
Please cite as follows: W. Dai, V. Dubinin, V. Vyatkin, “Automatically Generated Layered Ontological Model for Semantic

Analysis of Component-Based Control Systems”, IEEE Transactions on Industrial Informatics, 2012, doi:

10.1109/TII.2012.2235450

Automatically Generated Layered Ontological

Models for Semantic Analysis of Component-

Based Control Systems
Wenbin (William) Dai, IEEE Member, wdai005@aucklanduni.ac.nz, Victor Dubinin,

victor_n_dubinin@yahoo.com, Valeriy Vyatkin, Senior IEEE Member, vyatkin@ieee.org

Abstract — The IEC 61499 standard is designed for distributed

control and proposes new visual form of programming using

block diagrams with embedded state machines and unlimited

hierarchical nesting and distribution across networking devices.

Such visual programs require new methods of automatic

syntactic and semantic analysis. This paper proposes a new

approach to semantic analysis using multiple-layered ontological

knowledge representation and rule-based inference engine. Its

working is demonstrated on example.

Index Terms — Component-based software architecture, IEC

61499 Function Blocks, Embedded Control Systems, Ontology,

Knowledge Base, OWL, SWRL, SQWRL, Description Logic

(DL), Semantic Analysis, Ontology Reasoning.

I. INTRODUCTION

he component-based function block architecture of IEC

61499 standard [1], [2] targets the system-level design

of complex distributed automation systems. It proposes

a new visual form of programming using block

diagrams with embedded state machines and unlimited

hierarchical nesting, being distributed across networking

devices. The basic design artefact of this architecture is an

event-triggered function block. The event interface and

distribution are the key differences of this architecture from the

function blocks used in automation systems (as standardized in

the IEC 61131-3 standard [3] for programmable logic

controllers (PLC)). The component-based architecture of IEC

61499 provides a self-explanatory language with a better

overview of the entire system for automation software design.

————————————————

 F.A. Author is with the National Institute of Standards and Technology,
Boulder, CO 80305. E-mail: author@ boulder.nist.gov.

 S.B. Author Jr. is with the Department of Physics, Colorado State
University, Fort Collins, CO 80523. E-mail: author@colostate.edu.

 T.C. Author is with the Electrical Engineering Department, University of
Colorado, Boulder, CO 80309. On leave from the National Research
Institute for Metals, Tsukuba, Japan E-mail: author@nrim.go.jp.

Manuscript received (insert date of submission if desired). Please note that all
acknowledgments should be placed at the end of the paper, before the bibliography.

T

Fig. 1. An example of a block-diagram programming using the IEC 61499 function blocks.

Fig. 1 illustrates an example of a simple airport inbound

baggage handling system, fully programmed with function

blocks. The example system consists of six conveyors

including one baggage claim carousel and three emergency

stop control stations. Each physical device is controlled by a

software component - function block. The top part of the

function block network in

Fig. 1 represents the conveyor chain and the bottom part is used

for emergency stop zone control. However, along with

numerous benefits [4], this visual design approach creates new

challenges for syntactic and semantic analysis of such

programs.

In traditional PLC programming languages, the syntactic (and

partially semantic) check is done by software tools as a part of

compilation or editing process. The IEC 61499 function block

standard uses XML representation format for all design

artefacts. The use of XML technologies simplifies the

implementation of syntax checkers which can be delegated to

the standard XML parsers. Such tools are easily extendable

that is achieved by changing the corresponding XML schema

in case of syntax extensions. However, the XML technology is

of little help when it comes to spotting semantic problems, so

an application with semantic issues could pass the syntactic

check.

As one can appreciate even from the simple example presented

in Fig. 1, the function block designs can be quite complex thus

hard to debug and validate. The semantic analysis support can

increase performance of developers and dependability of

automation systems, and eventually help with adoption of the

component-based software architecture technology in the

automation industry. A small example of semantic check in the

function block context is implemented in the experimental

FBDK tool [5] whose editor prohibits creating loops in state

machines which do not include a transition triggered by an

event input. Although correct syntactically, such loops can

cause deadlocks in the program execution. However, the

implementation of this semantic rule is hard coded in the tool

and cannot be extended or modified if the syntax or semantics

of the state machines changes, as it was the case recently with

the second edition of the standard introduced. Unfortunately,

no semantic check functionality is implemented in any

commercial component-based PLC software tools such as

ISaGRAF Workbench [6] or NxtStudio [7].

In this paper, a novel methodology of extendable semantic

check for component-based software architecture - function

blocks is developed. Its configurability is akin to the XML-

supported syntax check, but implementation is based on the

semantic Web technologies such as ontologies, used to

represent the semantic model of programs and extensible set of

semantic rules. The proposed semantic analysis methodology

can be conveniently integrated into the existing component-

based PLC development environments.

The paper is structured as follows: Section II provides an

introduction into the related Semantic Web technologies. The

related research works are reviewed in section III. The

contribution of this work is summarized in the beginning of

section IV. In sections V, a layered ontology design for

software components is proposed with detailed generation of

an ontology model from XML schema and document type

definition (DTD) as well as automatic import of function block

systems into the searchable knowledge base. Semantic

corrections and extensions to the ontology based knowledge

base are listed in Section VI along with the rules for semantic

analysis. In Section VII, a case study of applying semantic

analysis to a baggage handling system example is presented.

The tool developed for component-based software architecture

semantic analysis is described in section VIII. The paper is

concluded with a summary and future works plan.

II. SYNTACTIC AND SEMANTIC ANALYSIS FOR

FUNCTION BLOCKS USING ONTOLOGY MODEL

The first part of the analysis chain is the syntax check. As the

function block code is represented in XML, the corresponding

document type definition (DTD) is provided as well. The DTD

defines all possible elements and sub-elements which are

allowed to be used in the function block XML documents.

Another form of XML syntax description is XML Schema

(XSD). Unlike DTD, XSD uses XML to describe syntax of

custom XML documents. In addition to DTD, XSD supports

all data types including the user defined ones, whereas DTD

only supports generic character types CDATA and PCDATA

[8]. In this work, both XSD and DTD can be used as syntax

description sources. The DTD version is used as an example.

However, the behavioural (semantic) properties of component-

based software architecture artefacts cannot be verified by

syntactic checking. Some implementations of general purpose

programming languages use semantic rules hard-coded in

compilers, but this approach is not flexible. Any change of the

input language, or introduction of new semantic rules, will

require change of the compiler.

In this work we propose a more flexible approach where

semantic checker is using an external (and thus extendable) set

of semantic rules. The rules refer to the knowledge model

representing the related concepts of the function blocks

architecture. More complex rules can be built on top of existing

ones.

The ontology mechanism [9] is used as a proper representation

of such a knowledge base. The “Ontology” concept, originated

in philosophical studies of the nature of being, existence or

reality, is now widely applied in the Semantic Web

programming and service-oriented architectures (SOA).

Recently this concept was introduced into the automation and

control area [11-12] where it has been majorly applied to

describe processes in manufacturing and processing plants.

In this work we propose a novel way of using ontologies to

describe properties of automation software systems designed

according to the component-based software architecture.

Compared to the hard-coded semantic analysis, the approach

based on the generic ontology model for the component-based

software architecture can handle automatically any change of

the input language without modifying the analyser’s core code.

The semantic rules using the ontology are both human and

machine readable and self-explanatory.

Advantages of using ontology in the semantic analysis for

function block systems are as follows:

Firstly, ontology is a formal mechanism for describing

semantic properties which have been originally represented in

words. The formal reasoning languages and tools can be

applied to check those properties. This increases the reliability

of the analysis results. Also it provides a high level view of all

properties and relationships inside function block systems.

Secondly, the ontologies are extendable that allows describing

partial knowledge which can be extended in the future. By

using languages based on the description logic (DL) [13] (for

example, OWL DL) and Semantic Web Rule Language

(SWRL) [14], the additional ontology definition can be merged

into an existing ontology model seamlessly. SWRL extends the

set of OWL axioms to include Horn-like rules. It thus enables

Horn-like rules to be combined with an OWL knowledge base.

Finally, expressions defined in DL and SWRL for ontology

based semantic analysis can be changed easily without

changing the semantic analysis engine. This engine can be

utilized for other XML based languages including IEC 61499

XML.

The need for semantic check flexibility is motivated by several

reasons, the main of which are as follows:

- New versions of the standard-compliant software may

redefine the semantic correctness, and the corresponding

checkers would need to be upgraded;

- The rules may define correctness in the context of

particular design patterns. New design patterns are

constantly being introduced which requires to add new

semantic correctness definitions;

- Last but not least, the standard itself is a living organism

which undergoes maintenance, leading to certain syntax

and semantics changes.

III. RELATED WORKS

This paper extends the work by Dubinin et al. [10] that

presented a technique for semantic analysis of IEC 61499

based on ontological model that can be regarded as a direct

predecessor of this paper. While the concept has been soundly

demonstrated in [10], it was based on a manually created

ontological model. It is hard to create software tools

implementing it on systematic basis since instance data have to

be entered manually into the ontological knowledge base.

The new approach of the present paper uses automatically

generated ontological models with data instances which paves

the way to implementation of software tools. Also this paper

presents new execution semantic rules of execution control

chart (ECC) in basic function blocks and other complicated

rules, not covered in [10].

Along with [10], a similar idea of applying ontological

mechanisms for semantic analysis appeared in the work by

Arakawa [15], but in a completely different domain: it

proposed a method for analyzing natural language texts using

ontologies.

Further in this Section a number of related works is discussed,

especially those related to the main enabling technologies of

this research.

Ontologies are widely used in the software engineering domain

[11], [12], [16], [19] and [20]. However there is no previous

work about the using of ontologies for the semantic analysis of

programming and domain specific languages.

The feasibility of applying semantic web and service-oriented

architecture into automation industry has been discussed by

Jammes and Smit in [17]. The work is motivated by the

challenges of interoperability, scalability, plug-and-play

connectivity and seamless integration. The service-oriented

architecture using the Web services standards is applied to

automation systems. That paper proves that the use of SOA and

Web services standards can enhance the intelligence of

automation systems.

Goh and Dint in [18] describe an approach to code generation

for IEC 61499 based on the iterative knowledge base. The

iterative knowledge base is represented in the form of XML

and Extended Backus-Naur Form (EBNF). The goal of that

approach is to eliminate any additional script language to be

used in the code generation. Also the translation rules are

extendable and reusable to improve the accuracy of translation

rules. In order to achieve this goal, rule-based blocks are built

for each IEC 61499 XML element. During the code generation

process when the pre-defined rules are satisfied, the related

block of code will be generated and data types and connections

will be also inserted. However, this XML and EBNF based

approach is not convenient for configuring the IEC 61499

systems manually. Besides, the code template must be pre-

defined in the knowledge base manually and cannot be easily

modified when the code template is changed.

Orozco and Lastra [28] illustrate the idea of how semantics can

be added to the Function Blocks reference models of the

standard IEC 61499 by using ontologies. But the intention of

this paper was to use semantic descriptions of FBs for

automatic searching and discovery of FBs in applications

based on the web services. Also the FB ontology model

presented in this paper is not detailed enough for semantic

analysis.

In [10], an ontology for semantic analysis of IEC 61499

compliant systems is proposed. The function block type

ontology model includes basic, composite and service

interface function blocks and system configurations. The

ontology model for any function block type includes a model

of its interface. Along with that, the ontology model of a basic

function block includes the Execution Control Chart (ECC)

ontology model. In the ECC ontology model, EC state, EC

algorithm, EC Transition and EC Transition conditions are

defined. The composite function block ontology model

includes references to the component function block instances

along with models of event and data connections. Finally, the

system configuration ontology model contains devices,

resources, applications, connections, mappings and network

segments and their object and data properties. That paper

provides simple examples of semantic analysis for IEC 61499

files using description logic and SWRL. A semantic analysis

tool using a Protégé plug-in is developed for automatic

semantic checking.

IV. LAYERED IEC 61499 ONTOLOGY DESIGN

The IEC 61499 ontology in [10] was developed manually

leaving the questions of how adequate is it to the text of the

standard and, especially, to particular implementations, which

may slightly deviate from the standard or may extend its

insufficiently defined parts. This work attempts to overcome

this shortage by proposing a layered approach to structuring

the ontology. The base level of the ontology is automatically

generated from the XML schema that captures most of

syntactic properties and is used directly by function block tools

for syntactic analysis. This approach promises to have less

discrepancies between the code syntax supported by a tool and

its semantic analyser. Moreover, the layered approach

promises better extensibility of the ontology, or possibility to

customize it for a particular dialect or design pattern.

According to the IEC 61499 standard, XML is used to define

three classes of artefacts: (1) Library Elements which include

elements from system configuration, devices, resources,

applications and sub-applications, function block types,

adapter types, network segments and mapping applications to

resources; (2) Function Block Management Commands which

define the protocol used for communication between the IEC

61499-compliant devices, and (3) Data Types allowed in IEC

61499 artefacts.

The proposed ontology for this component-based software

architecture includes three corresponding nodes at the top level

of its hierarchy. From those nodes, all items, defined in the

original XML DTDs, will be automatically transformed in a

hierarchical structure. At this stage, the generated ontology

model is totally based on syntactic rules with very limited

semantic information that includes only the quantity of items

that can exist in the system. Also the rule is mostly based on

library elements. All examples presented in this paper will be

belonging to library elements.

After developing the ontology model capable of accurately

representing the syntax, the next step is to add there some

semantic rules. We propose three types of rules to verify an

IEC 61499 system.

(i) The first semantic layer consists of basic and simple rules

to check that all the types (both function block and data types)

are matched correctly. For example, in implementations where

typecasting is not supported, all data elements connected via

arcs shall be identical. More generally, the implementation

dependent typecasts can be represented as semantic rules. This

ensures all events and data variables are correctly defined and

properly used.

(ii) The next layer of rules aims at achieving the correct

execution semantics of the FB system or of a single FB. There

are separate sets of rules for each execution semantics of IEC

61499 [21].

(iii) The final category of the semantic rules is to check the

compliance with particular design patterns or absence of

known semantic problems.

The rules are defined in terms of the Semantic Web Rule

Language (SWRL) [14] and can be verified by the standard

ontology reasoner or using the Semantic Query-Enhanced Web

Rule Language (SQWRL) [22] query engine.

V. IEC 61499 FUNCTION BLOCK ONTOLOGY

DEFINITION

A. Ontological Knowledge Base - Definitions and Examples

A typical knowledge base using ontology comprises two

components: a T-Box and an A-Box [23]. T-Box stands for

taxonomy box which describes concepts and their general

properties. A-Box or assertion box retains knowledge that is

specific to individuals or instances of concepts. In IEC 61499

terms, T-Box is the knowledge base of all properties and

relationships between component-based software architecture

1 The notation definition of the description logic is listed in the Appendix.

concepts. All actually implemented component-based system

configurations and function blocks are modeled in A-Box.

As described in the previous section, the library elements part

is considered as the root node of the ontology. All sub-domains

are defined under the major domain:

Library Elements Common Elements FB Types Adapter Types

Resource Types System Elements Sub-Application Types Network

Elements. 1

As no repeatable concept names is allowed in the ontology

definition, the options are either to have all the ontology

concepts of this component-based architecture named with the

domain and sub-domain name (e.g.

<DomainName>_<SubDomainName>_<ConceptName>)

or store three root nodes in separate files without changing

any concept name.

A concept in the architecture, or in another word – element, is

linked to other elements via some roles. In terms of OWL,

these elements are named as classes and these roles are called

properties. There are two types of properties in the OWL

ontology: Object Property and Data Property. An object

property is used to describe a property value that refers to

another object. Correspondingly, the data property is used

when the property value refers to the actual data literal or a data

type. In addition, extra information can be stored in annotation

properties.

The object properties of this ontology model contain the

hierarchy of the component-based architecture code structure

for semantic analysis. When using an object property to

represent an element requiring another element, the name of

this object property is defined as Has_<ConceptName>. To

complete this object property, domains and ranges are required.

The domains are the classes where this object property will be

used from and ranges are the classes where this object property

will be applied to. An object property can be used in multiple

locations in the same ontology model. Data properties are

utilized to represent the attribute values of elements in the

software architecture. When using a data property to present a

constant value of a data type in the attributes of elements, the

data property is named as

Has_<ConceptName>_<AttributeName> or

Has_ConstantValue__<ConceptName> when the element

itself is a constant value. Similar to the object property, domain

and range are required as well. In the data property, domains

are the locations where this data property will be used from and

ranges are the pre-defined data types in the XML Schema and

OWL.

The idea of properties ontology definition will be illustrated on

the concept of FBType of IEC 61499. The keyword FBType

defines a function block type that can be basic, composite or

service interface function block. The corresponding

ontological definition comprises of Basic FB type or FB

Network (Composite FB) or Service (Service Interface FB)

element associated with an interface. Beyond those essential

parts, there might be some extra details including compiler

information, version information, etc. For the data properties,

a function block must have a name and may have some

comments.

The first step of creating a class description is to create class

itself with all data properties used in this class as well as related

axioms. For instance, FBType must have a name of data type

String (Characters). For example, it can be expressed as the

following DL axiom:

=1 Has_FBType_Name.String,

and then converted into OWL format (Fig. 2):

<rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#Has_FBType_Name"/>

 <owl:qualifiedCardinality

 rdf:datatype="&xsd;nonNegativeInteger">1

 </owl:qualifiedCardinality>

 <owl:onDataRange rdf:resource="#String"/>

 </owl:Restriction>

</rdfs:subClassOf>

Fig. 2. Data Property Example of FBType.

The next step is to create all object properties for this class as

well as related axioms. An FBType either has a Basic Function

Block description or Function Block Network:

 (≤1 Has_FBNetwork.FBNetwork ≤1 Has_BasicFB.BasicFB).

In OWL this class is presented in Fig. 3.

<rdfs:subClassOf>

 <owl:Class>

 <owl:unionOf rdf:parseType="Collection">

 <owl:Restriction>

 <owl:onProperty rdf:resource="#Has_BasicFB"/>

 <owl:onClass rdf:resource="#BasicFB"/>

 <owl:maxQualifiedCardinality

 rdf:datatype="&xsd;nonNegativeInteger">1

 </owl:maxQualifiedCardinality>

 </owl:Restriction>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#Has_FBNetwork"/>

 <owl:onClass rdf:resource="#FBNetwork"/>

 <owl:maxQualifiedCardinality

 rdf:datatype="&xsd;nonNegativeInteger">1

 </owl:maxQualifiedCardinality>

 </owl:Restriction>

 </owl:unionOf>

 </owl:Class>

</rdfs:subClassOf>

Fig. 3 Object Property Example of FBType.

The overall ontology concept for FBType represented in

Protégé tool [32] is listed in Fig. 4. The meaning of this

description is that, an FBType individual must have exactly one

interface, name, maximum one service, identification, version

information, compiler information and comments, and

maximum one Function Block Network or Basic Function

Block description.

Fig. 4. FBType definition.

B. Automatic Generation of Ontological Knowledge Base

In order to quickly define the ontology T-Box of this

component-based software architecture, an automatic

converting methodology has been developed to reduce human

errors during manual processes.

According to [24], a XML file schema can be converted to

OWL automatically. A “DTD/XSD to OWL” transformation

engine has been developed in this work for the automatic

generation of ontology from XML Schema. The IEC 61499

XML format is specified in the form of three standard DTDs

for Library Elements, Function Block Management

Commands and Data types. Each DTD file is considered as a

domain in the ontology and is converted and combined by the

DTDtoOWL engine into a single ontological model. The

mapping process is as follows:

1) Each DTD document is considered as a domain in the

ontology. DTD Elements can be grouped into sub-

domains if required.

2) Each DTD Element is mapped to an OWL class. In order

to give a unique ID to each class, domain and sub-domain

names must be added as prefixes for the class ID.

3) The hierarchies of the DTD Elements are mapped to the

object properties and if the Element has only constants,

they are mapped to the data properties straight away by

using the prefix “Has_ConstantValue_”. In a standard

DTD document, there are some symbols to indicate

occurrence of an element:

* Declaring Zero or More Occurrences of an Element;

+ Declaring Minimum One Occurrence of an Element;

? Declaring Zero or One Occurrences of an Element;

The OWL keyword owl:QualifiedCardinality is used to

represent those occurrence symbols, for example:

* Owl:minQualifiedCardinality = 0;

+ Owl:minQualifiedCardinality = 1;

? Owl:maxQualifiedCardinality = 1;

The attributes of an element are mapped to data properties.

There are two sorts of attributes: #REQUIRED and #IMPLIED.

The “Required” attribute is mapped to

Owl:QualifiedCardinality with quantity of exactly one. The

“Implied” attribute means that the attribute is not necessary to

appear in the XML, which can be expressed by

Owl:maxQualifiedCardinality = 1.

The DTD to OWL engine developed according to the rules

above is able to generate the complete ontology T-Box of this

component-based software architecture. The next step is to

automatically import all function block files (*.fbt), resources

files (*.res), device files (*.dev) and system configuration files

(*.sys) into the A-Box for semantic analysis.

An OWL individual is created for each XML element in the

IEC 61499 source file. The object property

Has_<ConceptName> is created for all child nodes of this

XML element. Finally, data properties in the form

Has_<ConceptName>_<AttributeName> are created for all

attributes of this XML element with the actual value stored in

them. Fig. 5 presents an interface and ECC of the basic

function block “EStop” (that is a part of the example in Fig.1)

which controls the valve’s opening and closing based on the

current position and the “start/end” position sensor readings.

The ECC of the FB works as follows: at the input event REQ

indicating a position change, the valve control command will

be re-calculated and then the ECC returns to the idle state.

To describe this function block in the ontological knowledge

base, an owl:NamedIndividual item is created in the form of

<NodeType>_<NodeName> as FBType_EStopZone. To

specify the node type of this instance, a rdf:type is inserted as

the first sub-node with a type of FBType. All sub-elements,

such as: Identification, VersionInfo, CompilerInfo,

InterfaceList and Basic FB of FBType (refer to Fig. 5) are used

to create object properties. Property Has_<ConceptName> is

used to link to the owl individual of that particular sub-node.

The attributes of this node are created as data properties. In our

case, the data property Has_FBType_Name is created and

refers to data type String. It indicates the name of this function

block instance is EStop.

<owl:NamedIndividual rdf:about="#FBType_EStop">

 <rdf:type rdf:resource="#FBType" />

 <Has_Identification rdf:resource="#FBType_EStop_Identification" />

 <Has_VersionInfo rdf:resource="#FBType_EStop_VersionInfo" />

 <Has_CompilerInfo rdf:resource="FBType_EStop_CompilerInfo" />

 <Has_InterfaceList rdf:resource="#FBType_EStop_InterfaceList" />

 <Has_BasicFB rdf:resource="#FBType_EStop_BasicFB" />

 <Has_FBType_Name rdf:datatype="STRING"> EStop</Has_FBType_Name>

</owl:NamedIndividual>

Fig. 5. Example of OWL Individual for the EStopZone FB type.

Following the rules presented in this section, all function

blocks, resources, devices and system configurations can be

imported directly into the ontology knowledge base A-Box.

VI. SEMANTIC ANALYSIS OF IEC 61499 ONTOLOGY

MODEL

The ontological model of a particular artefact from the function

block architecture (A-box) can be exposed to the semantic

analysis. However, first the syntactic correctness of the artefact

must be established. The generated DTD-based ontological

model can be also used for that purpose. In the context of this

work, a function block type is defined to be syntactically

correct if all related object and data properties exist in the A-

Box and the quantity constraints are also satisfied. However,

there are also some contradictions in the syntax definition in

the standard which need to be resolved prior to conducting the

syntax check. In the following of this section, a part of

semantic rules is defined.

The semantic analysis includes not only checking the system

settings and parameters (for example, that all connections of

FBs and mapping of variables are correct) or structural

properties, but also the execution behaviors (for instance,

determined execution order) [21] [26]. However, pure OWL

DL is not sufficient to present such complex semantic rules,

therefore SWRL is used here as the semantic rule language.

In order to interpret SWRL rules, a software tool called

reasoner is required. The ontology query language SQWRL

[22] is an extension of SWRL that allows more comprehensive

representation of reasoning results similar to SQL queries.

SQWRL takes a standard SWRL rule antecedent and treats it

as a pattern specification for a query SQWRL has some

essential extensions as against SWRL, for example, set and

string operations.

Semantic rules represented in S(Q)WRL can be regarded as

scripts written in a very high level programming language in

order to search for a particular kind of semantic problem in

applications complying with IEC 61499 standard. The

ontological model can be compared to an API that provides

access to basic artifacts of the program being analyzed. The

benefits of the proposed approach are: 1) Compactness of the

“scripts” – the search engine is built into S(Q)WRL

implementation; 2) The “API” is generated automatically

based on the syntax of input language; 3) Off-the-shelf tools

(like Protégé) can be used as a semantic analysis platform.

 In the remainder of this paper, the semantic rules are

divided into various catalogues for each function block type

and system configuration. SQWRL will be used for the rules

definition due to a number of its powerful features as compared

to SWRL. Some SQWRL rules are based on the description

logic and can be expressed in the description logic format. A

complete set of semantic rules was developed for IEC 61499

semantic analysis. The complete rule set consists of several

subsets including rules for basic FBs, composite FBs, SIFBs,

applications and system configurations. In this section, only

the subset rules for basic and composite FBs are given as an

example. It should also be noted the sources of the proposed

rule set are the following: i) the text of the standard IEC 61499

(Part 1) [1], 2) the textual syntax of FB language (Annex B of

Part 1 of the standard); 3) DTD for XML-documents

representing FB systems (Annex A of Part 2 of the standard);

4) examples from FBDK.

Firstly, we define the semantic correctness of a basic FB as

follows (this definition can be, of course, extended).

Definition 1. A basic function block type is said to be

semantically correct if all of the following rules are satisfied:

(1) Inside the ECC, no identical EC transition condition is

allowed from a single EC state;

(2) If an EC state connects to more than one EC state, always

true “1” is only allowed in the lowest priority EC

transition condition of those connected EC states;

(3) Each EC state must have at least one entry and one exit

EC transition;

(4) Each event input is used in at least one EC transition

condition;

(5) Each event output is used as at least one EC action output

event;

(6) Each data input variable is associated with at least one

event input of this basic FB;

(7) Each data output variable is associated with at least one

event output of this basic FB;

The first three semantic rules ensure the execution semantic of

ECC is correct. For example, the first rule states that if an EC

state is linked to multiple EC states, no identical EC transition

condition is permitted. Identical EC transition conditions can

cause some EC states to be never reachable as ECC will always

execute the EC transition with the highest priority among those

identical EC transition conditions. This rule is presented as a

SQWRL query below:
FBType(?FBType1) ^ Has_FBType_Name(?FBType1, ?name)
^ Has_BasicFB(?FBType1, ?BFB1) ^ Has_ECC(?BFB1, ?ECC1)
^ Has_ECState(?ECC1, ?ECState1) ^ Has_ECState_Name(?ECState1, ?name1)
^ Has_ECTransition(?ECC1, ?ECT1)
^ Has_ECTransition_Source(?ECT1, ?source1)
^ swrlb:stringEqualIgnoreCase(?source1,?name1)
^ Has_ECTransition_Condition(?ECT1, ?cond1)
°sqwrl:makeSet(?set1, ?cond1) ^ sqwrl:groupBy(?set1, ?name, ?name1)
^ sqwrl:makeBag(?bag1, ?cond1) ^ sqwrl:groupBy(?bag1, ?name, ?name1)
° sqwrl:notEqual(?set1, ?bag1) -> sqwrl:select(?name, ?name1)

In the SQWRL expression above, the left hand side is a SWRL

rule antecedent. All operators starting with “sqwrl:” are the

built-in functions from SQWRL. All EC Transitions with

identical conditions grouped by EC transition source names

will be listed by this SWRL rule.

Swrlb:stringEqualIgnoreCase is a SWRL built-in function

which compares two string value. Sqwrl:makeSet operator is

used to construct sets of results without duplicate elements in

the set. Sqwrl:makeBag operator is similar to the

Sqwrl:makeSet operator but duplicate elements are allowed in

the bag. Sqwrl:notEqual compares two sets/bags. To retrieve

elements from a set/bag. The query prints FB types and EC

states names where an error was detected.

The right hand side sqwrl:select will build a table using

arguments as columns of the table. In this rule, the found EC

transition condition instances, which satisfied all the properties’

conditions, are stored in the list ?set1. When an FBType

instance satisfies all properties (for instance, has_BasicFB) as

well as the built-in functions (for instance, compare two

sets/bags), this instance is included into the search results.

The SQWRL expression of the second rule is as follows:
FBType(?FBType1) ^ Has_FBType_Name(?FBType1, ?name)
^ Has_BasicFB(?FBType1, ?BasicFB1) ^ Has_ECC(?BasicFB1,?ECC1)
^ Has_ECState(?ECC1, ?ECState1) ^ Has_ECState_Name(?ECState1, ?name1)
^ Has_ECTransition(?ECC, ?ECT1)
^ Has_ECTransition_Source (?ECT1, ?Source1)
^ swrlb:stringEqualIgnoreCase(?source1,?name1)
^ Has_ECTransition_Condition(?ECT1,?Cond1)
° sqwrl:makeBag(?bag1, ?cond1) ^ sqwrl:groupBy(?bag1, ?name, ?name1)
^ sqwrl:makeSet(?set1, 1) ° sqwrl:size(?bag_size, ?bag1)
^ swrlb:greaterThan(?bag_size, 1)
^ swrlb:subtract(?BagSizeSubtract1, ?bag_size, 1)
^ sqwrl:nth(?withoutLowestPriorityECTCond, ?bag1, 2, ? BagSizeSubtract1)
^ sqwrl:contains(?withoutLowestPriorityECTCond, ?set1)
-> sqwrl:select(?name, ?name1)

Sqwrl:size will count the number of elements in a set or bag

and stored in the variable indicated in the first operand.

Sqwrl:contains check if a set/bag has all elements from another

set/bag. Swrlb:greaterThan is a SWRL built-in function which

compares its operands. Sqwrl:element is used to list all

elements. In this semantic rule, all EC transitions with

condition of always true having more than one EC transition

are listed for correction.

The third rule is used to detect dead end of execution in the

event chain. If an EC state has no output transition, once the

execution of that function block instance is completed, it will

stuck in that state forever and never execute anymore. The rule

is given as two parts. The first part is for EC states without

outgoing EC transitions:
FBType(?FBType1) ^ Has_FBType_Name(?FBType1, ?name)
^ Has_BasicFB(?FBType1, ?BasicFB1) ^ Has_ECC(?BasicFB1,?ECC1)
^ Has_ECState_Name(?ECState1, ?name1)
^ Has_ECTransition(?ECC1, ?ECT1)
^ Has_ECTransition_Source(?ECT1, ?source1)
°sqwrl:makeSet(?set1,?name1) ^ sqwrl:groupBy(?set1, ?name)
^ sqwrl:makeSet(?set2, ?source1) ^ sqwrl:groupBy(?set2, ?name)
° sqwrl:difference(?set, ?set1, ?set2)^ sqwrl:element(?e1, ?set)
-> sqwrl:select(?name, ?e1)

And second part is for EC states without incoming EC

transitions:
FBType(?FBType1) ^ Has_FBType_Name(?FBType1, ?name)
^ Has_BasicFB(?FBType1, ?BasicFB1) ^ Has_ECC(?BasicFB1,?ECC1)
^ Has_ECState(?ECC1,?ECState1) ^ Has_ECState_Name(?ECState1, ?name1)
^ Has_ECTransition(?ECC1, ?ECT1)
^ Has_ECTransition_Destination(?ECT1, ?dest1)
°sqwrl:makeSet(?set1,?name1) ^ sqwrl:groupBy(?set1, ?name)
^ sqwrl:makeSet(?set2, ?dest1)^ sqwrl:groupBy(?set2, ?name)
° sqwrl:difference(?set, ?set1, ?set2) ^ sqwrl:element(?e1, ?set)
-> sqwrl:select(?name, ?e1)

This search requires an EC transition to have both source and

destination. If a FB type is in the result list, either the EC

transition source or destination of that FB type is missing.

The SQWRL implementation of the Rule 4 also uses set

operations. The rule finds the set of input events which are not

included in any EC transition. The rule’s description is as

follows:

FBType(?FBType1) ^ Has_InterfaceList(?FBType1, ?List1)
^ Has_EventInputs(?List1,?EI1) ^ Has_Event(?EI1, ?EV1)
^ Has_Event_Name(?EV1, ?EV1_Name)
^ Has_BasicFB(?FBType1, ?BasicFB1) ^ Has_ECC(?BasicFB1,?ECC1)
^ Has_ECTransition(?ECC1, ?ECT1),
^ Has_ECTransition_Condition(?ECT1, ?ECCond1)
^ swrlb:normalizeSpace(?ECCond1, ?ECCond1_Nospace)
^ swrlb:substringBefore(?ECCond1_Nospace, “&”, ?EV2_Name)°
sqwrl:makeSet(?EV1Set, ? EV1_Name)
^ sqwrl:makeSet(?EV2Set, ?EV2_Name)
^ sqwrl:difference(?EVSet, ?EV1Set, ?EV2Set)
 -> sqwrl:select(?FBType1, ?EVSet)

The first part of the query will return all event input names of

a single basic FB. If the event input name, being looked for, is

in the result list, this event input is a part of this basic FB type

interface. The second part is to gather all events used in the EC

transition conditions. The event names are located before “&”

symbol in EC transition conditions. Finally the set difference

operator is used to find events that are in the first set but not in

the second one. It should be noted that the above rule is

intended for the situation when EC-transition condition

consists of two parts – an event input and a guard condition (In

this case they are delimited by the sign “&”) or only event input

is presented. For other cases different rules are developed.

Other rules are similar to the rule 4, but applied to event outputs,

and data inputs and outputs. For rule 6 and 7, it is syntactically

correct that data inputs and outputs are not associated with any

event inputs or outputs (allowed in the IEC 61499 standard).

Those two rules just provide a warning to users there is a

chance you may forget connecting those data inputs and

outputs. Those rules could be applied to IEC 61499 IDEs to

give a warning during compilation process.

Definition 2. A composite FB type is said to be semantically

correct if all of the following rules are satisfied:

(1) The source and the destination data variable in a data

connection must have consistent data types;

(2) Each event (data) input is connected to an event (data)

input inside the included FB network or an event (data)

output;

(3) Each event (data) output is connected from an event (data)

output inside the included FB network or an event (data)

input;

(4) Each data input variable is associated with at least one

event input of this composite FB interface;

(5) Each data output variable is associated with at least one

event output of this composite FB interface.

(6) No dangerous event loop is allowed.

(7) No short-Circuit event is allowed.

The rule 4 and 5 here are similar to the BFB rule 6 and 7. The

semantic analysis just provides a warning as it is syntactically

correct. An interesting part of a composite FB is the event

connections in FB network. As defined in the rules 6 and 7,

dangerous event loop or short event can cause unexpected

behavior in the execution [25] [26].

Before start detecting dangerous event loops or short events,

the event chain concept needs to be defined first. An event

chain is defined as:

Definition 3. An event chain in a FB network is a sequence of

event connections c1, c2,…,cn which satisfies the following

conditions:

i) Event connection ci is connected to an event input of a FB

instance fb and event connection ci+1 is connected from an

event output of this FB instance fb (where 1≤i<n);

ii) fb is “reactive” with respect to ci and ci+1, that means an

event input from ci triggers an event output to ci+1 via some

manipulations inside fb.

An event chain is non-stoppable if c1=cn which forms an event

cycle that keep looping indefinitely (like while(1) in C). A non-

stoppable event chain is considered as a dangerous event loop

if there is an external event input that initializes the event loop

like a SIFB (Fig. 6 (A)).

Fig. 6. Dangerous Event Loop and Short-Circuit Event.

The conditions of dangerous event loops are different for each

FB meta-type and can be defined using the concept of causality.

In a FB an event input ei1 triggers an event output eo1 if the

following three conditions are true:

A. If FB Instance is Basic FB type

i) There is an EC transition and the event input ei1 is the only

EC transition condition attached for that EC transition;

ii) At the destination EC state of the EC transition there is an

EC action firing the event output eo1. A scheme for the event

flow through a basic FB is shown in Fig. 7.

Fig. 7. Event flow through a basic FB.

Below an implementation of above concepts using S(Q)WRL

rules is presented.

Here event chains are defined using relations (in other words,

OWL object properties) EvFlow and EvFlow_transitive in

SWRL. The event flow via a basic FB can be defined as the

following SWRL rule. At that, parameter conn1 of the rule

consequent EvFlow represents a preceding event connection

and parameter conn2 represents a successive event connection

in an event chain.

FBType(?FBType1) ^ Has_FBNetwork(?FBType1,?FBNetwork)
^ Has_EventConnections(?FBNetwork,?conns)
^ Has_Connection(?conns, ?conn1)
^ Has_Connection_Destination(?conn1, ?dest1)
^ Has_Connection(?conns, ?conn2)
^ Has_Connection_Source(?conn2, ?source2)
^ swrlb:SubstringBefore(?dest1, “.”, ?FBName)
^ swrlb:SubstringBefore(?source2, “.”, ?FBName)
^ swrlb:SubstringAfter(?dest1, “.”, ?evname1)
^ swrlb:SubstringAfter(?source2, “.”, ? evname2)
^ Has_FB(?FBNetwork,?FB)^ Has_FB_Name(?FB,?FBName)
^ Has_FB_Type(?FB,?FBType2) ^ Has_BasicFB(?FBtype2,?BFBType)
^ Has_ECC(?BFBType,?ECC)^ Has_ECTransition(?ECC,?ECTran)
^ Has_ECTransition_Condition(?ECTran,?evname1)
^ Has_ECTransition_Destination(?ECTran,?ECState)
^ Has_ECAction(?ECState,?ECAction)

^ Has_ECAction_Output(?ECAction,?evname2)
->EvFlow(?conn1,?conn2)

B. If FB Instance is SIFB type

There is a service, a service sequence, and a service transaction

such that this service transaction has an input primitive

triggered by the event input ei1 and an output primitive fires the

event output eo1 (as illustrated in Fig. 8).

Fig. 8. Event flow through a SIFB.

The following SWRL rule expresses the event flow through

SIFB.

FBType(?FBType1) ^ Has_FBNetwork(?FBType1,?FBNetwork)
^ Has_EventConnections(?FBNetwork,?conns)
^ Has_Connection(?conns, ?conn1)
^ Has_Connection_Destination(?conn1, ?dest1)
^ Has_Connection(?conns, ?conn2)
^ Has_Connection_Source(?conn2, ?source2)
^ swrlb:SubstringBefore(?dest1, “.”, ?FBName)
^ swrlb:SubstringBefore(?source2, “.”, ?FBName)
^ swrlb:SubstringAfter(?dest1, “.”, ?evname1)
^ swrlb:SubstringAfter(?source2, “.”, ?evname2)
^ Has_FB(?FBNetwork,?FB) ^ Has_FB_Name(?FB,?FBName)
^ Has_FB_Type(?FB,?FBType2) ^ Has_Service(?FBtype2, ?ser)
^ Has_ServiceSequence(?ser, ?ss) ^ Has_ServiceTransaction(?ss, ?st)
^ Has_InputPrimitive(?st, ?inprim)
^ Has_InputPrimitive_Event(?inprim, ?evname1)
^ Has_OutputPrimitive(?st, ?outprim)
^ Has_OutputPrimitive_Event(?outprim, ?evname2)
->EvFlow(?conn1,?conn2)

3. If FB Instance is Composite FB type

In FB network inside the composite FB there is an event chain

beginning at the event input ei1 and ended at the event output

eo1.

However, the relation EvFlow defined above only gives a pair

of event connections via a function block. The following

SWRL rules are used for computing transitive closure of

relation EvFlow that defines an event chain recursively.

EvFlow (?conn1, ?conn2) -> EvFlow_Transitive(?conn1, ?conn2)
EvFlow (?conn1, ?conn2) ^ EvFlow_Transitive(?conn2, ?conn3)
-> EvFlow_Transitive(?conn1, ?conn3)

The SQWRL query below prints all event inputs and outputs

of non-stoppable event chains of a flat FB network using the

above SWRL rule for EvFlow_Transitive.

EvFlow_Transitive (?conn, ?conn)^ Has_Connection_Source(?conn, ?source)
^ Has_Connection_Destination(?conn, ?dest)-> sqwrl:select(?source, ?dest)

If the detected function block type is a composite function

block, extra SWRL rule is required to find the event output

from the nested function blocks with internal event

connections.

The short event as illustrated in Fig 6 (B) is similar to the

dangerous event loop rule. If an event is found bypassed a

function block and that function block is non-stoppable, this

will cause a semantic issue. The downstream function block

will be invoked again after bypassing the event connection.

Input data will be overwritten by the bypassed function block.

All the rules above ensure that components constituting an FB

system are semantically correct. The execution semantics of

those components is also required to be checked in the system

configuration. An example of the semantic rule could be no

indefinite event loop (deadlock) or short-circuit event to exist

in system configurations. Another example can require every

function block instance in the function block application to be

mapped to a resource.

New semantic rules can be easily added to the semantic check

system in the form of S(Q)WRL rules.

VII. CASE STUDY OF BAGGAGE HANDLING SYSTEM ON

SEMANTIC ANALYSIS

In this section, the defined semantic rules will be applied in a

test case that is based on a component-based software control

application for the airport inbound baggage handling system

illustrated in Fig. 1. The application is designed using the

function block tool FBDK.

The system consists of five transportation conveyors (IB101 to

IB105), one inbound baggage carousel (IB1) and three

emergency stop control station (ESTOP1 to ESTOP3). There

is one electric photo eye sensor installed on the downstream

end of each transportation conveyor to detect bags as well as

on the carousel. Emergency stop control stations with reset

push buttons are located around the inbound BHS system.

The FB system configuration is designed based on the original

PLC version. A SIFB polling data inputs triggered by an

E_CYCLE FB is used to represent a PLC scan. Original PLC

function blocks for Conveyor, EStop and EStopZone are

converted to their IEC 61499 version. Finally, data outputs are

updated by another SIFB.

A semantic checker with OWL, SWRL libraries and SQWRL

support is built for testing this case study. The complete rule

set is implemented in this checker.

The analysis is applied to all FBs used in the system by the

checker automatically: basic FBs Conveyor, EStop and

EStopZone, and system configuration. The semantic checker

goes through each rule defined for this FB type and generates

warnings. First, the Conveyor FB is responsible for the basic

conveyor control functionality. The Conveyor FB has a

number of EC states and each state is representing an actual

status of a conveyor. As shown in Fig. 9, the original ECC has

two issues found by the semantic analysis. First, the RUN state

has connections to the CASCADE, the ECM and the FAULT

state. However, the transition condition to the CASCADE state

is “1” and it is not the lowest priority transition. This will cause

the conveyor to start and stop all the time, so the motor can be

easily damaged in a short period of time. Secondly, the FAULT

state has no exit EC transition. As a result, once any conveyor

is faulted, it will remain in the fault state and cause a deadlock.

Those issues are resolved in the corrected version of conveyor

control ECC that passed the semantic check.

Fig. 9. Original and Corrected ECC of Basic Function Block Conveyor

Control.

Through the semantic analysis for the BHS system

configuration, a dangerous event loop is found as shown in Fig.

10. There is only REQ event condition and no EC guard

condition for REQ state in the ECC of both the EStop function

block and the EStopZone function block. Once the REQ input

event of the function block ESTOP1 is triggered, this indefinite

event loop will be activated. The emergency stop functionality

will not perform properly. This is a serious hazard as the

system is not capable to ensure the safety requirements. The

full path of this dangerous event loop is highlighted in the Fig.

10. This dangerous event loop is ignored by IEC 61499

compilers. To remove this dangerous event loop, the feedback

event connection from EStopZone_All.CNF to ESTOP1.REQ

is removed.

Fig. 10.Dangerous Event Loop Found in the Emergency Stop Control Part.

This approach is also scalable to more complex industrial

implementations like process control systems. The semantic

checker is capable for checking more nested function block

structures and larger function block networks within a

reasonable time automatically. Also if another rule needs to be

added, it can be achieved by simply inserting a S(Q)WRL text

into the semantic checker. The semantic checker will

automatically load this new rule on startup.

VIII. IMPLEMENTATION

The semantic analysis of function block systems presented by

their ontological models can be performed using standard

ontological tools, such as Protégé [27] with the corresponding

SWRL reasoners and SQWRL plugins.

A tool has been developed to generate automatically T-box

ontological models from given DTD descriptions of syntax and

import XML descriptions of function block systems into A-

box as instances. The tool has also a built-in query engine for

interpreting the complete SQWRL language and most part of

the SWRL built-in libraries.

IX. CONCLUSIONS

This paper presented a multi-layered ontology based semantic

analysis for component-based software architecture. The

semantic analysis using ontological knowledge base can be

helpful at all design stages of component-based software

system if implemented in the corresponding integrated

development environments.

The ontological knowledge base is generated from the IEC

61499 standard DTD files and all instances directly imported

from XML files. This automates the process of knowledge base

creation and simplifies implementation of the method in the

future analysis tools.

The proposed approach has a number of advantages as

compared to other approaches which develop dedicated

validators for each semantic rule, as follows:

1) The formal method of Web-ontologies allowing to express

precisely, clearly and at a high level many semantic properties

of FB systems;

2) Formal representation of semantic properties allows usage

of formal reasoning for the proof of these properties, that in

turn increases reliability of the received outcomes of the

analysis;

3) Usage of description logic (DL) and DL-safe SWRL rules

[13] guarantees decidability of the task of classification (in our

case - the analysis), that means the task of the analysis should

be completed in comprehensible time.

4) The proposed method is flexible and extensible. Semantic

analysis is performed by a universal engine that imports rules

from extensible knowledge base.

The proposed method can be extended to semantic analysis of

any visual programming language, especially based on XML

notation.

The future work will be mainly focused on developing sets of

semantic rules, for example, for specific design patterns or

known semantic problems, as well as on optimization of the

checker’s performance. This will aim at analysis of deeper

semantic issues in actual application logic inside FBs. Finally,

it will be really useful if a linkage between problem domain

and IEC 61499 ontologies can be established (for example,

generate IEC 61499 ontologies from other ontologies

describing system behaviours).

APPENDIX

Description Logic Notation Definition [23]:

Notation Description Example

Union of concepts C D

 Intersection of concepts C D

 Concept equivalence C D

Concept inclusion C D

 Existential restriction R.C

 Complement C

C and D are ontology concepts, R is the restriction condition.

ACKNOWLEDGEMENTS

This work is supported, in part, by the FRDF grant

3625072/9573 of the University of Auckland.

REFERENCES

[1] IEC 61499, Function Blocks, International Standard, International
Electrotechnical Commission, Geneva, Switzerland, First Edition, 2005

[2] V. Vyatkin, “IEC 61499 as Enabler of Distributed and Intelligent
Automation: State of the Art Review”, IEEE Transactions on Industrial

Informatics, Vol. 7, Issue 4, Page 768 – 781, 2011.

[3] IEC 61131-3, Programmable Logic controllers - Part 3: Programming
languages, International Standard, Second Edition, 2003

[4] V. Vyatkin, “OOONEIDA: An Open, Object-Oriented Knowledge
Economy for Intelligent Industrial Automation”, IEEE Transactions on

Industrial Informatics, Volume 1, No. 1, February 2006, Pages 4-17.

[5] Function Block Development Kit (FBDK). Holobloc Inc., 2008,

Available: http://www.holobloc.org/

[6] ISaGRAF Workbench[Online], available from http://www.isagraf.com

[7] nxtControl GmbH, nxtControl - Next generation software for next
generation customers [Online, 2009, June]. Available:

http://www.nxtcontrol.com/

[8] DTD Attributes[Online], W3C School Tutorial, retrieved from
http://www.w3schools.com/dtd/

[9] C. Welty, “Semantic Web Ontologies”, IBM Research[Online],
http://www.daml.org/meetings/2005/04/pi/Ontologies.pdf

[10] V. Dubinin, V. Vytakin, “Ontology of IEC 61499 function blocks”,
International conference on Contemporary information technologies

(CIT’10), Penza, December, 2010.

[11] J. Lastra, I. Delamer, “Semantic Web Services in Factory Automation:
Fundamental Insights and Research Roadmap”, IEEE Transactions on

Industrial Informatics, Vol 2, No. 1, Feburary 2006, Page 1-11.

[12] Y. Al-Safi, V. Vyatkin, “Ontology-based Reconfiguration Agent for

Intelligent Mechatronic Systems in Flexible Manufacturing”,

International Journal of Robotics and Computer Integrated
Manufacturing, Vol 26, Page 381 - 391, 2010

[13] B. Motik, U. Sattler, R. Studer. “Query answering for OWL DL with
rules”, Journal of Web Semantics, 3(1):41-60, 2005.

[14] SWRL: A Semantic Web Rule Language Combining OWL and
RuleML[Online], retrieved from

http://www.w3g.org/Submission/SWRL/

[15] Arakawa N. Semantic Analysis based on Ontologies with Semantic Web
Standards, Int. Conf. Computer-aided Acquisition of Semantic

Knowledge (CASK-2008), Sorbonne, 2008.

[16] Ontologies for Software Engineering and Software Technology / Calero,
Coral; Ruiz, Francisco; Piattini, Mario (Eds.), 2006, XIV, 339 p.,

Springer.

[17] F. Jammes, H, Smit, “Service-Oriented Paradigms in Industrial

Automation”, IEEE Trans Industrial Informatics, 1(1), 2005, pp.62–70

[18] K.M. Goh, W. Dint, “Iterative Knowledge Based Code Generator for

IEC 61499 Function Block”, 2009 IEEE Region 10 Conference
(TENCON 2009), Singapore, 23-26 Jan 2009, ISBN:978-1-4244-4546.

[19] D. Gasevic, D. Djuric, V. Devedzic, "Model Driven Engineering and

Ontology Development", 2nd ed., Springer, Berlin Heidelberg New York,
2009, XXI, 378 P. (ISBN: 978-3-642-00281-6)

[20] P. Novak, R. Sindelar, “Application of Ontologies for Assembling
Simulation Models of Industrial Systems”, Proceedings of the 2011

International Conference on On the move to meaningful internet systems,

2011.

[21] V. Vyatkin, “The IEC 61499 Standard and its Semantics” – IEEE

Industrial Electronics Magazine, Vol. 3, Issue 4, Page 40 - 48, 2009.

[22] M. O’Connor, A. Das, “SQWRL: a Query Language for OWL”, OWL:

Experiences and Directions (OWLED), Fifth International Workshop

2009, Vol 529.

[23] F. Badder, D. Calavanese, D.L. McGuinness, D. Nardi and P.F. Patel-

Schneider, “The Description Logic Handbook, Theory, Implementation
and Applications, 2nd Edition.”, Published by Cambridge University

Press, 2007, ISBN 978-0-521-87265-4

[24] P. Thuy, Y. Lee, S. Lee, “DTD2OWL: Automatic Transforming XML
Documents into OWL Ontology”, 2nd International Conference on

Interaction Sciences: Information Technology, Culture and Human, 16–

18 Aug 2009, ISBN: 978-1-60558-710-3

[25] G. Cengic, K. Akesson, “On Formal Analysis of IEC 61499 Applications,

Part A: Modeling”, IEEE Transactions on Industrial Informatics,
Volume 6, Issue 2, 2010, Page 136 – 144.

[26] G. Cengic, K. Akesson, “On Formal Analysis of IEC 61499 Applications,

Part B: Execution Semantics”, IEEE Transactions on Industrial
Informatics, Volume 6, Issue 2, 2010, Page 145 – 154.

[27] Protégé. Available at http://protege.stanford.edu

[28] O. Orozco, J. Lastra, “Adding Function Blocks of IEC 61499 Semantic

Description to Automation Objects”, IEEE International Conference on
Emerging Technologies and Factory Automation, Prague, Czech

Republic, September, 2006, pp 537 – 544.

Wenbin Dai (GM’ 09, M’ 13) received a Bachelor of

Engineering (with honours) degree in Computer

Systems Engineering from the University of Auckland,
New Zealand in 2006. He completed PhD in Electrical

and Electronic Engineering at the Department of

Electrical and Computer Engineering, The University of

Auckland, New Zealand in 2012. His research interests

are IEC 61131-3 PLC, IEC 61499 function blocks,

distributed control systems, industrial fieldbus
communication protocol, SOA and Internet of Things in

industrial automation.

He has been also a software engineer from Glidepath Limited – a New Zealand
based airport baggage handling system provider since 2007. He has involved

in numbers of airport baggage handling system and parcel sortation system

projects in New Zealand, Australia, Canada, China, Africa, Middle-East and
South America. His responsibility is to design and develop PLC control and

SCADA/HMI for those systems.

Valeriy Vyatkin is Chaired Professor of Dependable

Computation and Communication Systems at Luleå

University of Technology, Sweden, and visiting
scholar at Cambridge University, U.K., on leave from

The University of Auckland, New Zealand, where he

has been Associate Professor and Director of the
InfoMechatronics and Industrial Automation lab

(MITRA) at the Department of Electrical and

Computer Engineering. He graduated with the
Engineer degree in applied mathematics in 1988 from

Taganrog State University of Radio Engineering

(TSURE), Taganrog, Russia. Later he received the Ph.D. (1992) and Dr. Sci.
degree (1998) from the same university, and the Dr. Eng. Degree from Nagoya

Institute of Technology, Nagoya, Japan, in 1999. His previous faculty
positions were with Martin Luther University of Halle-Wittenberg in Germany

(Senior researcher and lecturer, 1999–2004), and with TSURE (Associate

Professor, Professor, 1991–2002).

Research interests of professor Vyatkin are in the area of dependable

distributed automation and industrial informatics, including software

engineering for industrial automation systems, distributed architectures and
multi-agent systems applied in various industry sectors: Smart Grid, material

handling, building management systems, reconfigurable manufacturing, etc.

Dr Vyatkin is also active in research on dependability provisions for industrial
automation systems, such as methods of formal verification and validation,

and theoretical algorithms for improving their performance. In 2012, Prof

Vyatkin has been awarded Andrew P. Sage Award for best IEEE Transactions
paper.

http://www.nxtcontrol.com/
http://www.w3schools.com/dtd/
http://www.daml.org/meetings/2005/04/pi/Ontologies.pdf
http://www.w3g.org/Submission/SWRL/
http://protege.stanford.edu/

