
1

C.-H. Yang, V. Vyatkin, G. Zhabelova, C-W. Yang, “Co-Simulation Environment for Distributed Controls in SmartGrid”, IEEE

Transactions on Industrial Informatics, 2013, doi: 10.1109/TII.2013.2258165

 1Abstract – This paper proposes a co-simulation environment

for “hardware in the loop” or “software in the loop” validation of

distributed controls in Smart Grid. The controls are designed

using model-driven engineering with the IEC 61499 Function

Block architecture. These are connected with plant models, for

example in MATLAB/Simulink, through communication channels

such as UDP or TCP sockets. This solution enables multi-closed-

loop plant-controller simulation. The communication between

plant and controller is event-driven. In order to perform realistic

simulation, the proposed solution takes into account computation

and communication delays on the controller side in Function

Blocks and compensates model time on the plant side in MATLAB

model accordingly. Causality and accuracy of the method have

been formally addressed. This approach has been tested and

demonstrated with several Smart Grid-related examples.

Index Terms - Smart Grid, Simulation, IEC 61499, Software in

the loop, Hardware in the loop, MATLAB Simulink, Function

Blocks

I. INTRODUCTION

The Smart Grid is defined as an integration of electricity and

communication, so that the electric network will be “always

available, live, interactive, interconnected, and tightly coupled

with the communications in a complex energy and information

real-time network” [1], [2]. The result will be more efficient

power systems capable of better managing the growing power

consumption, providing fault resilience and seamlessly

integrating Distributed Energy Resources (DER), such as

renewable energy sources (e.g. wind and solar) [3].

There is common understanding in the research as well as in the

industrial community that traditional hierarchical automation

design approaches have limited applicability in Smart Grid.

Therefore, the control architecture of the Smart Grid is seen by

many researchers as a heterogeneous network of controllers

communicating in a peer- to- peer manner [4, 5].

Development and deployment of Smart Grid controls following

this principle raises a number of challenges related to

verification and validation of distributed grid intelligence (DGI).

Hardware in the Loop (HiL) and Software in the Loop (SiL)

simulations are often used to validate controllers in Smart Grid-

1 Copyright (c) 2013 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be

obtained from the IEEE by sending a request to pubs-permissions@ieee.org.
John Yang is with The University of Auckland, 1142, New Zealand.(e-mail:

cyan034@aucklanduni.ac.nz).

Gulnara Zhabelova is with The University of Auckland, 1142, New Zealand
(e-mail: gzha046@aucklanuni.ac.nz).

related projects [6-13]. However, in order to ensure the

correctness of simulation results one needs to establish a

system-level model of the distributed system which would

combine dynamics of the primary equipment and computational

processes in distributed communicating control nodes. This is

especially hard when distributed systems are considered due to

asynchrony of control nodes and variable communication times.

The IEC 61499 standard [14], [15] has been established as a

reference system architecture for distributed embedded and

automation systems design. This standard introduces a new

notion of Function Block (FB) which is an event-driven module

encapsulating one or several functions. The standard aims at

flexibility and re-configurability of automation systems. Smart

Grid is seen as one of the promising areas of its application [16],

[17]. Besides, IEC 61499 can serve as an efficient device-level

executable implementation of designs based on the popular IEC

61850 standard from the power distribution domain, as

proposed in [18]. The IEC 61850 standard suggests the concept

of Logical Nodes (LN) for object-oriented code design in

Intelligent Electronic Devices (IED). It was proposed in [13] to

enhance the LN concept of IEC 61850 by adding agent-based

intelligence and encapsulating the resulting Intelligent Logical

Nodes into IEC 61499 function blocks.

This paper presents a co-simulation approach that relies on

common communication channels (e.g. through User Datagram

Protocol (UDP) or Transmission Control Protocol (TCP)

sockets) to construct the closed-loop models. The controller

implementation is done in Function Blocks while the plant

model is implemented in a simulation environment based on

time steps, e.g. MATLAB. The approach is to couple the

environments into a joint simulation. The advantage of this

approach is that only a little modification is required to the

existing plant and control models. In particular, this paper

addresses the problem of correct simulation timing in such co-

simulation environment. The proposed solution has been

validated in several Smart Grid related test cases with three

different platforms implementing distributed controls.

The paper is structured as follows: Section II surveys the related

works. Section III discusses basics of event-driven co-

Chen-Wei Yang is with The University of Auckland, 1142, New Zealand (e-

mail: cyan083@aucklanduni.ac.nz).

Valeriy Vyatkin, is with the Department of Computer Science, Computer
and Space Engineering, Lulea Tekniska Universitet, Sweden (e-mail:

valeriy.vyatkin@ltu.se).

Chia-han Yang, Non-member, Gulnara Zhabelova, Non-member, Chen-Wei Yang, Student Member,

IEEE, and Valeriy Vyatkin, Senior Member, IEEE,

Co-Simulation Environment for Event-Driven

Distributed Controls of Smart Grid

2

C.-H. Yang, V. Vyatkin, G. Zhabelova, C-W. Yang, “Co-Simulation Environment for Distributed Controls in SmartGrid”, IEEE

Transactions on Industrial Informatics, 2013, doi: 10.1109/TII.2013.2258165

simulation environment computational implementation and

considers differences of simulation from the real-life plant-

controller interaction in order to establish the conditions of

correct simulation later in the paper. Section IV presents

implementation details of a correct co-simulation in the closed-

loop that takes into account computation and communication

times on the controller side. Results of three experiments are

presented in Section V. Section VI concludes this paper with

discussion of future work plans.

II. STATE OF THE ART

Using a simulation model and environment to validate the

controller design “in the loop” is a fairly common technique in

industrial practice. However, a straightforward approach to that,

is to run the simulation platform faster (in real-time) by

increasing performance of the computing platform and ignoring

the overheads introduced by the simulation environment. For

example, commercial simulation systems, such as RTDS and

Opal RT follow this approach.

Similar approaches in creating “in the loop” simulation

environment to validate PLC code can be exemplified by RRS

(Realistic Robot Simulation) [19] and CAPE (Computer Aided

Production Engineering) Tools [20]. As reported in [21],

closed-loop simulation can be implemented via a standardized

interface such as OPC for IEC 61131-3 PLC design. OPC

defines interfaces between PLCs and computers. According to

[21], simulation-based PLC code verification is a part of virtual

commissioning, where the control code is verified against

model of the controlled process simulated in an external

simulation environment. However, the paper identifies several

problems with this approach that can lead to an unreliable

verification results. The four major problems with the OPC

interface are: the so called free-wheeling, communication jitter

and delay, race condition and slow sampling. Free-wheeling

occurs as a result of unsynchronized execution of model and

controller, when one run on one side can correspond to several

runs on the other. The presented solution includes

synchronization of both execution cycles and tweaking the

controller code in order to ensure its time-dependent functions

(such as timers) still work correctly after such synchronization.

In the context of distributed automation and IEC 61499

architecture, a design and verification framework has been

proposed in [22] based on the use of multi-closed-loop models.

Following this framework, some model-driven approaches have

been proposed and implemented to help in validation and

verification of Function Block designs. This includes the

Intelligent Mechatronics Components (IMCs) [23, 24] concept

based on the model-view-control (MVC) design patterns, and

Composite Automation Type (CAT) concept by NxtControl

[25]. These model-driven designs are applied to various

industrial applications for closed-loop simulation and

visualisation, such as smart-grid power systems, baggage

handling systems (BHS) [26], building management systems

[25], etc.

Another example of distributed system validation is the work

by Maturana et al. [27] demonstrating co-simulation between

MATLAB and SoftPLC to validate distributed multi-agent

control design. There are two research groups [16] and [12]

investigating event driven control for Smart Grid using IEC

61499 and applying co-simulation of the developed control

code with the power system models.

An early version of a co-simulation environment for Smart Grid

distributed control modelled in IEC 61499 communicating with

MATLAB power system model was presented in [16]. At that

stage both environments were running concurrently without

taking into account timing of the communication and

computation. The difference of IEC 61499 from PLC is event-

driven execution, which potentially can eliminate the problem

of free-wheeling, but all other timing issues raised in [21]

remain intact.

Strasser et al. [12] present a similar approach of simulating the

coordinated voltage control of an Under-Load Tap Changer

(ULTC) implemented as IEC 61499 control application in the

4DIAC framework and the ULTC model together with a model

of the distribution network simulated in the GNU Octave/PSAT

environment. This work's contribution is a co-simulation

framework for Smart Grid applications based on open standard

and open source software. However, the paper does not address

the timing issues of the co-simulation.

Other works do not utilise IEC 61499 event-driven control

model, but widely apply co-simulation of control and power

system model to validate Smart Grid solutions.

Godfrey et al. in [9] analyse the impact of wireless

communication on the deployment of distributed energy

resources on a model of distribution circuit (feeder). The co-

simulation was performed using OpenDSS discrete-event

simulator and ns2 network simulator. The work is an attempt to

create a realistic simulation of the power system with

distributed generation and energy storage nodes. The simulation

takes into account various communication network delays and

studies their impact on the overall system performance. The

simulation of power system in closed-loop with its control was

not a focus of this work.

Similar work of co-simulation power system model with the

model of communication network is performed by Liberatore

and Al-Hammouri in [10] and Lin et al in [11]. Liberatore and

Al-Hammouri also apply ns-2 network simulator for the models

of the communication between Smart Grid distributed devices

and sensors. For the power system modelling they use power

grid simulator based on Modelica [10].

These papers acknowledge the impact of the communication

delays on the power system dynamics. Since Smart Grid is a

distributed system, integrating geographically spread

generation, control devices and sensors, it heavily relies on

communication network. Papers [9-11] study impact of

communication network topology and communication delay on

the Smart Grid dynamics.

However, neither of mentioned works addresses the timing

issues raised in [21].

The compensation techniques for accuracy improvement in HiL

or SiL simulation have been addressed in a number of works, in

different application domains. For example, the work by

Chinchul and Wootaik [28] analyses unavoidable time delay

3

C.-H. Yang, V. Vyatkin, G. Zhabelova, C-W. Yang, “Co-Simulation Environment for Distributed Controls in SmartGrid”, IEEE

Transactions on Industrial Informatics, 2013, doi: 10.1109/TII.2013.2258165

effects in a hardware-in-the-loop (HIL) simulation for

automotive permanent magnet synchronous motor drive

systems and proposes a compensation method for the delays

incurred at complex interfaces between the model and

controller. The compensation technique, however, is based on

the modification of the model itself for a measured delay. Also,

the method does not address the granularity of the model time

in the simulation environment.

Dufour and Belanger indicate in [29] that in modelling of some

basic converter circuit topologies, exhibiting fast switching

dynamics, simulations with relatively large fixed time step can

cause multiple switching events in a single time-step. The paper

proposes a compensation technique embedded into a

proprietary MATLAB solver that allows for correct real-time

simulation of precision-critical hardware-in-the-loop (HIL)

systems.

There are standard co-simulation interfaces such as HLA [30,

31], FMI [32] and DIS [33] developed for purpose of large scale

system model integration. FMI, HLA and DIS are mainly used

in automotive industry, space and defense projects. Their prior

application in the power system domain is unknown to the

authors.

The learning curve of the HLA, FMI and DIS is steep and

considerably long.

Each simulation has to implement a communication layer, a part

of the HLA or FMI framework, to be compatible and able to

participate in co-simulation.

Both co-simulation frameworks require a central coordinator

(in HLA - RTIG) which manages simulation and transfers data

between the simulators. In FMI there is a master algorithm,

which coordinates the data exchange between simulations and

synchronizes all slave simulations.

The open versions of the mentioned interfaces rely on the best

effort synchronization mode. Each simulation (node) provides

data as fast as it can and updates own data as soon as it receives

them. This method does not guarantee that at a given moment

the data received by any 2 nodes from same source is consistent.

However, HLA guarantees that each simulator is at the same

simulation step. The communication during the simulation step

is allowed. In contrast, FMI restricts the data exchange to the

discreet communication points and provides synchronization of

the co-simulated environments. However, description of the

synchronization mechanisms is not easily available. It is

understood that each master algorithm implements its own

synchronization method.

The commercial implementations of these interfaces do not

expose the synchronization mechanism, thus it is unknown how

nodes are synchronized, therefore it is difficult to evaluate their

suitability for a given co-simulation task in Smart Grid.

Hua et al [11] also have proposed a co-simulation framework

for coupling continuous power system simulators with discrete

event driven communication network and control models. The

simulations are interleaved: either one of the solvers get to be

executed at a given time. The paper introduces the global

scheduler, which loads the simulation steps of the power system

at the initialization time and orders them according to the time

stamp. The event, coming from discrete event simulator of

control network, is scheduled between the simulation steps

according to its time stamp. When the power system simulation

round is completed, the simulation is suspended till the

scheduler processes the next simulation round. In this case, the

issue of accumulated errors described later in the paper is still

exists, when the simulation step of power system is relatively

large. Since the scheduler needs to complete the simulation

round and then move to the next scheduled tasks, the control

event, arrived at the middle of the simulation step, will be

scheduled just after it. Another issue of this approach, , is that

the co-simulation framework does not consider computation

time of the controller and communication delays, which affect

both power system and control model dynamics and, therefore,

should be accounted for.

Bankier in [34] proposes GridIQ - a simulation framework for

co-simulation of agent based solutions and power system

models. The GridIQ performs the role of a bridge between

agents and power systems simulation. GridIQ supports JADE

agent development platform and PSAT power system analysis

tool. The execution of the agent network and power system

analysis is interleaved. This approach is intuitive and

eliminates problems occurring with concurrent execution of the

control and plant models. However, in this case, the time taken

by the agents to make decision is ignored and not considered by

power system model dynamics. The computation time of the

agent network and simulation of power system are not

accounted for and are considered instantaneous. These are

incorrect assumptions. Also GridIQ does not account for

communication delays between agents and between agent

control model and power system model.

After the short observation of the state of the art, the following

conclusions can be made:

There is great need for SiL or HiL environments for distributed

systems, in particular based on the new IEC 61499 standard.

The event-driven execution of program components in this

standard creates new challenges (but also new opportunities) for

co-simulation architectures. There are several timing-related

issues identified in the literature which need to be addressed in

the context of proposing such a distributed co-simulation

framework. The existing compensation techniques for delay

and jitter require deep modification of the model or application

of a dedicated solver, which are not universal.

Our work focuses on closed-loop simulation of control model

and plant model. The paper proposes generic socket based co-

simulation framework, where each simulator is not required to

implement additional communication layer. Each simulator

inserts UDP communication sockets where the data is to be

received or sent. However, such co-simulation mechanisms

could introduce so-called free-wheeling, communication jitter

and delay, race condition and slow sampling.

Therefore, the main contribution of this paper is an attempt to

understand these timing issues and formally describe the

synchronization mechanism between control model and plant

model, simulated in closed-loop. The paper proposes and

formally describes the synchronization mechanism which

compensates for delay, jitter, and simulation time step duration.

4

C.-H. Yang, V. Vyatkin, G. Zhabelova, C-W. Yang, “Co-Simulation Environment for Distributed Controls in SmartGrid”, IEEE

Transactions on Industrial Informatics, 2013, doi: 10.1109/TII.2013.2258165

Further in the paper MATLAB/Simulink is referred to as a

primary plant modelling environment, but the proposed method

can be applied to other similar tool-sets.

III. EVENT-DRIVEN CO-SIMULATION

ENVIRONMENT

The proposed co-simulation approach uses a common

communication protocols to establish data connection between

FB controller(s) with existing model of plant in closed-loop as

shown in Fig. 1. In this paper we consider simulation

environments based on time steps, such as MATLAB [35],

OpalRT [36], PowerWorldSimulator [37] and Eurostag [38].

The time step can be variable or fixed. Due to different speed

of execution, one side (e.g. plant or controller) can produce data

more frequently than the other. One should note that plant

model works in the model time whose scale can be different

from the real-time. This is also true for the controller in function

blocks: its execution time during the simulation can be different

from that when deployed to an embedded device.

Communication sockets on the function block side are

implemented using Service Interface Function Blocks (SIFB),

and on the simulation tool side as custom blocks programmed

in C or any other available programming languages. IEC 61499

follows event-driven control paradigm therefore the classic

control loop setup in Fig. 2 (a) needs to be modified as follows.

As an example of controller algorithm, suppose the controller is

reading plant parameter g(t) and keeping it in certain boundaries

by changing control variable c(t). Whenever g(t) crosses a

threshold boundary (event e1 in Fig. 2(b)), the plant emits a

message that is received by the controller (e2). After a certain

(computational) delay tc the controller updates c(t) and notifies

the plant by a message (received at e4).

Plant and controller are concurrently active, so the plant state

variables change following plant dynamics in the interval [e1,

e4] while the controller takes time to change the c(t).

In co-simulation environment composed of concurrently

running event-driven controller and model of the plant the

difference in behaviour is as presented in Fig. 3. The plant

model operates in discretized time intervals (steps S1, S2, …, Si,

of a fixed td or variable duration) and is exchanging parameters

with the controller only at the boundaries of these intervals.

Therefore, notification of the threshold crossing event e1 will be

delayed till the end of the discrete interval e1s as well as the

feedback notification e4. As a result of this, the duration of the

interval [e1, e4] in the simulation can be substantially longer

than in real life.

A possible impact of that is illustrated in Fig. 4. There are plots

of g(t) and c(t) for three scenarios presented: real-life (cr(t)), the

case when the controller’s decision making delay is slightly

longer than the step interval of the plant model (c1(t)) and the

case when it is slightly shorter than that (c2(t)).

As the simulation is performed using fixed or variable step

sizes, the controller communication feedback will be read at the

beginning of such simulation step. Moreover, the plant message

e1 will be sent at the end of the simulation step, even though its

event e1 actually happened in the middle of the step.

Thus, there is a clear impact of the controller computation time

on the system results. If the computation takes a bit longer than

the simulation step, the data from the controller will be only

updated at the end of the simulation step, and therefore make

the reaction time of the controller longer than it really is,

allowing for much error to accumulate and result in greater

overshoot. If the computation time is shorter than simulation

step size, then the controller command will take effect at the

next simulation step.

As one sees from the figure, in both simulation cases the

overshot of the control parameter g(t) can be significant. This

can make the simulation results much different from the real life

ones which diminish the value of simulation. Besides, the

simulation environment is unstable being susceptible to slight

variations in the controller computation time tc: the difference

between simulation results when tc is just slightly below or

above td can be substantial.

Fig. 1. Closed-loop simulation between MATLAB and FB models.

Fig. 2. a) Closed-loop plant-controller system; b) Event-driven

communication between plant and controller.

Fig. 3. Plant-Controller interaction in simulation.

5

C.-H. Yang, V. Vyatkin, G. Zhabelova, C-W. Yang, “Co-Simulation Environment for Distributed Controls in SmartGrid”, IEEE

Transactions on Industrial Informatics, 2013, doi: 10.1109/TII.2013.2258165

Therefore, it would make sense to build a simulation

environment in which plant and controller activities would be

interleaved instead of being concurrent as shown in Fig. 5. Once

the model of the plant notified the controller of event e1 in the

step Si, the plant would “freeze” and resume with the step Si+1

only after receiving the notification event e4.

This setup would be free of the problem discussed above, but

would have another problem: the controller computation time tc

would be ignored in the plant dynamics. Such a situation is also

incorrect.

The proposed adjustment is to increase the model time in step

Si+1 by tc and recalculate g(t) based on this adjusted time.

Implementation of this adjustment will be considered in Section

IV.

IV. CO-SIMULATION FRAMEWORK

Based on the observations presented in Section III, the co-

simulation environment will be synthesized in the general form

presented in Fig. 6. Controller and Plant blocks represent the

controller execution environment in function blocks and model

of the plant respectively.

MDOn and MDIn denote the data output set and data input set

of the plant model respectively at nth time step, while DIn and

DOn denote the data input set and data output set of the FB

model at nth execution cycle. Symbols and stand for events

activating these environments respectively, while and are

events notifying of the end of the step or controller execution

respectively. The Proxy is an intermediate agent whose role is

to adjust the plant’s clocks according to the following algorithm

1.

If the controller execution time (tc) is less than or equal to the

time step at the plant side (td), the simulation can be correctly

performed without any additional consideration in the closed-

loop data communication. The Proxy comes to play when 𝑡c>𝑡𝑑

to adjust clocks of the plant. The events sent from plant and

controller to the Proxy are timestamped by the proxy using the

provided information on the execution time 𝑡𝑐
𝑖 and 𝑡𝑑

𝑖 .

Algorithm 1:

1. The condition 𝑡c≤𝑡𝑑 implies that the proxy will be setting

DIn = MDOn and MDIn = DOn in every execution cycle.

2. However, in the case with 𝑡c>𝑡𝑑, the proxy has to track

down the time stamp and update the data accordingly.

3. Based on these time parameters, the proxy is able to

determine the status of the data communication between

the two models. It stores all the data (MDOn and DOn) and

makes the comparison of the time parameters. Then it

determines what data is to output back to plant model

depending on the result of this comparison. This means

even when DIn is updated with values from MDOn, the

MDI set values may not be updated with the new value

(DOn+1) and they are determined by the proxy.

4. If the execution time of the controller implementation is

greater than the current model time step, the Function

Block controller output does not take effect until the

controller execution time exceeds the accumulated model

time at the plant side. In other words,

MDIn+k = {
DOn, Tcontroller > ∑ ti

𝑛+𝑘
𝑖=𝑛

DOn+1, Tcontroller ≤ ∑ ti
𝑛+𝑘
𝑖=𝑛

 (1)

This simulation set-up is particularly useful when the plant

model is set to be simulated with a variable time step. The proxy

compares the time parameters at every time step even when the

step sizes are different at different execution cycle. If the

discrete simulation or simulation with fixed time step is chosen,

the proxy may be simplified as the execution time of the

controller is now only compared against a fixed value. This can

Fig. 4. Comparison of plant behavior in real-life and in simulation.

Fig. 5. Adjusted co-simulation environment.

Fig. 6. Proposed co-simulation framework.

6

C.-H. Yang, V. Vyatkin, G. Zhabelova, C-W. Yang, “Co-Simulation Environment for Distributed Controls in SmartGrid”, IEEE

Transactions on Industrial Informatics, 2013, doi: 10.1109/TII.2013.2258165

be set up simply in the model (either on the power system

simulation tool side or Function Block side).

To summarize the properties of the introduced environment the

following notation is introduced. Let E denote the set of all

events in the real plant-controller system during a single run of

the controller under fixed parameters, and S the set of events in

the introduced co-simulation environment formed under

identical conditions. Let e1 and e2 denote two arbitrary events

in E such that e1 happened before e2, (denoted e1 e2), and r1

and r2 are the corresponding reaction events (generated by the

real controller). Events s(e1), s(e2), s(r1) and s(r2) are their

counterparts in the simulation world. Let the time interval

between events e1 and e2 is denoted as [e1, e2]. In the simulation

world, [s(e1),s(e2)] and [s(r1),s(r2)] are the corresponding model

time interval representation.

Lemma 1: The co-simulation environment introduced in

algorithm 1 possesses the following properties:

1) Causality preservation: the proxy does not change the

order of events (i.e. e1, e2E: e1 e2 s(e1) s(e2)).

2) Precision: time interval between events in the simulation

is not greater than in the real world with precision td – the

maximum step duration in simulation tool: e1, e2E: e1

 e2: [s(e1),s(e2)] [e1,e2] + td .

Formal proof of the properties is omitted due to space

constraints. The idea of proof for both properties comes from

the constructive definition of the Proxy’s functionality and uses

the fact that clocks of the Plant are monotonously increasing.

The proposed co-simulation method is implemented on the

example of in the function blocks and MATLAB framework as

follows. Function block controller is an example of event driven

environment, and MATLAB is one of the discrete step based

simulation tools. The proxy is implemented as a single Function

Block that cooperates with service interface FB that is sending

and receiving data from the MATLAB side as shown in Fig. 7.

This Function Block (named “TimeCompare”) takes the

controller’s execution time and the sampling rate used in the

simulation as the inputs, and compares them in such a way that

it will update the latest received data into the controller only if

the accumulated time has exceeded the indicated controller

execution time (i.e. representing the controller has finished its

execution in this model-time simulation).

V. EXAMPLES OF IMPLEMENTATION

This section presents three test cases in which the proposed co-

simulation method has been applied. Each of the scenarios uses

particular controller architecture. The examples illustrate the

applicability of the proposed co-simulation method in different

implementation environments of IEC 61499. The case,

presented in subsection A, uses the time compensation

mechanism, introduced in section IV, while subsections B and

C present examples of distributed systems co-simulation where

the timing issues were not considered. Still, those cases comply

with the part 1 of the lemma 1 on causality preservation.

A. Distributed protection example

The experiment described in this section, was conducted in the

framework of FREEDM NSF project [39] where a novel

protection scheme has been proposed, which is faster than

conventional protection [40]. The experiment is described in

more detail in [41].

The main concept is to divide the system into zones, using FID

– fault isolation devices (new generation circuit breakers). Thus

FID is at the borders of each section. The FREEDM protection

strategy is tested at the Green Energy Hub model Fig. 8 is used

as the demonstration example in the project.

As seen from Fig. 8, the protection scheme is divided into three

zones plus the overall zone 0 which is a backup protection for

entire system. At each zone analogue merging unit (AMU) is

placed at the terminal of distribution line and the feeder of the

load to measure current, digitize and transfer the sensed values

to the Intelligent Fault Management (IFM) functionality of

FREEDM system. Each zone has an IFM which runs the

protection algorithms and incorporates DGI – distributed grid

intelligence.

The primary protection used is based on the following

differential scheme: if the sum of current in a zone equals zero,

it indicates either there is no fault or fault is outside the zone of

that IFM. In case the sum of the currents within a zone is not

zero then the fault is within the zone and IFM makes decisions

to trip the FIDs at the border of the faulty section. GPS time

stamps are attached to each samples sent from AMU to ensure

accuracy of the protection algorithm. IFM collects the sampled

values from AMUs with similar time stamps and sums up these

values to check if it is zero. If the sum is not zero, it holds the

value and counts next coming data. If the sum is not zero for all

next 10 samples, then IFM makes decision that there is a fault

within the zone. IFM sends a trip signal to FIDs on the border

of the zone to isolate the faulty section. In case of zero sum for

any of the next 10 samples, IFM concludes that there is no fault

in the zone, and resets the counter. This protection algorithm

mostly relies on working of IFM, which in this case can be a

computer or digital relay.

The control algorithm consists of differential and overcurrent

protection. It is implemented using the iLN architecture. IEC

61850 models these functions as PDIF and PIOC Logical Nodes

[42]. In the protection scheme IFM sends a trip signal to circuit

breaker (CB), therefore the control system should have a CB

model. According to the standard, CB is modelled as XCBR

LN. Thus PDIF LN or PIOC LN issues trip signal to XCBR LN.

Receiver

Controller
Function

Blocks

Sender

Plant Model
(Simulink)

Fig. 7. Implementation of the proposed co-simulation framework.

7

C.-H. Yang, V. Vyatkin, G. Zhabelova, C-W. Yang, “Co-Simulation Environment for Distributed Controls in SmartGrid”, IEEE

Transactions on Industrial Informatics, 2013, doi: 10.1109/TII.2013.2258165

Fig. 9 shows the Green Hub MATLAB model and the

corresponding protection system mapped to IEC 61850 and

implemented in IEC 61499, following the rules defined in [16,

18]. For simplicity, only one zone is exemplified.

Same data exchange as in the FLISR case is designed. The

current measurement points model the current transformer and

send current samples to the IFM system developed in IEC

61499, which in turn has XCBR iLN sending open/close

commands to circuit breaker in MATLAB model.

The fault is simulated to occur in zone 3, where IFM 3 is

operating. All IFM agents are constantly monitoring current

within the assigned zones. IFM 3 will notice that the current is

out of balance, when sum of the current samples is not equal to

zero. It starts counting the number of consecutive instances

where summed current is not zero. Once the number reaches

pre-set value, in this case 10, the IFM sends the trip signal to

XCBRs 3 and 4, which will isolate the faulty zone by tripping.

Fig. 10 illustrates the current at the zone 3, where the fault has

been injected. Fault is simulated at 0.149 s. IFM has isolated

the fault at 0.159 s.

The other IFMs will sense the fault in the overall system and

sum of the currents in the zone is no longer zero, however, since

the result does not exceed the differential slope, these IFMs do

not trip. Thus selectivity of the protection scheme is ensured.

After isolating the faulty zone, the current within the non-faulty

zones return back to steady state and normal operation. The

control system consists of FBs – LN from the developed iLN

library. NxtStudio has been used as IEC 61499 execution

environment. There is a direct relation (mapping) between

equipment and automation functions used in the Green hub

Fig. 8. Green hub loop and its protection zones.

Fig. 9. Control system for one zone of the Green Hub system.

8

C.-H. Yang, V. Vyatkin, G. Zhabelova, C-W. Yang, “Co-Simulation Environment for Distributed Controls in SmartGrid”, IEEE

Transactions on Industrial Informatics, 2013, doi: 10.1109/TII.2013.2258165

system and corresponding FBs (iLNs) in the control model:

circuit breaker – iXCBR, receiver of digitalized current samples

– UDPSocketServer, differential protection – iPDIF and

overcurrent protection – iPIOC.

From Fig. 10, the co-simulation environment without the proxy

mechanism isolated the faulty section within 0.010 s. This

experiment is for simulation purposes and was not designed to

comply with strict timing requirements of protection schemes.

The pattern proposed in Fig. 7 is used to address the

compensation for time step duration, along with communication

delay and jitter.

The proxy proposed in Section IV to take into account of

controller execution time has been implemented as a single

Function Block that interacts with service interface FB that is

sending and receiving data from the MATLAB side (see Fig. 7).

This Function Block (named “TimeCompare” in this

experiment) takes the controller’s execution time and the

sampling rate used in the simulation as the inputs, and compares

them in such a way that it will update the latest received data

into the controller only if the accumulated time has exceeded

the indicated controller execution time (i.e. representing the

controller has finished its execution in this model-time

simulation).

Fig. 11 demonstrates the effect of the computation delay. The

simulation was run with two different controller execution

times: 0.001 s and 0.002 s. The time taken to isolate the faulty

section is 0.016 s in the first case, with controller execution time

of 0.001 s. The time to trip circuit breaker is twice as long 0.033

s in the second case with controller execution time of 0.002 s.

(see Fig. 11). Note, the simulation of the controller and plant

model (power system) was performed on the same PC. The

future work includes running code on the dedicated hardware

and impact of the execution time of that hardware and

communication delays can be taken into account.

Relating the experiment to Fig. 4, the g(t) function here is the

current of the protection zone 3. The c(t) function is the circuit

breaker position, controlled by the protection algorithm

developed in IEC 61499. The c(t) =0 - means the circuit breaker

is closed, and c(t) =1 - means it is open.

In the case of the g(t) function in Fig. 4:

gr(t) = f(t) * cr(t) , cr(t) in the real time example;

g1(t) = f(t) * c1(t) , c1(t) when tc > td;

g2(t) = f(t) * c2(t) , c(t) when tc<td.

That is in case tc>td, the g1(t) function will continue to evaluate

its dynamics for another full simulation step. With the next

simulation step the decision of the controller c1(t) will take

effect and the g1(t) starts declining.

So effect of joint simulation comes down to the power system

model dynamics being evaluated for another full simulation

step.

As the current on the load in the zone 3 is being affected by the

fault in the zone, the control algorithm is evaluating the model

parameters and making decision to isolate the fault by opening

the circuit breakers. If the control signal is received in the

middle of the simulation step size (g2(t)), this will take effect in

the next simulation step. This is within the precision defined in

Lemma 1, property 2 in section IV.

This directly reveals how the execution time affects the result

of the simulation. Protection schemes are sensitive to time

delays. Required reaction time to open/close circuit breaker is

about 3 ms [42]. The longer the reaction time of the controller,

the longer the feeder and the equipment on it will be exposed to

the high current. This can result in cascading effect of the fault,

explosion on the feeder/substation and other harmful

circumstances.

This problem can only be spotted by using the time

compensation scheme of the proposed co-simulation approach.

The simulation in MATLAB was conducted with the "Variable

step" type, "oder45 (Dormand-Prince)" solver. The sampling

time of the model is 1e-5 second, simulation type: “Discrete”.

The experiments will be extended to perform HiL co-

simulation, where the distributed controls will be deployed to a

network of communicating IEC 61499 compliant PLCs

Beckhoff CX1020. This way real execution times and

communication times can be taken into account.

Fig. 10. Current on the load in zone 3.

Fig. 11. The simulation output observation (a) without the proposed proxy

(b) with the proposed proxy with execution time twice longer than the

sampling rate.

9

C.-H. Yang, V. Vyatkin, G. Zhabelova, C-W. Yang, “Co-Simulation Environment for Distributed Controls in SmartGrid”, IEEE

Transactions on Industrial Informatics, 2013, doi: 10.1109/TII.2013.2258165

B. Multi-agent fault location isolation and power

restoration

The experiment presented in detail in [43], deals with multi-

agent implementation of fault location, isolation and service

restoration (FLISR) for a model power distribution system

whose structure is presented in [44].

The FLISR scenario was the first work to demonstrate the

possibility of co-simulation framework for distributed systems.

It provided a real-time event-driven simulation in hardware-in-

the-loop simulation with a control, protection device, or other

equipment. The user could introduce interactively a phase-to-

ground fault into the distribution system during the simulation,

and monitor and validate the reaction of the distributed control

code on the inserted external disturbance to the system. Thus,

the FLISR scenario has proven the feasibility and advantages of

the co-simulation framework.

The scenario is as follows. The distribution utility consists of

three 11kV feeders supplied by three different zone substations.

The 11kV feeders are shown in a simplified form, with only the

backbone and ties to adjacent feeders. The scenario begins with

a tree falling on the 11kV mains, causing a permanent fault on

feeder F1. The feeder protection trips (opens) the circuit breaker

CB1 at zone substation B. Sectionalising switches ROS1 and

ROS2, being downstream of the fault location, do not register

the passage of fault current. In anticipation of possible follow-

up action, they remember the load currents that were flowing

through them just before the fault occurred. After one attempted

automatic re-closure, CB1 goes to lockout.

The distributed multi-agent control implementing this

behaviour was implemented using the Intelligent Logical Node

Architecture. This architecture implements the logical nodes

(LN) proposed in the IEC 61850 standard by means of function

blocks of the IEC 61499 standard. Logical nodes correspond to

primary equipment of power distribution systems, such as

circuit breakers, switches, meters, protection relays, etc. The FB

implementation of a LN (called iLN – intelligent logical node)

includes the information model and an autonomous agent

controller (so called “intelligence”) of this LN. It is envisioned

that in Smart Grid the primary equipment will be equipped with

embedded controllers executing the iLNs and they will

collaborate towards achieving the desired properties of the

system. In order to test the resulting behaviour of the network

of communicating iLNs, they need to interface real physical

primary equipment (circuit breakers, switches and transformers)

or a model of it. Following the proposed co-modelling approach,

iLNs were connected to the corresponding system model in

MATLAB. For execution of the control part the Function

Blocks Development Kit (FBDK) [45] was used.

The measurement block in MATLAB, modelling current

transformers transmit current samplings to the TCTR iLN in the

control code. The XCBR iLN representing circuit breakers in

the control code send open/close commands to the circuit

breaker in the MATLAB distribution network model.

Results of the co-simulation of the FLISR scenario are

presented in Fig. 13. The first graph is the control signal of the

corresponding tie switch with the values: 0 – switch open, 1 –

switch close. The fault occurs on section CB1, and supply

should be restored on ROS1 and ROS2 sections. Fig. 13

demonstrates that all three sections of the feeder 1 had normal

current before the fault. As it can be seen from the “CB1” graph,

the current transformer detects the fault current of value higher

than 2000A at about 3.32s and protection function trips the

circuit breaker CB1, so current becomes zero at 3.352s.

After a certain delay, the RREC iLN recloses the circuit breaker

at the 3.4s in case it is a temporary fault. However, the

protection detects the fault again (the fault current between 3.4s

and 3.44s) and trips the circuit breaker, this time RREC goes to

lockout. The “CB1” plot shows that power is cut on feeder 1 at

the time 3.44s. The difference between 3.4s and 3.44s is the

time to get the signal processed and devices to operate.

The switches ROS1 and ROS2, having learned that their

sections do not have a fault, decide to request the alternative

supply: ROS1 from tie switch ROS3 and ROS2 from tie switch

ROS4. Thus ROS1 and ROS2 have got the supply from

Zone Sub C

Zone Sub B

Zone Sub A

CB2

CB1

Feeder 1

Feeder 3

Feeder 2ROS6ROS5

ROS3

ROS2ROS1

C
B

3

R
O

S
9

R
O

S
7

R
O

S
8

R
O

S
4

1
1

k
V

1
1

k
V

1
1

k
V

CB – Circuit Breaker

(Remotely operated)

Distribution Substation

– Pole or Grid

ROS – Remotely

Operated switch

Fig. 12. Sample power distribution utility and location of the fault.

Fig. 13. Simulation results of the FLISR scenario [36].

10

C.-H. Yang, V. Vyatkin, G. Zhabelova, C-W. Yang, “Co-Simulation Environment for Distributed Controls in SmartGrid”, IEEE

Transactions on Industrial Informatics, 2013, doi: 10.1109/TII.2013.2258165

adjacent feeders 2 and 3 accordingly: the graphs “ROS1” and

“ROS2” show that at the time around 3.48s the current values

come back to normal – the power has been restored. Graph

“ROS4” illustrates the behaviour of tie switch ROS4, which

closes (at 3.46s the value is 1) as there is enough capacity to

restore the supply for section ROS2. Graphs “ROS1” and

“ROS2” demonstrate the supply restoration on the

corresponding sections.

This scenario proves that the distributed control of power grid

is possible. Autonomous components of power distribution

system can collaborate and sustain power grid operation. The

plots demonstrate that FLISR mechanism carried out by

intelligent components of the system without central control

intervention works: the supply has been correctly restored on

the non-faulted sections of the faulted feeder regardless of the

fault location.

The co-simulation environment set-up helps determine

immediately if the intelligent nodes (iLNs) have been designed

appropriately and behave properly to handle specified scenarios.

Thanks to the capability of "real-time" event-driven simulation,

user is able to test each possible case of fault position (each

feeder section), and validate the developed distributed control

code.

C. Distributed co-simulation of “52 blocking”

The last test case presented in this paper is the “52 Blocking”

application [46] to illustrate the implementation of editable

logic within logical nodes. The application describes the safety

operation of a circuit breaker by calculating the enable open

(EnaOpn) and the enable close (EnaCls) attribute value of the

CILO logical node. This example is presented in detail in [47].

The iLN architecture was applied to capture the editable

logic, and ISaGRAF was used as an environment for IEC 61499

implementation. To add the editable logic to the iLN

architecture, editable logic can be implemented as an additional

function block next to the intelligence and the database function

block within the iLN architecture.

In the “52 Blocking” application, the function block

network is distributed over four devices. Fig. 14 illustrates how

the IEC 61499 logical nodes can be distributed over several

devices. The GGIO iLNs are distributed in device 1, the XSWI

iLNs are distributed in device 2 and the XCBR and the CILO

iLNs are distributed in device 3. The 4th device contains the

publisher and subscriber function blocks which are used for

communication in the co-simulation environment. With the

system being distributed, each intelligent logical node relies on

the internal intelligence within to co-ordinate the exchange of

data in the distributed system.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a novel “in the loop” co-simulation

approach for distributed automation. Several simulation

architectures and use-case scenarios have been presented,

including software in the loop and hardware in the loop. Main

contributions of the paper are as follows:

- It describes the concept of a co-simulation framework for

distributed control environment of Smart Grid where the

controls are implemented as event-driven communicating

components. The event-driven nature of plant-controller

interaction eliminates the free-wheeling issue of cyclic scan

based platforms.

- The paper proposed a technique that compensates for

computation and communication delays both between plant

and controller and controller to controller, and for the time

discretization interval (time step) used in the simulation

environment;

- The co-simulation design pattern does not require neither

deep modification of the simulation model, nor of the

control code. The control and simulation environments

communicate via a standard communication channel (using

UDP). The time compensation technique does not require

neither deep modification of the simulation model nor of the

control code.

- The criterion of co-simulation correctness has been

formulated and implemented in the co-simulation

framework.

The results have been demonstrated with three experimental

Smart Grid examples reflecting upon different co-simulation

architectures, for three different IEC 61499 implementation

environments: FBDK, NxtControl and ISaGRAF.

Implementation for one more environment Forte has been also

developed, but not demonstrated in the paper.

The developed co-simulation approach has proven to be

extremely useful in the context of Smart Grid research projects

as the means of validation for distributed grid intelligence. The

ability to perform system level simulation in the loop provides

a convincing argument in favour of distributed control in Smart

Grid.

Future work will include extensions of the developed

framework for RS-CAD [48] or PS-CAD [49] environments

Fig. 14. Distributed setup implementing “52 Blocking” scenario.

11

C.-H. Yang, V. Vyatkin, G. Zhabelova, C-W. Yang, “Co-Simulation Environment for Distributed Controls in SmartGrid”, IEEE

Transactions on Industrial Informatics, 2013, doi: 10.1109/TII.2013.2258165

instead of MATLAB, deeper integration of communication

networks’ properties and integration with the formal

verification frameworks, such as the one described in [50].

ACKNOWLEDGMENTS

This work was supported in part by the research grants of the

University of Auckland: FRDF 3622763, PRESS account of the

University of Auckland, and NSF FREEDM project

(“Executable System Level Smart Micro Grid Model”).

REFERENCES

[1] X. Yu, C. Cecati, T. Dillon, and M. G. Simões, "The New Frontier

of Smart Grids," Industrial Electronics Magazine, vol. 5, pp. 49-63,

2011.

[2] V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati,

and G. P. Hancke, "Smart Grid Technologies: Communication

Technologies and Standards," Industrial Informatics, IEEE
Transactions on, vol. 7, pp. 529-539, 2011.

[3] M. Liserre, T. Sauter, and J. Y. Hung, "Future Energy Systems:

Integrating Renewable Energy Sources into the Smart Power Grid
Through Industrial Electronics," Industrial Electronics Magazine,

vol. 4, pp. 18-37, 2010.

[4] "Smart Grid for Distribution Systems: The Benefits and Challenges
of Distribution Automation (DA)(Draft Version 2) White Paper for

NIST," ed: IEEE Working Group on Distribution Automation, 2009.

[5] P. Palensky and D. Dietrich, "Demand Side Management: Demand
Response, Intelligent Energy Systems, and Smart Loads," IEEE

Transactions on Industrial Informatics, vol. 7, pp. 381-388, 2011.

[6] C. Cecati, C. Citro, A. Piccolo, and P. Siano, "Smart Operation of
Wind Turbines and Diesel Generators According to Economic

Criteria," Industrial Electronics, IEEE Transactions on, vol. 58, pp.

4514-4525, 2011.

[7] P. Siano, C. Cecati, H. Yu, and J. Kolbusz, "Real Time Operation of

Smart Grids via FCN Networks and Optimal Power Flow,"

Industrial Informatics, IEEE Transactions on, vol. 8, pp. 944-952,
2012.

[8] V. Calderaro, C. N. Hadjicostis, A. Piccolo, and P. Siano, "Failure

Identification in Smart Grids Based on Petri Net Modeling,"
Industrial Electronics, IEEE Transactions on, vol. 58, pp. 4613-

4623, 2011.

[9] T. Godfrey, M. Sara, R. C. Dugan, C. Rodine, D. W. Griffith, and
N. T. Golmie, "Modelling Smart Grid Applications with Co-

Simulation," in The 1st IEEE International Conference on Smart

Grid Communications (SmartGridComm 2010), 2010.

[10] V. Liberatore and A. Al-Hammouri, "Smart grid communication

and co-simulation," in Energytech, 2011 IEEE, 2011, pp. 1-5.

[11] L. Hua, S. Sambamoorthy, S. Shukla, J. Thorp, and L. Mili, "Power
system and communication network co-simulation for smart grid

applications," in Innovative Smart Grid Technologies (ISGT), 2011

IEEE PES, 2011, pp. 1-6.

[12] T. Strasser, M. Stifter, F. Andren, D. Burnier de Castro, and W.

Hribernik, "Applying open standards and open source software for
smart grid applications: Simulation of distributed intelligent control

of power systems," in Power and Energy Society General Meeting,

2011 IEEE, 2011, pp. 1-8.

[13] G. Zhabelova and V. Vyatkin, "Multiagent Smart Grid Automation

Architecture Based on IEC 61850/61499 Intelligent Logical Nodes,"

IEEE Transactions on Industrial Electronics, vol. 59, pp. 2351 -
2362 2011.

[14] "Function blocks: International Standard IEC 61499," ed:

International Electrotechnical Commission, 2005.

[15] V. Vyatkin, "IEC 61499 as Enabler of Distributed and Intelligent

Automation: State of the Art Review," IEEE Transactions on

Industrial Informatics, vol. 7, pp. 768-781, 2011.

[16] V. Vyatkin, G. Zhabelova, N. Higgins, M. Ulieru, K. Schwarz, and

N. K. C. Nair, "Standards-enabled Smart Grid for the future Energy
Web," in Innovative Smart Grid Technologies (ISGT), Gaithersburg,

MD, 2010, pp. 1-9.

[17] T. Strasser, F. Andrén, and M. Stifter, "A test and validation

approach for the standard-based implementation of intelligent

electronic devices in smart grids," in Holonic and Multi-Agent

Systems for Manufacturing vol. 6867 V. Marík, P. Vrba, and P.
Leitao, Eds., ed Berlin / Heidelberg: Springer 2011, pp. 50–61.

[18] N. Higgins, V. Vyatkin, N. K. C. Nair, and K. Schwarz, "Distributed

Power System Automation With IEC 61850, IEC 61499, and
Intelligent Control," IEEE Transactions on Systems Man and

Cybernetics Part C-Applications and Reviews, vol. 41, pp. 81-92,

Jan 2011.

[19] R. Bernhardt, G. Schreck, and C. Willnow, "Realistic robot

simulation," Computer & Control Engineering Journal, vol. 6, pp.

174-176, 1995.

[20] P. Klingstam and P. Gullander, "Overview of simulation tools for

computer-aided production engineering," Computers in Industry,

vol. 38, pp. 173-186, 1999.

[21] H. Carlsson, B. Svensson, F. Danielsson, and B. Lennartson,

"Methods for reliable simulation based PLC code verification,"

IEEE Transactions on Industrial Informatics, vol. 8, pp. 267-278,

2011.

[22] V. Vyatkin, H.-M. Hanisch, C. Pang, and J. Yang, "Application of

Closed-Loop Modelling in Integrated Component Design and
Validation of Manufacturing Automation," IEEE Transactions on

Systems, Man, and Cybernetics, Part C: Applications and Reviews,
vol. 39, pp. 17-27, 2009.

[23] V. Vyatkin, "Intelligent mechatronic components: control system

engineering using an open distributed architecture," presented at the
Emerging Technologies and Factory Automation, 2003.

Proceedings. ETFA '03. IEEE Conference, 2003.

[24] P. Cheng and V. Vyatkin, "IEC 61499 function block
implementation of Intelligent Mechatronic Component," presented

at the 8th IEEE International Conference on Industrial Informatics,

2010.

[25] nxtControl.com. (2010). Available: http://www.nxtcontrol.com/

[26] J. Yan and V. V. Vyatkin, "Cyber Physical Approach for Baggage

Handling Systems Automation enabled by Multi-Agent Control and

IEC 61499 " in IEEE 9th International Conference on Industrial

Informatics (INDIN 2011), Lisbon, Portugal, 2011.

[27] F. Maturana, R. Ambre, R. Staron, D. Carnahan, and K. Loparo,
"Simulation-based environment for modeling distributed agents for

smart grid energy management," presented at the Emerging

Technologies & Factory Automation (ETFA), 2011 IEEE 16th
Conference on, 2011.

[28] C. Chinchul and L. Wootaik, "Analysis and Compensation of Time

Delay Effects in Hardware-in-the-Loop Simulation for Automotive
PMSM Drive System," Industrial Electronics, IEEE Transactions

on, vol. 59, pp. 3403-3410, 2012.

[29] C. Dufour and J. Belanger, "Discrete time compensation of
switching events for accurate real-time simulation of power

systems," in Industrial Electronics Society, 2001. IECON '01. The

27th Annual Conference of the IEEE, 2001, pp. 1533-1538 vol.2.

[30] F. Kuhl, R. Weatherly, and J. Dahmann, Creating computer

simulation systems: an introduction to the high level architecture.

Prentice Hall PTR Upper Saddle River, NJ, USA, 1999.

[31] ONERA The French Aerospace Lab, "CERTI - Open Source HLA

RTI.," 3.4.0 ed, 2002, pp. HLA 1.3 specification, IEEE 1516-2000.

[32] P. Chombart, "Multidisciplinary modelling and simulation speeds
development od automoive systems and software.," ITEA 2,

Modelisar, Dassault Systemes2012.

[33] R. Hofer and M. L. Loper, "Dis today [Distributed Interactive
Simulation]," Proceedigs of the IEEE, vol. 83, 1995.

[34] C. J. Bankier, "GridIQ - A Test Bed for Smart Grid Agents,"

Bachelor of Engineering (Honours), Department of Information

http://www.nxtcontrol.com/

12

C.-H. Yang, V. Vyatkin, G. Zhabelova, C-W. Yang, “Co-Simulation Environment for Distributed Controls in SmartGrid”, IEEE

Transactions on Industrial Informatics, 2013, doi: 10.1109/TII.2013.2258165

Technology and Electrical engineering, The University of

Queensland, 2010.

[35] MathWorks. (2010). The MathWorks - MATLAB and Simulink for

Technical Computing. Available: http://www.mathworks.com

[36] B. Vandiver, "Testing of UCA based microprocessor based

protective relays," in Power Engineering Society Summer Meeting,

2002 IEEE, 2002, pp. 294-296 vol.1.

[37] N.-D. Nhat, K. Gwan-Su, and L. Hong-Hee, "A study on GOOSE
communication based on IEC 61850 using MMS ease lite," in

Control, Automation and Systems, 2007. ICCAS '07. International

Conference on, 2007, pp. 1873-1877.

[38] A. P. Apostolov, "Distributed protection, control and recording in

IEC 61850 based substation automation systems," in Developments

in Power System Protection, 2004. Eighth IEE International
Conference on, 2004, pp. 647-651 Vol.2.

[39] A. Q. Huang, M. L. Crow, G. T. Heydt, J. P. Zheng, and S. J. Dale,

"The Future Renewable Electric Energy Delivery and Management
(FREEDM) System: The Energy Internet," Proceedings of the IEEE,

vol. 99, pp. 133-148, 2011.

[40] A. Thirumalai, X. Liu, and G. Karady, "Novel Digital Protection
System for FREEDM Loop," in Smart Grid Communications

(SmartGridComm), 2010 First IEEE International Conference on,

2010, pp. 22-26.

[41] G. Zhabelova, V. Vyatkin, and N. Nair, "Standards- based

Intelligent Fault Management System for FREEDM Green Hub

Model," in IEEE International Conference on Industrial Electronics
(IECON’11), Melbourne, Australia, 2011.

[42] International Electrotechnical Commission, " Basic information and
communication structure," in Communication Networks and

Systems in Substations, ed. Switzerland: International

Electrotechnical Commission,, 2010.

[43] G. Zhabelova and V. Vyatkin, "Intelligent Logical Nodes of IEC

61850 and IEC61499 for Multi-agent Smart Grid Automation,"

IEEE Transactions on Industrial Electronics, vol. in print, 2011.

[44] N. Higgins, V. Vyatkin, N. Nair, and K. Schwarz, "Distributed

Power System Automation with IEC 61850, IEC 61499 and Holonic

Control," in Proc. IEEE Conference on Systems, Machine and
Cybernetics 2008, Singapore, 2008.

[45] Holobloc Inc. (2008). Function Block Development Kit (FBDK).

Available: http://www.holobloc.org/

[46] J. G. Moreno, "MODELING OF LOGICS APLICATION USE

CASES - FUNCTION: 52 BLOCKING (FOR OPENING AND

CLOSING)," 26th September 2010.

[47] C.-W. Yang, V. Vyatkin, and N. Nair, "Implementation of Editable

Logic in IEC 61850 Logical Nodes by means of IEC 61499," in

IEEE International Conference on Industrial Electronics
(IECON'11), Melbourne, Australia, 2011.

[48] (2010). RTDS Technologies: The World Standard for Real Time

Power System Simulation. Available:
http://www.rtds.com/index/index.html

[49] HVDC. (2010). PSCAD. Available:

https://pscad.com/products/pscad/

[50] S. Patil, S. Bhadra, and V. Vyatkin, "Configurable non-determinism

in a closed-loop modelling and verification framework for

embedded control systems," in IEEE International Conference on
Industrial Electronics (IECON’11), Melbourne, Australia, 2011.

Chia-han Yang received his B.Eng degree (1st class

hons.) and PhD in the Department of Electrical and
Electronics Engineering from The University of

Auckland, Auckland, New Zealand in 2006 and 2011

respectively. His PhD research is investigating

methodologies of improving distributed control system

design based on IEC61499 standard. His research

interests are in the area of distributed control and
automation, control system modelling/simulation and

robotics.

Gulnara Zhabelova is a PhD student at the University

of Auckland, New Zealand. Gulnara comleted BE in

Mechatronics and Robotics (Hons), ME in Automation
and Control (Hons) and ME in Compter Systems (Hons)

in 2006, 2008, 2009 respectively. Former two degrees

are with Karaganda State Technical University,
Kazakhstan, and later one is with The University of

Auckland, New Zealand. She is working on application

of multi-agent technologies to distributed automation,
control and protection of power grid at any level: from

transmission to residential consumption. Her interest is in application of

information and communication technologies in current power grid and future

Smart(er) Grid. Also her interest covers AMI and demand side management

within energy infrastructure involving distributed generation and PEV.

Chen-Wei Yang received his B.Eng degree (Hons.)

and ME degree (Hons) in the Department of Electrical

and Computer Systems Engineering from The
University of Auckland, Auckland, New Zealand in

2011 and 2012 respectively. Currently, he is pursuing

his Ph.D degree at the Department of Electrical and
Computer Systems Engineering at the University of

Auckland, Auckland, New Zealand. His research

interests are in the area of distributed automation and
industrial informatics in the field of Smart Grid systems

for IEC61850 based systems.

Valeriy Vyatkin is Chaired Professor of Dependable

Computation and Communication Systems at Luleå

University of Technology, Sweden, and visiting

scholar at Cambridge University, U.K., on leave from

The University of Auckland, New Zealand, where he
has been Associate Professor and Director of the

InfoMechatronics and Industrial Automation lab

(MITRA) at the Department of Electrical and
Computer Engineering. He graduated with the

Engineer degree in applied mathematics in 1988 from

Taganrog State University of Radio Engineering
(TSURE), Taganrog, Russia. Later he received the Ph.D. (1992) and Dr. Sci.

degree (1998) from the same university, and the Dr. Eng. Degree from Nagoya
Institute of Technology, Nagoya, Japan, in 1999. His previous faculty positions

were with Martin Luther University of Halle-Wittenberg in Germany (Senior

researcher and lecturer, 1999–2004), and with TSURE (Associate Professor,
Professor, 1991–2002).

Research interests of professor Vyatkin are in the area of dependable distributed

automation and industrial informatics, including software engineering for
industrial automation systems, distributed architectures and multi-agent

systems applied in various industry sectors: Smart Grid, material handling,

building management systems, reconfigurable manufacturing, etc. Dr Vyatkin
is also active in research on dependability provisions for industrial automation

systems, such as methods of formal verification and validation, and theoretical

algorithms for improving their performance. In 2012, Prof Vyatkin has been
awarded Andrew P. Sage Award for best IEEE Transactions paper.

http://www.mathworks.com/
http://www.holobloc.org/
http://www.rtds.com/index/index.html

