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Abstract — The IEC 61499 standard is designed for distributed 

control and proposes new visual form of programming using 

block diagrams with embedded state machines and unlimited 
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Such visual programs require new methods of automatic 

syntactic and semantic analysis. This paper proposes a new 

approach to semantic analysis using multiple-layered ontological 

knowledge representation and rule-based inference engine. Its 

working is demonstrated on example. 
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I. INTRODUCTION 

he component-based function block architecture of IEC 

61499 standard [1], [2] targets the system-level design 

of complex distributed automation systems. It proposes 

a new visual form of programming using block 

diagrams with embedded state machines and unlimited 

hierarchical nesting, being distributed across networking 

devices. The basic design artefact of this architecture is an 

event-triggered function block. The event interface and 

distribution are the key differences of this architecture from the 

function blocks used in automation systems (as standardized in 

the IEC 61131-3 standard [3] for programmable logic 

controllers (PLC)). The component-based architecture of IEC 

61499 provides a self-explanatory language with a better 

overview of the entire system for automation software design.  
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Fig. 1. An example of a block-diagram programming using the IEC 61499 function blocks. 



Fig. 1 illustrates an example of a simple airport inbound 

baggage handling system, fully programmed with function 

blocks. The example system consists of six conveyors 

including one baggage claim carousel and three emergency 

stop control stations. Each physical device is controlled by a 

software component - function block. The top part of the 

function block network in  

Fig. 1 represents the conveyor chain and the bottom part is used 

for emergency stop zone control. However, along with 

numerous benefits [4], this visual design approach creates new 

challenges for syntactic and semantic analysis of such 

programs. 

In traditional PLC programming languages, the syntactic (and 

partially semantic) check is done by software tools as a part of 

compilation or editing process. The IEC 61499 function block 

standard uses XML representation format for all design 

artefacts. The use of XML technologies simplifies the 

implementation of syntax checkers which can be delegated to 

the standard XML parsers. Such tools are easily extendable 

that is achieved by changing the corresponding XML schema 

in case of syntax extensions. However, the XML technology is 

of little help when it comes to spotting semantic problems, so 

an application with semantic issues could pass the syntactic 

check.  

As one can appreciate even from the simple example presented 

in Fig. 1, the function block designs can be quite complex thus 

hard to debug and validate. The semantic analysis support can 

increase performance of developers and dependability of 

automation systems, and eventually help with adoption of the 

component-based software architecture technology in the 

automation industry. A small example of semantic check in the 

function block context is implemented in the experimental 

FBDK tool [5] whose editor prohibits creating loops in state 

machines which do not include a transition triggered by an 

event input. Although correct syntactically, such loops can 

cause deadlocks in the program execution. However, the 

implementation of this semantic rule is hard coded in the tool 

and cannot be extended or modified if the syntax or semantics 

of the state machines changes, as it was the case recently with 

the second edition of the standard introduced. Unfortunately, 

no semantic check functionality is implemented in any 

commercial component-based PLC software tools such as 

ISaGRAF Workbench [6] or NxtStudio [7].  

In this paper, a novel methodology of extendable semantic 

check for component-based software architecture - function 

blocks is developed. Its configurability is akin to the XML-

supported syntax check, but implementation is based on the 

semantic Web technologies such as ontologies, used to 

represent the semantic model of programs and extensible set of 

semantic rules. The proposed semantic analysis methodology 

can be conveniently integrated into the existing component-

based PLC development environments. 

The paper is structured as follows: Section II provides an 

introduction into the related Semantic Web technologies. The 

related research works are reviewed in section III. The 

contribution of this work is summarized in the beginning of 

section IV. In sections V, a layered ontology design for 

software components is proposed with detailed generation of 

an ontology model from XML schema and document type 

definition (DTD) as well as automatic import of function block 

systems into the searchable knowledge base. Semantic 

corrections and extensions to the ontology based knowledge 

base are listed in Section VI along with the rules for semantic 

analysis. In Section VII, a case study of applying semantic 

analysis to a baggage handling system example is presented. 

The tool developed for component-based software architecture 

semantic analysis is described in section VIII. The paper is 

concluded with a summary and future works plan. 

II. SYNTACTIC AND SEMANTIC ANALYSIS FOR 

FUNCTION BLOCKS USING ONTOLOGY MODEL 

The first part of the analysis chain is the syntax check. As the 

function block code is represented in XML, the corresponding 

document type definition (DTD) is provided as well. The DTD 

defines all possible elements and sub-elements which are 

allowed to be used in the function block XML documents. 

Another form of XML syntax description is XML Schema 

(XSD). Unlike DTD, XSD uses XML to describe syntax of 

custom XML documents. In addition to DTD, XSD supports 

all data types including the user defined ones, whereas DTD 

only supports generic character types CDATA and PCDATA 

[8]. In this work, both XSD and DTD can be used as syntax 

description sources. The DTD version is used as an example. 

However, the behavioural (semantic) properties of component-

based software architecture artefacts cannot be verified by 

syntactic checking. Some implementations of general purpose 

programming languages use semantic rules hard-coded in 

compilers, but this approach is not flexible. Any change of the 

input language, or introduction of new semantic rules, will 

require change of the compiler.  

In this work we propose a more flexible approach where 

semantic checker is using an external (and thus extendable) set 

of semantic rules. The rules refer to the knowledge model 

representing the related concepts of the function blocks 

architecture. More complex rules can be built on top of existing 

ones. 

The ontology mechanism [9] is used as a proper representation 

of such a knowledge base. The “Ontology” concept, originated 

in philosophical studies of the nature of being, existence or 

reality, is now widely applied in the Semantic Web 

programming and service-oriented architectures (SOA). 

Recently this concept was introduced into the automation and 

control area [11-12] where it has been majorly applied to 

describe processes in manufacturing and processing plants.  

In this work we propose a novel way of using ontologies to 

describe properties of automation software systems designed 

according to the component-based software architecture. 

Compared to the hard-coded semantic analysis, the approach 

based on the generic ontology model for the component-based 

software architecture can handle automatically any change of 

the input language without modifying the analyser’s core code. 

The semantic rules using the ontology are both human and 

machine readable and self-explanatory. 

Advantages of using ontology in the semantic analysis for 

function block systems are as follows:  

Firstly, ontology is a formal mechanism for describing 

semantic properties which have been originally represented in 

words. The formal reasoning languages and tools can be 

applied to check those properties. This increases the reliability 

of the analysis results. Also it provides a high level view of all 

properties and relationships inside function block systems. 



Secondly, the ontologies are extendable that allows describing 

partial knowledge which can be extended in the future. By 

using languages based on the description logic (DL) [13] (for 

example, OWL DL) and Semantic Web Rule Language 

(SWRL) [14], the additional ontology definition can be merged 

into an existing ontology model seamlessly. SWRL extends the 

set of OWL axioms to include Horn-like rules. It thus enables 

Horn-like rules to be combined with an OWL knowledge base. 

Finally, expressions defined in DL and SWRL for ontology 

based semantic analysis can be changed easily without 

changing the semantic analysis engine. This engine can be 

utilized for other XML based languages including IEC 61499 

XML.  

The need for semantic check flexibility is motivated by several 

reasons, the main of which are as follows:  

- New versions of the standard-compliant software may 

redefine the semantic correctness, and the corresponding 

checkers would need to be upgraded;  

- The rules may define correctness in the context of 

particular design patterns. New design patterns are 

constantly being introduced which requires to add new 

semantic correctness definitions; 

- Last but not least, the standard itself is a living organism 

which undergoes maintenance, leading to certain syntax 

and semantics changes. 

III. RELATED WORKS 

This paper extends the work by Dubinin et al. [10] that 

presented a technique for semantic analysis of IEC 61499 

based on ontological model that can be regarded as a direct 

predecessor of this paper. While the concept has been soundly 

demonstrated in [10], it was based on a manually created 

ontological model. It is hard to create software tools 

implementing it on systematic basis since instance data have to 

be entered manually into the ontological knowledge base.  

The new approach of the present paper uses automatically 

generated ontological models with data instances which paves 

the way to implementation of software tools. Also this paper 

presents new execution semantic rules of execution control 

chart (ECC) in basic function blocks and other complicated 

rules, not covered in [10].  

Along with [10], a similar idea of applying ontological 

mechanisms for semantic analysis appeared in the work by 

Arakawa [15], but in a completely different domain: it 

proposed a method for analyzing natural language texts using 

ontologies.  

Further in this Section a number of related works is discussed, 

especially those related to the main enabling technologies of 

this research. 

Ontologies are widely used in the software engineering domain 

[11], [12], [16], [19] and [20]. However there is no previous 

work about the using of ontologies for the semantic analysis of 

programming and domain specific languages. 

The feasibility of applying semantic web and service-oriented 

architecture into automation industry has been discussed by 

Jammes and Smit in [17]. The work is motivated by the 

challenges of interoperability, scalability, plug-and-play 

connectivity and seamless integration. The service-oriented 

architecture using the Web services standards is applied to 

automation systems. That paper proves that the use of SOA and 

Web services standards can enhance the intelligence of 

automation systems. 

Goh and Dint in [18] describe an approach to code generation 

for IEC 61499 based on the iterative knowledge base. The 

iterative knowledge base is represented in the form of XML 

and Extended Backus-Naur Form (EBNF). The goal of that 

approach is to eliminate any additional script language to be 

used in the code generation. Also the translation rules are 

extendable and reusable to improve the accuracy of  translation 

rules. In order to achieve this goal, rule-based blocks are built 

for each IEC 61499 XML element. During the code generation 

process when the pre-defined rules are satisfied, the related 

block of code will be generated and data types and connections 

will be also inserted. However, this XML and EBNF based 

approach is not convenient for configuring the IEC 61499 

systems manually. Besides, the code template must be pre-

defined in the knowledge base manually and cannot be easily 

modified when the code template is changed. 

Orozco and Lastra [28] illustrate the idea of how semantics can 

be added to the Function Blocks reference models of the 

standard IEC 61499 by using ontologies. But the intention of 

this paper was to use semantic descriptions of FBs for 

automatic searching and discovery of FBs in applications 

based on the web services. Also the FB ontology model 

presented in this paper is not detailed enough for semantic 

analysis.  

In [10], an ontology for semantic analysis of IEC 61499 

compliant systems is proposed. The function block type 

ontology model includes basic, composite and service 

interface function blocks and system configurations. The 

ontology model for any function block type includes a model 

of its interface. Along with that, the ontology model of a basic 

function block includes the Execution Control Chart (ECC) 

ontology model. In the ECC ontology model, EC state, EC 

algorithm, EC Transition and EC Transition conditions are 

defined. The composite function block ontology model 

includes references to the component function block instances 

along with models of event and data connections. Finally, the 

system configuration ontology model contains devices, 

resources, applications, connections, mappings and network 

segments and their object and data properties. That paper 

provides simple examples of semantic analysis for IEC 61499 

files using description logic and SWRL. A semantic analysis 

tool using a Protégé plug-in is developed for automatic 

semantic checking. 

IV. LAYERED IEC 61499 ONTOLOGY DESIGN 

The IEC 61499 ontology in [10] was developed manually 

leaving the questions of how adequate is it to the text of the 

standard and, especially, to particular implementations, which 

may slightly deviate from the standard or may extend its 

insufficiently defined parts. This work attempts to overcome 

this shortage by proposing a layered approach to structuring 

the ontology. The base level of the ontology is automatically 

generated from the XML schema that captures most of 

syntactic properties and is used directly by function block tools 

for syntactic analysis. This approach promises to have less 

discrepancies between the code syntax supported by a tool and 

its semantic analyser. Moreover, the layered approach 



promises better extensibility of the ontology, or possibility to 

customize it for a particular dialect or design pattern. 

According to the IEC 61499 standard, XML is used to define 

three classes of artefacts: (1) Library Elements which include 

elements from system configuration, devices, resources, 

applications and sub-applications, function block types, 

adapter types, network segments and mapping applications to 

resources; (2) Function Block Management Commands which 

define the protocol used for communication between the IEC 

61499-compliant devices, and (3) Data Types allowed in IEC 

61499 artefacts.  

The proposed ontology for this component-based software 

architecture includes three corresponding nodes at the top level 

of its hierarchy. From those nodes, all items, defined in the 

original XML DTDs, will be automatically transformed in a 

hierarchical structure. At this stage, the generated ontology 

model is totally based on syntactic rules with very limited 

semantic information that includes only the quantity of items 

that can exist in the system. Also the rule is mostly based on 

library elements. All examples presented in this paper will be 

belonging to library elements. 

After developing the ontology model capable of accurately 

representing the syntax, the next step is to add there some 

semantic rules. We propose three types of rules to verify an 

IEC 61499 system.  

(i) The first semantic layer consists of basic and simple rules 

to check that all the types (both function block and data types) 

are matched correctly. For example, in implementations where 

typecasting is not supported, all data elements connected via 

arcs shall be identical. More generally, the implementation 

dependent typecasts can be represented as semantic rules. This 

ensures all events and data variables are correctly defined and 

properly used.  

(ii) The next layer of rules aims at achieving the correct 

execution semantics of the FB system or of a single FB. There 

are separate sets of rules for each execution semantics of IEC 

61499 [21].  

(iii) The final category of the semantic rules is to check the 

compliance with particular design patterns or absence of 

known semantic problems. 

The rules are defined in terms of the Semantic Web Rule 

Language (SWRL) [14] and can be verified by the standard 

ontology reasoner or using the Semantic Query-Enhanced Web 

Rule Language (SQWRL) [22] query engine. 

V. IEC 61499 FUNCTION BLOCK ONTOLOGY 

DEFINITION 

A. Ontological Knowledge Base - Definitions and Examples 

A typical knowledge base using ontology comprises two 

components: a T-Box and an A-Box [23]. T-Box stands for 

taxonomy box which describes concepts and their general 

properties. A-Box or assertion box retains knowledge that is 

specific to individuals or instances of concepts. In IEC 61499 

terms, T-Box is the knowledge base of all properties and 

relationships between component-based software architecture 

                                                           

1 The notation definition of the description logic is listed in the Appendix. 

concepts. All actually implemented component-based system 

configurations and function blocks are modeled in A-Box. 

As described in the previous section, the library elements part 

is considered as the root node of the ontology. All sub-domains 

are defined under the major domain: 

Library Elements  Common Elements   FB Types   Adapter Types   

Resource Types   System Elements   Sub-Application Types   Network 

Elements. 1  

As no repeatable concept names is allowed in the ontology 

definition, the options are either to have all the ontology 

concepts of this component-based architecture named with the 

domain and sub-domain name (e.g. 

<DomainName>_<SubDomainName>_<ConceptName>)  

or store three root nodes in separate files without changing 

any concept name. 

A concept in the architecture, or in another word – element, is 

linked to other elements via some roles. In terms of OWL, 

these elements are named as classes and these roles are called 

properties. There are two types of properties in the OWL 

ontology: Object Property and Data Property. An object 

property is used to describe a property value that refers to 

another object. Correspondingly, the data property is used 

when the property value refers to the actual data literal or a data 

type. In addition, extra information can be stored in annotation 

properties.  

The object properties of this ontology model contain the 

hierarchy of the component-based architecture code structure 

for semantic analysis. When using an object property to 

represent an element requiring another element, the name of 

this object property is defined as Has_<ConceptName>. To 

complete this object property, domains and ranges are required. 

The domains are the classes where this object property will be 

used from and ranges are the classes where this object property 

will be applied to. An object property can be used in multiple 

locations in the same ontology model. Data properties are 

utilized to represent the attribute values of elements in the 

software architecture. When using a data property to present a 

constant value of a data type in the attributes of elements, the 

data property is named as 

Has_<ConceptName>_<AttributeName> or 

Has_ConstantValue__<ConceptName> when the element 

itself is a constant value. Similar to the object property, domain 

and range are required as well. In the data property, domains 

are the locations where this data property will be used from and 

ranges are the pre-defined data types in the XML Schema and 

OWL. 

The idea of properties ontology definition will be illustrated on 

the concept of FBType of IEC 61499. The keyword FBType 

defines a function block type that can be basic, composite or 

service interface function block. The corresponding 

ontological definition comprises of Basic FB type or FB 

Network (Composite FB) or Service (Service Interface FB) 

element associated with an interface. Beyond those essential 

parts, there might be some extra details including compiler 

information, version information, etc. For the data properties, 



a function block must have a name and may have some 

comments.  

The first step of creating a class description is to create class 

itself with all data properties used in this class as well as related 

axioms. For instance, FBType must have a name of data type 

String (Characters). For example, it can be expressed as the 

following DL axiom: 

=1 Has_FBType_Name.String,  

and then converted into OWL format (Fig. 2): 

<rdfs:subClassOf> 

    <owl:Restriction> 

        <owl:onProperty rdf:resource="#Has_FBType_Name"/>             

             <owl:qualifiedCardinality     

                     rdf:datatype="&xsd;nonNegativeInteger">1 

            </owl:qualifiedCardinality> 

        <owl:onDataRange rdf:resource="#String"/>                 

     </owl:Restriction> 

</rdfs:subClassOf> 

Fig. 2. Data Property Example of FBType. 

The next step is to create all object properties for this class as 

well as related axioms. An FBType either has a Basic Function 

Block description or Function Block Network: 

 (≤1 Has_FBNetwork.FBNetwork    ≤1 Has_BasicFB.BasicFB ). 

In OWL this class is presented in Fig. 3. 

<rdfs:subClassOf> 

    <owl:Class> 

        <owl:unionOf rdf:parseType="Collection">                   

            <owl:Restriction> 

 <owl:onProperty rdf:resource="#Has_BasicFB"/>           

 <owl:onClass rdf:resource="#BasicFB"/>             

 <owl:maxQualifiedCardinality 

                     rdf:datatype="&xsd;nonNegativeInteger">1 

                  </owl:maxQualifiedCardinality> 

             </owl:Restriction> 

            <owl:Restriction> 

 <owl:onProperty rdf:resource="#Has_FBNetwork"/>              

 <owl:onClass rdf:resource="#FBNetwork"/>             

 <owl:maxQualifiedCardinality 

                     rdf:datatype="&xsd;nonNegativeInteger">1 

                  </owl:maxQualifiedCardinality> 

             </owl:Restriction> 

         </owl:unionOf> 

      </owl:Class> 

</rdfs:subClassOf> 

Fig. 3 Object Property Example of FBType. 

The overall ontology concept for FBType represented in 

Protégé tool [32] is listed in Fig. 4. The meaning of this 

description is that, an FBType individual must have exactly one 

interface, name, maximum one service, identification, version 

information, compiler information and comments, and 

maximum one Function Block Network or Basic Function 

Block description. 

 

Fig. 4.  FBType definition. 

B. Automatic Generation of Ontological Knowledge Base 

In order to quickly define the ontology T-Box of this 

component-based software architecture, an automatic 

converting methodology has been developed to reduce human 

errors during manual processes. 

According to [24], a XML file schema can be converted to 

OWL automatically. A “DTD/XSD to OWL” transformation 

engine has been developed in this work for the automatic 

generation of ontology from XML Schema. The IEC 61499 

XML format is specified in the form of three standard DTDs 

for Library Elements, Function Block Management 

Commands and Data types. Each DTD file is considered as a 

domain in the ontology and is converted and combined by the 

DTDtoOWL engine into a single ontological model. The 

mapping process is as follows: 

1) Each DTD document is considered as a domain in the 

ontology. DTD Elements can be grouped into sub-

domains if required. 

2) Each DTD Element is mapped to an OWL class. In order 

to give a unique ID to each class, domain and sub-domain 

names must be added as prefixes for the class ID. 

3) The hierarchies of the DTD Elements are mapped to the 

object properties and if the Element has only constants, 

they are mapped to the data properties straight away by 

using the prefix “Has_ConstantValue_”. In a standard 

DTD document, there are some symbols to indicate 

occurrence of an element: 

* Declaring Zero or More Occurrences of an Element; 

+      Declaring Minimum One Occurrence of an Element; 

? Declaring Zero or One Occurrences of an Element; 

The OWL keyword owl:QualifiedCardinality is used to 

represent those occurrence symbols, for example: 

* Owl:minQualifiedCardinality  = 0; 

+ Owl:minQualifiedCardinality = 1; 

? Owl:maxQualifiedCardinality = 1; 

The attributes of an element are mapped to data properties. 

There are two sorts of attributes: #REQUIRED and #IMPLIED. 

The “Required” attribute is mapped to 

Owl:QualifiedCardinality with quantity of exactly one. The 

“Implied” attribute means that the attribute is not necessary to 

appear in the XML, which can be expressed by 

Owl:maxQualifiedCardinality = 1. 

The DTD to OWL engine developed according to the rules 

above is able to generate the complete ontology T-Box of this 

component-based software architecture. The next step is to 

automatically import all function block files (*.fbt), resources 



files (*.res), device files (*.dev) and system configuration files 

(*.sys) into the A-Box for semantic analysis. 

An OWL individual is created for each XML element in the 

IEC 61499 source file. The object property 

Has_<ConceptName> is created for all child nodes of this 

XML element. Finally, data properties in the form 

Has_<ConceptName>_<AttributeName> are created for all 

attributes of this XML element with the actual value stored in 

them. Fig. 5 presents an interface and ECC of the basic 

function block “EStop” (that is a part of the example in Fig.1) 

which controls the valve’s opening and closing based on the 

current position and the “start/end” position sensor readings. 

The ECC of the FB works as follows: at the input event REQ 

indicating a position change, the valve control command will 

be re-calculated and then the ECC returns to the idle state. 

To describe this function block in the ontological knowledge 

base, an owl:NamedIndividual item is created in the form of 

<NodeType>_<NodeName> as FBType_EStopZone. To 

specify the node type of this instance, a rdf:type is inserted as 

the first sub-node with a type of FBType. All sub-elements, 

such as: Identification, VersionInfo, CompilerInfo, 

InterfaceList and Basic FB of FBType (refer to Fig. 5) are used 

to create object properties. Property Has_<ConceptName> is 

used to link to the owl individual of that particular sub-node. 

The attributes of this node are created as data properties. In our 

case, the data property Has_FBType_Name is created and 

refers to data type String. It indicates the name of this function 

block instance is EStop.  

 

<owl:NamedIndividual rdf:about="#FBType_EStop"> 

    <rdf:type rdf:resource="#FBType" /> 

    <Has_Identification  rdf:resource="#FBType_EStop_Identification" /> 

    <Has_VersionInfo rdf:resource="#FBType_EStop_VersionInfo" /> 

    <Has_CompilerInfo rdf:resource="FBType_EStop_CompilerInfo" /> 

    <Has_InterfaceList rdf:resource="#FBType_EStop_InterfaceList" /> 

    <Has_BasicFB rdf:resource="#FBType_EStop_BasicFB" /> 

    <Has_FBType_Name rdf:datatype="STRING"> EStop</Has_FBType_Name> 

</owl:NamedIndividual> 

Fig. 5. Example of OWL Individual for the EStopZone FB type. 

Following the rules presented in this section, all function 

blocks, resources, devices and system configurations can be 

imported directly into the ontology knowledge base A-Box. 

VI. SEMANTIC ANALYSIS OF IEC 61499 ONTOLOGY 

MODEL 

The ontological model of a particular artefact from the function 

block architecture (A-box) can be exposed to the semantic 

analysis. However, first the syntactic correctness of the artefact 

must be established. The generated DTD-based ontological 

model can be also used for that purpose. In the context of this 

work, a function block type is defined to be syntactically 

correct if all related object and data properties exist in the A-

Box and the quantity constraints are also satisfied. However, 

there are also some contradictions in the syntax definition in 

the standard which need to be resolved prior to conducting the 

syntax check. In the following of this section, a part of 

semantic rules is defined. 

The semantic analysis includes not only checking the system 

settings and parameters (for example, that all connections of 

FBs and mapping of variables are correct) or structural 

properties, but also the execution behaviors (for instance, 

determined execution order) [21] [26]. However, pure OWL 

DL is not sufficient to present such complex semantic rules, 

therefore SWRL is used here as the semantic rule language.  

In order to interpret SWRL rules, a software tool called 

reasoner is required. The ontology query language SQWRL 

[22] is an extension of SWRL that allows more comprehensive 

representation of reasoning results similar to SQL queries. 

SQWRL takes a standard SWRL rule antecedent and treats it 

as a pattern specification for a query SQWRL has some 

essential extensions as against SWRL, for example, set and 

string operations.  

Semantic rules represented in S(Q)WRL can be regarded as 

scripts written in a very high level programming language in 

order to search for a particular kind of semantic problem in 

applications complying with IEC 61499 standard. The 

ontological model can be compared to an API that provides 

access to basic artifacts of the program being analyzed. The 

benefits of the proposed approach are: 1) Compactness of the 

“scripts” – the search engine is built into S(Q)WRL 

implementation; 2) The “API” is generated automatically 

based on the syntax of input language; 3) Off-the-shelf tools 

(like Protégé) can be used as a semantic analysis platform. 

 In the remainder of this paper, the semantic rules are 

divided into various catalogues for each function block type 

and system configuration. SQWRL will be used for the rules 

definition due to a number of its powerful features as compared 

to SWRL. Some SQWRL rules are based on the description 

logic and can be expressed in the description logic format. A 

complete set of semantic rules was developed for IEC 61499 

semantic analysis. The complete rule set consists of several 

subsets including rules for basic FBs, composite FBs, SIFBs, 

applications and system configurations. In this section, only 

the subset rules for basic and composite FBs are given as an 

example. It should also be noted the sources of the proposed 

rule set are the following: i) the text of the standard IEC 61499 

(Part 1) [1], 2) the textual syntax of FB language (Annex B of 

Part 1 of the standard); 3) DTD for XML-documents 

representing FB systems (Annex A of Part 2 of the standard); 

4) examples from FBDK. 

Firstly, we define the semantic correctness of a basic FB as 

follows (this definition can be, of course, extended). 

 

Definition 1. A basic function block type is said to be 

semantically correct if all of the following rules are satisfied: 

(1) Inside the ECC, no identical EC transition condition is 

allowed from a single EC state;  

(2) If an EC state connects to more than one EC state, always 

true “1” is only allowed in the lowest priority EC 

transition condition of those connected EC states; 

(3) Each EC state must have at least one entry and one exit 

EC transition; 



(4) Each event input is used in at least one EC transition 

condition; 

(5) Each event output is used as at least one EC action output 

event; 

(6) Each data input variable is associated with at least one 

event input of this basic FB; 

(7) Each data output variable is associated with at least one 

event output of this basic FB; 

 

The first three semantic rules ensure the execution semantic of 

ECC is correct. For example, the first rule states that if an EC 

state is linked to multiple EC states, no identical EC transition 

condition is permitted. Identical EC transition conditions can 

cause some EC states to be never reachable as ECC will always 

execute the EC transition with the highest priority among those 

identical EC transition conditions. This rule is presented as a 

SQWRL query below: 
FBType(?FBType1) ^ Has_FBType_Name(?FBType1, ?name) 
^ Has_BasicFB(?FBType1, ?BFB1) ^ Has_ECC(?BFB1, ?ECC1)  
^ Has_ECState(?ECC1, ?ECState1) ^ Has_ECState_Name(?ECState1, ?name1) 
^ Has_ECTransition(?ECC1, ?ECT1)  
^ Has_ECTransition_Source(?ECT1, ?source1) 
^ swrlb:stringEqualIgnoreCase(?source1,?name1) 
^ Has_ECTransition_Condition(?ECT1, ?cond1)  
°sqwrl:makeSet(?set1, ?cond1) ^ sqwrl:groupBy(?set1, ?name, ?name1) 
^ sqwrl:makeBag(?bag1, ?cond1) ^ sqwrl:groupBy(?bag1, ?name, ?name1) 
° sqwrl:notEqual(?set1, ?bag1) -> sqwrl:select(?name, ?name1) 

 

In the SQWRL expression above, the left hand side is a SWRL 

rule antecedent. All operators starting with “sqwrl:” are the 

built-in functions from SQWRL. All EC Transitions with 

identical conditions grouped by EC transition source names 

will be listed by this SWRL rule. 

Swrlb:stringEqualIgnoreCase is a SWRL built-in function 

which compares two string value. Sqwrl:makeSet operator is 

used to construct sets of results without duplicate elements in 

the set. Sqwrl:makeBag operator is similar to the 

Sqwrl:makeSet operator but duplicate elements are allowed in 

the bag. Sqwrl:notEqual compares two sets/bags. To retrieve 

elements from a set/bag. The query prints FB types and EC 

states names where an error was detected. 

The right hand side sqwrl:select will build a table using 

arguments as columns of the table. In this rule, the found EC 

transition condition instances, which satisfied all the properties’ 

conditions, are stored in the list ?set1. When an FBType 

instance satisfies all properties (for instance, has_BasicFB) as 

well as the built-in functions (for instance, compare two 

sets/bags), this instance is included into the search results.  

 

The SQWRL expression of the second rule is as follows: 
FBType(?FBType1) ^ Has_FBType_Name(?FBType1, ?name) 
^ Has_BasicFB(?FBType1, ?BasicFB1) ^ Has_ECC(?BasicFB1,?ECC1) 
^ Has_ECState(?ECC1, ?ECState1) ^ Has_ECState_Name(?ECState1, ?name1) 
^ Has_ECTransition(?ECC, ?ECT1)  
^ Has_ECTransition_Source (?ECT1, ?Source1) 
^ swrlb:stringEqualIgnoreCase(?source1,?name1) 
^ Has_ECTransition_Condition(?ECT1,?Cond1) 
° sqwrl:makeBag(?bag1, ?cond1) ^ sqwrl:groupBy(?bag1, ?name, ?name1) 
^ sqwrl:makeSet(?set1, 1) °  sqwrl:size(?bag_size, ?bag1) 
^ swrlb:greaterThan(?bag_size, 1)  
^ swrlb:subtract(?BagSizeSubtract1, ?bag_size, 1) 
^ sqwrl:nth(?withoutLowestPriorityECTCond, ?bag1, 2, ? BagSizeSubtract1) 
^ sqwrl:contains(?withoutLowestPriorityECTCond, ?set1) 
-> sqwrl:select(?name, ?name1 ) 

 

Sqwrl:size will count the number of elements in a set or bag 

and stored in the variable indicated in the first operand. 

Sqwrl:contains check if a set/bag has all elements from another 

set/bag. Swrlb:greaterThan is a SWRL built-in function which 

compares its operands. Sqwrl:element is used to list all 

elements. In this semantic rule, all EC transitions with 

condition of always true having more than one EC transition 

are listed for correction.  

The third rule is used to detect dead end of execution in the 

event chain. If an EC state has no output transition, once the 

execution of that function block instance is completed, it will 

stuck in that state forever and never execute anymore. The rule 

is given as two parts. The first part is for EC states without 

outgoing EC transitions: 
FBType(?FBType1) ^ Has_FBType_Name(?FBType1, ?name) 
^ Has_BasicFB(?FBType1, ?BasicFB1) ^ Has_ECC(?BasicFB1,?ECC1) 
^ Has_ECState_Name(?ECState1, ?name1) 
^ Has_ECTransition(?ECC1, ?ECT1) 
^ Has_ECTransition_Source(?ECT1, ?source1) 
°sqwrl:makeSet(?set1,?name1) ^ sqwrl:groupBy(?set1, ?name) 
^ sqwrl:makeSet(?set2, ?source1) ^ sqwrl:groupBy(?set2, ?name) 
° sqwrl:difference(?set, ?set1, ?set2)^ sqwrl:element(?e1, ?set) 
-> sqwrl:select(?name, ?e1) 

 

And second part is for EC states without incoming EC 

transitions: 
FBType(?FBType1) ^ Has_FBType_Name(?FBType1, ?name) 
^ Has_BasicFB(?FBType1, ?BasicFB1) ^ Has_ECC(?BasicFB1,?ECC1) 
^ Has_ECState(?ECC1,?ECState1) ^ Has_ECState_Name(?ECState1, ?name1) 
^ Has_ECTransition(?ECC1, ?ECT1) 
^ Has_ECTransition_Destination(?ECT1, ?dest1) 
°sqwrl:makeSet(?set1,?name1) ^ sqwrl:groupBy(?set1, ?name) 
^ sqwrl:makeSet(?set2, ?dest1)^ sqwrl:groupBy(?set2, ?name) 
° sqwrl:difference(?set, ?set1, ?set2) ^ sqwrl:element(?e1, ?set) 
-> sqwrl:select(?name, ?e1) 

 

This search requires an EC transition to have both source and 

destination. If a FB type is in the result list, either the EC 

transition source or destination of that FB type is missing. 

The SQWRL implementation of the Rule 4 also uses set 

operations. The rule finds the set of input events which are not 

included in any EC transition. The rule’s description is as 

follows: 

FBType(?FBType1) ^ Has_InterfaceList(?FBType1, ?List1) 
^ Has_EventInputs(?List1,?EI1) ^ Has_Event(?EI1, ?EV1)  
^ Has_Event_Name(?EV1, ?EV1_Name) 
^ Has_BasicFB(?FBType1, ?BasicFB1) ^ Has_ECC(?BasicFB1,?ECC1) 
^ Has_ECTransition(?ECC1, ?ECT1),  
^ Has_ECTransition_Condition(?ECT1, ?ECCond1) 
^ swrlb:normalizeSpace(?ECCond1, ?ECCond1_Nospace) 
^ swrlb:substringBefore(?ECCond1_Nospace, “&”, ?EV2_Name)° 
sqwrl:makeSet(?EV1Set, ? EV1_Name) 
^ sqwrl:makeSet(?EV2Set, ?EV2_Name) 
^ sqwrl:difference(?EVSet, ?EV1Set, ?EV2Set)  
  -> sqwrl:select(?FBType1, ?EVSet) 

The first part of the query will return all event input names of 

a single basic FB. If the event input name, being looked for, is 

in the result list, this event input is a part of this basic FB type 

interface. The second part is to gather all events used in the EC 

transition conditions. The event names are located before “&” 

symbol in EC transition conditions. Finally the set difference 

operator is used to find events that are in the first set but not in 

the second one. It should be noted that the above rule is 

intended for the situation when EC-transition condition 

consists of two parts – an event input and a guard condition (In 



this case they are delimited by the sign “&”) or only event input 

is presented. For other cases different rules are developed. 

Other rules are similar to the rule 4, but applied to event outputs, 

and data inputs and outputs. For rule 6 and 7, it is syntactically 

correct that data inputs and outputs are not associated with any 

event inputs or outputs (allowed in the IEC 61499 standard). 

Those two rules just provide a warning to users there is a 

chance you may forget connecting those data inputs and 

outputs. Those rules could be applied to IEC 61499 IDEs to 

give a warning during compilation process. 

Definition 2. A composite FB type is said to be semantically 

correct if all of the following rules are satisfied: 

(1) The source and the destination data variable in a data 

connection must have consistent data types; 

(2) Each event (data) input is connected to an event (data) 

input inside the included FB network or an event (data) 

output; 

(3) Each event (data) output is connected from an event (data) 

output inside the included FB network or an event (data) 

input;  

(4) Each data input variable is associated with at least one 

event input of this composite FB interface; 

(5) Each data output variable is associated with at least one 

event output of this composite FB interface. 

(6) No dangerous event loop is allowed. 

(7) No short-Circuit event is allowed. 

The rule 4 and 5 here are similar to the BFB rule 6 and 7. The 

semantic analysis just provides a warning as it is syntactically 

correct. An interesting part of a composite FB is the event 

connections in FB network. As defined in the rules 6 and 7, 

dangerous event loop or short event can cause unexpected 

behavior in the execution [25] [26].  

Before start detecting dangerous event loops or short events, 

the event chain concept needs to be defined first. An event 

chain is defined as: 

Definition 3. An event chain in a FB network is a sequence of 

event connections c1, c2,…,cn which satisfies the following 

conditions: 

i) Event connection ci is connected to an event input of a FB 

instance fb and event connection ci+1 is connected from an 

event output of this FB instance fb (where 1≤i<n); 

ii) fb is “reactive” with respect to ci and ci+1, that means an 

event input from ci triggers an event output to ci+1 via some 

manipulations inside fb. 

An event chain is non-stoppable if c1=cn which forms an event 

cycle that keep looping indefinitely (like while(1) in C). A non-

stoppable event chain is considered as a dangerous event loop 

if there is an external event input that initializes the event loop 

like a SIFB (Fig. 6 (A)). 

 

Fig. 6. Dangerous Event Loop and Short-Circuit Event. 

The conditions of dangerous event loops are different for each 

FB meta-type and can be defined using the concept of causality. 

In a FB an event input ei1 triggers an event output eo1 if the 

following three conditions are true: 

A. If FB Instance is Basic FB type  

i)  There is an EC transition and the event input ei1 is the only 

EC transition condition attached for that EC transition;  

ii) At the destination EC state of the EC transition there is an 

EC action firing the event output eo1. A scheme for the event 

flow through a basic FB is shown in Fig. 7. 

 

Fig. 7. Event flow through a basic FB. 

Below an implementation of above concepts using S(Q)WRL 

rules is presented. 

Here event chains are defined using relations (in other words, 

OWL object properties) EvFlow and EvFlow_transitive in 

SWRL. The event flow via a basic FB can be defined as the 

following SWRL rule. At that, parameter conn1 of the rule 

consequent EvFlow represents a preceding event connection 

and parameter conn2 represents a successive event connection 

in an event chain. 

FBType(?FBType1) ^ Has_FBNetwork(?FBType1,?FBNetwork) 
^ Has_EventConnections(?FBNetwork,?conns) 
^ Has_Connection(?conns, ?conn1) 
^ Has_Connection_Destination(?conn1, ?dest1) 
^ Has_Connection(?conns, ?conn2) 
^ Has_Connection_Source(?conn2, ?source2) 
^ swrlb:SubstringBefore(?dest1, “.”, ?FBName) 
^ swrlb:SubstringBefore(?source2, “.”, ?FBName) 
^ swrlb:SubstringAfter(?dest1, “.”, ?evname1) 
^ swrlb:SubstringAfter(?source2, “.”, ? evname2) 
^ Has_FB(?FBNetwork,?FB)^ Has_FB_Name(?FB,?FBName) 
^ Has_FB_Type(?FB,?FBType2) ^ Has_BasicFB(?FBtype2,?BFBType) 
^ Has_ECC(?BFBType,?ECC)^ Has_ECTransition(?ECC,?ECTran) 
^ Has_ECTransition_Condition(?ECTran,?evname1) 
^ Has_ECTransition_Destination(?ECTran,?ECState) 
^ Has_ECAction(?ECState,?ECAction) 



^ Has_ECAction_Output(?ECAction,?evname2) 
->EvFlow(?conn1,?conn2) 

B. If FB Instance is SIFB type 

There is a service, a service sequence, and a service transaction 

such that this service transaction has an input primitive 

triggered by the event input ei1 and an output primitive fires the 

event output eo1 (as illustrated in Fig. 8). 

 

Fig. 8. Event flow through a SIFB. 

The following SWRL rule expresses the event flow through 

SIFB. 

FBType(?FBType1) ^ Has_FBNetwork(?FBType1,?FBNetwork) 
^ Has_EventConnections(?FBNetwork,?conns) 
^ Has_Connection(?conns, ?conn1) 
^ Has_Connection_Destination(?conn1, ?dest1) 
^ Has_Connection(?conns, ?conn2) 
^ Has_Connection_Source(?conn2, ?source2) 
^ swrlb:SubstringBefore(?dest1, “.”, ?FBName) 
^ swrlb:SubstringBefore(?source2, “.”, ?FBName) 
^ swrlb:SubstringAfter(?dest1, “.”, ?evname1) 
^ swrlb:SubstringAfter(?source2, “.”, ?evname2) 
^ Has_FB(?FBNetwork,?FB) ^ Has_FB_Name(?FB,?FBName) 
^ Has_FB_Type(?FB,?FBType2) ^ Has_Service(?FBtype2, ?ser) 
^ Has_ServiceSequence(?ser, ?ss) ^ Has_ServiceTransaction(?ss, ?st) 
^ Has_InputPrimitive(?st, ?inprim) 
^ Has_InputPrimitive_Event(?inprim, ?evname1) 
^ Has_OutputPrimitive(?st, ?outprim) 
^ Has_OutputPrimitive_Event(?outprim, ?evname2) 
->EvFlow(?conn1,?conn2) 

3. If FB Instance is Composite FB type 

In FB network inside the composite FB there is an event chain 

beginning at the event input ei1 and ended at the event output 

eo1. 

However, the relation EvFlow defined above only gives a pair 

of event connections via a function block. The following 

SWRL rules are used for computing transitive closure of 

relation EvFlow that defines an event chain recursively. 

EvFlow (?conn1, ?conn2) -> EvFlow_Transitive(?conn1, ?conn2) 
EvFlow (?conn1, ?conn2) ^ EvFlow_Transitive(?conn2, ?conn3) 
-> EvFlow_Transitive(?conn1, ?conn3) 

The SQWRL query below prints all event inputs and outputs 

of non-stoppable event chains of a flat FB network using the 

above SWRL rule for EvFlow_Transitive. 

EvFlow_Transitive (?conn, ?conn)^ Has_Connection_Source(?conn, ?source) 
^ Has_Connection_Destination(?conn, ?dest)-> sqwrl:select(?source, ?dest) 

If the detected function block type is a composite function 

block, extra SWRL rule is required to find the event output 

from the nested function blocks with internal event 

connections. 

The short event as illustrated in Fig 6 (B) is similar to the 

dangerous event loop rule. If an event is found bypassed a 

function block and that function block is non-stoppable, this 

will cause a semantic issue. The downstream function block 

will be invoked again after bypassing the event connection. 

Input data will be overwritten by the bypassed function block. 

All the rules above ensure that components constituting an FB 

system are semantically correct. The execution semantics of 

those components is also required to be checked in the system 

configuration. An example of the semantic rule could be no 

indefinite event loop (deadlock) or short-circuit event to exist 

in system configurations. Another example can require every 

function block instance in the function block application to be 

mapped to a resource.  

New semantic rules can be easily added to the semantic check 

system in the form of S(Q)WRL rules.  

VII. CASE STUDY OF BAGGAGE HANDLING SYSTEM ON 

SEMANTIC ANALYSIS 

In this section, the defined semantic rules will be applied in a 

test case that is based on a component-based software control 

application for the airport inbound baggage handling system 

illustrated in Fig. 1. The application is designed using the 

function block tool FBDK. 

The system consists of five transportation conveyors (IB101 to 

IB105), one inbound baggage carousel (IB1) and three 

emergency stop control station (ESTOP1 to ESTOP3). There 

is one electric photo eye sensor installed on the downstream 

end of each transportation conveyor to detect bags as well as 

on the carousel. Emergency stop control stations with reset 

push buttons are located around the inbound BHS system. 

The FB system configuration is designed based on the original 

PLC version. A SIFB polling data inputs triggered by an 

E_CYCLE FB is used to represent a PLC scan. Original PLC 

function blocks for Conveyor, EStop and EStopZone are 

converted to their IEC 61499 version. Finally, data outputs are 

updated by another SIFB. 

A semantic checker with OWL, SWRL libraries and SQWRL 

support is built for testing this case study. The complete rule 

set is implemented in this checker.  

The analysis is applied to all FBs used in the system by the 

checker automatically: basic FBs Conveyor, EStop and 

EStopZone, and system configuration. The semantic checker 

goes through each rule defined for this FB type and generates 

warnings. First, the Conveyor FB is responsible for the basic 

conveyor control functionality. The Conveyor FB has a 

number of EC states and each state is representing an actual 

status of a conveyor. As shown in Fig. 9, the original ECC has 

two issues found by the semantic analysis. First, the RUN state 

has connections to the CASCADE, the ECM and the FAULT 

state. However, the transition condition to the CASCADE state 

is “1” and it is not the lowest priority transition. This will cause 

the conveyor to start and stop all the time, so the motor can be 

easily damaged in a short period of time. Secondly, the FAULT 

state has no exit EC transition. As a result, once any conveyor 

is faulted, it will remain in the fault state and cause a deadlock. 

Those issues are resolved in the corrected version of conveyor 

control ECC that passed the semantic check. 



 

Fig. 9. Original and Corrected ECC of Basic Function Block Conveyor 

Control. 

Through the semantic analysis for the BHS system 

configuration, a dangerous event loop is found as shown in Fig. 

10. There is only REQ event condition and no EC guard 

condition for REQ state in the ECC of both the EStop function 

block and the EStopZone function block. Once the REQ input 

event of the function block ESTOP1 is triggered, this indefinite 

event loop will be activated. The emergency stop functionality 

will not perform properly. This is a serious hazard as the 

system is not capable to ensure the safety requirements. The 

full path of this dangerous event loop is highlighted in the Fig. 

10. This dangerous event loop is ignored by IEC 61499 

compilers. To remove this dangerous event loop, the feedback 

event connection from EStopZone_All.CNF to ESTOP1.REQ 

is removed. 

 

Fig. 10.Dangerous Event Loop Found in the Emergency Stop Control Part. 

This approach is also scalable to more complex industrial 

implementations like process control systems. The semantic 

checker is capable for checking more nested function block 

structures and larger function block networks within a 

reasonable time automatically. Also if another rule needs to be 

added, it can be achieved by simply inserting a S(Q)WRL text 

into the semantic checker. The semantic checker will 

automatically load this new rule on startup. 

VIII. IMPLEMENTATION 

The semantic analysis of function block systems presented by 

their ontological models can be performed using standard 

ontological tools, such as Protégé [27] with the corresponding 

SWRL reasoners and SQWRL plugins.  

A tool has been developed to generate automatically T-box 

ontological models from given DTD descriptions of syntax and 

import XML descriptions of function block systems into A-

box as instances. The tool has also a built-in query engine for 

interpreting the complete SQWRL language and most part of 

the SWRL built-in libraries.  

IX. CONCLUSIONS 

This paper presented a multi-layered ontology based semantic 

analysis for component-based software architecture. The 

semantic analysis using ontological knowledge base can be 

helpful at all design stages of component-based software 

system if implemented in the corresponding integrated 

development environments.  

The ontological knowledge base is generated from the IEC 

61499 standard DTD files and all instances directly imported 

from XML files. This automates the process of knowledge base 

creation and simplifies implementation of the method in the 

future analysis tools.  

The proposed approach has a number of advantages as 

compared to other approaches which develop dedicated 

validators for each semantic rule, as follows: 

1) The formal method of Web-ontologies allowing to express 

precisely, clearly and at a high level many semantic properties 

of FB systems;  

2) Formal representation of semantic properties allows usage 

of formal reasoning for the proof of these properties, that in 

turn increases reliability of the received outcomes of the 

analysis;  

3) Usage of description logic (DL) and DL-safe SWRL rules 

[13] guarantees decidability of the task of classification (in our 

case - the analysis), that means the task of the analysis should 

be completed in comprehensible time. 

4) The proposed method is flexible and extensible. Semantic 

analysis is performed by a universal engine that imports rules 

from extensible knowledge base. 

The proposed method can be extended to semantic analysis of 

any visual programming language, especially based on XML 

notation. 

The future work will be mainly focused on developing sets of 

semantic rules, for example, for specific design patterns or 

known semantic problems, as well as on optimization of the 

checker’s performance. This will aim at analysis of deeper 

semantic issues in actual application logic inside FBs. Finally, 

it will be really useful if a linkage between problem domain 

and IEC 61499 ontologies can be established (for example, 

generate IEC 61499 ontologies from other ontologies 

describing system behaviours). 

APPENDIX 

Description Logic Notation Definition [23]: 

Notation Description Example 

  
Union of concepts C   D 

 Intersection of concepts C  D 

 Concept equivalence C  D 

  
Concept inclusion C  D 

 Existential restriction  R.C 



 Complement C 

C and D are ontology concepts, R is the restriction condition. 
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