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Abstract— This paper presents a novel model-driven software 

architecture for systems with high degree of redundancy and 

modularity of the equipment. The architecture is based on totally 

decentralized control. It combines adaptability and robustness of 

multi-agent control architectures with portability and 

interoperability benefits of IEC 61499 function block architecture. 

The architecture has been successfully proven feasible on a 

number of field trials, including modeling and implementation of 

a medium scale airport baggage handling control. Deployment was 

done on distributed networks consisting of configurations ranging 

from a few, to dozens of communicating control nodes. The work 

confirmed the ability to deliver similar functional characteristics 

as centralized systems but in a distributed implementation. 

Performance testing and development verified sufficient 

performance and software life cycle benefits. 

 

Index Terms—Distributed Systems, Intelligent Control, IEC 

61499 

I. INTRODUCTION 

Modern automation systems become increasingly complex 

and the automation industry has rapidly progressed from 

focusing on mass production to mass customization. Many 

industrial systems are distributed over large physical areas. 

Applying traditional centralized development paradigms is 

becoming increasingly difficult. The programming paradigm of 

Programmable Logic Controllers (PLC), which are the industry 

standard for automation hardware, is of a very low level of 

abstraction. PLCs attempt to solve automation problems with a 

monolithic centralized control code which is not sufficiently 

scalable. For example, design failures that have been recently 

reported for several large airport projects, show the limits of the 

incremental PLC technology improvement and ask for a 

qualitative change. 

Maintaining flexibility, adaptability and robustness using 

traditional control approaches becomes difficult as systems 

reach monolithic scales. Imbuing artificial intelligence into 

industrial control immediately creates a system that requires 

less user intervention but at the same time is highly scalable. 

Integrating intelligent agents into manufacturing [1] allows 

system components to renegotiate a production schedule based 

on current load, faults or external intervention. Logistics [2] and 

transport systems [3] benefit by dynamic re-routing and 

accurate tracking of product or vehicle conditions. 

 

 

The solution proposed in this paper combines model-driven 

software engineering for distributed systems with elements of 

artificial intelligence, such as multi-agent control. Towards this 

end, this work presents a design methodology for integrating 

intelligence into highly modular industrial automation systems. 

The proposed design flow covers code architecture and design, 

deployment and some experimental testing. The fundamental 

architectural concept in the implementation relied on every 

mechatronic component in the system having its own software 

module. Functionality was handled using distributed algorithms 

and the result was simulated on a distributed, networked 

hardware test-bed of about 50 controllers. This paper extends 

that work by generalizing the design pattern and proposing an 

automated approach to the control design for highly modular 

distributed systems. 

This paper is structured as follows. Section II gives a 

summary of the state of the art with some extensions from the 

previous work. Section III discusses the design guidelines and 

architecture for the development of distributed control of highly 

modular industrial systems. An example baggage handling 

system is used however the design methodology is kept as 

generic as possible. Section IV describes an initial experiment 

done using this architecture and the deployment hardware used. 

Some performance metrics are used to demonstrate the 

feasibility of the architecture. 

II. RELATED WORKS 

Distributed hardware and software architectures have the 

potential to bring about many benefits to industrial automation. 

Compared to centralized hardware configurations, distributed 

systems have the advantage of having inherent redundancy to 

failure.  

New manufacturing paradigms such as mass customisation 

were targeted towards the last decade to respond to 

globalization and rapid changes in consumer demand. Surveys 

into the needs of future manufacturing systems show a definite 

demand for flexibility in order to handle mass customization 

efforts [4]. Flexible Manufacturing Systems (FMS) [5] which 

are often targeted at mid-volume and mid-variety production 

requirements, attempt to anticipate any required system 

changes in response to potential new products. However, 

developing contingencies into the application led to some 

undesirable resource under-utilization. Reconfigurable 

Manufacturing Systems (RMS) [6] attempt to improve upon 
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FMS by enforcing design principles including modularity, 

flexibility, scalability and interoperability. The modularity is 

the clue for RMS to scale rapidly in any desired increments, but 

it imposes new requirements to modular design of software. 

The design of a fully reconfigurable system is still the area of 

intense research. Minimizing the effect of system 

reconfiguration at runtime is hugely sought after, as any level 

of downtime is always undesirable. Works such as 

implementing zero-downtime reconfiguration [7], sharing 

available resource capacity [8] and automating system recovery 

[9] provide differing design patterns for how downtime 

minimization can be realized using RMS concepts. However, 

integrating such patterns into the software life-cycle may be 

difficult for existing applications. Decision making for RMS 

can be orders of magnitude more difficult to develop compared 

to non-RMS.  Thus, imbuing intelligence into the decision 

making process may reduce initial design difficulties. 

A. Multi-Agent Systems 

To facilitate design of control application for RMS, taking 

cues from object-oriented software and designing the 

application in a modular nature already speeds up system 

development and maintenance significantly. However, 

sometimes the production management, scheduling, 

maintenance and fault-handling grow so complex that even 

distributing functionality begins to become inadequate [1]. 

Multi-Agent Systems (MAS) [10] bring concepts inspired 

from the domain of artificial intelligence and apply them to 

automation. Rather than centralized control, or even distributed 

control with fixed logic, MAS deploy a multitude of agents over 

a distributed system. Each agent has only a local view and 

collaborates with other agents to achieve high level goals. Some 

promises of MAS include re-configurability [11], self-

adaptation [12], self-organization [13] and fault-tolerance [14]. 

The reconfiguration process itself can be handled using agents, 

with the work in [15] utilizing a Reconfiguration Agent and 

Coordination Agent to ensure safe distributed reconfigurations. 

Using agents at the high-level control layer to reconfigure the 

low-level control has also been investigated [16]. 

Agent-based technologies have been investigated for 

reconfigurable manufacturing [1, 17, 18], process control [19], 

embedded systems [20] and transport systems [3, 21]. 

Integrating agents into a traditional control application is often 

highly domain specific, although some design patterns have 

been proposed for particular applications. The work in [22] 

proposed a two-level architecture separating agent based high-

level behaviour from the low-level reactive behaviour in 

knowledge sharing applications. Another similar 

implementation of this executed the high-level agent 

functionality on a local PC [23]. When considering high 

performance applications, it may be useful to execute high level 

decisions on more powerful hardware.  

Although MAS research has produced promising results, its 

adoption in industry is low. In the research domain, ad-hoc 

MAS implementations are common due to the variation of each 

application. However, many frameworks have been developed 

to ease MAS development. Current MAS frameworks such as 

JADE [24] and JACK [11] act as middleware. They facilitate 

MAS development through the provision of services such as 

self-organization, discovery, co-ordination, instantiation of 

agents, fault management and standardized communication. 

While works such as [2] explore handling agent co-ordination 

explicitly, frameworks aim to standardize these efforts. The 

resultant multi-agent systems then exhibit characteristics such 

as autonomy, local views and emergent behaviour in response 

to environment changes, but without any centralized control. 

B. IEC 61499 and the Intelligent Mechatronic Component 

architecture 

The IEC 61499 standard [25] provides a reference 

architecture for the next generation of distributed automation 

systems that complements the centralized programming 

architecture of the IEC 61131-3 standard. There are commercial 

IEC 61499 compliant integrated development environments 

(IDE) such as ISaGRAF [26] and NxtStudio [27] that have been 

used in some investigative works [28]. There are also mature 

tools developed in research and academic communities, such as 

4DIAC, FBDK and BlokIDE. IEC 61499 was conceived to 

provide an adequate implementation platform, bridging the gap 

between new generation of distributed automation systems 

(such as RMS and MAS), and the existing automation 

architectures. Works such as [20] and [29] attempt to leverage 

the modular nature of IEC 61499 for reconfiguration purposes. 

However, the IEC 61499 standard can be interpreted in a 

number of ways resulting in differing execution semantics per-

platform [30] which should be taken into account during 

development. 

Current MAS frameworks are often insufficient for many 

applications due to their real-time requirements. For these, 

timely reaction and sensing is critical and [31] implements IEC 

61499 based real-time applications in parallel with 

unconstrained applications. The concept of time in [32] was 

used as a mechanism to deliver synchronous actions over a 

distributed, networked system.  

The concept of an Intelligent Mechatronic Component (IMC) 

was first proposed in [33] and thereafter a proposal for its 

implementation in IEC 61499 was made in [34]. The IMC 

concept describes a notion of intelligent physical components 

(machines or parts thereof) that come pre-packaged with 

software modules such as control programs, plant simulation 

modules and potentially human-machine interface (HMI) 

software components and applications. It allows hardware 

components to encapsulate functionality into re-usable, 

portable units that can be distributed along with the hardware. 

These units can then be assembled into functional systems. The 

modular nature of IEC 61499 was shown to support this concept 

well. 

IMC developers can take advantage of the earlier developed 

PLC code using migration methods [35, 36] which enable 

automatic translation from an IEC 61131-3 control program 

into IEC 61499. This makes IMC and IEC 61499 an attractive 

solution for preserving existing hardware investments while 
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trying state of the art distributed design. Furthermore formal 

verification of IMC based systems has also been explored [37], 

which can provide additional assurance of functional 

correctness for developers. 

III. DESIGN ARCHITECTURE FOR DISTRIBUTED CONTROL  

This work is notably different from other multi-agent control 

implementations in several aspects. Firstly rather than relying 

on existing MAS frameworks, this work will map agent-like 

functionality directly into the IEC 61499 architecture. The term 

agent is used here to represent distributed intelligence functions 

such as self-organization and fault management. Not all 

features of MAS frameworks are implemented such as assisted 

agent instantiation and standardized communications protocols. 

However, the authors believe self-organization, 

decentralization and autonomy and other features represent 

MAS adequately. 

The IEC 61499 architecture improves life-cycle management 

of the application which is essential for industry adoption, but 

often not in the focus of traditional MAS approaches. Similar 

modularity and distribution can be implemented in IEC 61131 

applications depending on the chosen design paradigm. 

However, integration effort may become a concern when 

attempting to aggregate separate applications. This is 

significantly mitigated by IEC 61499 due to event-driven 

execution semantics, standardized communications protocols, 

inherent modularity and obligatory elimination of global 

variable usage. 

The usage of IEC 61499 not only synergizes well with MAS 

but could also integrate with other architectures including IEC 

61131 and Service Oriented Architectures (SoA) [38]. IEC 

61499 can provide a suitable system level architecture for the 

description of SoA based systems. FBs could represent services 

and FB compositions and connections could describe the 

relationships between these services. The SoA paradigm also 

has well standardized service discovery and description 

mechanisms which are lacking in MAS platforms. A mixed 

system of SoA, MAS alongside traditional IEC 61499 

automation applications could utilize the strengths of each 

paradigm and also be unified under an IEC 61499 system level 

description. 

The work in [23] describes the execution of agent 

functionality in a local PC and low level control in PLCs. There 

are increasing trends depicting intelligent components bundled 

with some lightweight computational units [39]. An example of 

these are the “intelligent” motor drives which include a separate 

microcontroller in addition to the one implementing motion 

control, such as the Eaton Distributed Electronic Drive line of 

products [40]. This work maps agent functionality (both high 

and low-level control) directly onto distributed hardware, 

leveraging this shift from centralized computation to distributed 

lightweight nodes. Since this hardware is markedly different 

from a simple network of distributed PLCs, each intelligent 

computational node will be referred to as a micro-PLC.  

 
1 Here a simplification of IMC architecture with only four functional domains 

A. Architecture 

The architecture is based on the IMC concept, structured 

internally following the Model-View-Controller (MVC) design 

pattern [41]. The building blocks of the architecture are IMCs 

integrating controllers and simulation models. Software 

designed according to this architecture is highly portable, thus 

can be deployed to a variety of hardware topologies, with one 

extreme being a central controller and the other extreme being 

micro-PLCs embedded into every component. Baggage 

handling systems (BHS) will be used as an example application 

for this work and previous investigations have yielded 

promising results in the domain of distributed BHS. 

An example is the BHS shown in Figure 1.  

The plant is composed of a set of mechatronic components 

(conveyor sections, x-ray machines, diverters, tag readers, etc.), 

denoted by 𝑀 of which the granularity is a reasonable 

assumption of modularity. 

 
Figure 1 - CAD drawing of an example baggage handling system 

composed of a multitude of conveyor sections. 

 

Each component 𝛾 𝜖 𝑀 has some corresponding software 

sub-components 𝑆(𝛾) = {𝑠𝑖𝑚, ℎ𝑚𝑖, 𝑣𝑖𝑒𝑤, 𝑐𝑡𝑙} following the 

assumptions of the IMC architecture [33]1: 

1. 𝛾(𝑠𝑖𝑚): This is an accurate simulation model of the 

dynamics of the component and is assumed to be provided 

by the equipment vendor. For testing purposes this could be 

used in closed-loop simulation with the control. For 

relatively lightweight simulations, deployment to micro-

PLC hardware may be possible. However, if performance is 

an issue then PC based simulation with I/O cards could be 

used. [42] proposes a framework for a systematic approach 

for the composition of simulation and control in a 

distributed system of intelligent mechatronic objects. 

Custom simulations could be developed and deployed to 

real-time simulator hardware; however closed-loop testing 

will be limited by the complexity of the simulation. 

2. 𝛾(ℎ𝑚𝑖): This is the human-machine-interface (HMI) that 

provides interfacing to the component and is analogous to 

the HMI of Supervisory Control and Data Acquisition 

(SCADA) systems. The HMI is connected in closed-loop 

with 𝛾(𝑐𝑡𝑙) and facilitates user interaction with the control 

application. 

is used. 
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3. 𝛾(𝑣𝑖𝑒𝑤): This is a visualization of the dynamics of the 

simulation model and would be provided by the vendor. 

Since the simulation model is executing in closed-loop with 

the controller, a live view of the component dynamics can 

be viewed at runtime. Due to the lack of simulation in many 

SCADA based systems this live view is usually not present. 

4. 𝛾(𝑐𝑡𝑙): The controller of the component. This can be of 

various degrees of complexity. The component’s vendor can 

provide at least a controller implementing certain basic 

operations or services, invoked by a higher level controller, 

or, in some cases, a more sophisticated software agent 

capable of self-organization with other such components. 

The controller code can eventually be executed on the 

embedded micro-PLC or on other PLC having information 

access to the component.  

The ability to deliver a higher level controller as a part of the 

𝑆(𝛾) certainly adds value to the whole component. In this work, 

it is investigated how the controller can implement the agent 

functionality that collaborates with other components to 

achieve certain goals. Holonic Manufacturing Systems research 

often describes the decomposition of control into low-level and 

high-level [43]. Similarly in this work, the controller 𝛾(𝑐𝑡𝑙) is 

further decomposed into these two distinct elements: 

1. 𝛾(𝑐𝑡𝑙 − 𝐿𝐿𝐶): The low-level control (LLC) which governs 

the reading of sensors and the triggering of actuators. The 

LLC should abstract out details of I/O and other low-level 

behaviour such as initialization routines, fault detection and 

PID functions. LLC should also be self-contained and only 

communicate with the component it is assigned to. 

2. 𝛾(𝑐𝑡𝑙 − 𝐻𝐿𝐶): The high-level control (HLC) accesses the 

abstract interface provided by the LLC and provides agent-

like behaviour and thus the HLC will be referred to as the 

agent for a particular component. The agent should 

communicate with other agents to fulfil intended goals. 

LLC is executed on local hardware. HLC implementations 

can vary although standards such as FIPA [44] exist to 

encourage interoperable communication. However, HLC is 

usually executed on the local PC with an interface to the 

controller hardware. This work instead deploys agent 

functionality directly onto controller hardware alongside LLC 

modules aiming at more integral and cost-effective solution. 

Furthermore, agent behaviours may be better specified in 

distinct sub-modules. These behaviours could be routing, fault 

management and isolation, tracking and order handling. 

While the plant contains a group of components, there are 

also many relationships between these components. Details 

such as physical topology, electrical wiring, material flow, 

dependencies and redundancies are typically captured using 

some form of design document. This methodology will mainly 

focus on the physical relationships between components. 

Topology can be expressed in many forms, however for 

simplicity the plant configuration will be described as an 

attributed directed graph 𝐺 = {𝑀, 𝐸, 𝐴, 𝐹𝑀, 𝐹𝐸}, where the set of 

components  𝑀 encompasses the nodes of the graph and 𝐸 ⊆
𝑀 × 𝑀 denote the edges of the graph, where these edges 

describe the topological relationships between components, 

𝐴 is a set of attributes, 𝐹𝑀: 𝑀 → 𝐴 is an assignment of attributes 

to nodes and 𝐹𝐸: 𝐸 → 𝐴 is assignment of attributes to the edges. 

The edges of the graph could represent such relations as 

upstream, downstream, merging into, diverting from and other 

details. Each arc 𝛿 𝜖 𝐸 can be described by two elements 𝛿 =
{𝑝𝑟𝑒𝑑, 𝑠𝑢𝑐𝑐}: 

1. 𝑝𝑟𝑒𝑑(𝛿): The tail of the arc, referred to here as the 

predecessor. This could be an upstream conveyor, or an 

upstream processing station or any component that precedes 

the connection. 

2. 𝑠𝑢𝑐𝑐(𝛿): The head of the arc, referred to here as the 

successor. This could be a downstream conveyor, or a 

component that the current component belongs to, such as a 

sensor belonging to a conveyor. 

Representing this information as a graph opens up the 

possibility of using a variety of graph transformation techniques 

[45, 46] to assist in automatic software generation. 

B. Standardized agent composition and connection 

Specific inter-component and intra-component 

communication is defined by the tuple 𝐶 = ⟨𝑅, 𝑄⟩. 𝑅 ⊆ 𝑆(𝛾) ×
𝑆(𝛾) that specifies the intra-component communication 

between software sub-components 𝑆(𝛾) =
{𝑠𝑖𝑚, ℎ𝑚𝑖, 𝑣𝑖𝑒𝑤, 𝑐𝑡𝑙} within a single component 𝛾. 𝑄 ⊆
𝑆(𝑝𝑟𝑒𝑑(𝛿)) × 𝑆(𝑠𝑢𝑐𝑐(𝛿)) specifies inter-component 

communication between sub-components between the 

predecessor and successor components defined by each arc 𝛿. 

Intra-component communication for every component 𝛾 𝜖 𝑀 is 

shown in Figure 2 and follows the IMC pattern. The set of 

relations defining communication is expressed by the set 𝑅: 

1. 𝑅(𝛾(𝑠𝑖𝑚), 𝛾(𝑐𝑡𝑙)) and 𝑅(𝛾(𝑐𝑡𝑙), 𝛾(𝑠𝑖𝑚)): Bidirectional 

communication between the simulation and control. 

2. 𝑅(𝛾(𝑠𝑖𝑚), 𝛾(𝑣𝑖𝑒𝑤)): Unidirectional communication 

between simulation and view representing state data from 

the simulation passed to the view for rendering. 

3. 𝑅(𝛾(𝑐𝑡𝑙), 𝛾(ℎ𝑚𝑖)) and 𝑅(𝛾(ℎ𝑚𝑖), 𝛾(𝑐𝑡𝑙)): Bidirectional 

communication between control and HMI representing 

control panel interfacing with the controller application.  

 

y(sim) y(ctl)

y(view) y(hmi)

S(y)y

 
Figure 2 - Communication between software elements within a 

single component. 

 

Inter-component communication between individual 

software sub-components is defined by each topological arc 

𝛿 𝜖 𝐸 and can be described by the set 𝑄: 

1. 𝑄(𝑝𝑟𝑒𝑑(𝛿)(𝑐𝑡𝑙), 𝑠𝑢𝑐𝑐(𝛿)(𝑐𝑡𝑙)) and 

𝑄(𝑠𝑢𝑐𝑐(𝛿)(𝑐𝑡𝑙), 𝑝𝑟𝑒𝑑(𝛿)(𝑐𝑡𝑙)): Controller to controller 
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communication between two components, usually 

accompanied by communication in the opposite direction 

resulting in bidirectional communication between 

controllers. 

2. 𝑄(𝑝𝑟𝑒𝑑(𝛿)(𝑠𝑖𝑚), 𝑠𝑢𝑐𝑐(𝛿)(𝑠𝑖𝑚)) and 

𝑄(𝑠𝑢𝑐𝑐(𝛿)(𝑠𝑖𝑚), 𝑝𝑟𝑒𝑑(𝛿)(𝑠𝑖𝑚)): Simulation model 

communication used to pass model based data between 

components. 

Communication between two components 𝑐𝑖 and 𝑐𝑖+1 is 

shown in Figure 3. An arc connects these two components and 

is attributed with the downstream relationship. Bidirectional 

communication would then be initiated with a corresponding 

upstream relationship. Additionally, the controller element of 

each component is then subdivided further into the LLC and 

agent (HLC) sub-modules described earlier. 

c
i

c
i+1

[downstream]

c
i+1

(sim)

S(c
i+1

)

c
i+1

(ctl)c
i

(sim)

S(c
i

)

c
i

(ctl)

c
i

(view) c
i

(hmi)

[downstream]

[downstream]

c
i+1

(view) c
i+1

(hmi)

 
Figure 3 - Communication between two components with a 

downstream topological relationship. 

 

System composition in this manner ensures reachability and 

correctness of construction. Since each communication link is 

an abstraction for data flow, distributed algorithms become 

ideal for intelligent behaviour implementation such as fault 

isolation, routing and discovery. To achieve equivalent 

functionality compared to centralized implementations, the 

agent module should implement a variety of distributed 

algorithms rather than rely on centralized data. 

One of the important functions for a conveyor agent is 

handling transport; transportation decision making is in 

addition highly related to routing. Figure 4 depicts a conveyor 

module 𝑐𝑖 with upstream, downstream and merging relations to 

adjacent conveyors. This is then decomposed into sub-modules 

with the control 𝑐(𝑐𝑡𝑙) decomposed further into LLC and HLC 

(agent). Routing is integrated into the HLC as a separate 

module, receiving data from the downstream HLC while 

passing data to upstream HLCs. Routing can be handled using 

any of a number of distributed routing algorithms such as 

Bellman-Ford [47]. Routing tables would be stored as local data 

in the routing sub-module and distance vectors can be passed to 

and from adjacent HLCs.  

Attached components also affect the composition of the 

agent sub-modules. These components could be diverters, 

encoders or x-rays with distinct functions. Modules connected 

directly to I/O can be instantiated in the LLC depending on the 

number of physical modules, such as the diverters in Figure 4. 

Routing decisions are passed to LLC from HLC to divert bags 

on the correct route. 

Another function useful for plug-and-play composition of 

software components is the use of distributed mutual exclusion 

algorithms (e.g. Ricart-Agrawala [48]) to avoid bags collision 

in the point of baggage flow merge. These mutual exclusion 

algorithms could be implemented in the same HLC module 

along with routing by separating the request and release 

behaviours into two communicating sub-modules with local 

data as shown in Figure 4. Merging priorities can then be 

negotiated with adjacent conveyors as per Ricart-Agrawala to 

determine the current merging situation. 
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Figure 4 - Architecture of the controller FB for a single conveyor 

segment. 

C. Implementation with IEC 61499 reference architecture 

The IEC 61499 architecture suits this methodology for a 

number of reasons compared to IEC 61131-3. The FB concept 

of IEC 61499 encourages encapsulation of functions into 

standalone processes or composite assemblies thereof. 

Software tools supporting IEC 61499 can facilitate distribution 

of such software components to communicating micro-PLCs in 

a seamless way. Application development can be done from a 

high-level perspective rather than having to handle the low-

level configuration details of a network of controllers. The 

implementation of both high-level and low-level functions 

using IEC 61499 is more hardware compliant compared to 

executing high-level functionality on proprietary platforms. In 

future distributed systems, there will be a great diversity in the 

types of distributed intelligent applications and the unification 

of both HLC and LLC into a single reference architecture such 

as IEC 61499 may assist in standardization efforts [49]. The 

event-driven nature of IEC 61499 suits the message passing 

communication paradigm that is implied by a network of 

distributed agents. Since IEC 61499 provides an executable 

block-diagram language, it allows for execution of the agents 

directly on micro-PLCs. Finally, an additional benefit in using 

IEC 61499 is that formal verification techniques can be used 

[50, 51]. These increase dependability and may reduce testing 

effort, however, as with simulation the usefulness of formal 
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verification will also depend on the complexity of the test cases. 

The IEC 61499 platform used in this work was ISaGRAF by 

ICS Triplex. This environment was one of the two commercial 

tools supporting IEC 61499 at the moment when this research 

started. As compared to another environment, NxtStudio by 

NxtControl, ISaGRAF had a better combination of features for 

this project. One such feature is support of user defined data 

types (UDTs) that is particularly useful for agent-based 

applications, as they can be data intensive. ISaGRAF fully 

supports UDT definitions not only in the IDE, but also on both 

the software and hardware runtimes. ISaGRAF automatically 

inserts communication between devices if an application is 

distributed over a network and their implementation has been 

shown to scale well [52]. In addition to network scale, the 

process of wiring large distributed applications with I/O is 

highly streamlined. 

Backwards compatibility with PLC style of programming is 

another benefit of ISaGRAF. Adoption of IEC 61499 is partly 

hindered by reluctance for investment in new hardware; the 

ability to execute state of the art IEC 61499 distributed 

applications on existing hardware can be appealing, easing 

migration concerns. 

The ISaGRAF IEC 61499 runtime is cyclic and is built on 

top of their existing IEC 61131-3 framework. Within a device, 

events are recorded as integer values and FBs trigger based on 

changes to these values during each cyclic scan. Between 

devices, events are implemented as UDP messages, minimising 

network utilization. Although some events are implemented in 

a cyclic approach, it is still fully in line with IEC 61499.  

A comparison between ISaGRAF and FBDK 

implementations of IEC 61499 revealed some semantic and 

syntactic differences but did not conclude that either 

implementation was superior [53].  The constant CPU load 

under the ISaGRAF cyclic paradigm can even yield relatively 

predictable performance characteristics compared to more 

sporadic event-driven implementations. 

D. Distributed functions using ISaGRAF IEC 61499 

mechanisms 

Internally, the controller FB is further separated into LLC and 

agent based control. Since this is a conveyor controller, a 

significant amount of the agent functionality will be for 

handling transport of baggage. For the routing sub-module in 

Figure 4, the internal functionality was implemented using a 

modified Distributed Bellman-Ford (DBF) algorithm. While 

other routing algorithms can be used such as link-state based 

Dijkstra algorithm [47], DBF only maintains routing 

information about its neighbours to be able to route baggage 

using shortest path. In a typical DBF implementation all nodes 

are of interest however for a BHS application, a limited number 

of nodes in the system are of interest. These are the final bag 

destinations known as bag-sinks, although other intermediate 

destinations such as x-rays, tag readers and manual security 

checks should also have topological information stored. DBF 

will have a shorter convergence time for smaller applications 

compared to Dijkstra algorithm and is useful due to the 

significant reduction in the number of nodes. 

Networked communication can be significantly reduced to 

account for this change; rather than every node in the system 

passing data about every other node, only points of interest 

within the BHS need to be included. Each agent must store a 

local routing table with distance metrics. The routing tables 

consist of a 2-dimensional array C with dimensions m x n. 

Array size is selected based on a predicted number of 

destinations (n) and maximum number of exit interfaces per 

conveyor (m). 

 i is the index of the destination and these are indexed from 

0,1,2,3...,n-1 ; 

 j is the divert exit interface. These are indexed from 

0,1,2,3...,m-1; 

 C[i, j] is the distance metric to destination(i) when 

diverting to exit-interface(j). 

The support for nested arrays in ISaGRAF is ideal for 

modeling this data, compared to other IEC 61499 solutions 

which only support one-dimensional arrays. Figure 5a) depicts 

a scenario where two adjacent conveyors are preparing to share 

routing data. The upstream conveyor has an empty routing 

table. The downstream conveyor routing module iterates 

through its routing table and finds the fastest routing path 

denoted by the cheapest metric for each destination index. This 

information is stored in a one-dimensional vector. Figure 5b 

depicts the upstream conveyor receiving the routing vector and 

appending it to its table, adding its own distance data to each 

metric. 
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Figure 5 - Modified DBF algorithm transmitting routing vectors 

based on destination bag-sinks only. 

 

For every bag in the BHS, a bag-record object can be used to 

represent data such as destination, priority and security level 

clearance. The User Defined Types (UDT) mechanism in 

ISaGRAF is ideal for these complex data structures. A table 

storing bag-record objects for all bags on the current conveyor 

should be stored within a tracking FB which can be part of a 
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composite agent FB. This FB can query the routing table to 

determine bag diversion eligibility. Intermediate destinations 

such as x-rays can then modify this bag-record based on a scan 

result, possibly incrementing the security clearance and re-

determining the next destination. 

Fault handling was based on a fault-model with two types of 

faults: 

 Mechanical faults were detected by the local controller and 

fault data propagated to upstream components. Upstream 

components update routing tables and further propagate 

these changes. 

 Electrical faults such as the failure of a controller were 

detected by adjacent upstream controllers. Upstream 

controllers poll downstream controllers regularly to 

determine status. Any faults are propagated upstream. 

This fault information can be inserted into routing tables as non-

desirable values and using DBF, the system can then route 

baggage around faults occurring during runtime. Figure 7 

depicts a scenario during experimentation when a fault occurred 

in a BHS layout. In this BHS configuration, conveyor c115 has 

failed due to a simulated electrical fault. Fault data is then 

propagated upstream to reroute baggage during system 

operation using alternative path (c020, c209). 

 ISaGRAF applications can be accessed via OLE for Process 

Control (OPC) which is commonly used in industrial 

automation to read and write data within hardware. Socket 

communication FBs utilizing UDP or TCP protocols could be 

used as an alternative to OPC. Additionally, another alternative 

is the built in HMI functionality of NxtStudio. This allows data 

from the FB application to connect to HMI FBs, which can be 

consumed in NxtStudio developed HMI. Both these alternatives 

require data to exist explicitly on FB interfaces and FBs to be 

instantiated whenever new data is required. As systems scale in 

size, OPC allows the visualization to simply connect to new 

data without any modification to the control application. 

 

E. Verification by Simulation  

Along with facilitation of the system design, the IMC 

architecture in combination with IEC 61499 dramatically 

reduces time for development of a “Software in the Loop” (SiL) 

simulation model. Simulation models can be developed in IEC 

61499 or an external environment such as MATLAB as 

discussed in detail in [54], where migration of models is also 

discussed. If some of the simulation models are vendor 

provided, then model development time is further reduced. 

These closed-loop simulations could be either executed on 

high-speed hardware, or directly deployed to control hardware. 

Combined with PC based I/O solutions such as EtherCAT 

cards, closed-loop simulation using IEC 61499 models 

becomes attractive due to its low cost of entry. 

Due to the entire application being IEC 61499 based, formal 

verification techniques can further extend the scope of testing 

beyond closed-loop simulations. Another benefit of having the 

simulation model based on IEC 61499 is discussed in Hirsch et 

al. [55] which describes that the usage of a simulation model 

for predictive control may increase reliability and ease of 

diagnostics. 

Initially SiL testing was used with both the simulation model 

and control executing on a local PC. Due to the executable 

nature of the IEC 61499 applications, once the developer is 

satisfied with performance the same control application can be 

directly deployed to hardware. Hardware in the Loop (HiL) 

testing then deploys the control to a single hardware controller 

such as a PLC and runs in closed loop with the simulation model 

on a local PC. Finally, for a distributed system, distributed HiL 

testing deploys the control application across a network of 

multiple controllers. Benefits of each phase of testing are as 

follows: 

1. SiL: Allows the developer to test the control application 

against a simulation of the plant rather than predefined test 

scripts. Simulation provides accurate dynamics and can 

test more scenarios compared to predefined scripts. 

2. HiL: Once SiL testing is complete, HiL testing allows 

testing the execution performance of the control 

application on the hardware controller. I/O performance 

can then be tested between control and simulation. 

3. Distributed HiL: This gives an indication of the network 

performance for the control application. Metrics such as 

reaction times, delays and network utilization can be 

tested. 

IV. EXPERIMENTS 

With IEC 61499 and ISaGRAF, a highly distributed 

application can be designed from a high level, the 

corresponding FBs can be mapped onto devices and 

communication will be inserted automatically.  For these 

experiments, usually a single composite FB containing both 

HLC and LLC would be mapped per device. If distribution of 

these functions were desired, IEC 61499 provides a sub-

application mechanism as an additional feature to manage 

granular deployment details.  depicts a network of embedded 

controllers for which the configuration was deployed to. 
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Figure 6 – Architecture and image of 50 embedded control nodes 

running the ISaGRAF IEC 61499 runtime used for deployment of 

BHS control application. 
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 BHS system with 53 conveyor FBs distributed over 27 

NetBurner controllers (approximately two conveyor FBs per 

controller) was used for network utilisation measurements. A 

sample of three controllers in the system showed that utilization 

was less than 0.1% and was far from saturating the bandwidth 

of 100Mbit/s Ethernet.  

Similar to PLC based architectures, the ISaGRAF IEC 61499 

runtime is cyclic and cycle times can be a good indicator of 

performance. Table 1 shows cycle times in a small scale system 

with only three conveyor nodes distributed over three 

controllers and the 53 conveyor node system distributed over 

27 controllers. Results were obtained using the cycle time 

measurement functionality of the ISaGRAF runtime. 

 

Table 1 - Individual Controller PLC Cycle Times when running 

only 3 controllers compared to a system running 27 controllers. 

 

 Controller 1 Controller 2 Controller 3 

3 Controllers 5.36ms 5.71ms 5.54ms 

27 Controllers 5.51ms 5.64ms 5.72ms 

 

Results show not adverse impact on cycle times when scaling 

the system up. The maximum dimension of BHS system tested 

in our design framework so far includes approximately 100 

conveyors and their control distributed across 48 hardware 

control nodes. ISaGRAF provides an option for fixed cycle 

times with a flag indicting cycle time overflow which can be 

useful for testing some time critical applications. Since agent 

functionality is developed in IEC 61499, if hard real-time 

performance is desired over ISaGRAF features, options such as 

the synchronous compiler for IEC 61499 and static timing 

analysis [56] can be used. 

Another metric of the viability was deemed to be the re-

usability of software components. Developing a small system 

was a matter of connecting IEC 61499 FBs in a manner that 

mirrored the system topology. To extend this to a larger system 

only involved adding more FBs depending on corresponding 

new components in the system. Due to the use of ISaGRAF as 

the IDE, communication between hardware controllers was 

generated automatically at the deployment stage and an OPC 

server configured for the new system without any user 

intervention.  

Performance metrics such as cycle times and network 

utilization were satisfactory and resulted in correctly routed 

baggage and execution of the BHS. System characteristics such 

as autonomous local fault handling, minimal setup time per 

topology and distributed reproduction of centralized functions 

represented agent behaviour adequately. 

V. CONCLUSIONS 

This work proposed an architecture to facilitate the 

implementation of the smart machine which implies distributed 

automation hardware. The solution can be regarded as agent-

based due to its use of distributed intelligence, self-organization 

and absence of centralized control. Agent behaviour and peer-

to-peer communication pattern was custom developed for the 

application based on the physical topology of the system using 

IEC 61499 rather than relying on existing MAS frameworks. 

This had the benefit of being lightweight and directly 

executable on the micro-PLC hardware. Testing was done to 

confirm the feasibility of the approach and the resultant network 

utilization levels and scan-cycle times measured. The usage of 

the IEC 61499 standard addresses the automation software 

lifecycle concerns and provides a supporting architecture from 

software development to commercial hardware deployment.  

This architecture is aimed at highly modular logistics 

systems. However sectors such as energy which typically 

include high levels of physical dispersion, show promising 

results when applying intelligent, distributed control [57]. 

Applications whose functionality is less determined by the 

physical topology of the plant, such as process control or 

motion control may be less appropriate for this architecture. 

Future extensions could integrate formal verification 

techniques as well as simulation for testing. Works already exist 

on formal verification IEC 61499 applications and it would be 

ideal to integrate this architecture with the formal verification 

 
Figure 7 - Experiments conducted on a BHS configuration depicting routing bags around a fault. 
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solutions. Formal verification could then be used to test for 

scenarios where simulation would not uncover. Interoperability 

with MAS frameworks could also be investigated such as 

implementation of the FIPA protocol. This could be integrated 

as a set of FIPA communication function blocks based on the 

IEC 61499 standard. 
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