
Please site as follows: W. Dai, V. Dubinin, V. Vyatkin “Migration from PLC to IEC 61499 using Semantic Web Technologies,
IEEE Transactions on Systems, Man and Cybernetics, Part A, 2013, in print

Migration from PLC to IEC 61499
using Semantic Web Technologies

Wenbin (William) Dai, IEEE Member, Victor Dubinin, Valeriy Vyatkin, Senior IEEE Member
Abstract – This paper proposes a new methodology of migration
from IEC 61131-3 PLCs to IEC 61499 function blocks. The aim
of this migration process is to recreate IEC 61131-3 applications
in IEC 61499 implementations with equivalent execution
behavior. The formal model of the IEC 61131-3 standard for
migration and cyclical execution model is defined. This method
also creates a foundation for correct-by-design development
tools and automatic migration between the IEC 61131-3 and
IEC 61499 standard. Formal migration rules based on ontology
mappings, restoring execution model including tasks and
programs scheduling and variables mapping with different
access levels, are provided. A transformation engine for
importing PLC code, mapping from PLC ontology model to
Function Block model and code generation is implemented
based on the ontological knowledge base and semantic query-
enhanced web rule language. The migration approach is
demonstrated on a simple airport baggage handling system.
Index Terms— IEC 61131-3 PLC, IEC 61499 Function Blocks,
Migration, Ontology (OWL), Execution Semantics, Ontology
Mapping, Code Generation and IEC 61131-3 formal execution
model

I. INTRODUCTION

The IEC 61499 standard [1] is considered as the key of
enabling distributed control and introducing intelligence into
industrial automation [2]. However, the use of this technology
in the automation industry is still minimal. Majority of the
systems are still designed using programmable logic
controllers (PLC) programmed in traditional languages of
ladder logic, structured text or function block diagram (FBD)
defined in IEC 61131-3 standard [3]. Potential benefits of
implementing complex automation systems with IEC 61499
technology include lower design effort combined with higher
flexibility, reconfigurability and maintainability [4-7], but the
learning curve is quite steep and the cost of required initial
research and development is high. Therefore it is important to
provide an easy migration path for existing PLC programs
into IEC 61499 compliant platforms as the first step towards
widespread adoption of the new standard.
There exist several migration approaches [8–12] but none of
them provides a generic rule for automatic generation an IEC
61499 system from code developed for various PLC brands.
Although most vendors claim their PLCs are compliant with
the IEC 61131-3 standard, none of them is compatible with
each other [13]. The migration process proposed in this paper

is not trying to replace the IEC 61131-3 standard with the
IEC 61499 standard completely. This complies with the
vision of many industry practitioners (e.g. [20]) who see IEC
61499 as a complement rather than a substitute to IEC 61131-
3. Instead, the IEC 61499 standard is used as the top-level
design framework in conjunction with the IEC 61131-3
standard. In this approach, entire IEC 61131-3 PLC programs
are encapsulated in the IEC 61499 function blocks and reused
in the new IEC 61499 system configuration. In order to
achieve cyclic execution behaviour of the original PLC
applications in the generated IEC 61499 systems, a formal
IEC 61131-3 execution model is defined. However, the first
edition of IEC 61499 allowed for some semantic ambiguities,
leading to several execution models for IEC 61499:
sequential [21], parallel [22], cyclic [23] and synchronous
[24] (in more detail discussed in Section IV). Due to the
different execution semantics, same IEC 61499
configurations could have different behaviours when run on
various execution semantics. In order to avoid that, the
equivalent execution model in IEC 61499 is built on
application level according to the PLC execution model.
This paper proposes a novel, tool-supported transformation
process implemented by a tool based on the Semantic Web
technologies. The proposed ontology-based approach is using
knowledge bases to describe the model and transformation
between the models. This substantially differs from the usual
XML transformation methods, such as the ones based on
XSLT translation table or XQuery, in which case it would be
much harder to take into account the execution semantics of
the transformed artifacts, and translation rules would be hard-
coded. In the proposed method, source code of PLC programs
is converted into a platform independent ontology knowledge
base. The execution order of the PLC source code is also
stored in the same knowledge base. Then, all instances of this
IEC 61131-3 ontological model are transformed to the IEC
61499 ontological model based on the generic migration
rules. The scheduling function blocks are inserted to control
the execution order of the resulting IEC 61499 function
blocks. Finally, the resulting IEC 61499 system configuration
is generated automatically from the IEC 61499 knowledge
base.
The execution behaviour of the migrated IEC 61499 systems
is identical to the IEC 61131-3 version, taking into account
tasks priorities and interruption between periodic and
continuous tasks. However, thanks to IEC 61499 features, the
migrated function block systems can be easier distributed to
multiple small PLCs without any code change.
Communications between FB instances are established
automatically at runtime level in IEC 61499 implementations.
As most of PLC code is reused in new function block

W. Dai is with Lulea University of Technology, Sweden. (e-mail:
w.dai@ieee.org)

V. Dubinin is with the University of Penza, Russia. (e-mail:
victor_n_dubinin@yahoo.com).

V. Vytakin is with Lulea University of Technology, Sweden. (e-mail:
vyatkin@ieee.org)

Please site as follows: W. Dai, V. Dubinin, V. Vyatkin “Migration from PLC to IEC 61499 using Semantic Web Technologies,
IEEE Transactions on Systems, Man and Cybernetics, Part A, 2013, in print
systems, the cost of redesigning IEC 61131-3 systems in IEC
61499 can be reduced significantly. Using the IEC 61499
standard as a top level design language provides a better
overview of systems compared to IEC 61131-3 programs.
Finally, the insertion of scheduling function blocks during the
migration process ensures that the generated systems behave
identically to their PLC version even if different distributed
nodes follow different execution semantics of IEC 61499.
The rest of the paper is structured as follows: several
migration and transformation approaches are reviewed in
section II. In section III, the overview of the migration path
from IEC 61131-3 to IEC 61499 using ontological knowledge
base is illustrated. In section IV, the execution model of the
IEC 61131-3 is defined and an equivalent IEC 61499 version
is created. Importing code and structure from PLC programs
is discussed in the section V. In section VI, general migration
rules are provided as ontology mapping between the
knowledge bases. Code generation for IEC 61499 is provided
in section VII, followed by a case study of an airport baggage
handling system. The paper is concluded with discussion of
limitations and future works.

II. RELATED WORKS

Several researchers have published on migration from IEC
61131-3 PLCs to IEC 61499 FBs. Peltola et al. [8] provided
an example on manual migration of IEC 61131-3 PLC control
code for a batch process to IEC 61499 function blocks with
integrated HMI views. The paper has proven that using IEC
61499 function blocks replacing for IEC 61131-3 PLCs is
feasible.
Another example of manual PLC controller migration to an
IEC 61499 distributed control system is given by Hussain et
al. [9]. PLC based control of a FESTO MPS model assembly
plant is transformed to the IEC 61499 function block based
control. The original control algorithm in state machine is
converted to the execution control chart (ECC) of the basic
function block. The performance of the new FB system based
on event-driven execution is measured. However, no generic
rule or migration guideline is provided.
A model-based transformation and semantic correction from
IEC 61131-3 to IEC 61499 is proposed by Wenger et al. [10]
[11]. Authors proved that with IEC 61131-3 and IEC 61499
libraries available, it is possible to transform source IEC
61131-3 model into an internal E-core model and then write it
in the target IEC 61499 XML model. Recreating IEC 61131-3
execution order in IEC 61499 is feasible but how to connect
events in order automatically is still not completely solved.
However, this approach focuses on the translation of the PLC
code sentence by sentence. The entire PLC program structure
was not considered.
Sunder et al. [12] proposed a solution for converting IEC
61131-3 automation projects into IEC 61499 standard.
Differences between two standards are carefully compared.
The mapping between two software models is also provided.
The variables with various level of access are considered.
However, mapping of global variables which are commonly
used by IEC 61131-3 to an IEC 61499 format is not solved
and automatic transformation is not implemented using this
approach.
Beyond existing migration approaches, there are several

papers providing useful ideas that could be applied in the
migration process. Basile et al. [14] show how object-oriented
programming could implicitly make the event-based PLC
software behaviour. Authors propose a solution which is the
combination of two existing approaches in introducing
object-oriented programming into PLCs: adding object-
oriented support in the IEC 61131-3 standard or adopting the
IEC 61499 standard. The IEC 61131-3 programming
language SFC is used to develop a proper object-oriented
approach. Our work goes beyond object-oriented
programming, focusing on migration to distributed systems,
which is the main strength of the IEC 61499 architecture.
Goh and Dint in [15] describe an approach to code generation
for IEC 61499 based on the iterative knowledge base. The
iterative knowledge base is represented in the form of XML
and Extended Backus-Naur Form (EBNF). The goal of that
approach is to eliminate any additional script language to be
used in the code generation. Also the translation rules are
configurable and reusable to improve the accuracy of
translation rules. In order to achieve this goal, rule-based
blocks are built for each IEC 61499 XML element. During
the code generation process when the pre-defined rules are
satisfied, the related block of code will be generated and data
types and connections will be also inserted. XML and EBNF
based approach is syntax-oriented while OWL,
SQWRL/SWRL based ontology driven approach is more
semantic-oriented and human readable. Besides, automatic
generation of code template is not covered in that paper. It
could be difficult to modify knowledge base when code
template is changed.
Younis et al. [16] propose an XML and XSLT based approach
for re-implementing existing PLC programs. State machines
stored in XML format are translated into IEC 61131-3 POUs
and regenerated for a different controller. This work only
covers migration between IEC 61131-3 platforms and
original PLC code must be defined using assembler-like
languages.
Weisenborn et al. [17] registered a patent on conversion from
a hardware configuration and corresponding control logic
program from one PLC to another equivalent PLC using a
knowledge-based translator. However, the premise of this
approach is that the hardware configurations must be
equivalent. The migration process described in this paper
aims at transform between multiple platforms supporting
various PLC programming languages to cover multiple
platforms. Also that approach uses a proprietary language for
describing mapping rules and is intended mainly for
migration of ladder logic control programs.
Fay et al. [18] propose an automatic graphical knowledge-
based approach to address the modernization problem of a
control system for a technical plant. This approach proves
rule-based transformation is very useful for function block
based control program. However, the platform used in this
approach is not compliant with IEC 61499 standard. In
addition, this approach needs to develop a specific rule
execution engine. Its formats are proprietary that complicates
integration of the proposed tool with other tools of the design
chain. On the contrary, Semantic Web- based approaches
support open standards, expansibility, reconfigurability, reuse
of previous decisions, and use standard software (for

Please site as follows: W. Dai, V. Dubinin, V. Vyatkin “Migration from PLC to IEC 61499 using Semantic Web Technologies,
IEEE Transactions on Systems, Man and Cybernetics, Part A, 2013, in print
example, reasoners).
Mader et al. [19] investigate how to obtain proper functioning
from PLC applications using formal methods. A schema of
PLC applications is presented in this paper to indicate how to
evaluate results gained by formal methods as well as find out
which aspects are treated by a certain method in the control
system design. Unfortunately, the schema proposed describes
the process of PLC-based systems design through analysis
but it does not show the role of formal methods in the process
of synthesis of these systems.
Overall, there is no systematic approach to automatic
migration between an IEC 61131-3 PLC and IEC 61499
function blocks available. Approaches from [8] and [9]
provide some useful migration ideas, but formulating
migration rules is missing. In this paper, such migration rules
are proposed. Most of the rules proposed by Sunder’s
approach can be applied here. Mapping of global variables,
missing in the Sunder’s et al. work, is also covered in this
paper. The transformation process proposed by Wenger et al.
is driven by a meta-model defined in the standard XML
format. The approach does not provide the mapping between
other IEC 61131-3 languages except FBD to IEC 61499 as
well as is not generic which could be applied to other IEC
61131-3 XML formats. The mapped function block systems
using this approach cannot automatically connect event
connections and associate them with proper data variables.
Furthermore, none of the existing approaches offers an
identical IEC 61131-3 execution model in IEC 61499. This
paper aims at addressing these issues.

III. MIGRATION PROCESS FROM IEC 61131-3 TO IEC
61499 USING ONTOLOGY

The proposed migration approach aims at automatic
recreation of IEC 61131-3 PLC code behaviour in IEC 61499.
The entire process includes importing of PLC programs into a
knowledge base, automatic mapping from IEC 61131-3
knowledge base elements to IEC 61499 version, recreation of
original execution models and code generation to IEC 61499
platforms. The proposed design approach is illustrated in
Fig.1.
On the left hand side of Fig.1, source code of single PLCs
written in IEC 61131-3 languages is imported into the IEC
61131-3 knowledge base as instances. The IEC 61131-3
knowledge base is defined in the Semantic Web language
OWL [25]. An ontological knowledge base consists of two
parts: T-Box and A-Box. In the ontological terms, definitions
are belonging to the taxonomy box (T-Box) which contains
general properties of the ontological concepts. When this is
applied to the IEC 61131-3 standard, a T-Box contains
definitions of all IEC 61131-3 program elements concepts in
the XML format and program hierarchy between those IEC
61131-3 concepts. Those concepts are linked together by
using object properties and described in the description logic
[26] which ontology is mainly defined in. Actual data of
concepts are stored in data properties. In the other part of the
knowledge base, instances are stored into the assertion box
(A-Box) which consists of knowledge that is specific to the
individual system design. In the migration process, an A-Box
retains all instances imported from PLC configurations. That
information is saved as ontology individuals in the A-Box.

IEC	
 61131-­‐3
PLC	
 Code
(XML)

IEC	
 61499
FB	
 Code
(XML)

IEC	
 61131-­‐3
Knowledge	
 Base

(T-­‐Box)

Instances
(A-­‐Box)

Mapping
Rules
(OWL)

WithIMPORT IEC	
 61499
Knowledge	
 Base

(T-­‐Box)

Instances
(A-­‐Box)

Transformation
By	
 Ontology	
 Mapping

EXPORT

Fig. 1 Migration Process from IEC 61131-3 PLCs to IEC 61499 FBs.

The source code of PLCs represented in XML is interpreted
during the import process and stored into the IEC 61131-3
knowledge base in the OWL format which relies on XML as
well. The import process consists of two parts. The first part
is to detect PLC execution order including scheduled
parameters of tasks and programs. This step also gathers PLC
tasks execution order, priority and other useful information
that is required later in the migration process. The second part
is to store the original algorithms encapsulated in function
blocks, functions and subroutines written in IEC 61131-3
languages. Those algorithms are considered as fundamental
components and will be reused again. If algorithms in IEC
61131-3 function blocks with protected source code still can
be used in the migrated code being encapsulated into event-
driven IEC 61499 function block. Details of such
encapsulation are subject to support at the device level. For
example, such FBs can be called from algorithms in basic
FBs.
After the knowledge base for the original PLC code has been
created, the next action is to transform all IEC 61131-3
elements into the IEC 61499 format according to the general
migration rules. The execution model of IEC 61131-3 is
recreated by inserting scheduling function blocks in IEC
61499. Tasks and programs from PLC codes are rearranged
according to the original order with new introduced
scheduling function blocks. The transformation engine is
based on the Semantic Query-enhanced Web Rule Language
(SQWRL) [27] that is intended to extract information from
OWL knowledge bases. Similar to SPARQL, which queries
RDF knowledge base [28], SQWRL is the query language for
OWL. Mapping rules defined as complete SQWRL queries
are taken into the transformation engine. The results of those
queries provide the information required to construct desired
IEC 61499 systems.
The last step in the chain is the code generation part. Based
on the target platform, the respected code templates and
related instances are combined by the code generation engine
and output as IEC 61499 XML files. The generated code can
be viewed and edited in any IEC 61499 IDE and immediately
deployed using its mechanisms of compilation and
deployment. The example platform is this paper is FBDK
[29] although there are many IEC 61499 platforms such as
nxtStudio [30], 4DIAC-IDE [31], FBench [32] and CORFU
[33].
Further lifecycle steps, such as deployment to distributed
devices and modifications are performed using IEC 61499
tools. One major advantage of the IEC 61499 standard is

Please site as follows: W. Dai, V. Dubinin, V. Vyatkin “Migration from PLC to IEC 61499 using Semantic Web Technologies,
IEEE Transactions on Systems, Man and Cybernetics, Part A, 2013, in print
facilitation of distributed control by providing flexibility for
code distribution. The generated IEC 61499 systems can be
deployed to multiple distributed controllers by simply
assigning target device for each FB instance. The event-
driven IEC 61499 execution and communication model is
based on message passing which guarantees correctness of
execution regardless of performance of devices and networks.
A PLC-based distributed system must use shared variables
concept, whose semantics will depend on timing of each PLC
scan and of the communication networks involved. Besides,
IEC 61499 engineering tools automatically insert
communication code when connections between function
blocks cross boundaries of devices. On the other hand,
implementing data sharing by several PLCs is a lot more
cumbersome requiring lots of manual modifications. Also
using global variables in PLC program could reduce the
system reliability and performance and increases maintenance
costs in general.
Another advantage is that the IEC 61499 approach promotes
component-based design [34]. Functions or function blocks
designed in original PLC programs are transformed by the
migration process to re-useable library components. Those
components could be reused over and over again.
Maintenance of the resulting migrated code with IEC 61499
tools will not be difficult due to the use of the same
mnemonic notation of variable names and code labels (e.g.
states and actions as shown in Fig. 15 below). Original
function names are identical to target function block names as
well as instance names as illustrated in Fig. 19 and 20 in the
case study. Minor specific changes which are not supported
by the migration process could be added by using IEC 61499
tools. Major changes could be achieved by modifying source
IEC 61131-3 programs and regenerate target IEC 61499
programs again. The migration process provides a momentary
result in some cases (distributed PLC systems). The main
effort of the migration process is to help at the initial stage of
a transition from centralized PLC-based control to distributed
control systems.

IV. FORMAL MODELS OF IEC 61131-3 FOR MIGRATION

Before starting migration process, one more important issue
needs to be resolved, namely, the execution semantics. In the
migration approach proposed in this paper, the execution
semantics of PLC is recreated by means of IEC 61499. This
includes not only cyclic execution model which is achievable
by some function block runtimes (e.g. ISaGRAF [35]), but
also other PLC key features such as priority of tasks and
interrupts between periodic and continuously executed tasks.
As a starting point, a formal model of IEC 61131-3 is
required. The IEC 61131-3 basic high level language
elements and their relationships are illustrated in the Fig. 2.

Fig. 2 IEC 61131-3 Software Model [3].
In an IEC 61131-3 system configuration, each resource
corresponds to a physical device - PLC. Every PLC may have
one or more tasks which contains one or more programs.
Inside each program, functions and function blocks can be
invoked from any program of any task in the same resource.
Programs, functions and function blocks are fundamental
programming organization units (POUs) of IEC 61131-3.
Nested structures of POUs are also supported. Four
programming languages are defined in IEC 61131-3.
Graphical languages includes ladder logic diagram (LD) and
function block diagram (FBD). Structure text (ST) and
instruction list (IL) are textual based languages. All languages
can be encapsulated into POUs. Sequential function chart
(SFC) is defined in common elements of the IEC 61131-3
standard to represent logic in form of state machines.
For the purposes of formal definition of transformations, an
IEC 61131-3 resource is defined as a tuple:

Res = (Task, GlobalVar, UseTG, UpdTG), (4.1)
where Task = {task1, task2, … , taskn} is a non-empty set of
tasks scheduled in the PLC; GlobalVar = {globalVar1,
globalVar2, …, globalVarm} is a set of global variables of the
resource; UseTG ⊆ Task × GlobalVar is a relation of using
the global variables in the tasks (for reading); UpdTG ⊆ Task
× GlobalVar is a relation of changing the global variables in
the tasks.
Each task is defined as a tuple:

task = (Program, LocalVar, UsePL, UpdPL), (4.2)
where Program = {program1, program2, … , programp} is a
non-empty set of programs scheduled in a PLC task;
LocalVar = {localVar1, localVar2, …, localVars} is a set of
local variables used in one or more PLC program of this task;
UsePL ⊆ Program × LocalVar is a relation of using the local
variables in the programs (for reading); UpdPL ⊆ Program ×
LocalVar is a relation of changing the local variables in the
programs. There must be some variables defined in the
resource so:
For taski and taskj (i≠j) it holds:

Programi ∩ Programj = ∅
Here the upper indexes i and j are used to refer to the
corresponding tasks.
Function blocks can be called along with algorithms inside a
program:

Please site as follows: W. Dai, V. Dubinin, V. Vyatkin “Migration from PLC to IEC 61499 using Semantic Web Technologies,
IEEE Transactions on Systems, Man and Cybernetics, Part A, 2013, in print

Program = (Alg, FB, Func), (4.3)
where Alg is representing the actual PLC algorithms consists
of statements and operators written in one of the five
programming languages in this particular program not
including hierarchy levels of functions or function blocks
invoked; FB = {FB1, FB2, … , FBk} is a set of function block
instances used in the program; Func = {Func1, Func2, … ,
Funch} is a set of functions instances used in the program.
A function block is defined as a 3-tuple:

FB = (Interface, AlgFB, Var), (4.4)
where Var = {var1, var2, …, varx} is a set of internal variables
used in the function block; AlgFB is an algorithm
incorporated into FB.	

Interface in FB is defined as:

Interface = (VI, VO, VIO, EN, ENO), (4.5)
where VI = {vi1, vi2, … , vir} is a set of input variables; VO =
{vo1, vo2, … , voq} is a set of output variables; VIO = {vio1,
vio2, … , viot} is a set of in/out variables; EN is a Boolean
type input variable to indicate the function block activation
status; ENO is a Boolean type output variable to indicate the
function block is operating. 	

After the basic elements of IEC 61131-3 are defined, the
execution function using those elements is also required for
the migration process. The IEC 61131-3 execution is based
on scan cycles [3]. As shown in Fig. 3, during each scan, a
PLCs runs communication services first, reads all inputs data
from input modules, then executes through all tasks and
updates all outputs data to the out modules finally. The
execution order in this model is sequential. A new execution
cycle starts immediately once the previous cycle is completed.

Fig. 3 IEC 61131-3 Execution Semantics Timing Diagram.

The formal IEC 61131-3 execution model for a PLC resource
is given as a tuple:

1,(, ,{ } ,),i i nM Res If Tf Of
=

= (4.6)
where If is a function servicing input data from the input PLC
modules; Of is a function updating data to the output PLC
modules; Tfi is a task execution function (1,i n=) which
consists of multiple program execution functions Pfj

i

(1, ij p=); Res refers to an IEC 61131-3 resource as defined
in (4.1).
The global variables can be divided into three classes:
GlobalVar = InputVar ∪ OutputVar ∪ UDVar.
InputVar ∩ OutputVar ∩ UDVar = ∅,
where InputVar is a set of variables mapping from the PLC

input modules; OutputVar is a set of variables mapping to the
PLC output modules; UDVar is a set of variables defined by
the users to be used in multiple programs.

The essence of function If is to sample the values of PLC data
inputs to variable from InputVar. Function Of “copies” the
values of variables from OutputVar to PLC data outputs.
There are two types of tasks in the IEC 61131-3 standard:
periodic tasks and continuous tasks. Periodic tasks execute at
a customizable non-zero time interval. Continuous tasks keep
looping through all associated programs until interrupted by
periodic tasks. Each task also has a different preset priority
level. In a preemptive PLC runtime environment, a lower
priority periodic task will be interrupted by a higher priority
periodic task when the execution of this lower priority task
cannot be accomplished before the next turn of that higher
priority task starts. Once the higher priority task terminates,
the lower priority task will resume execution at the place
where it was interrupted. In a non-preemptive PLC runtime
environment, the higher priority task will wait until the lower
priority task terminates. If two tasks have same priority and
all waiting for execution, the task with longer waiting time
will have the priority. For the continuous tasks, the priority
means the execution order. Higher priority continuous tasks
always execute first followed by the lower priority continuous
tasks. The execution of the continuous task will resume from
the place where it was interrupted as well. Given an IEC
61131-3 resource Resource as defined in (4.1), the task
execution function for taski∈Task is defined as i

i j
j

Tf Pf=U .
,The execution function Pfj

i of the programj in the taski is
defined as

(,) (,)

(,) (,)

: () ()

() ()

i
i k j t

i
i z j u

i
j k t

task globalVar UseTG program localVar UsePL

z u
task globalVar UpdTG program localVar UpdPL

Pf Dom globalVar Dom localVar

Dom globalVar Dom localVar

∈ ∈

∈ ∈

× →

×

∏ ∏

∏ ∏

The algorithm for a PLC execution scan is given as:
1: for all taski Continuous Task do
2: for all programj ∈ Programi do
3: if taski is interrupted by taskk∈ Periodic Task then
4: for all programm ∈ Programk do
5: Compute Pfm

k
6: end for
7: end if
8: Compute Pfj

i
9: end for
10: end for

The scan time of a PLC cycle time is defined as:

()i i j
i j

Tscan x TP TC Tcomm= × + +∑ ∑

when Tcomm is also the time of servicing communications
and I/Os; TPi is i-th individual periodic task execution time;
TCj is j-th individual continuous task execution time; xi is
representing the number of times periodic tasks execute.
In a PLC cycle, all scheduled continuous tasks will be
executed once. The periodic tasks will execute zero or more
times depends on duration of each PLC scan cycle time. If the
scheduled continuous tasks execute fast enough, the periodic
tasks may only be executed every several scan cycles. Or if

Please site as follows: W. Dai, V. Dubinin, V. Vyatkin “Migration from PLC to IEC 61499 using Semantic Web Technologies,
IEEE Transactions on Systems, Man and Cybernetics, Part A, 2013, in print
the scheduled continuous tasks execute extremely slow, the
periodic tasks may execute several times before the scan
terminates.
In a task, there are multiple programs executed in a sequential
sequence. The total execution time of a task is:

i
i

Ttask Tpro=∑

where Tproi is i-th individual program execution time.
On the other hand, the IEC 61499 standard has a variety of
execution semantics as stated in the introduction section,
three of which are most known: sequential, parallel and
synchronous. In the sequential semantics, all FB instances run
like in a single thread with only FB active at any moment of
time. In the parallel execution semantics several FB instances
can be active simultaneously. In the synchronous execution
semantics the concept of logical tick is introduced as an
interval in which all FBs are executed with the same set of
input data. Their exchange events and data at the end of one
tick, and take the changes into account in the next tick. In the
cyclic model, all FBs are executed once in a pre-defined
sequence, between updates of input and output variables.
Synchronous and cyclic execution semantics are similar in a
way to cyclic scan based execution of programs in PLCs.
In order to apply the IEC 61131-3 execution model in all
those runtime semantics, a scheduler system in function
blocks is built at the application level. The hierarchy of this
proposed scheduler system given in Fig. 4 ensures PLC
cyclical behaviour – only one function block of a program in
a task is activated at one time. There are three layers of
schedulers: a PLC main scheduler, a task scheduler and a
program scheduler.

Fig. 4 IEC 61499 Scheduler System for IEC 61131-3 Execution Semantics.

The PLC main scheduler controls the order of tasks’
execution. The main scheduler is a basic function block type
and its interface, execution control chart (ECC) and
algorithms are illustrated in Fig. 5 for a preemptive PLC scan.

Fig. 5 Main Scheduler Interface, Execution Control Chart (ECC) and
scheduling algorithms (for preemptive PLC execution semantics).

There are three tasks in this example. P1 and P2 are periodic
tasks with different scan time and priority. In this case, P1 has
a faster scan time of 20 milliseconds (ms) and higher priority
than P2 which executes every 35 ms. C1 refers to a
continuous task. Here C1 is preempted by P1 and P2.
The PLC main scheduler is implemented as a basic function
block with the following structure. Its execution control chart
(ECC) includes four states: INIT, REQ, P1_DONE and
P2_DONE. The core part REQ state is triggered by the TICK
event that is raised by an E_CYCLE service interface
function block (SIFB) (say, every millisecond in FBDK, this
can be shorter if microsecond is supported for E_CYCLE in
other platforms). An internal timestamp is counted up by one
every millisecond as well. This timestamp is cleared in the
INIT state once the system started. It is continuously counting
up to the preset PLC scan time value from SCAN_TIME
input then wrapping around back to zero again. There is a
dedicated enable signal output for each task in the main
scheduler. When a task is scheduled to be executed, the
corresponding enable bit is set. For example, when timestamp
is counted up to 20ms, the task P1 will be activated and
P1_ENABLE is set to true. The P1 will be enabled
unconditionally due to its highest priority in the entire PLC
configuration and preemptive PLC scan. For a non-
preemptive PLC scan, P1 will only be enabled when no other
periodic task is enabled. A terminate event will be emitted
from the P1 task scheduler when it ends processing. This

Please site as follows: W. Dai, V. Dubinin, V. Vyatkin “Migration from PLC to IEC 61499 using Semantic Web Technologies,
IEEE Transactions on Systems, Man and Cybernetics, Part A, 2013, in print

P1_DONE event will trigger the P1_DONE state which resets
P1_ENABLE signal back to false. Another internal Boolean
variable P1_ENABLE_ONS is set once the P1 task is
triggered every scan. It is reset by the end of the scan to
ensure no periodic task is triggered more than once in single
scan. Similar task trigger and task termination feedback
mechanisms are set for P2 as well. When the timestamp is
counted up to 35ms, it will activate the P2 task scheduler by
setting the P2_ENABLE signal to true. However the P2
execution will be held until the P1 finishes processing due to
its lower priority. The continuous task C1 will be enabled as
long as no periodic task is enabled.
On the next level of the scheduling system, the task scheduler
is used for scheduling the execution order of associated
programs. The standard interface, ECC and algorithms of the
task scheduler function block are provided in Fig. 6.
When the main scheduler enables a task, an event at the REQ
input is received with ENABLE signal set to true. It will
immediately activate the PROGRAM1 state and
PROGRAM1_ENABLE signal is raised to trigger the
PROGRAM1 program scheduler. Once the PROGRAM1
execution is completed and this task is still enabled,
PROGRAM2 will start execution without any delay. Same as
the main scheduler, the TICK event input is connected to the
one millisecond E_CYCLE SIFB. If this task is interrupted
by another higher priority task during processing the
PROGRAM1, the ENABLE bit will be reset back to false.
The task scheduler will complete the PROGRAM1 execution
and wait at PROGRAM1 state. When this program is
scheduled to be executed in the next scan cycle, the ENABLE
bit will be set again and the task will resume from executing
the PROGRAM2. Once all programs in the chain are
processed, a done signal is sent back to the main scheduler to
switch to the next scheduled task. The task scheduler will
remain idle until be activated again in the next round.

Fig. 6 Task Scheduler Interface, ECC and algorithms

The Program scheduler is responsible for arranging the
execution order of routines, functions and function blocks
inside a particular program. The program scheduler function
block is very similar to the task scheduler function block.
Instead of scheduling programs, the program scheduler
enables routines, functions or function blocks in the
predefined order. The ECC state will be named following
functions, routines or function blocks rather than using
program names in the task scheduler.
The sequential execution semantics of any IEC 61131-3
configuration can be implemented in any IEC 61499
execution semantics with this scheduling system. A similar
approach has been demonstrated and validated in [36].
It should be noted that in order to increase system
performance and responsiveness all the schedulers can be
implemented in the form of SIFB rather than as basic FB.

V. MIGRATION MAPPING BY QUERYING THE
ONTOLOGICAL KNOWLEDGE BASE

A. Knowledge Base for Migration Mapping Rules
All scheduler function blocks are not unique for different
PLC program structures. Although the function block pattern
is generic, customization based on the number and the type of
tasks as well as the number and the execution order of
programs of each project is still required. It is essential to
auto generate scheduling functions as well as all mapping
other function blocks for both usability and generality
purposes.

Please site as follows: W. Dai, V. Dubinin, V. Vyatkin “Migration from PLC to IEC 61499 using Semantic Web Technologies,
IEEE Transactions on Systems, Man and Cybernetics, Part A, 2013, in print

Step

Action

Has_Action	
 Min	
 1

Source Destination

Script
Name Type Name Type

Template Query

Content SQWRL VAR

Has_Source	
 Exactly	
 1 Has_Destination	
 Exactly	
 1

Has_Script	
 Min	
 1

Has_Source_Name
String Has_Source_type

String

Has_Destination_Name
String Has_Destination_Type

String

Has_Template	
 Exactly	
 1 Has_Query	
 Min	
 1

Has_Template_Content
String

Has_Query_SQWRL
String

Has_Query_VAR
String

Procedure

Has_Step	
 Some

 Fig. 7 Knowledge Base Definition for Migration Mapping Rules

In order to create the scheduling function blocks and map
other tasks and programs automatically, a set of generic
migration mapping rules is purposed. These generic migration
mapping rules are providing the ontology mapping of classes
and properties between the IEC 61499 and IEC 61131-3
knowledge bases. The structure of mapping rules knowledge
base is illustrated in Fig. 7.
As defined in the knowledge base, each migration rule is
stored as a step. Each step may have one or more actions. The
step ontology individual template is given in Fig. 8. All step
individuals with name Step_Name have a type of Step and
associated with one or more actions identified by
Action_Name. Nonterminal elements representing names are
marked in bold in following templates.

<owl:NamedIndividual rdf:about="&xsd;Step_Name">

 <rdf:type rdf:resource="#Step" />

 <Has_Action rdf:resource="#Action_Name" />

…
</owl:NamedIndividual>

Fig. 8. Step Ontology Individual Template.

An action is responsible for mapping from one OWL
class/object property/data property in the original knowledge
base to another OWL class/object property/data property in
the target knowledge base. An action consists of a source, a
destination and a script. The template for the action is given
in Fig. 9.

<owl:NamedIndividual rdf:about="&xsd;ActionInstance_Action_Name">

 <rdf:type rdf:resource="#Action" />

 <Has_Source rdf:resource="#Source_Name " />

 <Has_Destination rdf:resource="#Destination_Name"/>

 <Has_Script rdf:resource="#Script_Name" />

 <Has_Action_Name rdf:datatype="#CDATA">Action_String_Name

 </Has_Action_Name>

</owl:NamedIndividual>

Fig. 9. Action Ontology Individual Template.

The source refers to the original node in the IEC 61131-3
knowledge base. The name Source_Name of the original node
and the mapping type (Class/Object Property/Data Property)
are associated with the source.

<owl:NamedIndividual rdf:about="&xsd;Source_Name">

 <rdf:type rdf:resource="#Source" />

 <Has_Source_Name rdf:datatype="#CDATA">

 Original_Node_Name</Has_Source_Name>

 <Has_Source_Type rdf:datatype="#CDATA" >

 (Class/ObjectProperty/DataProperty)</Has_Source_Type>

</owl:NamedIndividual>

Fig. 10. Source Ontology Individual Template.

Similar to the source, the destination is linked to the target
node in the IEC 61499 knowledge base with its node name
and type (Class/Object Property/Data Property). In an action,
there can be one or more scripts. The script is associated with
a template and a query as shown in Fig. 11.

<owl:NamedIndividual rdf:about="&xsd;Script_Name">

 <rdf:type rdf:resource="#Script" />

 <Has_Template rdf:resource="#Template_Name" />

 <Has_Query rdf:resource="#Query_Name" />

</owl:NamedIndividual>

Fig. 11. Script Ontology Individual Template.

The template in Fig. 12 keeps the content of the actual value
to be written into the target node. Content is a data template
which consists of a combination of text and SQWRL query
target variables. The migration engine will pick up the
content in the template first then replace variable symbols
with the SQWRL query results for those variables. For
example, the content is defined as “System_?a”. ?a is a
variable in the SQWRL query and VAR node for selecting
the system name. The system name will be replaced in the
content and finally result is shown as “System_Name”.

 <owl:NamedIndividual rdf:about="&xsd;Template_Name">

 <rdf:type rdf:resource="#Template" />

 <Has_Template_Content rdf:datatype="#CDATA" >Content
 </Has_Template_Content>

</owl:NamedIndividual>

Fig. 12. Template Ontology Individual Template.

Some values from the original node may be required as a part
of the target value. A query engine for fetching relevant
information from the ontological knowledge base would be
helpful. The SQWRL provides the ability to extract
information from the ontological knowledge base. SQWRL is

Please site as follows: W. Dai, V. Dubinin, V. Vyatkin “Migration from PLC to IEC 61499 using Semantic Web Technologies,
IEEE Transactions on Systems, Man and Cybernetics, Part A, 2013, in print

based on the Semantic Web Rule Language (SWRL) [40] and
extended with string processing, aggregation, counting and
many other features. The SQWRL query (more precisely, its
left-hand side) can be stored in the SQWRL node and the
result variable name(s) (that is after keyword "select" in
SQWRL query) is kept in the VAR node. If there is more
than one result in the result set, the variable will be replaced
by multiple results as one single text block. When the
migration process starts, the migration engine will fetch all
steps with actions from a procedure and run through them. In
each action, an OWL individual instance is created if the
destination type is an OWL class. This instance name is
provided by the content of the template which is filled by the
SQWRL query from the Query node. If the destination type is
a relation, an object property instance or a data property
instance is created and attached to that OWL individual
instance. The referred OWL individual instance from the
object property instance or the value from the data property
instance is selected by the query in the SQWRL node.

 <owl:NamedIndividual rdf:about="&xsd;Query_Name">

 <rdf:type rdf:resource="#Query" />

 <Has_Query_SQWRL rdf:datatype="#CDATA" >SQWRL_QUERY
 </Has_Query_SQWRL>

 <Has_Query_VAR rdf:datatype="#CDATA" >Variable_List</Has_Query_VAR>

</owl:NamedIndividual>

Fig. 13. Query Ontology Individual Template.

A migration engine is built in Microsoft Visual C# and
running on Microsoft .NET framework to process these
ontological mapping rules. The engine processes rules as
follows:

1: for all Step do
2: for all Action do
3: for all Script do
3: Execute SQWRL Query from the original IEC 61131-3 KB and Select
 variable Results from VAR
4: for all Results of VAR do
5: Replace Variable in the Template with SQWRL Query Results
6: Create an Instance in the target IEC 61499 KB with Template
 Content
7: end for
7: end for
8: end for
9: end for

Each step is responsible for processing an ontology node, and
actions are handling the mapping between class, object
properties and data properties of this node. The engine will
loop through steps and actions in each step. For each action,
the engine will run the SQWRL query in the Script node
which using SQWRL node as left hand side and VAR node as
right hand side. Variables in the Template node are replaced
with SQWRL query results. A new OWL instance is created
in the IEC 61499 knowledge base which has a type and name
defined in the Destination node with the content in the
Template node. This new instance could be a new OWL class

instance node in the target knowledge base, an object
property instance linked to another node or a data property
associated with some values. This new individual instance
naming conversion is defined as:

RootNodeType_SubNodeType_..._InstanceName
For example, if a program instance is created by the engine, it
will be named as Project_Task_Program_<ProgramName>.
B. Migration rules
In this subsection the migration process will be described. In
the approach by Sunder et al. [12], an IEC 61131-3 resource
is mapped to an IEC 61499 resource and tasks and programs
in the PLC are mapped to the IEC 61499 application. The
cyclical execution behavior is also created in that approach,
but no consideration of preemptive PLC runtime is presented.
In this particular example, a different approach is proposed
with the complete consideration of preemptive execution
semantics. The Rockwell ControlLogix PLC is selected as the
source and the FBDK is used as the destination function
block editor. Following the approach of [41], an IEC 61499
system configuration S is defined as a tuple:

S = (Dev, Seg, App, Map) (5.1)
where Dev = {Dev1, Dev2, …, Devn} is a set of devices; Seg is
the network segment for this IEC 61499 system configuration;
App = {App1, App2, …, Appn} is a set of applications defined.
Map = {Map1, Map2, …, Mapn} is a set of mappings of
function blocks between applications and devices.
A system configuration is generated for each PLC project.
The PLC name is mapped into the system configuration name.
An action is created with mapping from RSLogix5000Content
node in the PLC to the System node in the FB. The script has
a content of ?b which refers to a SQWRL variable in the
template for selecting the project name.
The main operator of the SQWRL is sqwrl:select. It will fill a
table which uses arguments as column names from the target
knowledge base. The data property TargetName of the class
RSLogix5000Content is selected as the name of the mapped
system configuration. The swrlb:stringConcat in the query is
one of the built-in functions from SWRL for construct string
values. The results of the system name from the SQWRL
query are stored in the variable ?b. The actual value replaces
the ?b in the data template of the content and this information
is used by creating an ontology individual of the given class
and its naming.
Mapping Rule 1: An IEC 61131-3 resource Res is mapped to
an IEC 61499 device: Res à Dev.
Next, a step is created for mapping from all IEC 61131-3
resources to IEC 61499 devices. The source of this action is
the PLC resource instance (see Controller class in the PLC
ontology) and the destination is the device instance of type
RMT_DEV (Remove Device) in the FB ontology. The
SQWRL query for selecting controller name as the new
device name is:
RSLogix5000Content(?a)
^ Has_RSLogix5000Content_Controller(?a, ?b)
^ Has_Controller_Name(?b, ?name)
-> sqwrl:select(?name) (S.1)

Please site as follows: W. Dai, V. Dubinin, V. Vyatkin “Migration from PLC to IEC 61499 using Semantic Web Technologies,
IEEE Transactions on Systems, Man and Cybernetics, Part A, 2013, in print

As extra step, a main PLC scheduling function block is
required for each mapped IEC 61499 device. A new device
named scheduling is inserted into the system configuration as
a migration action. The first action of this step is to recognize
all periodic tasks and schedule those tasks properly into the
main PLC scheduling function block. To construct the main
PLC scheduling function block, the first SQWRL node of the
Query in this Action is to find all periodic tasks and place
them into the main scheduling function block:
Task(?Task) ^ Has_Task_Name(?Task, ?Name)
 ^ Has_Task_Rate(?Task, ?Rate) ^ Has_Task_Priority(?Task, ?Priority)
^ Has_Task_Type(?Task, ?Type)
^ swrlb:stringEqualIgnoreCase(?Type, “PERIODIC”)
-> sqwrl:select(?Name, ?Priority, ?Rate) (S.2)

The above query retrieves names, types and priorities of all
tasks in a PLC configuration. Has_Task_Name,
Has_Task_Type, Has_Task_Rate and Has_Task_Priority are
the data properties of the object - task. The
swrlb:stringEqualIgnoreCase is the SWRL function for
comparing string values. The sqwrl:makeSet is also a built-in
collection operator to construct and manipulate sets. The
main purpose of this operator is to support the closure
operations for queries with negation or complex aggregation
functionalities. The last operator sqwrl:groupBy is used to
group sets of entities together. By using this query, all names,
priorities, scan rate of tasks with type of periodic are listed in
the resulting table.
After the data is ready, the query results need to be filled into
the step template. A pair of event input and output as well as
an enabling bit in the template of the main scheduling
function block interface is created using the name of the task.
Also an EC state named <taskname>_DONE is created for
acknowledging the process complete signal from task
schedulers and disabling that task. The REQ state is always
inserted into the main scheduling function block. Emitting
tasks triggers are created in the REQ state according to the
orders of priorities. The REQ algorithm consists of three parts:
time stamp calculation (?TimeStampPart), periodic task (?PTaskPart)
and continuously task (?CTaskPart).

The data template of the content is given as:
Timestamp := Timestamp + 1;

IF Timestamp >= SCAN_TIME THEN

 Timestamp := Timestamp - SCAN_TIME;

 ?TimeStampPart

END_IF;

?PTaskPart

?CTaskPart

The script also consists of three SQWRL queries. The first
SQWRL script is given as:
Task(?Task)

^ Has_Task_Name(?Task, ?TaskName) ^ Has_Task_Type(?Task, ?Type)

^ swrlb:stringEqualIgnoreCase(?Type, “PERIODIC”)

^ swrlb:stringConcat(?TimeStampPart, ?TaskName, “_ENABLE := FALSE;”) (S.3)

All names of periodic tasks are attached to “_ENABLE :=

FALSE;” replace the ?TimeStampPart in the content of the data
template as a single block. (For example: two periodic tasks
P1 and P2 constructed a string “P1_ENABLE := FALSE; P2_ENABLE :=

FALSE;” replace the ?TimeStampPart)
The second script is to collect periodic tasks with their
interval rate:
Task(?Task)

^ Has_Task_Name(?Task, ?TaskName) ^ Has_Task_Type(?Task, ?Type)

^ Has_Task_Rate(?Task, ?Rate)

^ swrlb:stringEqualIgnoreCase(?Type, “PERIODIC”)

^ swrlb:stringConcat(?NotTaskName, “& NOT(“, ?TaskName, “_ENABLE) &

NOT(“, ?TaskName, “_ENABLE_ONS)”)

^ swrlb:stringConcat(?PTaskPart, “IF Timestamp >= “, ?Rate, ?NotTaskName,

“ THEN\r\n”, ?TaskName, “_ENABLE := true;\r\n”, ?TaskName, “_ENABLE_ONS :=

true;\r\n END_IF; \r\n”) (S.4)
The result algorithm in the EC State for a task named P1 with
interval 20ms will be:
IF Timestamp >= 20 & NOT(P1_ENABLE)

 & NOT(P1_ENABLE_ONS) THEN

 P1_ENABLE := true;

 P1_ENABLE_ONS := true;

END_IF;

The third SQWRL script is similar to the second query.
Instead of searching periodic tasks, continuously tasks are
replaced.
The second action of this step is to find all continuous tasks
from the code knowledge base by executing the following
query:
Task(?Task) ^ Has_Task_Name(?Task, ?Name)
^ Has_Task_Priority(?Task, ?Priority) ^ Has_Task_Type(?Task, ?Type)
^ swrlb:stringEqualIgnoreCase(?Type, “CONTINUOUS”)
-> sqwrl:select(?Name, ?Priority) (S.5)

Similar to the periodic task, all names and priorities of
continuous tasks are listed. When no periodic or higher
priority continuous task is activated, the continuous task will
keep executing.
After the system configuration is defined, the next level of
IEC 61499 element is a device. An IEC 61499 device Dev is
defined as a 2-tuple:

Dev = (Resr, FBN), (5.2)
where Resr = {Resr1, Resr2, …, Resry} is a set of resources
used in the device; FBN is a function block network.
Mapping Rule 2: An IEC 61131-3 task Task is mapped to an
IEC 61499 resource Resr: Task à Resr.
According to the second rule, all IEC 61131-3 tasks are
mapped to IEC 61499 resources. The source of this action is
the PLC task instance (see Task class in the PLC ontology)
and the destination is the resource instance of type
EMB_RES (Embedded Resource) in the FB ontology. The
PLC task name is used as the FB resource name.
After the resource is constructed, a task scheduling FB is
necessary for each IEC 61499 resource to schedule programs
in this task. Task scheduling function blocks are also added to
the resource created previously and identical for both periodic
and continuous tasks. In order to generate task schedulers, a
list of programs and their execution orders is required for

Please site as follows: W. Dai, V. Dubinin, V. Vyatkin “Migration from PLC to IEC 61499 using Semantic Web Technologies,
IEEE Transactions on Systems, Man and Cybernetics, Part A, 2013, in print

filling into the content template. A SQWRL query for
selecting all programs in the execution order of a task is given
as:
Task(?Task)
^ Has_Task_Name(?Task, ?TaskName)
^ swrlb:stringEqualIgnoreCase(?TaskName, <TaskName>)
^ Has_ScheduledProgram (?Task, ?Program)
^ Has_ScheduledProgram_Name(?Program, ?Name)
-> sqwrl:select(?Name) (S.6)

For each program, a separate EC state, EC state algorithm and
a pair of completed Boolean input and enable output are
inserted into the task scheduling FB similar to the main
scheduler FB. The EC state algorithm is generated in the
same way as stated for the EC state of the main PLC
scheduler FB.
The next level of the PLC code hierarchy is routines,
functions and function blocks inside a program. An IEC
61499 function block network FBN is defined as a 3-tuple:

FBN = (FBI, EConn, DConn), (5.3)
where FBI = {FBI1, FBI2, …, FBIn} is a set of function block
instances defined in a function block network; EConn is a set
of event connections; DConn is a set of data connections.
An IEC 61499 composite function block CFB is defined as:

CFB = (Interface’, FBN) (5.4)
where Interface’ is IEC 61499 function block interface
(including input/output events and data), FBN is a function
block network;.
Mapping Rule 3a: An IEC 61131-3 program Program is
mapped to an IEC 61499 composite function block CFB if
there is some function or function block that is used inside a
program: Program à CFB (with function and function block).
First, the program must be checked if any function or
function block is invoked. The partial SQWRL queries are:
Program(?Prog)

^ Has_Function(?Prog, ?Func) (S.7)

And the second rule:

Program(?Prog)

^ Has_FunctionBlock(?Prog, ? Func) (S.8)

Mapping Rule 3b: An IEC 61131-3 program Program is
mapped to an IEC 61499 basic function block BFB if there is
no function or function block that is used inside a program:
Program à BFB (without function and function block).
 If there is no function or function block calls in the original
function block design, then a basic function block is used to
encapsulate the algorithm instead of a composite function
block. The check for function or function block exists in the
Rule 3a can used in the opposite way to avoid duplicated
generation of programs. Otherwise, the target code will be
represented as multiple IEC 61499 function blocks. The rungs
or lines before the instance call of a function or function
block call, after the instance call of a function or function
block call and between two functions or function blocks will
be placed into another basic function block. Those IEC 61499
function blocks are linked following the original execution
order. A SQWRL query can be used to list all functions and
function blocks in a PLC program. The generated function

blocks are saved as OWL files back into the ontological
knowledge base. Similar approach will be applied to the
function or function block conversion if the IEC 61131-3
function or function block has nested structure inside.
The generation procedure for the program scheduling FB is
almost equivalent to the task scheduler except the actual
scheduling target are functions and function blocks inside the
program instead of programs.
Now scheduling function blocks are all mapped. The
execution order of the original PLC configuration is restored
in the resulting function block system configuration. The
architecture transformation of an IEC 61131-3 application to
an IEC 61499 system is completed. However, there are
several issues on the code level still need to be resolved in the
generated system.
The first issue is how to map routines, functions and function
blocks into IEC 61499 manners. The migration rules
reconstruct the program structure but still no code is filled
into that structure yet. Several approaches of PLC systems
redesign into function block systems are proposed by the
authors in the previous work [39]. One of those approaches is
to reuse PLC code in function block designs. In that approach,
no PLC code modification is required when transformed into
function block networks. Although other approaches are also
feasible, reusing PLC code suits better for the migration
process as it requires less human efforts and saving cost and
work time.
An IEC 61499 basic function block (BFB) is defined as:

BFB = (Interface’, ECC, Alg, IntData), (5.5)
where Interface’ is IEC 61499 function block interface; ECC
is representing an execution control chart in the basic
function block; Alg is a set of algorithms associated with EC
states; IntData is a set of internal variables only used in this
basic function block.
PLC program can be written in one of the four programming
languages of the IEC 61131-3 standard or a graphical
language SFC. For a program written in ladder logic diagram
(LD), instruction list (IL) or structure text (ST), the code can
be placed directly into an algorithm of a basic function block.
However, there is one exception – the case, when another IEC
61131-3 function or function block is invoked in this program.
This requires calling an instance of a function block inside a
basic function block. This is not supported by the existing
IEC 61499 tools and not specified in the standard itself. The
idea of the solution is illustrated in the Fig. 14 below.

Please site as follows: W. Dai, V. Dubinin, V. Vyatkin “Migration from PLC to IEC 61499 using Semantic Web Technologies,
IEEE Transactions on Systems, Man and Cybernetics, Part A, 2013, in print

Fig. 14 Reuse PLC code in IEC 61499 function blocks for LD, IL and ST.

If there is no function or function block instance called in the
program, the entire logic can be placed into a Basic FB.
Otherwise those function or function block instances are
mapped to an inherited CFB and logics around are mapped
into separated BFBs.
An IEC 61499 execution control chart ECC is defined as:

ECC = (ECstate, ECTrans, ECTCond, L) (5.6)
where ECstate is a set of EC states; ECTrans is a set of EC
transitions; ECTCond is a set of EC transition conditions; L:
ECTrans → ECTCond is a function assigning EC transition
conditions to EC transitions.
Mapping Rule 4: An IEC 61131-3 SFC program Program is
mapped to an ECC inside the IEC 61499 basic function
block : Program à ECC (if program is written in SFC).
If the original program is written in the sequential function
chart (SFC), the SFC can be converted to the ECC inside a
basic function block [42]. Each SFC step is mapped to an EC
state. SFC transitions, transition conditions, step algorithms
are mapped to EC transition, EC transition conditions and EC
state algorithm correspondingly by using SQWRL queries
and the transformation engine as showing in the Fig. 15.
However, parallel SFC steps are allowed in IEC 61131-3 but
no concurrent ECC is defined in the IEC 61499 standard.
This is not considered in this paper, however a solution is
proposed by Riedl et al. [42].

Fig. 15 IEC 61131-3 SFC mapping to IEC 61499 ECC

Mapping Rule 5: An IEC 61131-3 FBD program Program is
mapped to an IEC 61499 composite function block CFB:
Program à CFB (if program is written in FBD).

Fig. 16 IEC 61131-3 FBD mapping to IEC 61499 Composite FB.

If the original program is written in the function block
diagram language, it can be converted to the function block
network of IEC 61499. Each function block in the FBD of
IEC 61131-3 is converted to an IEC 61499 function block and
connections between function blocks are easily established.
All function blocks converted from the original PLC version
must be in a single event chain in order to be executed once
in each scan in sequential order as illustrated in the Fig. 16.
This can be achieved by applying SQWRL queries selecting
all original function blocks in their original order and
inserting the corresponding function blocks to the IEC 61499
application.
The other issue of the migration process is related to treating
the global and program variables used in the PLC code. There
are two levels of variables in the PLC program: controller
(global) variables and program (local) variables. A controller
variable can be accessed from anywhere in the PLC
configuration. A program variable can only be accessed from
a particular program. There is no global variable concept in
the IEC 61499 standard as it is designed for distributed
systems control. The only place where a variable might be
stored is a basic function block. The alternative choice is to
build a service interface function block (SIFB) to access some
external data sources. But the SIFB is implementation
dependent which means a different SIFB must be created
manually for every IEC 61499 platform. For the automatic
migration process, using basic function blocks to store
variables is more suitable. In order to access global variables
from any level in the IEC 61499 hierarchy, a pair of Publish
and Subscribe function block is inserted. As indicated in Fig.

Please site as follows: W. Dai, V. Dubinin, V. Vyatkin “Migration from PLC to IEC 61499 using Semantic Web Technologies,
IEEE Transactions on Systems, Man and Cybernetics, Part A, 2013, in print

17, a basic function block is used as the global variable
storage. Each variable has a data input publishing its value
and subscribing writing requests over the entire PLC
configuration. The same procedure is repeated again for all
global variables that are listed by using SQWRL queries of
selecting all global variables. Publish and subscribe function
blocks are named as variable names they refer to.

Fig. 17 Global/local Variable Composite Function Block.

The data storage function block is also suitable for program
variables. The same procedure is applied with SQWRL
queries selecting all program variables from the knowledge
base.
At this stage, mapping the original PLC code to the function
block version is defined completely in the transformation
procedure. By using the migration engine, all artifacts of the
original PLC code are transformed into the function block
knowledge base. Finally, code generation applied to the
knowledge base will deliver IEC 61499 code.

VI. CASE STUDY ON BAGGAGE HANDLING SYSTEM

An inbound baggage handling system (BHS) as shown in Fig.
18 is used as the case study for migrating from IEC 61131-3
PLCs to IEC 61499 function blocks. The original PLC
program is written in the Rockwell ControlLogix PLC. There
are five conveyors and one inbound baggage carousel in the
system. Bags are inducted from the IB101 take-away
conveyor and merged into the IB1 carousel. There are also
three emergency stops located around the system.

Fig. 18 Case study inbound baggage handling system layout.

Fig. 19 Original PLC Configuration Structure.

The original PLC code structure is shown as Fig. 19. There
are two tasks scheduled in the PLC. The FastTask is a
periodic task which executes every 25ms. A program
FastProgram is associated with this task. There is one merge
control and three emergency stop controls scheduled in the
program. Also there is a continuously task
ConveyorControlTask which has a program ConveyorControl
in the PLC configuration. Inside the program, there are six
conveyor control function blocks schedule. Each of them is
controlling a physical conveyor in the system. Inside all
function blocks, there is no nested level of functions or
function blocks invoked.
The resulting IEC 61499 system configuration achieved by
applying the migration process is given in Fig. 20.

Please site as follows: W. Dai, V. Dubinin, V. Vyatkin “Migration from PLC to IEC 61499 using Semantic Web Technologies,
IEEE Transactions on Systems, Man and Cybernetics, Part A, 2013, in print

Fig. 20 Generated Function Block Configuration Structure and Main PLC
Scheduler FB Algorithm.

The resulting system configuration has three resources. The
periodic task FastTask is mapped to the resource FastTask.
Each function block in the PLC program FastProgram is
converted to an IEC 61499 function block. Those function
blocks are linked according to the order of their counterparts
in the PLC program. The resource ConveyorControlTask
includes all six conveyor control function blocks in the order
of the original PLC program. A new resource Scheduling has
a main PLC scheduling FB, two task scheduling FBs and two
program scheduling FBs. The enable event is raised by the
program scheduling FBs to either FastTask resource or
ConveyorControlTask resource. Once all function blocks in
the FastTask resource are executed, an acknowledgement
event is send back to the program scheduling FB to indicate
the execution of the periodic task is accomplished. The main
scheduling function block will switch to the continuously
executed task until the pre-defined execution cycle for the
periodic task arrives again.
This case study is supported by the automatic migration tool
developed by the authors. The tool imports PLC code in the
XML format (for example, PLCOpen XML [37] and

Rockwell [38]) and converts it into the IEC 61131-3
knowledge base. Then those instances in the IEC 61131-3
knowledge base are mapped to the IEC 61499 knowledge
base by the migration engine. Finally the FB version of the
code is generated. The complexity of this migration process is
linear to the size of the original PLC program. An 8MB PLC
XML file takes approximately 5 minutes to complete the
entire migration process.

VII. CONCLUSIONS

A new ontological based migration procedure is proposed in
this paper that can be applied to IEC 61131-3 compliant PLC
source code to transform it to IEC 61499 platforms. In order
to achieve that, a formal model of IEC 61131-3 application
particularly for migration and its execution model are defined.
Also the mapping rules between migration models are
provided. Code import, automatic mapping and
transformation between standards and code generation are
achieved by using knowledge base queries. The main
advantage of this approach is reliance on the Semantic Web
technologies. The developed migration tool can use the
standard S(Q)WRL engine that is configurable by the rules.
This approach is more flexible and less resource consuming
in development as compared to hard coding the
transformation rules. The ontological knowledge base
provides a higher abstract level view of the migration process.
A case study has been conducted to prove the automatic
migration from IEC 61131-3 PLCs to IEC 61499 function
blocks is feasible.
Future work will also include detailed comparison of the
obtained IEC 61499 code with the code designed manually
using the approaches proposed in [21] both in terms of
performance and code maintainability.
The known limitations of this approach are as follows. Firstly
the target IEC 61499 platforms must support all instructions
used in the original IEC 61131-3 PLC programs in order to
reuse the entire PLC program. Secondly, the source IEC
61131-3 platforms must support export to the XML file
format. IEC 61131-3 function blocks with source protection
enabled must be available as SFIB in the target IEC 61499
runtime. The interface of those IEC 61131-3 function blocks
must be as available in XML format. Also the generated
scheduling system can only be interrupted after the current
function block is completely executed. The IEC 61131-3 PLC
will interrupt at instructions level and resume from there.
Finally, the minimum tick in IEC 61499 is one millisecond
due to the platform used. The PLC normally executes at
microsecond’s level. This is caused by the FBRT IEC 61499
runtime running on a PC-based controller with non-real time
operation systems (The minimum time scale on MS Windows
is 1 ms). The E_CYCLE SIFB can generate events at
microsecond’s level if the target controller is running a real
time operation system instead.
Future work will also concern with semantic analysis of
generated function block systems and correction of errors
introduced during the migration process. The accuracy of the
generated IEC 61499 systems will be improved by
introducing ECC refactoring [21]. Finally, more PLC

Please site as follows: W. Dai, V. Dubinin, V. Vyatkin “Migration from PLC to IEC 61499 using Semantic Web Technologies,
IEEE Transactions on Systems, Man and Cybernetics, Part A, 2013, in print

platforms and complicated examples will be tested with the
proposed migration rules.

VIII. REFERENCES
[1] IEC 61499, Function Blocks, International Standard, First Edition,

2005
[2] V. Vyatkin, “IEC 61499 as Enabler of Distributed and Intelligent

Automation: State of the Art Review”, IEEE Transactions on Industrial
Informatics, 7(4), 2011, pp. 768-781.

[3] IEC 61131-3, Programmable controllers - Part 3: Programming
languages, International Standard, Second Edition, 2003

[4] A. Zoitl, T. Strasser, C. Sunder, T, Baier, “Is IEC 61499 in Harmony
with IEC 61131-3?”, IEEE Industrial Electronics Magazine, Vol. 3,
Issue 4, December 2009, pp 49-55.

[5] T. Strasser, A. Zoitl, J. Christensen, C. Sunder, “Design and Execution
Issues in IEC 61499 Distributed Automation and Control Systems”,
IEEE Transactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews, Vol. 41, Issue 1, 2011, Page 41 – 51.

[6] T. Strasser, R. Froschauer, “Autonomous Application Recovery in
Distributed Intelligent Automation and Control Systems”, IEEE
Transactions on Systems, Man, and Cybernetics, Part C: Applications
and Reviews, Vol. 42, Issue 6, 2012, Page 1054 – 1070.

[7] N. Cai, M. Gholami, L. Yang, R. Brennan, “Application-Oriented
Intelligent Middleware for Distributed Sensing and Control”, IEEE
Transactions on Systems, Man, and Cybernetics, Part C: Applications
and Reviews, Vol. 42, Issue 6, 2012, Page 947 – 956.

[8] J. Peltola, J. Christensen, S. Sierla, K. Koskinen, “A Migration Path to
IEC 61499 for the Batch Process Industry”, 5th International
Conference on Industrial Informatics, Vol. 2, 2007, pp. 811 - 816.

[9] T. Hussain, G. Frey “Migration of a PLC Controller to an IEC 61499
Compliant Distributed Control System: Hands-on Experiences”, Proc.
of IEEE International Conference on Robotics and Automation, 2005,
pp. 3984 – 3989.

[10] M. Wenger, A. Zoitl, C. Sunder, H. Steininger, “Transformation of IEC
61131-3 to IEC 61499 based on a model driven development approach”,
7th IEEE International Conference on Industrial Informatics, 2009, pp.
715 – 720.

[11] M. Wenger, A. Zoitl, C. Sunder, H. Steininger, “Semantic correct
transformation of IEC 61131-3 models into the IEC 61499 standard”,
IEEE Conference on Emerging Technologies & Factory Automation,
2009, pp. 1 – 7.

[12] C. Sunder, M. Wenger, C. Hanni, I. Gosetti, H. Steininger, J. Fritsche,
“Transformation of existing IEC 61131-3 automation projects into
control logic according to IEC 61499”, IEEE International Conference
on Emerging Technologies and Factory Automation, 2008, pp. 369 –
376.

[13] N. Bauer, R. Huuck, B. Lukoschus and S. Engel, “A Unifying
Semantics for Sequential Function Charts”, Lecture Notes in Computer
Science, 2004, Vol. 3147

[14] F. Basile, P. Chiacchio, and D. Gerbasio, "Progress in PLC
programming for distributed automation systems control," presented at
9th International Conference on Industrial Informatics, 2011, Page 621
- 627.

[15] K. M. Goh and W. Dint, "Iterative Knowledge Based Code Generator
for IEC 61499 Function Block," presented at the IEEE Region 10
Conference (TENCON 2009), Singapore, 2009.

[16] M. B. Younis and G. Frey, "A formal method based re-implementation
concept for plc programs and its application," in IEEE Conference on
Emerging Technologies and Factory Automation (ETFA), Prague, 2006,
pp. 1340-1347.

[17] G. Weisenborn, “Method for converting a programmable logic
controller hardware configuration and corresponding control program
for use on a first programmable logic controller to use on a second
programmable logic controller.” U.S. Patent No. 5142469, 1992.

[18] A. Fay, “A knowledge-based system to translate control system
applications”, Engineering Applications of Artificial Intelligence. Vol.
16 (2003), pp. 567-577.

[19] A. Mader and H. Wupper, “What is the method in applying formal
methods to PLC applications?”, Proc. of the ADPM 2000 Conference,
pp. 165–171, 2000.

[20] J. Chouinard , „Distributed systems development with IEC 61499 in
ISaGRAF“, Online:
http://www.ece.auckland.ac.nz/~vyatkin/iec61499day/index.html,2012

[21] V. Dubinin, V. Vyatkin, “Semantics-robust Design Patterns for IEC
61499”, IEEE Transactions on Industrial Informatics, 2012, DOI:
10.1109/TII.2012.2186820, in print.

[22] G. Cengic, K. Akesson, “On Formal Analysis of IEC 61499
Applications, Part B: Execution Semantics”, IEEE Transactions on
Industrial Informatics, Vol. 6, No. 2, May 2010, pp 145 - 154.

[23] W. Dai, V. Vyatkin, V. Dubinin, “Semantic Analysis of IEC 61499
Systems Using Automatically Generated Ontological Models”, IEEE
Transactions on Industrial Informatics, 2012, In Print.

[24] H. Y. Li, P. Roop, V. Vyatkin, and Z. Salcic, "A Synchronous
Approach for IEC 61499 Function Block Implementation" IEEE
Transactions on Computers, Vol. 58, Issue 12, 2009, Page 1599 - 1614.

[25] Ontology General Definition [Online], available from
http://semanticweb.org/wiki/Ontology

[26] F. Badder, D. Calavanese, D.L. McGuinness, D. Nardi and P.F. Patel-
Schneider, “The Description Logic Handbook, Theory, Implementation
and Applications, 2nd Edition.”, Published by Cambridge University
Press, 2007, ISBN 978-0-521-87265-4

[27] M. O’Connor, A. Das, “SQWRL: a Query Language for OWL”, OWL:
Experiences and Directions (OWLED), Fifth International Workshop
2009, vol. 529

[28] E. Prud’hommeaux and A. Seaborne, “SPARQL query language for
RDF,” 2008. [Online]. Available: http://www.w3.org/TR/rdf-
sparqlquery/

[29] FBDK – Function Block Development Kit [Online], available from
http://www.holobloc.com/

[30] nxtStudio by nxtControl GmbH, nxtControl – Next generation software
for next generation customers [Online, 2009, June],
http://www.nxtcontrol.com

[31] 4DIAC, An open source IEC 61499 IDE and runtime [Online],
available from http://www.fordiac.org

[32] FBench, An open source IDE for IEC 61499 [Online], available from
http://www.ece.auckland.ac.nz/~vyatkin/fbench/

[33] CORFU, Function block development environment [Online], available
from http://seg.ee.upatras.gr/corfu/dev/index.htm

[34] A. Zoitl and H. Prahofer, "Building Hierarchical Automation Solutions
in the IEC 61499 Modeling Language," presented at 9th IEEE
International Conference on Industrial Informatics, 2011, Page 557 -
564.

[35] ISaGRAF Workbench. Available: http://www.isagraf.com
[36] V. Vyatkin, J. Chouinard, “On Comparisons the ISaGRAF

implementation of IEC 61499 with FBDK and other implementations”,
6th IEEE International Conference on Industrial Informatics,
(INDIN’08), Daejeon, Korea, July 2008.

[37] PLCOpen – the worldwide community related to IEC 61131-3 [Online],
available from http://www.plcopen.org

[38] Rockwell Automation – Major PLC vendor [Online], available from
http://www.rockwellautomation.com

[39] W. Dai, V. Vyatkin, “Redesign Distributed PLC Control Systems Using
IEC 61499 Function Blocks, IEEE Transactions on Automation Science
and Engineering, Vol. 9, Issue 2, 2012, Page 390 - 401.

[40] SWRL: A Semantic Web Rule Language Combining OWL and
RuleML[Online], retrieved from
http://www.w3g.org/Submission/SWRL/

[41] V. Vyatkin, V. Dubinin, “Refactoring of Execution Control Charts in
Basic Function Blocks of the IEC 61499 Standard”, IEEE Transactions
on Industrial Informatics, Vol. 6, Issue 2, May 2010, Page 155 – 165.

[42] M. Riedl, C. Diedrich, F. Naumann, “SFC in IEC 61499”, IEEE
International Conference on Emerging Technologies and Factory
Automation, 2006, pp. 662 – 666.

Please site as follows: W. Dai, V. Dubinin, V. Vyatkin “Migration from PLC to IEC 61499 using Semantic Web Technologies,
IEEE Transactions on Systems, Man and Cybernetics, Part A, 2013, in print

IX. BIOGRAPHIES

Wenbin Dai (GM’ 09, M’ 13) received a Bachelor of
Engineering (with honours) degree in Computer
Systems Engineering from the University of
Auckland, New Zealand in 2006. He completed PhD
in Electrical and Electronic Engineering at the
Department of Electrical and Computer Engineering,
The University of Auckland, New Zealand in 2012.
He is now a postdoc fellow with Luleå University of
Technology, Sweden. His research interests are IEC
61131-3 PLC, IEC 61499 function blocks, distributed
control systems, industrial fieldbus communication

protocol, SOA and Internet of Things in industrial automation.
He has been also a software engineer with Glidepath Limited – a New
Zealand based airport baggage handling system provider since 2007. He has
been involved in a number of airport baggage handling system and parcel
sortation system projects in New Zealand, Australia, Canada, China, Africa,
Middle-East and South America. Wenbin’s responsibilities concerned with
design and development of PLC control and SCADA/HMI for those systems.

Victor N. Dubinin received the Diploma degree in
computer science and the Ph.D. degree from the
University of Penza, Penza, Russia, in 1981 and
1989, respectively. From 1981 to 1989, he was a
Researcher and from 1989 to 1995, he was a
Senior Lecturer at the University of Penza. Since
1995, he has been an Associate Professor with the
Department of Computer Science at the University
of Penza. In 2003, 2006, and 2010, he was
awarded DAAD-grants to work as a Guest

Scientist at Martin-Luther-University, Halle-Wittenberg, Germany. In 2011,
he held Visiting Researcher position at the University of Auckland, New
Zealand. His research interests include formal methods for specification,
verification, synthesis, and implementation of distributed and discrete event
systems.

Valeriy Vyatkin is Chaired Professor
(Ämnesprofessor) of Dependable Computation and
Communication Systems at Luleå University of
Technology, Sweden, and visiting scholar at
Cambridge University, U.K., on leave from The
University of Auckland, New Zealand, where he has
been Associate Professor and Director of the
InfoMechatronics and Industrial Automation lab
(MITRA) at the Department of Electrical and
Computer Engineering. He graduated with the
Engineer degree in applied mathematics in 1988

from Taganrog State University of Radio Engineering (TSURE), Taganrog,
Russia. Later he received the Ph.D. (1992) and Dr. Sci. degree (1998) from
the same university, and the Dr. Eng. Degree from Nagoya Institute of
Technology, Nagoya, Japan, in 1999. His previous faculty positions were
with Martin Luther University of Halle-Wittenberg in Germany (Senior
researcher and lecturer, 1999–2004), and with TSURE (Associate Professor,
Professor, 1991–2002).
Research interests of professor Vyatkin are in the area of dependable
distributed automation and industrial informatics, including software
engineering for industrial automation systems, distributed architectures and
multi-agent systems applied in various industry sectors: Smart Grid, material
handling, building management systems, reconfigurable manufacturing, etc.
Prof Vyatkin is also active in research on dependability provisions for
industrial automation systems, such as methods of formal verification and
validation, and theoretical algorithms for improving their performance. In
2012, Prof Vyatkin has been awarded Andrew P. Sage Award for best IEEE
Transactions paper.

