
Please cite as follows: J. Yan, V. Vyatkin, “Distributed Software Architecture Enabling Peer-to-Peer Communicating Controllers”,

IEEE Transactions on Industrial Informatics, 9(4), 2013, pp. 2200-2209

Abstract— This paper presents a novel model-driven software

architecture for systems with high degree of redundancy and

modularity of the equipment. The architecture is based on totally

decentralized control. It combines adaptability and robustness of

multi-agent control architectures with portability and

interoperability benefits of IEC 61499 function block architecture.

The architecture has been successfully proven feasible on a

number of field trials, including modeling and implementation of

a medium scale airport baggage handling control. Deployment was

done on distributed networks consisting of configurations ranging

from a few, to dozens of communicating control nodes. The work

confirmed the ability to deliver similar functional characteristics

as centralized systems but in a distributed implementation.

Performance testing and development verified sufficient

performance and software life cycle benefits.

Index Terms—Distributed Systems, Intelligent Control, IEC

61499

I. INTRODUCTION

Modern automation systems become increasingly complex

and the automation industry has rapidly progressed from

focusing on mass production to mass customization. Many

industrial systems are distributed over large physical areas.

Applying traditional centralized development paradigms is

becoming increasingly difficult. The programming paradigm of

Programmable Logic Controllers (PLC), which are the industry

standard for automation hardware, is of a very low level of

abstraction. PLCs attempt to solve automation problems with a

monolithic centralized control code which is not sufficiently

scalable. For example, design failures that have been recently

reported for several large airport projects, show the limits of the

incremental PLC technology improvement and ask for a

qualitative change.

Maintaining flexibility, adaptability and robustness using

traditional control approaches becomes difficult as systems

reach monolithic scales. Imbuing artificial intelligence into

industrial control immediately creates a system that requires

less user intervention but at the same time is highly scalable.

Integrating intelligent agents into manufacturing [1] allows

system components to renegotiate a production schedule based

on current load, faults or external intervention. Logistics [2] and

transport systems [3] benefit by dynamic re-routing and

accurate tracking of product or vehicle conditions.

The solution proposed in this paper combines model-driven

software engineering for distributed systems with elements of

artificial intelligence, such as multi-agent control. Towards this

end, this work presents a design methodology for integrating

intelligence into highly modular industrial automation systems.

The proposed design flow covers code architecture and design,

deployment and some experimental testing. The fundamental

architectural concept in the implementation relied on every

mechatronic component in the system having its own software

module. Functionality was handled using distributed algorithms

and the result was simulated on a distributed, networked

hardware test-bed of about 50 controllers. This paper extends

that work by generalizing the design pattern and proposing an

automated approach to the control design for highly modular

distributed systems.

This paper is structured as follows. Section II gives a

summary of the state of the art with some extensions from the

previous work. Section III discusses the design guidelines and

architecture for the development of distributed control of highly

modular industrial systems. An example baggage handling

system is used however the design methodology is kept as

generic as possible. Section IV describes an initial experiment

done using this architecture and the deployment hardware used.

Some performance metrics are used to demonstrate the

feasibility of the architecture.

II. RELATED WORKS

Distributed hardware and software architectures have the

potential to bring about many benefits to industrial automation.

Compared to centralized hardware configurations, distributed

systems have the advantage of having inherent redundancy to

failure.

New manufacturing paradigms such as mass customisation

were targeted towards the last decade to respond to

globalization and rapid changes in consumer demand. Surveys

into the needs of future manufacturing systems show a definite

demand for flexibility in order to handle mass customization

efforts [4]. Flexible Manufacturing Systems (FMS) [5] which

are often targeted at mid-volume and mid-variety production

requirements, attempt to anticipate any required system

changes in response to potential new products. However,

developing contingencies into the application led to some

undesirable resource under-utilization. Reconfigurable

Manufacturing Systems (RMS) [6] attempt to improve upon

Jeffrey Yan and Valeriy Vyatkin

Distributed Software Architecture Enabling

Peer-to-Peer Communicating Controllers

Please cite as follows: J. Yan, V. Vyatkin, “Distributed Software Architecture Enabling Peer-to-Peer Communicating Controllers”,

IEEE Transactions on Industrial Informatics, 9(4), 2013, pp. 2200-2209

FMS by enforcing design principles including modularity,

flexibility, scalability and interoperability. The modularity is

the clue for RMS to scale rapidly in any desired increments, but

it imposes new requirements to modular design of software.

The design of a fully reconfigurable system is still the area of

intense research. Minimizing the effect of system

reconfiguration at runtime is hugely sought after, as any level

of downtime is always undesirable. Works such as

implementing zero-downtime reconfiguration [7], sharing

available resource capacity [8] and automating system recovery

[9] provide differing design patterns for how downtime

minimization can be realized using RMS concepts. However,

integrating such patterns into the software life-cycle may be

difficult for existing applications. Decision making for RMS

can be orders of magnitude more difficult to develop compared

to non-RMS. Thus, imbuing intelligence into the decision

making process may reduce initial design difficulties.

A. Multi-Agent Systems

To facilitate design of control application for RMS, taking

cues from object-oriented software and designing the

application in a modular nature already speeds up system

development and maintenance significantly. However,

sometimes the production management, scheduling,

maintenance and fault-handling grow so complex that even

distributing functionality begins to become inadequate [1].

Multi-Agent Systems (MAS) [10] bring concepts inspired

from the domain of artificial intelligence and apply them to

automation. Rather than centralized control, or even distributed

control with fixed logic, MAS deploy a multitude of agents over

a distributed system. Each agent has only a local view and

collaborates with other agents to achieve high level goals. Some

promises of MAS include re-configurability [11], self-

adaptation [12], self-organization [13] and fault-tolerance [14].

The reconfiguration process itself can be handled using agents,

with the work in [15] utilizing a Reconfiguration Agent and

Coordination Agent to ensure safe distributed reconfigurations.

Using agents at the high-level control layer to reconfigure the

low-level control has also been investigated [16].

Agent-based technologies have been investigated for

reconfigurable manufacturing [1, 17, 18], process control [19],

embedded systems [20] and transport systems [3, 21].

Integrating agents into a traditional control application is often

highly domain specific, although some design patterns have

been proposed for particular applications. The work in [22]

proposed a two-level architecture separating agent based high-

level behaviour from the low-level reactive behaviour in

knowledge sharing applications. Another similar

implementation of this executed the high-level agent

functionality on a local PC [23]. When considering high

performance applications, it may be useful to execute high level

decisions on more powerful hardware.

Although MAS research has produced promising results, its

adoption in industry is low. In the research domain, ad-hoc

MAS implementations are common due to the variation of each

application. However, many frameworks have been developed

to ease MAS development. Current MAS frameworks such as

JADE [24] and JACK [11] act as middleware. They facilitate

MAS development through the provision of services such as

self-organization, discovery, co-ordination, instantiation of

agents, fault management and standardized communication.

While works such as [2] explore handling agent co-ordination

explicitly, frameworks aim to standardize these efforts. The

resultant multi-agent systems then exhibit characteristics such

as autonomy, local views and emergent behaviour in response

to environment changes, but without any centralized control.

B. IEC 61499 and the Intelligent Mechatronic Component

architecture

The IEC 61499 standard [25] provides a reference

architecture for the next generation of distributed automation

systems that complements the centralized programming

architecture of the IEC 61131-3 standard. There are commercial

IEC 61499 compliant integrated development environments

(IDE) such as ISaGRAF [26] and NxtStudio [27] that have been

used in some investigative works [28]. There are also mature

tools developed in research and academic communities, such as

4DIAC, FBDK and BlokIDE. IEC 61499 was conceived to

provide an adequate implementation platform, bridging the gap

between new generation of distributed automation systems

(such as RMS and MAS), and the existing automation

architectures. Works such as [20] and [29] attempt to leverage

the modular nature of IEC 61499 for reconfiguration purposes.

However, the IEC 61499 standard can be interpreted in a

number of ways resulting in differing execution semantics per-

platform [30] which should be taken into account during

development.

Current MAS frameworks are often insufficient for many

applications due to their real-time requirements. For these,

timely reaction and sensing is critical and [31] implements IEC

61499 based real-time applications in parallel with

unconstrained applications. The concept of time in [32] was

used as a mechanism to deliver synchronous actions over a

distributed, networked system.

The concept of an Intelligent Mechatronic Component (IMC)

was first proposed in [33] and thereafter a proposal for its

implementation in IEC 61499 was made in [34]. The IMC

concept describes a notion of intelligent physical components

(machines or parts thereof) that come pre-packaged with

software modules such as control programs, plant simulation

modules and potentially human-machine interface (HMI)

software components and applications. It allows hardware

components to encapsulate functionality into re-usable,

portable units that can be distributed along with the hardware.

These units can then be assembled into functional systems. The

modular nature of IEC 61499 was shown to support this concept

well.

IMC developers can take advantage of the earlier developed

PLC code using migration methods [35, 36] which enable

automatic translation from an IEC 61131-3 control program

into IEC 61499. This makes IMC and IEC 61499 an attractive

solution for preserving existing hardware investments while

Please cite as follows: J. Yan, V. Vyatkin, “Distributed Software Architecture Enabling Peer-to-Peer Communicating Controllers”,

IEEE Transactions on Industrial Informatics, 9(4), 2013, pp. 2200-2209

trying state of the art distributed design. Furthermore formal

verification of IMC based systems has also been explored [37],

which can provide additional assurance of functional

correctness for developers.

III. DESIGN ARCHITECTURE FOR DISTRIBUTED CONTROL

This work is notably different from other multi-agent control

implementations in several aspects. Firstly rather than relying

on existing MAS frameworks, this work will map agent-like

functionality directly into the IEC 61499 architecture. The term

agent is used here to represent distributed intelligence functions

such as self-organization and fault management. Not all

features of MAS frameworks are implemented such as assisted

agent instantiation and standardized communications protocols.

However, the authors believe self-organization,

decentralization and autonomy and other features represent

MAS adequately.

The IEC 61499 architecture improves life-cycle management

of the application which is essential for industry adoption, but

often not in the focus of traditional MAS approaches. Similar

modularity and distribution can be implemented in IEC 61131

applications depending on the chosen design paradigm.

However, integration effort may become a concern when

attempting to aggregate separate applications. This is

significantly mitigated by IEC 61499 due to event-driven

execution semantics, standardized communications protocols,

inherent modularity and obligatory elimination of global

variable usage.

The usage of IEC 61499 not only synergizes well with MAS

but could also integrate with other architectures including IEC

61131 and Service Oriented Architectures (SoA) [38]. IEC

61499 can provide a suitable system level architecture for the

description of SoA based systems. FBs could represent services

and FB compositions and connections could describe the

relationships between these services. The SoA paradigm also

has well standardized service discovery and description

mechanisms which are lacking in MAS platforms. A mixed

system of SoA, MAS alongside traditional IEC 61499

automation applications could utilize the strengths of each

paradigm and also be unified under an IEC 61499 system level

description.

The work in [23] describes the execution of agent

functionality in a local PC and low level control in PLCs. There

are increasing trends depicting intelligent components bundled

with some lightweight computational units [39]. An example of

these are the “intelligent” motor drives which include a separate

microcontroller in addition to the one implementing motion

control, such as the Eaton Distributed Electronic Drive line of

products [40]. This work maps agent functionality (both high

and low-level control) directly onto distributed hardware,

leveraging this shift from centralized computation to distributed

lightweight nodes. Since this hardware is markedly different

from a simple network of distributed PLCs, each intelligent

computational node will be referred to as a micro-PLC.

1 Here a simplification of IMC architecture with only four functional domains

A. Architecture

The architecture is based on the IMC concept, structured

internally following the Model-View-Controller (MVC) design

pattern [41]. The building blocks of the architecture are IMCs

integrating controllers and simulation models. Software

designed according to this architecture is highly portable, thus

can be deployed to a variety of hardware topologies, with one

extreme being a central controller and the other extreme being

micro-PLCs embedded into every component. Baggage

handling systems (BHS) will be used as an example application

for this work and previous investigations have yielded

promising results in the domain of distributed BHS.

An example is the BHS shown in Figure 1.

The plant is composed of a set of mechatronic components

(conveyor sections, x-ray machines, diverters, tag readers, etc.),

denoted by 𝑀 of which the granularity is a reasonable

assumption of modularity.

Figure 1 - CAD drawing of an example baggage handling system

composed of a multitude of conveyor sections.

Each component 𝛾 𝜖 𝑀 has some corresponding software

sub-components 𝑆(𝛾) = {𝑠𝑖𝑚, ℎ𝑚𝑖, 𝑣𝑖𝑒𝑤, 𝑐𝑡𝑙} following the

assumptions of the IMC architecture [33]1:

1. 𝛾(𝑠𝑖𝑚): This is an accurate simulation model of the

dynamics of the component and is assumed to be provided

by the equipment vendor. For testing purposes this could be

used in closed-loop simulation with the control. For

relatively lightweight simulations, deployment to micro-

PLC hardware may be possible. However, if performance is

an issue then PC based simulation with I/O cards could be

used. [42] proposes a framework for a systematic approach

for the composition of simulation and control in a

distributed system of intelligent mechatronic objects.

Custom simulations could be developed and deployed to

real-time simulator hardware; however closed-loop testing

will be limited by the complexity of the simulation.

2. 𝛾(ℎ𝑚𝑖): This is the human-machine-interface (HMI) that

provides interfacing to the component and is analogous to

the HMI of Supervisory Control and Data Acquisition

(SCADA) systems. The HMI is connected in closed-loop

with 𝛾(𝑐𝑡𝑙) and facilitates user interaction with the control

application.

is used.

Please cite as follows: J. Yan, V. Vyatkin, “Distributed Software Architecture Enabling Peer-to-Peer Communicating Controllers”,

IEEE Transactions on Industrial Informatics, 9(4), 2013, pp. 2200-2209

3. 𝛾(𝑣𝑖𝑒𝑤): This is a visualization of the dynamics of the

simulation model and would be provided by the vendor.

Since the simulation model is executing in closed-loop with

the controller, a live view of the component dynamics can

be viewed at runtime. Due to the lack of simulation in many

SCADA based systems this live view is usually not present.

4. 𝛾(𝑐𝑡𝑙): The controller of the component. This can be of

various degrees of complexity. The component’s vendor can

provide at least a controller implementing certain basic

operations or services, invoked by a higher level controller,

or, in some cases, a more sophisticated software agent

capable of self-organization with other such components.

The controller code can eventually be executed on the

embedded micro-PLC or on other PLC having information

access to the component.

The ability to deliver a higher level controller as a part of the

𝑆(𝛾) certainly adds value to the whole component. In this work,

it is investigated how the controller can implement the agent

functionality that collaborates with other components to

achieve certain goals. Holonic Manufacturing Systems research

often describes the decomposition of control into low-level and

high-level [43]. Similarly in this work, the controller 𝛾(𝑐𝑡𝑙) is

further decomposed into these two distinct elements:

1. 𝛾(𝑐𝑡𝑙 − 𝐿𝐿𝐶): The low-level control (LLC) which governs

the reading of sensors and the triggering of actuators. The

LLC should abstract out details of I/O and other low-level

behaviour such as initialization routines, fault detection and

PID functions. LLC should also be self-contained and only

communicate with the component it is assigned to.

2. 𝛾(𝑐𝑡𝑙 − 𝐻𝐿𝐶): The high-level control (HLC) accesses the

abstract interface provided by the LLC and provides agent-

like behaviour and thus the HLC will be referred to as the

agent for a particular component. The agent should

communicate with other agents to fulfil intended goals.

LLC is executed on local hardware. HLC implementations

can vary although standards such as FIPA [44] exist to

encourage interoperable communication. However, HLC is

usually executed on the local PC with an interface to the

controller hardware. This work instead deploys agent

functionality directly onto controller hardware alongside LLC

modules aiming at more integral and cost-effective solution.

Furthermore, agent behaviours may be better specified in

distinct sub-modules. These behaviours could be routing, fault

management and isolation, tracking and order handling.

While the plant contains a group of components, there are

also many relationships between these components. Details

such as physical topology, electrical wiring, material flow,

dependencies and redundancies are typically captured using

some form of design document. This methodology will mainly

focus on the physical relationships between components.

Topology can be expressed in many forms, however for

simplicity the plant configuration will be described as an

attributed directed graph 𝐺 = {𝑀, 𝐸, 𝐴, 𝐹𝑀, 𝐹𝐸}, where the set of

components 𝑀 encompasses the nodes of the graph and 𝐸 ⊆
𝑀 × 𝑀 denote the edges of the graph, where these edges

describe the topological relationships between components,

𝐴 is a set of attributes, 𝐹𝑀: 𝑀 → 𝐴 is an assignment of attributes

to nodes and 𝐹𝐸: 𝐸 → 𝐴 is assignment of attributes to the edges.

The edges of the graph could represent such relations as

upstream, downstream, merging into, diverting from and other

details. Each arc 𝛿 𝜖 𝐸 can be described by two elements 𝛿 =
{𝑝𝑟𝑒𝑑, 𝑠𝑢𝑐𝑐}:

1. 𝑝𝑟𝑒𝑑(𝛿): The tail of the arc, referred to here as the

predecessor. This could be an upstream conveyor, or an

upstream processing station or any component that precedes

the connection.

2. 𝑠𝑢𝑐𝑐(𝛿): The head of the arc, referred to here as the

successor. This could be a downstream conveyor, or a

component that the current component belongs to, such as a

sensor belonging to a conveyor.

Representing this information as a graph opens up the

possibility of using a variety of graph transformation techniques

[45, 46] to assist in automatic software generation.

B. Standardized agent composition and connection

Specific inter-component and intra-component

communication is defined by the tuple 𝐶 = ⟨𝑅, 𝑄⟩. 𝑅 ⊆ 𝑆(𝛾) ×
𝑆(𝛾) that specifies the intra-component communication

between software sub-components 𝑆(𝛾) =
{𝑠𝑖𝑚, ℎ𝑚𝑖, 𝑣𝑖𝑒𝑤, 𝑐𝑡𝑙} within a single component 𝛾. 𝑄 ⊆
𝑆(𝑝𝑟𝑒𝑑(𝛿)) × 𝑆(𝑠𝑢𝑐𝑐(𝛿)) specifies inter-component

communication between sub-components between the

predecessor and successor components defined by each arc 𝛿.

Intra-component communication for every component 𝛾 𝜖 𝑀 is

shown in Figure 2 and follows the IMC pattern. The set of

relations defining communication is expressed by the set 𝑅:

1. 𝑅(𝛾(𝑠𝑖𝑚), 𝛾(𝑐𝑡𝑙)) and 𝑅(𝛾(𝑐𝑡𝑙), 𝛾(𝑠𝑖𝑚)): Bidirectional

communication between the simulation and control.

2. 𝑅(𝛾(𝑠𝑖𝑚), 𝛾(𝑣𝑖𝑒𝑤)): Unidirectional communication

between simulation and view representing state data from

the simulation passed to the view for rendering.

3. 𝑅(𝛾(𝑐𝑡𝑙), 𝛾(ℎ𝑚𝑖)) and 𝑅(𝛾(ℎ𝑚𝑖), 𝛾(𝑐𝑡𝑙)): Bidirectional

communication between control and HMI representing

control panel interfacing with the controller application.

y(sim) y(ctl)

y(view) y(hmi)

S(y)y

Figure 2 - Communication between software elements within a

single component.

Inter-component communication between individual

software sub-components is defined by each topological arc

𝛿 𝜖 𝐸 and can be described by the set 𝑄:

1. 𝑄(𝑝𝑟𝑒𝑑(𝛿)(𝑐𝑡𝑙), 𝑠𝑢𝑐𝑐(𝛿)(𝑐𝑡𝑙)) and

𝑄(𝑠𝑢𝑐𝑐(𝛿)(𝑐𝑡𝑙), 𝑝𝑟𝑒𝑑(𝛿)(𝑐𝑡𝑙)): Controller to controller

Please cite as follows: J. Yan, V. Vyatkin, “Distributed Software Architecture Enabling Peer-to-Peer Communicating Controllers”,

IEEE Transactions on Industrial Informatics, 9(4), 2013, pp. 2200-2209

communication between two components, usually

accompanied by communication in the opposite direction

resulting in bidirectional communication between

controllers.

2. 𝑄(𝑝𝑟𝑒𝑑(𝛿)(𝑠𝑖𝑚), 𝑠𝑢𝑐𝑐(𝛿)(𝑠𝑖𝑚)) and

𝑄(𝑠𝑢𝑐𝑐(𝛿)(𝑠𝑖𝑚), 𝑝𝑟𝑒𝑑(𝛿)(𝑠𝑖𝑚)): Simulation model

communication used to pass model based data between

components.

Communication between two components 𝑐𝑖 and 𝑐𝑖+1 is

shown in Figure 3. An arc connects these two components and

is attributed with the downstream relationship. Bidirectional

communication would then be initiated with a corresponding

upstream relationship. Additionally, the controller element of

each component is then subdivided further into the LLC and

agent (HLC) sub-modules described earlier.

c
i

c
i+1

[downstream]

c
i+1

(sim)

S(c
i+1

)

c
i+1

(ctl)c
i

(sim)

S(c
i

)

c
i

(ctl)

c
i

(view) c
i

(hmi)

[downstream]

[downstream]

c
i+1

(view) c
i+1

(hmi)

Figure 3 - Communication between two components with a

downstream topological relationship.

System composition in this manner ensures reachability and

correctness of construction. Since each communication link is

an abstraction for data flow, distributed algorithms become

ideal for intelligent behaviour implementation such as fault

isolation, routing and discovery. To achieve equivalent

functionality compared to centralized implementations, the

agent module should implement a variety of distributed

algorithms rather than rely on centralized data.

One of the important functions for a conveyor agent is

handling transport; transportation decision making is in

addition highly related to routing. Figure 4 depicts a conveyor

module 𝑐𝑖 with upstream, downstream and merging relations to

adjacent conveyors. This is then decomposed into sub-modules

with the control 𝑐(𝑐𝑡𝑙) decomposed further into LLC and HLC

(agent). Routing is integrated into the HLC as a separate

module, receiving data from the downstream HLC while

passing data to upstream HLCs. Routing can be handled using

any of a number of distributed routing algorithms such as

Bellman-Ford [47]. Routing tables would be stored as local data

in the routing sub-module and distance vectors can be passed to

and from adjacent HLCs.

Attached components also affect the composition of the

agent sub-modules. These components could be diverters,

encoders or x-rays with distinct functions. Modules connected

directly to I/O can be instantiated in the LLC depending on the

number of physical modules, such as the diverters in Figure 4.

Routing decisions are passed to LLC from HLC to divert bags

on the correct route.

Another function useful for plug-and-play composition of

software components is the use of distributed mutual exclusion

algorithms (e.g. Ricart-Agrawala [48]) to avoid bags collision

in the point of baggage flow merge. These mutual exclusion

algorithms could be implemented in the same HLC module

along with routing by separating the request and release

behaviours into two communicating sub-modules with local

data as shown in Figure 4. Merging priorities can then be

negotiated with adjacent conveyors as per Ricart-Agrawala to

determine the current merging situation.

c
i

c
i+1

c
i-1

c(sim) c(ctl)

c(view) c(hmi)

llc hlc

c(ctl)

S(c
i

)

hlc

llc

Priority

Reply/

Release

Priority

Request

Routing

Segment

1-LLC

Segment

2-LLC

Diverter

1

Diverter

2

c
i
+

1

(
c
t
l
-
h

l
c
)

C
i
-
1

(
c
t
l
-
h

l
c
)

c
j

C
j

(
c
t
l
-
h

l
c
)

Upstream Downstream

Merging

Lane

Depending on the attached

components (diverters etc.)

low-level control could differ

Upstream

and

Merging

Lane HLC

Downstream

HLC

Routing

vectors passed

from upstream

components

Priority data stored and requested

from adjacent components

Figure 4 - Architecture of the controller FB for a single conveyor

segment.

C. Implementation with IEC 61499 reference architecture

The IEC 61499 architecture suits this methodology for a

number of reasons compared to IEC 61131-3. The FB concept

of IEC 61499 encourages encapsulation of functions into

standalone processes or composite assemblies thereof.

Software tools supporting IEC 61499 can facilitate distribution

of such software components to communicating micro-PLCs in

a seamless way. Application development can be done from a

high-level perspective rather than having to handle the low-

level configuration details of a network of controllers. The

implementation of both high-level and low-level functions

using IEC 61499 is more hardware compliant compared to

executing high-level functionality on proprietary platforms. In

future distributed systems, there will be a great diversity in the

types of distributed intelligent applications and the unification

of both HLC and LLC into a single reference architecture such

as IEC 61499 may assist in standardization efforts [49]. The

event-driven nature of IEC 61499 suits the message passing

communication paradigm that is implied by a network of

distributed agents. Since IEC 61499 provides an executable

block-diagram language, it allows for execution of the agents

directly on micro-PLCs. Finally, an additional benefit in using

IEC 61499 is that formal verification techniques can be used

[50, 51]. These increase dependability and may reduce testing

effort, however, as with simulation the usefulness of formal

Please cite as follows: J. Yan, V. Vyatkin, “Distributed Software Architecture Enabling Peer-to-Peer Communicating Controllers”,

IEEE Transactions on Industrial Informatics, 9(4), 2013, pp. 2200-2209

verification will also depend on the complexity of the test cases.

The IEC 61499 platform used in this work was ISaGRAF by

ICS Triplex. This environment was one of the two commercial

tools supporting IEC 61499 at the moment when this research

started. As compared to another environment, NxtStudio by

NxtControl, ISaGRAF had a better combination of features for

this project. One such feature is support of user defined data

types (UDTs) that is particularly useful for agent-based

applications, as they can be data intensive. ISaGRAF fully

supports UDT definitions not only in the IDE, but also on both

the software and hardware runtimes. ISaGRAF automatically

inserts communication between devices if an application is

distributed over a network and their implementation has been

shown to scale well [52]. In addition to network scale, the

process of wiring large distributed applications with I/O is

highly streamlined.

Backwards compatibility with PLC style of programming is

another benefit of ISaGRAF. Adoption of IEC 61499 is partly

hindered by reluctance for investment in new hardware; the

ability to execute state of the art IEC 61499 distributed

applications on existing hardware can be appealing, easing

migration concerns.

The ISaGRAF IEC 61499 runtime is cyclic and is built on

top of their existing IEC 61131-3 framework. Within a device,

events are recorded as integer values and FBs trigger based on

changes to these values during each cyclic scan. Between

devices, events are implemented as UDP messages, minimising

network utilization. Although some events are implemented in

a cyclic approach, it is still fully in line with IEC 61499.

A comparison between ISaGRAF and FBDK

implementations of IEC 61499 revealed some semantic and

syntactic differences but did not conclude that either

implementation was superior [53]. The constant CPU load

under the ISaGRAF cyclic paradigm can even yield relatively

predictable performance characteristics compared to more

sporadic event-driven implementations.

D. Distributed functions using ISaGRAF IEC 61499

mechanisms

Internally, the controller FB is further separated into LLC and

agent based control. Since this is a conveyor controller, a

significant amount of the agent functionality will be for

handling transport of baggage. For the routing sub-module in

Figure 4, the internal functionality was implemented using a

modified Distributed Bellman-Ford (DBF) algorithm. While

other routing algorithms can be used such as link-state based

Dijkstra algorithm [47], DBF only maintains routing

information about its neighbours to be able to route baggage

using shortest path. In a typical DBF implementation all nodes

are of interest however for a BHS application, a limited number

of nodes in the system are of interest. These are the final bag

destinations known as bag-sinks, although other intermediate

destinations such as x-rays, tag readers and manual security

checks should also have topological information stored. DBF

will have a shorter convergence time for smaller applications

compared to Dijkstra algorithm and is useful due to the

significant reduction in the number of nodes.

Networked communication can be significantly reduced to

account for this change; rather than every node in the system

passing data about every other node, only points of interest

within the BHS need to be included. Each agent must store a

local routing table with distance metrics. The routing tables

consist of a 2-dimensional array C with dimensions m x n.

Array size is selected based on a predicted number of

destinations (n) and maximum number of exit interfaces per

conveyor (m).

 i is the index of the destination and these are indexed from

0,1,2,3...,n-1 ;

 j is the divert exit interface. These are indexed from

0,1,2,3...,m-1;

 C[i, j] is the distance metric to destination(i) when

diverting to exit-interface(j).

The support for nested arrays in ISaGRAF is ideal for

modeling this data, compared to other IEC 61499 solutions

which only support one-dimensional arrays. Figure 5a) depicts

a scenario where two adjacent conveyors are preparing to share

routing data. The upstream conveyor has an empty routing

table. The downstream conveyor routing module iterates

through its routing table and finds the fastest routing path

denoted by the cheapest metric for each destination index. This

information is stored in a one-dimensional vector. Figure 5b

depicts the upstream conveyor receiving the routing vector and

appending it to its table, adding its own distance data to each

metric.

a)

destination(0)

destination(1)

destination(2)

destination(0)

destination(1)

destination(2)

b)

destination(0)

destination(1)

destination(2)

destination(0)

destination(1)

destination(2)

destination(0)

destination(1)

destination(2)

7

6

5

Figure 5 - Modified DBF algorithm transmitting routing vectors

based on destination bag-sinks only.

For every bag in the BHS, a bag-record object can be used to

represent data such as destination, priority and security level

clearance. The User Defined Types (UDT) mechanism in

ISaGRAF is ideal for these complex data structures. A table

storing bag-record objects for all bags on the current conveyor

should be stored within a tracking FB which can be part of a

Please cite as follows: J. Yan, V. Vyatkin, “Distributed Software Architecture Enabling Peer-to-Peer Communicating Controllers”,

IEEE Transactions on Industrial Informatics, 9(4), 2013, pp. 2200-2209

composite agent FB. This FB can query the routing table to

determine bag diversion eligibility. Intermediate destinations

such as x-rays can then modify this bag-record based on a scan

result, possibly incrementing the security clearance and re-

determining the next destination.

Fault handling was based on a fault-model with two types of

faults:

 Mechanical faults were detected by the local controller and

fault data propagated to upstream components. Upstream

components update routing tables and further propagate

these changes.

 Electrical faults such as the failure of a controller were

detected by adjacent upstream controllers. Upstream

controllers poll downstream controllers regularly to

determine status. Any faults are propagated upstream.

This fault information can be inserted into routing tables as non-

desirable values and using DBF, the system can then route

baggage around faults occurring during runtime. Figure 7

depicts a scenario during experimentation when a fault occurred

in a BHS layout. In this BHS configuration, conveyor c115 has

failed due to a simulated electrical fault. Fault data is then

propagated upstream to reroute baggage during system

operation using alternative path (c020, c209).

 ISaGRAF applications can be accessed via OLE for Process

Control (OPC) which is commonly used in industrial

automation to read and write data within hardware. Socket

communication FBs utilizing UDP or TCP protocols could be

used as an alternative to OPC. Additionally, another alternative

is the built in HMI functionality of NxtStudio. This allows data

from the FB application to connect to HMI FBs, which can be

consumed in NxtStudio developed HMI. Both these alternatives

require data to exist explicitly on FB interfaces and FBs to be

instantiated whenever new data is required. As systems scale in

size, OPC allows the visualization to simply connect to new

data without any modification to the control application.

E. Verification by Simulation

Along with facilitation of the system design, the IMC

architecture in combination with IEC 61499 dramatically

reduces time for development of a “Software in the Loop” (SiL)

simulation model. Simulation models can be developed in IEC

61499 or an external environment such as MATLAB as

discussed in detail in [54], where migration of models is also

discussed. If some of the simulation models are vendor

provided, then model development time is further reduced.

These closed-loop simulations could be either executed on

high-speed hardware, or directly deployed to control hardware.

Combined with PC based I/O solutions such as EtherCAT

cards, closed-loop simulation using IEC 61499 models

becomes attractive due to its low cost of entry.

Due to the entire application being IEC 61499 based, formal

verification techniques can further extend the scope of testing

beyond closed-loop simulations. Another benefit of having the

simulation model based on IEC 61499 is discussed in Hirsch et

al. [55] which describes that the usage of a simulation model

for predictive control may increase reliability and ease of

diagnostics.

Initially SiL testing was used with both the simulation model

and control executing on a local PC. Due to the executable

nature of the IEC 61499 applications, once the developer is

satisfied with performance the same control application can be

directly deployed to hardware. Hardware in the Loop (HiL)

testing then deploys the control to a single hardware controller

such as a PLC and runs in closed loop with the simulation model

on a local PC. Finally, for a distributed system, distributed HiL

testing deploys the control application across a network of

multiple controllers. Benefits of each phase of testing are as

follows:

1. SiL: Allows the developer to test the control application

against a simulation of the plant rather than predefined test

scripts. Simulation provides accurate dynamics and can

test more scenarios compared to predefined scripts.

2. HiL: Once SiL testing is complete, HiL testing allows

testing the execution performance of the control

application on the hardware controller. I/O performance

can then be tested between control and simulation.

3. Distributed HiL: This gives an indication of the network

performance for the control application. Metrics such as

reaction times, delays and network utilization can be

tested.

IV. EXPERIMENTS

With IEC 61499 and ISaGRAF, a highly distributed

application can be designed from a high level, the

corresponding FBs can be mapped onto devices and

communication will be inserted automatically. For these

experiments, usually a single composite FB containing both

HLC and LLC would be mapped per device. If distribution of

these functions were desired, IEC 61499 provides a sub-

application mechanism as an additional feature to manage

granular deployment details. depicts a network of embedded

controllers for which the configuration was deployed to.

PC Visualization/HMI

C
1

C
2

C
3

C
4

C
47

C
48

C
49

C
50

Ethernet Switch

OPC ServerC
1

ISaGRAF runtime

LLCAgent

I/O

...

Figure 6 – Architecture and image of 50 embedded control nodes

running the ISaGRAF IEC 61499 runtime used for deployment of

BHS control application.

Please cite as follows: J. Yan, V. Vyatkin, “Distributed Software Architecture Enabling Peer-to-Peer Communicating Controllers”,

IEEE Transactions on Industrial Informatics, 9(4), 2013, pp. 2200-2209

 BHS system with 53 conveyor FBs distributed over 27

NetBurner controllers (approximately two conveyor FBs per

controller) was used for network utilisation measurements. A

sample of three controllers in the system showed that utilization

was less than 0.1% and was far from saturating the bandwidth

of 100Mbit/s Ethernet.

Similar to PLC based architectures, the ISaGRAF IEC 61499

runtime is cyclic and cycle times can be a good indicator of

performance. Table 1 shows cycle times in a small scale system

with only three conveyor nodes distributed over three

controllers and the 53 conveyor node system distributed over

27 controllers. Results were obtained using the cycle time

measurement functionality of the ISaGRAF runtime.

Table 1 - Individual Controller PLC Cycle Times when running

only 3 controllers compared to a system running 27 controllers.

 Controller 1 Controller 2 Controller 3

3 Controllers 5.36ms 5.71ms 5.54ms

27 Controllers 5.51ms 5.64ms 5.72ms

Results show not adverse impact on cycle times when scaling

the system up. The maximum dimension of BHS system tested

in our design framework so far includes approximately 100

conveyors and their control distributed across 48 hardware

control nodes. ISaGRAF provides an option for fixed cycle

times with a flag indicting cycle time overflow which can be

useful for testing some time critical applications. Since agent

functionality is developed in IEC 61499, if hard real-time

performance is desired over ISaGRAF features, options such as

the synchronous compiler for IEC 61499 and static timing

analysis [56] can be used.

Another metric of the viability was deemed to be the re-

usability of software components. Developing a small system

was a matter of connecting IEC 61499 FBs in a manner that

mirrored the system topology. To extend this to a larger system

only involved adding more FBs depending on corresponding

new components in the system. Due to the use of ISaGRAF as

the IDE, communication between hardware controllers was

generated automatically at the deployment stage and an OPC

server configured for the new system without any user

intervention.

Performance metrics such as cycle times and network

utilization were satisfactory and resulted in correctly routed

baggage and execution of the BHS. System characteristics such

as autonomous local fault handling, minimal setup time per

topology and distributed reproduction of centralized functions

represented agent behaviour adequately.

V. CONCLUSIONS

This work proposed an architecture to facilitate the

implementation of the smart machine which implies distributed

automation hardware. The solution can be regarded as agent-

based due to its use of distributed intelligence, self-organization

and absence of centralized control. Agent behaviour and peer-

to-peer communication pattern was custom developed for the

application based on the physical topology of the system using

IEC 61499 rather than relying on existing MAS frameworks.

This had the benefit of being lightweight and directly

executable on the micro-PLC hardware. Testing was done to

confirm the feasibility of the approach and the resultant network

utilization levels and scan-cycle times measured. The usage of

the IEC 61499 standard addresses the automation software

lifecycle concerns and provides a supporting architecture from

software development to commercial hardware deployment.

This architecture is aimed at highly modular logistics

systems. However sectors such as energy which typically

include high levels of physical dispersion, show promising

results when applying intelligent, distributed control [57].

Applications whose functionality is less determined by the

physical topology of the plant, such as process control or

motion control may be less appropriate for this architecture.

Future extensions could integrate formal verification

techniques as well as simulation for testing. Works already exist

on formal verification IEC 61499 applications and it would be

ideal to integrate this architecture with the formal verification

Figure 7 - Experiments conducted on a BHS configuration depicting routing bags around a fault.

Please cite as follows: J. Yan, V. Vyatkin, “Distributed Software Architecture Enabling Peer-to-Peer Communicating Controllers”,

IEEE Transactions on Industrial Informatics, 9(4), 2013, pp. 2200-2209

solutions. Formal verification could then be used to test for

scenarios where simulation would not uncover. Interoperability

with MAS frameworks could also be investigated such as

implementation of the FIPA protocol. This could be integrated

as a set of FIPA communication function blocks based on the

IEC 61499 standard.

VI. REFERENCES

[1] P. Leitão, "Agent-based distributed manufacturing control: A state-

of-the-art survey," Engineering Applications of Artificial
Intelligence, vol. 22, pp. 979-991, 2009.

[2] C. Gang, Y. Zhonghua, and L. Chor Ping, "Coordinating Agents in

Shop Floor Environments From a Dynamic Systems Perspective,"
Industrial Informatics, IEEE Transactions on, vol. 2, pp. 269-280,

2006.

[3] D. Herrero-Perez and H. Martinez-Barbera, "Modeling Distributed
Transportation Systems Composed of Flexible Automated Guided

Vehicles in Flexible Manufacturing Systems," Industrial

Informatics, IEEE Transactions on, vol. 6, pp. 166-180, 2010.

[4] M. G. Mehrabi, A. G. Ulsoy, Y. Koren, and P. Heytler, "Trends and

perspectives in flexible and reconfigurable manufacturing systems,"

Journal of Intelligent Manufacturing, vol. 13, pp. 135-146, 2002.
[5] H. ElMaraghy, "Flexible and reconfigurable manufacturing systems

paradigms," International Journal of Flexible Manufacturing

Systems, vol. 17, pp. 261-276, 2005.
[6] Y. Koren, U. Heisel, F. Jovane, T. Moriwaki, G. Pritschow, G.

Ulsoy, and H. Van Brussel, "Reconfigurable Manufacturing

Systems," CIRP Annals - Manufacturing Technology, vol. 48, pp.
527-540, 1999.

[7] C. Sünder, A. Zoitl, B. Favre-Bulle, T. Strasser, H. Steininger, and

S. Thomas, "Towards reconfiguration applications as basis for
control system evolution in zero-downtime automation systems,"

presented at the IPROMS NoE Virtual International Conference,

2006.
[8] W. Shengyong, C. Song Foh, and M. A. Lawley, "Using Shared-

Resource Capacity for Robust Control of Failure-Prone
Manufacturing Systems," Systems, Man and Cybernetics, Part A:

Systems and Humans, IEEE Transactions on, vol. 38, pp. 605-627,

2008.
[9] T. Strasser and R. Froschauer, "Autonomous Application Recovery

in Distributed Intelligent Automation and Control Systems,"

Systems, Man, and Cybernetics, Part C: Applications and Reviews,
IEEE Transactions on, vol. PP, pp. 1-17, 2012.

[10] M. N. Huhns and L. M. Stephens, Multiagent systems: a modern

approach to distributed artificial intelligence. Cambridge,
Massachusetts: MIT Press, 2000.

[11] V. Marik and D. McFarlane, "Industrial adoption of agent-based

technologies," Intelligent Systems, IEEE, vol. 20, pp. 27-35, 2005.
[12] D. Weyns and M. Georgeff, "Self-Adaptation Using Multiagent

Systems," Software, IEEE, vol. 27, pp. 86-91, 2010.

[13] R. Frei and G. Di Marzo Serugendo, "Self-Organizing Assembly
Systems," Systems, Man, and Cybernetics, Part C: Applications and

Reviews, IEEE Transactions on, vol. 41, pp. 885-897, 2011.

[14] P. Tichý and R. Staron, "Multi-Agent Technology for Fault Tolerant
and Flexible Control." vol. 310, D. Srinivasan and L. Jain, Eds.,

Innovations in Multi-Agent Systems and Applications - 1 ed:

Springer Berlin / Heidelberg, 2010, pp. 223-246.

[15] M. Khalgui and H. M. Hanisch, "Reconfiguration Protocol for

Multi-Agent Control Software Architectures," Systems, Man, and

Cybernetics, Part C: Applications and Reviews, IEEE Transactions
on, vol. 41, pp. 70-80, 2011.

[16] W. Lepuschitz, A. Zoitl, Valle, x, M. e, and M. Merdan, "Toward

Self-Reconfiguration of Manufacturing Systems Using Automation
Agents," Systems, Man, and Cybernetics, Part C: Applications and

Reviews, IEEE Transactions on, vol. 41, pp. 52-69, 2011.

[17] O. J. L. Orozco and J. L. M. Lastra, "Agent-based control model for
reconfigurable manufacturing systems," in Emerging Technologies

and Factory Automation, 2007. ETFA. IEEE Conference on, 2007,

pp. 1233-1238.
[18] M. F. Zaeh and M. Ostgathe, "A multi-agent-supported, product-

based production control," in Control and Automation, 2009. ICCA

2009. IEEE International Conference on, 2009, pp. 2376-2383.

[19] M. Metzger and G. Polakow, "A Survey on Applications of Agent

Technology in Industrial Process Control," Industrial Informatics,
IEEE Transactions on, vol. 7, pp. 570-581, 2011.

[20] M. Khalgui, O. Mosbahi, and H. M. Hanisch, "Implementation of

agent-based reconfigurable embedded control systems," in
Industrial Informatics, 2009. INDIN 2009. 7th IEEE International

Conference on, 2009, pp. 428-433.

[21] C. Bo and H. H. Cheng, "A Review of the Applications of Agent
Technology in Traffic and Transportation Systems," Intelligent

Transportation Systems, IEEE Transactions on, vol. 11, pp. 485-

497, 2010.
[22] J. P. Soto, A. Vizcaíno, J. Portillo-Rodríguez, M. Piattini, and O.

Kusche, "A Two-Layer Multi-agent Architecture to Facilitate

Knowledge Sharing within Communities of Practice," Inteligencia
Artificial, Revista Iberoamericana de Inteligencia Artificial, pp. 46-

54, 2009.

[23] I. Hegny, O. Hummer, A. Zoitl, G. Koppensteiner, and M. Merdan,
"Integrating software agents and IEC 61499 realtime control for

reconfigurable distributed manufacturing systems," in Industrial

Embedded Systems, 2008. SIES 2008. International Symposium on,
2008, pp. 249-252.

[24] (2011). Java Agent DEvelopment Framework. Available:

http://jade.tilab.com/
[25] J. H. Christensen, "Design patterns for systems engineering in IEC

61499," presented at the Verteilte Automatisierung - Modelle und

Methoden für Entwurf, Verifikation, Engineering und
Instrumentierung, Otto-von-Guericke-Universität Magdeburg,

Germany, 2000.
[26] (2011). ICS Triplex ISaGRAF (6.0 ed.). Available:

http://www.isagraf.com

[27] (2011). NXTControl NXTStudio (1.4 ed.). Available:
www.nxtcontrol.com

[28] V. Vyatkin, "IEC 61499 as Enabler of Distributed and Intelligent

Automation: State-of-the-Art Review," Industrial Informatics,
IEEE Transactions on, vol. 7, pp. 768-781, 2011.

[29] T. Strasser, I. Muller, C. Sunder, O. Hummer, and H. Uhrmann,

"Modeling of Reconfiguration Control Applications based on the
IEC 61499 Reference Model for Industrial Process Measurement

and Control Systems," in Distributed Intelligent Systems: Collective

Intelligence and Its Applications, 2006. DIS 2006. IEEE Workshop
on, 2006, pp. 127-132.

[30] T. Strasser, A. Zoitl, J. H. Christensen, Su, x, and C. nder, "Design

and Execution Issues in IEC 61499 Distributed Automation and
Control Systems," Systems, Man, and Cybernetics, Part C:

Applications and Reviews, IEEE Transactions on, vol. 41, pp. 41-

51, 2011.
[31] A. Zoitl, G. Grabmair, F. Auinger, and C. Sunder, "Executing real-

time constrained control applications modelled in IEC 61499 with

respect to dynamic reconfiguration," in Industrial Informatics,
2005. INDIN '05. 2005 3rd IEEE International Conference on,

2005, pp. 62-67.

[32] C. Pang, J. Yan, V. Vyatkin, and S. Jennings, "Distributed IEC
61499 material handling control based on time synchronization with

IEEE 1588," in Precision Clock Synchronization for Measurement

Control and Communication (ISPCS), 2011 International IEEE
Symposium on, 2011, pp. 126-131.

[33] V. Vyatkin, "Intelligent mechatronic components: control system

engineering using an open distributed architecture," in Emerging
Technologies and Factory Automation, 2003. Proceedings. ETFA

'03. IEEE Conference, 2003, pp. 277-284 vol.2.

[34] C. Pang and V. Vyatkin, "IEC 61499 function block implementation
of Intelligent Mechatronic Component," in Industrial Informatics

(INDIN), 2010 8th IEEE International Conference on, 2010, pp.

1124-1129.
[35] T. Hussain and G. Frey, "Migration of a PLC Controller to an IEC

61499 Compliant Distributed Control System: Hands-on

Experiences," in Robotics and Automation, 2005. ICRA 2005.
Proceedings of the 2005 IEEE International Conference on, 2005,

pp. 3984-3989.

[36] W. Dai and V. Vyatkin, "Ontology Model for Migration from IEC
61131-3 PLC to IEC 61499 Function Block," in Electronic Design,

Test and Application (DELTA), 2011 Sixth IEEE International

Symposium on, 2011, pp. 172-175.

http://jade.tilab.com/
http://www.isagraf.com/
http://www.nxtcontrol.com/

Please cite as follows: J. Yan, V. Vyatkin, “Distributed Software Architecture Enabling Peer-to-Peer Communicating Controllers”,

IEEE Transactions on Industrial Informatics, 9(4), 2013, pp. 2200-2209

[37] S. Patil, V. Vyatkin, and M. Sorouri, "Formal verification of

Intelligent Mechatronic Systems with decentralized control logic,"

in Emerging Technologies & Factory Automation (ETFA), 2012
IEEE 17th Conference on, 2012, pp. 1-7.

[38] W. Dai and V. Vyatkin, "On migration from PLCs to IEC 61499:

Addressing the data handling issues," in Industrial Informatics
(INDIN), 2010 8th IEEE International Conference on, 2010, pp.

1142-1147.

[39] V. Vyatkin, Z. Salcic, P. S. Roop, and J. Fitzgerald, "Information
Infrastructure of Intelligent Machines based on IEC61499

Architecture," Industrial Electronics Magazine, IEEE, vol. 1, pp.

17-29, 2007.
[40] C. Batini, E. Nardelli, and R. Tamassia, "A layout algorithm for data

flow diagrams," Journal Name: IEEE Trans. Software Eng.; (United

States); Journal Volume: 12:4, pp. Medium: X; Size: Pages: 538-
546, 1986.

[41] E. Curry and P. Grace, "Flexible Self-Management Using the

Model-View-Controller Pattern," Software, IEEE, vol. 25, pp. 84-
90, 2008.

[42] V. Vyatkin, H. M. Hanisch, P. Cheng, and Y. Chia-Han, "Closed-

Loop Modeling in Future Automation System Engineering and
Validation," Systems, Man, and Cybernetics, Part C: Applications

and Reviews, IEEE Transactions on, vol. 39, pp. 17-28, 2009.

[43] J. H. Christensen, "HMS/FB Architecture and its Implementation,"
Agent-Based Manufacturing: Advances in the Holonic Approach,

pp. 53–87, 2003.

[44] V. Marik, P. M., P. Vrba, and V. Hrdonka, "FIPA standards and
Holonic Manufacturing," Agent-Based Manufacturing: Advances in

the Holonic Approach, 2003.
[45] U. Ryssel, J. Ploennigs, and K. Kabitzsch, "Generative function

block design and composition," in Factory Communication Systems,

2006 IEEE International Workshop on, 2006, p. 253.
[46] C. Huijs, "A graph rewriting approach for transformational design

of digital systems," in EUROMICRO 96. 'Beyond 2000: Hardware

and Software Design Strategies'., Proceedings of the 22nd
EUROMICRO Conference, 1996, pp. 177-184.

[47] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to

Algorithms, Third ed.: MIT Press and McGraw-Hill, 2009.
[48] M. Maekawa, A. Oldehoeft, and R. Oldehoeft, Operating Systems:

Advanced Concepts: Benjamin/Cummings Publishing Company,

Inc., 1987.

[49] J. L. M. Lastra and M. Delamer, "Semantic web services in factory

automation: fundamental insights and research roadmap," Industrial

Informatics, IEEE Transactions on, vol. 2, pp. 1-11, 2006.
[50] V. Vyatkin and H. M. Hanisch, "Formal modeling and verification

in the software engineering framework of IEC 61499: a way to self-

verifying systems," in Emerging Technologies and Factory
Automation, 2001. Proceedings. 2001 8th IEEE International

Conference on, 2001, pp. 113-118 vol.2.

[51] Z. E. Bhatti, R. Sinha, and P. S. Roop, "Observer based verification
of IEC 61499 function blocks," in Industrial Informatics (INDIN),

2011 9th IEEE International Conference on, 2011, pp. 609-614.

[52] J. Chouinard, J. Lavallée, J.-F. Laliberté, N. Landreaud, K.
Thramboulidis, P. Bettez-Poirier, F. Desy, F. Darveau, N. Gendron,

and C.-D. Trang, "An IEC 61499 configuration with 70 controllers;

challenges, benefits and a discussion on technical decisions,"
presented at the IEEE Conference on Emerging Technologies and

Factory Automation, Patras, Greece, 2007.

[53] V. Vyatkin and J. Chouinard, "On comparisons of the ISaGRAF
implementation of IEC 61499 with FBDK and other

implementations," in Industrial Informatics, 2008. INDIN 2008. 6th

IEEE International Conference on, 2008, pp. 289-294.
[54] C.-h. Yang and V. Vyatkin, "Transformation of Simulink models to

IEC 61499 Function Blocks for verification of distributed control

systems," Control Engineering Practice, vol. 20, pp. 1259-1269,
2012.

[55] M. Hirsch, V. Vyatkin, and H. M. Hanisch, "IEC 61499 Function

Blocks for Distributed Networked Embedded Applications," in
Industrial Informatics, 2006 IEEE International Conference on,

2006, pp. 670-675.

[56] Y. Li Hsien, P. S. Roop, V. Vyatkin, and Z. Salcic, "A Synchronous
Approach for IEC 61499 Function Block Implementation,"

Computers, IEEE Transactions on, vol. 58, pp. 1599-1614, 2009.

[57] G. Zhabelova and V. Vyatkin, "Multiagent Smart Grid Automation

Architecture Based on IEC 61850/61499 Intelligent Logical

Nodes," Industrial Electronics, IEEE Transactions on, vol. 59, pp.

2351-2362, 2012.

