verification of the IMC’s behaviour, or as building

blocks for creating the behavioural model of the composite

system. Identical interface makes the Model component

interchangeable with the Object component, thus providing

an easy pathway from simulation to deployment. The

combination of these two functions enables simulation of the

system in closed-loop with the actual, ready for deployment

control code. Moreover, the simulation model is created with

a high degree of components’ re-use.

Additionally, the View component supports interactive

simulation by rendering the system’s status based on the

parameters provided by the Model. It also can be re-used in

different deployment scenarios. Being connected to the real

object instead of the model, the View component will render

the object’s status in real time. Other functional components,

such as Diagnostics and Database Logger are also fed by the

data from the Object or the Model. In contrast, the Human-

Machine Interface (HMI) component is connected in the

closed-loop with the controller.

B. Intelligent mechatronic components architecture

The Intelligent Mechatronics Component (IMC) architecture

was proposed in [18] as an attempt to address both design and

validation challenges of distributed systems. The idea is to

allow the developer thinking in terms of machines or their

autonomous parts thereof by increasing the level of

abstraction. IMCs are structured according to the MVC

pattern. As a result, distributed controller and simulation

model can be automatically generated for a system composed

of independent modules in a drag-and-drop design

environment.

The MVC pattern allows precise closed-loop

simulation and formal verification of complex mechatronic

systems by re-using models of their constituent parts.

Vendors of devices, machines or “components” following the

IMC architecture will provide not just the controller program

code but also the model of the components. The component

models will be capable of communicating and exchanging

data with one another. This allows end users to immediately

establish a model of the system built from the collection of

such components, for validation and verification purpose. An

overview of the design flow can be seen in Fig. 5.

Please cite as follows: C.-H. Yang, V. Vyatkin, C. Pang, “Model-driven Development of Control Software for Distributed

Automation: a Survey and an Approach”, IEEE Transactions on Systems, Man and Cybernetics, Part A, 2013, in print

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS

Fig. 5. Sketch of the IMC-based engineering framework supporting the

integrated validation [18].

As a result of using this framework, the model of the system’s

behaviour can be designed with 100% re-use of the

component models.

C. Use case examples

Distributed controls of baggage handling system (BHS) have

been implemented in the authors’ research group. This

include a simulation for real-time tracking based on time

prediction [61] and also using ISaGRAF tool with an OPC

server (see Fig. 6) [95]. Both the examples shown here are the

representations of small airport BHSs.

The nxtControl company has also demonstrated some

visualised simulation examples with the development of their

IEC 61499 compliant development tool called nxtStudio [80].

They implement the view component by using the CAT

concept where a FB model is linked with a visualised element.

Fig. 7 shows one of the examples from the building

management systems sector.

Fig. 7. Visualisation of a water tank system with distributed control
implemented with nxtControl [80].

Here a set of controls and displays in a room is

represented by function blocks connected to a FB

implementing PID controller. The network of function blocks

is encapsulated to a composite FB “Room”, which can be

assembled to floors and buildings. A remarkable feature of

the CAT concept is ability to combine control logic with HMI

elements and faceplates. This eliminates the need in third

party SCADA design tools. NxtStudio automatically splits

these functionalities and deploys them onto HMI panels vs.

embedded control devices.

D. Verification and validation

Verification and validation (V&V) are software quality

control procedures. Verification is ensuring that the product

has been built according to the requirements and design

specifications. Validation ensures that the product meets the

user's needs, and that the specifications were correct in the

first place. There are numerous works on verification and

Fig. 6. BHS visualisation communicating via OPC server with ISaGRAF distributed control.

Please cite as follows: C.-H. Yang, V. Vyatkin, C. Pang, “Model-driven Development of Control Software for Distributed

Automation: a Survey and an Approach”, IEEE Transactions on Systems, Man and Cybernetics, Part A, 2013, in print

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS

validation of IEC 61499 based systems, which can be

classified in three categories: simulation, formal verification

and specification compliance. The specification compliance

at an abstract level before actual design and implementation

can be done by bridging function blocks with UML or SysML,

e.g. [8, 39, 40, 53, 83, 96].

Simulation and model-checking are both verification

techniques used in industrial automation, e.g. as exemplified

in [97]. The use of simulation in a FB integrated development

environment was demonstrated in [40]. A simulation run

helps to check system’s correctness for one specific

behaviour scenario (i.e. with a fixed set of input parameters).

Formal verification via model-checking [98-100] proves the

system’s correctness for all scenarios. The use of model-

checking in industrial automation was exemplified in [97].

The formal verification of function blocks is done through

their modelling in various formal languages, such as NCES,

Timed automata, State charts, etc., which can be verified

using model-checkers such as SESA, ViVe, and SMV [101-

105].

Both model-checking and simulation can take an

important role in the design flow of distributed systems,

especially the complex ones. Particularly with the tool chain

and the design flow suggested in [18], because of the benefits

of modular design (the software re-usability with

encapsulated models and programming codes for validation

and deployment purpose), simulation and validation can be

implemented in parallel with the system design to check the

system’s correctness. If there is any issue of violating

specifications, a change made immediately to the system

validation model also corresponds to a change in the codes

for deployment. Once the validation is completed, the

software program is ready to be deployed into the real

hardware.

One idea, proposed in [106] is to link Function Block

design environments with popular tools such as MATLAB

where proper validation and verification can already be

performed. This may immediately show benefits by saving

time and cost for re-developing the model for validation and

verification purpose.

The problem for wider adoption of the closed-loop

verification in the broader area of industrial automation is the

lack of model design methods, which can transform this

activity from a form of art to a systematic routine well

integrated into usual activities of control engineers. It has

been demonstrated in a number of publications [40, 60, 61],

that using function blocks as a modelling language is feasible

and beneficial. Another possible use of models is

implementation of model-predictive control in a FB-

compliant embedded controller.

VIII. CONCLUSIONS

This paper surveyed the developments related to model-

driven design and validation of distributed automation

systems. Various engineering concepts and software tools

have been evaluated and discussed, including IEC 61131,

MATLAB Simulink, SCADE, OpenRTM, and IEC 61499.

Engineering approaches such as block-diagram programming

language and MVC concept is considered as valuable to

design and validation process for distributed systems. Table

1 summarizes the capabilities of each model-driven control

design and validation concepts, and an attempt to quantify

differences between some of the surveyed is made. The

technologies are evaluated against their capabilities to

support design models and features using a simple 0-2 scale,

where 0 means ‘not supported’, 1 is ‘partially supported’ and

2 is ‘supported’. The IEC 61499 technology scores the

highest among the surveyed list, attributed to the fact it is a

new generation development that aims at combining “best of

many worlds” features.

One of the conclusions that can be drawn from this study

is that there is inherent intertwining between modelling in the

control sense and model-driven software engineering. It has

been shown that the Function Block architecture of IEC

61499 incorporates several trends from both domains and

allows for most natural implementation of distributed control

systems, where validation capabilities are built in along with

the features addressing classic distributed systems design

challenges. The Intelligent Mechatronic Component (IMC)

architecture, built “on top” of IEC 61499, is able to fill the

gap in validation and verification environment for distributed

automation systems.

IX. REFERENCES

[1] N. N. Chokshi and D. C. D. C. McFarlane, A distributed

coordination approach to reconfigurable process control. Berlin

; London: Berlin ; London : Springer, 2008.

[2] U. H. Felcht, et al., "The Future Shape of the Process Industries,"
in Chemical Engineering: Visions of the World, ed Amsterdam:

Elsevier Science B.V., 2003, pp. 41-66.

[3] C.-h. Yang and V. Vyatkin, "Design and validation of distributed
control with decentralized intelligence in process industries: A

survey," presented at the Industrial Informatics, 2008. INDIN

2008. 6th IEEE International Conference on, Daejeon, 2008.
[4] A. Tsuchiya, et al., "Development of a distributed process control

programming tool for function block description," in Emerging

Technologies and Factory Automation, 1999. Proceedings. ETFA
'99. 1999 7th IEEE International Conference on, 1999, pp. 1321-

1325 vol.2.

[5] N. Shah, "Process industry supply chains: Advances and
challenges," Computers & Chemical Engineering, vol. 29, pp.

1225-1236, 2005.

[6] V. Vyatkin, "Intelligent mechatronic components: control system
engineering using an open distributed architecture," presented at

TABLE 1

COMPARATIVE ANALYSIS OF SEVERAL MODEL-DRIVEN CONTROL DESIGN AND VALIDATION CONCEPTS.

 IEC 61131 Simulink SCADE Open RTM IEC 61499

Distributed languages concepts 0 0 1 1 2

Automation design models 2 0 0 0 2

Software models (UML, State charts) 1 2 2 2 1

Control models (block diagrams) 2 2 2 2 2

Integrated simulation 1 2 1 1 1

Deployment to distributed nodes 0 0 0 0 2

Integrated HMI/Visualisation 0 0 0 2 2

Total score 6 6 6 8 12

Please cite as follows: C.-H. Yang, V. Vyatkin, C. Pang, “Model-driven Development of Control Software for Distributed

Automation: a Survey and an Approach”, IEEE Transactions on Systems, Man and Cybernetics, Part A, 2013, in print

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS

the Emerging Technologies and Factory Automation, 2003.

Proceedings. ETFA '03. IEEE Conference, 2003.
[7] V. Vyatkin, et al., "OOONEIDA: An Open, Object-Oriented

Knowledge Economy for Intelligent Distibuted Automation,"

IEEE Transactions on Industrial Informatics, vol. 1, pp. 4-17,
Feb. 2005 2005.

[8] S. D. Panjaitan, Development Process for Distributed Automation

Systems based on Elementary Mechatronic Functions: Shaker
Verlag GmbH, Germany, 2008.

[9] I. Terzic, et al., "A survey of distributed intelligence in

automation in european industry, research and market," 2008, pp.
221-228.

[10] A. S. Tanenbaum and M. van Steen, Distributed Systems:

Addison Wesley, 2004.
[11] S. Haridi, et al., "Programming languages for distributed

applications," New generation computing, vol. 16, pp. 223-261,

1998.
[12] R. Tirtea, et al., "QoS monitoring at middleware level for

dependable distributed automation systems," in Suppl. Proc. 13th

Int. Symp. on Software Reliability Engineering (ISSRE-2002),

Annapolis, Marryland, 2002, pp. 217-218.

[13] K. Trkaj, "Users introduce component based automation

solutions," Computing & Control Engineering Journal, vol. 15,
pp. 32-37, 2004.

[14] M. Fowler and K. Scott, UML distilled: a brief guide to the

standard object modeling language: Addison-Wesley Longman
Publishing Co., Inc., 2000.

[15] T. Weilkiens, Systems engineering with SysML/UML: modeling,
analysis, design: Morgan Kaufmann, 2007.

[16] "IEC 61131-3, Programmable controllers - Part 3: Programming

languages, International Standard, Second Edition," ed, 2003.
[17] M. Pechoucek, et al., "Expectations and deployment of agent

technology in manufacturing and defence: case studies," AAMAS

Industrial Applications, 2005.
[18] V. Vyatkin, et al., "Closed-Loop Modeling in Future Automation

System Engineering and Validation," IEEE Transactions on

Systems, Man, and Cybernetics, Part C: Applications and
Reviews, vol. 39, pp. 17-28, 2009.

[19] H.-M. Hanisch, "Closed-Loop Modeling and Related Problem of

Embedded COntrol Systems in Engineering," presented at the
Proc Intl Conf Abstract State Machines: advances in theory and

practice (ASM' 04), Lutherstadt Wittenberg, 2004.

[20] V. Vyatkin and H.-M. Hanisch, "Verification of Distributed
Control Systems in Intelligent Manufacturing," Journal of

Intelligent Manufacturing, vol. 14, pp. 123-136, 2003.

[21] J. M. Machado, et al., "Increasing the efficiency of PLC program
verification using a plant model," presented at the Proc Intl Conf

on Industrial Engineering and Production Management (IEPM's

2003), Porto, Portugal, 2003.
[22] H.-M. Hanisch and A. Lüder, "Modular modeling of closed-loop

systems," presented at the Proc of Colloquium on Petri Net

Technologies for Modeling Communication Based Systems,
Berlin, Germany, 2000.

[23] J. Peltola, et al., "A Migration Path to IEC 61499 for the Batch

Process Industry," presented at the 5th IEEE International
Conference on Industrial Informatics, 2007 Vienna, Austria,

2007.

[24] M. Pechoucek and V. Marik, "Industrial Deployment of Multi-
Agent Technologies: Review and Selected Case Studies.,"

International Journal on Autonomous Agents and Multi-Agent

Systems, 2008.
[25] G. Cândido and J. Barata, "A Multiagent Control System for Shop

Floor Assembly," presented at the Proceedings of the 3rd

international conference on Industrial Applications of Holonic
and Multi-Agent Systems: Holonic and Multi-Agent Systems for

Manufacturing, Regensburg, Germany, 2007.

[26] K. H. Hall, et al., "Challenges to Industry Adoption of the IEC
61499 Standard on Event-based Function Blocks," presented at

the 5th IEEE International Conference on Industrial Informatics,

2007.
[27] D. A. Bader and R. Pennington, "Cluster Computing:

Applications," The International Journal of High Performance

Computing, vol. vol. 15, pp. pp. 181-185, MAY 2001.
[28] E. Tatara, et al., "Control of complex distributed systems with

distributed intelligent agents," Journal of Process Control, vol.

17, pp. 415-427, 2007.
[29] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern

Approach, 2 ed.: Upper Saddle River, NJ: Prentice Hall, 2003.

[30] A. Aldea, et al., "The scope of application of multi-agent systems

in the process industry: three case studies," Expert Systems with
Applications, vol. 26, pp. 39-47, 2004.

[31] V. Villasenor Herrera, et al., "A framework for modeling agent-

based control of service-enabled manufacturing systems," in 10th
IFAC Workshop on Intelligent Manufacturing Systems IMS '10,

Lisbon, Portugal 2010, pp. 49-54.

[32] V. Mařík, et al., "Rockwell automation agents for
manufacturing," presented at the Proceedings of the fourth

international joint conference on Autonomous agents and

multiagent systems, The Netherlands, 2005.
[33] F. P. Maturana, et al., "Distributed multi-agent architecture for

automation systems," Expert Systems with Applications, vol. 26,

pp. 49-56, 2004.
[34] L. Mönch, et al., "FABMAS: An Agent-Based System for

Production Control of Semiconductor Manufacturing Processes,"

in Holonic and Multi-Agent Systems for Manufacturing. vol.
2744, V. Marík, et al., Eds., ed: Springer Berlin / Heidelberg,

2004, pp. 1085-1085.

[35] R. W. Brennan and W. O, "A simulation test-bed to evaluate

multi-agent control of manufacturing systems," presented at the

Proceedings of the 32nd conference on Winter simulation,

Orlando, Florida, 2000.
[36] P. Vrba and V. Marik, "Simulation in agent-based manufacturing

control systems," in Systems, Man and Cybernetics, 2005 IEEE

International Conference on, 2005, pp. 1718-1723 Vol. 2.
[37] M. Bonfe and C. Fantuzzi, "Design and verification of

mechatronic object-oriented models for industrial control
systems," in Emerging Technologies and Factory Automation,

2003. Proceedings. ETFA '03. IEEE Conference, 2003, pp. 253-

260 vol.2.
[38] K. C. Thramboulidis, "Using UML in control and automation: a

model driven approach," in Industrial Informatics, 2nd IEEE

International Conference on, 2004, pp. 587-593.
[39] V. Dubinin, et al., "Engineering of validatable automation

systems based on an extension of UML combined with function

blocks of IEC 61499," IEEE International Conference on
Robotics and Automation (ICRA'06), pp. 3996-4001, 2005.

[40] J. H. Christensen, "Design patterns for systems engineering with

IEC 61499," presented at the Verteilte Automatisierung - Modelle
und Methoden für Entwurf, Verifikation, Engineering und

Instrumentierung, Magdeburg, Germany, 2000.

[41] M. Rausch and H. M. Hanisch, "Net condition/event systems with
multiple condition outputs," in Emerging Technologies and

Factory Automation, 1995. ETFA '95, Proceedings., 1995

INRIA/IEEE Symposium on, 1995, pp. 592-600 vol.1.
[42] C. Sünder, et al., "Functional structure-based modeling of

automation systems," International Journal of Manufacturing

Research, vol. 1, pp. 405-420, 2006.
[43] T. Strasser, et al., "A research roadmap for model-driven design

of embedded systems for automation components," in Industrial

Informatics, 2009. INDIN 2009. 7th IEEE International
Conference on, 2009, pp. 564-569.

[44] T. Strasser, et al., "Multi-domain model-driven design of

Industrial Automation and Control Systems," in Emerging
Technologies and Factory Automation, 2008. ETFA 2008. IEEE

International Conference on, 2008, pp. 1067-1071.

[45] T. Strasser, et al., "Model-driven embedded systems design
environment for the industrial automation sector," in Industrial

Informatics, 2008. INDIN 2008. 6th IEEE International

Conference on, 2008, pp. 1120-1125.
[46] K. Thramboulidis, "IEC 61499 in Factory Automation," in IEEE

International Conference on Industrial Electronics, Technology

and Automation (CISSE-IETA'05), Bridgeport, USA, 2005.
[47] C. Tranoris and K. Thramboulidis, "From Requirements to

Function Block Diagrams: A new Approach for the design of

industrial applications," in 10th IEEE Mediterranean Conference
on Control and Automation, MED'02, Lisbon, Portugal, 2002.

[48] C. Tranoris and K. Thramboulidis, "Integrating UML and the

function block concept for the development of distributed control
applications," in Emerging Technologies and Factory

Automation, 2003. Proceedings. ETFA '03. IEEE Conference,

2003, pp. 87-94 vol.2.
[49] D. Hästbacka, et al., "Model-driven development of industrial

process control applications," Journal of Systems and Software,

vol. 84, pp. 1100-1113, 2011.
[50] T. Vepsalainen, et al., "Assessing the industrial applicability and

adoption potential of the AUKOTON model driven control

Please cite as follows: C.-H. Yang, V. Vyatkin, C. Pang, “Model-driven Development of Control Software for Distributed

Automation: a Survey and an Approach”, IEEE Transactions on Systems, Man and Cybernetics, Part A, 2013, in print

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS

application engineering approach," in Industrial Informatics

(INDIN), 2010 8th IEEE International Conference on, 2010, pp.
883-889.

[51] J. Peltola, et al., "Challenges in industrial adoption of model-

driven technologies in process control application design," in
Industrial Informatics (INDIN), 2011 9th IEEE International

Conference on, 2011, pp. 565-572.

[52] M. Hirsch and H.-M. Hanisch, "Systemspezifikation mit SysML
für eine Fertigungstechnische Laboranlage," in Fachtagung zum

Entwurf komplexer Automatisierungssysteme (EKA 08),

Magdeburg, Germany 2008, pp. 23-34.
[53] M. Hirsch, Systematic Design of Distributed Industrial

Manufacturing Conrol Systems. Berlin: Logos Verlag 2010.

[54] OpenRTM-aist. (2010, OpenRTM-aist official website.
Available: http://www.openrtm.org/

[55] N. Ando, et al., "A Software Platform for Component Based RT-

System Development: OpenRTM-Aist," in Simulation,
Modeling, and Programming for Autonomous Robots. vol. 5325,

S. Carpin, et al., Eds., ed: Springer Berlin / Heidelberg, 2008, pp.

87-98.

[56] "International Standard Draft IEC61804-2: Function blocks (FB)

for process control," in Part 2: Specification of FB concept and

Electronic Device Description Language (EDDL), ed:
International Electrotechnical Commission, 2004.

[57] C. Diedrich, et al., "Function Block Applications in Control

Systems Based on IEC 61804," 2001.
[58] NI. (2010, NI LabVIEW - The Software That Powers Virtual

Instrumentation - National Instruments. Available:
http://www.ni.com/labview/

[59] V. Vyatkin and H.-M. Hanisch, "Application of Visual

Specifications for Verification of Distributed Controllers," in
2001 IEEE International Conference on Systems, Man, and

Cybernetics, Tucson, AZ, USA, 2001, pp. 646-651

[60] V. Vyatkin, IEC 61499 function blocks for embedded and
distributed control systems design. Research Triangle Park, NC:

ISA-Instrumentation, Systems, and Automation Society, 2007.

[61] G. Black and V. Vyatkin, "Intelligent Component-Based

Automation of Baggage Handling Systems With IEC 61499,"

IEEE Transactions on Automation Science and Engineering, vol.

7, pp. 337-351, Apr 2010.
[62] W. Lepuschitz, et al., "Toward Self-Reconfiguration of

Manufacturing Systems Using Automation Agents," Systems,

Man, and Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on, vol. 41, pp. 52-69, 2011.

[63] I. Hegny, et al., "Integrating Software Agents and IEC 61499

Realtime Control for Reconfigurable Distributed Manufacturing
Systems," 2008 International Symposium on Industrial

Embedded Systems, pp. 249-252, 2008.

[64] X. M. Huang, "Intelligent and Reconfigurable Control of
Automatic Production Line by Applying IEC61499 Function

Blocks and Software Agent," in IEEE International Conference

on Mechatronics and Automation, 2009, pp. 1481-1486.
[65] G. Zhabelova and V. Vyatkin, "Multi-agent Smart Grid

Automation Architecture based on IEC 61850/61499 Intelligent

Logical Nodes," IEEE Transactions on Industrial Electronics,
vol. 59, pp. 2351 - 2362 2011.

[66] J. Lunze, "What Is a Hybrid System?," in Lecture Notes in

Control and Information Science 279: Modelling, Analysis, and
Design of Hybrid Systems, ed Berlin Heidelberg: Springer-

Verlag, 2002.

[67] E. Lee, "Cyber Physical Systems: Design Challenges," University
of CaliforniaJanuary 23 2008.

[68] B. Zhou, et al., "Application of the generic modelling method for

system of systems to manufacturing domain," presented at the
IECON 2011 - 37th Annual Conference on IEEE Industrial

Electronics Society, 2011.

[69] MathWorks. (2010, The MathWorks - MATLAB and Simulink for
Technical Computing. Available: http://www.mathworks.com

[70] B. I. Silva and B. H. Krogh, "Formal verification of hybrid

systems using CheckMate: a case study," in American Control
Conference, 2000. Proceedings of the 2000, 2000, pp. 1679-1683

vol.3.

[71] J. H. Taylor, "A modeling language for hybrid systems," in
Computer-Aided Control System Design, 1994. Proceedings.,

IEEE/IFAC Joint Symposium on, 1994, pp. 339-344.

[72] J. H. Taylor and D. Kebede, "Modeling and simulation of hybrid
systems," presented at the Decision and Control, 1995.,

Proceedings of the 34th IEEE Conference on, 1995.

[73] T. A. Henzinger, et al., "HYTECH: the next generation," in Real-

Time Systems Symposium, 1995. Proceedings., 16th IEEE, 1995,
pp. 56-65.

[74] S. Kowalewski, et al., "An environment for model-checking of

logic control systems with hybrid dynamics," in Computer Aided
Control System Design, 1999. Proceedings of the 1999 IEEE

International Symposium on, 1999, pp. 97-102.

[75] R. A. Santos, et al., "Distributed continuous process simulation:
An industrial case study," Computers & Chemical Engineering,

vol. In Press, Corrected Proof.

[76] J. Chen and R. A. Adomaitis, "An object-oriented framework for
modular chemical process simulation with semiconductor

processing applications," Computers & Chemical Engineering,

vol. 30, pp. 1354-1380, 2006.
[77] (2012, Distributed Simulation Toolbox. Available:

http://www.mathworks.com/products/connections/product_detai

l/product_35768.html
[78] N. P. Mahalik and K. Kim, "A prototype for hardware-in-the-loop

simulation of a distributed control architecture," Systems, Man,

and Cybernetics, Part C: Applications and Reviews, IEEE

Transactions on, vol. 38, pp. 189-200, 2008.

[79] S. Mishra and N. Mahalik, "Virtual DCS and specification,"

International Journal of Information and Communication
Technology, vol. 3, pp. 339-353, 2011.

[80] nxtControl.com. (2010. Available: http://www.nxtcontrol.com/

[81] V. Vyatkin, "IEC 61499 as Enabler of Distributed and Intelligent
Automation: State of the Art Review," IEEE Transactions on

Industrial Informatics, vol. 7, pp. 768-781, 2011.
[82] K. Thramboulidis, et al., "An IEC61499 Based Approach for

Distributed Batch Process Control," presented at the INDIN,

2007.
[83] K. C. Thramboulidis, "Using UML in control and automation: a

model driven approach," in Industrial Informatics, 2004. INDIN

'04. 2004 2nd IEEE International Conference on, 2004, pp. 587-
593.

[84] "ISA-S88.01-1995, Standard: Batch Control. Part 1: Models and

Terminology," ed: The International Society for Measurement

and Control, 1995.

[85] J. P. Peltola, et al., "Process Control with IEC 61499: Designers'

Choices at Different Levels of the Application Hierarchy," in
Industrial Informatics, 2006 IEEE International Conference on,

2006, pp. 183-188.

[86] S. Kuikka, "A batch process management framework: Domain-
specific, design pattern and software component based

approach," Doctor of Technology Dissertation, Technical

Research Centre of Finland, Helsinki University of Technology,
Espoo, Finland, 1999.

[87] Holobloc. Function Block Development Kit. Available:

http://www.holobloc.com
[88] K. Thramboulidis, "Development of Distributed Industrial

Control Applications: The CORFU Framework," in 4th IEEE

International Workshop on Factory Communication Systems,
Sweden, 2002.

[89] 4DIAC. (2010, Framework for Distributed Industrial Automation

(4DIAC) Available: http://www.fordiac.org
[90] ISaGRAF. ICS Triplex ISaGRAF Inc. - leading IEC 61131 and

IEC 61499 software. Available: http://www.isagraf.com

[91] L. H. Yoong, et al., "A synchronous approach for IEC 61499
function block implementation," IEEE Transactions on

Computers, vol. 58, pp. pp. 1599–1614, December 2009 2009.

[92] P. Tata and V. Vyatkin, "Proposing a novel IEC61499 runtime
framework implementing the Cyclic Execution semantics,"

presented at the 7th IEEE International Conference on Industrial

Informatics (INDIN 2009), Cardiff UK, 2009.
[93] L. H. Yoong, et al., "Efficient implementation of IEC

61499function blocks," presented at the IEEE International

Conference on Industrial Technology (ICIT), Gippsland, 2009.
[94] (1979, Model-View-Controller design pattern. Available:

http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html

[95] J. Yan and V. Vyatkin, "Distributed Execution and Cyber-
Physical Design of Baggage Handling Automation with IEC

61499," presented at the 9th International IEEE Conference on

Industrial Informatics, (INDIN’11), Lisbon, Portugal, 2011.
[96] V. Dubinin and V. Vyatkin, "On Definition of a Formal Semantic

Model for IEC 61499 Function Blocks," EURASIP Journal of

Embedded Systems, vol. 2008, p. 10, 2008.
[97] H. Hanisch, et al., "Formal validation of intelligent-automated

production systems: Towards industrial applications,"

http://www.openrtm.org/
http://www.ni.com/labview/
http://www.mathworks.com/
http://www.mathworks.com/products/connections/product_detail/product_35768.html
http://www.mathworks.com/products/connections/product_detail/product_35768.html
http://www.nxtcontrol.com/
http://www.holobloc.com/
http://www.fordiac.org/
http://www.isagraf.com/
http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html

Please cite as follows: C.-H. Yang, V. Vyatkin, C. Pang, “Model-driven Development of Control Software for Distributed

Automation: a Survey and an Approach”, IEEE Transactions on Systems, Man and Cybernetics, Part A, 2013, in print

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS

International Journal of Manufacturing Technology and

Management, vol. 8, pp. 75-106, 2006.
[98] G. Frey and L. Litz, "Formal methods in PLC programming,"

presented at the Systems, Man, and Cybernetics, 2000 IEEE

International Conference, 2000.
[99] E. M. Clarke, et al., Model Checking: Cambridge: The MIT Press,

1999.

[100] W. Farn, "Formal verification of timed systems: a survey and
perspective," Proceedings of the IEEE, vol. 92, pp. 1283-1305,

2004.

[101] P. Cheng and V. Vyatkin, "Automatic model generation of IEC
61499 function block using net condition/event systems,"

presented at the 6th IEEE International Conference on Industrial

Informatics, 2008.
[102] N. Hagge and B. Wagner, "Java code patterns for Petri net based

behavioral models," presented at the 3rd IEEE International

Conference on Industrial Informatics, 2005.
[103] V. Vyatkin, et al., "Object-oriented modular place/transition

formalism for systematic modeling and validation of industrial

automation systems," presented at the Industrial Informatics,

2003. INDIN 2003. Proceedings. IEEE International Conference

on, 2003.

[104] G. Cengic and K. Akesson, "On Formal Analysis of IEC 61499
Applications, Part A: Modeling," Industrial Informatics, IEEE

Transactions on, vol. 6, pp. 136-144, 2010.

[105] C. Gerber and H. M. Hanisch, "Does portability of IEC 61499
mean that once programmed control software runs everywhere?,"

presented at the 10th IFAC Workshop on Intelligent
Manufacturing Systems, Lisbon, Portugal, 2010.

[106] C. Yang and V. Vyatkin, "Model transformation between

MATLAB Simulink and Function Blocks," in IEEE International
Conference on Industrial Informatics (INDIN'10), Osaka, Japan,

pp. 1130-1135.

Chia-han Yang received the B.E. (1st

class honours) and Ph.D. in Electrical

and Electronics Engineering from

University of Auckland, Auckland,

New Zealand in 2006 and 2011

respecitvely. His Ph.D. research

focused on investigating

methodologies of improving

distributed control system design (based on IEC61499

standard) through closed-loop validation process. His

research interests are in the area of distributed control,

industrial automation, modelling & simulation, and robotics.

 In 2011, he was a research engineer with the department of

Electricial and Computer Engineering, University of

Auckland, continuing the research work in the simulation of

distributed control systems. He is currently a research

engineer doing robotics related research and development at

Centre for Autonomous System (CAS), University of

Technology Sydney, Australia.

Valeriy Vyatkin is Chaired Professor

of Dependable Computation and

Communication Systems at Luleå

University of Technology, Sweden,

and visiting scholar at Cambridge

University, U.K., on leave from The

University of Auckland, New Zealand,

where he has been Associate Professor

and Director of the InfoMechatronics

and Industrial Automation lab (MITRA) at the Department of

Electrical and Computer Engineering. He graduated with the

Engineer degree in applied mathematics in 1988 from

Taganrog State University of Radio Engineering (TSURE),

Taganrog, Russia. Later he received the Ph.D. (1992) and Dr.

Sci. degree (1998) from the same university, and the Dr. Eng.

Degree from Nagoya Institute of Technology, Nagoya, Japan,

in 1999. His previous faculty positions were with Martin

Luther University of Halle-Wittenberg in Germany (Senior

researcher and lecturer, 1999–2004), and with TSURE

(Associate Professor, Professor, 1991–2002).

Research interests of professor Vyatkin are in the area of

dependable distributed automation and industrial informatics,

including software engineering for industrial automation

systems, distributed architectures and multi-agent systems

applied in various industry sectors: Smart Grid, material

handling, building management systems, reconfigurable

manufacturing, etc. Dr Vyatkin is also active in research on

dependability provisions for industrial automation systems,

such as methods of formal verification and validation, and

theoretical algorithms for improving their performance. In

2012, Prof Vyatkin has been awarded Andrew P. Sage Award

for best IEEE Transactions paper.

Cheng Pang (S’08-M’13) received

the BE (Hons) and ME (Hons) degrees

in Computer Systems Engineering and

the PhD degree in Electrical and

Electronic Engineering from the

University of Auckland, New Zealand

in 2005, 2007, and 2013 respectively.

He is a postdoctoral research fellow in

the Laboratory of Advanced

Computing and Communications for Industrial Applications

at Luleå University of Technology, Sweden. His main

research interests include model-driven engineering for

industrial automation systems, building automation and

control systems, and distributed control for the Internet of

Things.

