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Abstract – This paper proposes a new methodology of migration 
from IEC 61131-3 PLCs to IEC 61499 function blocks. The aim 
of this migration process is to recreate IEC 61131-3 applications 
in IEC 61499 implementations with equivalent execution 
behavior. The formal model of the IEC 61131-3 standard for 
migration and cyclical execution model is defined. This method 
also creates a foundation for correct-by-design development 
tools and automatic migration between the IEC 61131-3 and 
IEC 61499 standard. Formal migration rules based on ontology 
mappings, restoring execution model including tasks and 
programs scheduling and variables mapping with different 
access levels, are provided. A transformation engine for 
importing PLC code, mapping from PLC ontology model to 
Function Block model and code generation is implemented 
based on the ontological knowledge base and semantic query-
enhanced web rule language. The migration approach is 
demonstrated on a simple airport baggage handling system. 
Index Terms— IEC 61131-3 PLC, IEC 61499 Function Blocks, 
Migration, Ontology (OWL), Execution Semantics, Ontology 
Mapping, Code Generation and IEC 61131-3 formal execution 
model 

I. INTRODUCTION 

The IEC 61499 standard [1] is considered as the key of 
enabling distributed control and introducing intelligence into 
industrial automation [2]. However, the use of this technology 
in the automation industry is still minimal. Majority of the 
systems are still designed using programmable logic 
controllers (PLC) programmed in traditional languages of 
ladder logic, structured text or function block diagram (FBD) 
defined in IEC 61131-3 standard [3]. Potential benefits of 
implementing complex automation systems with IEC 61499 
technology include lower design effort combined with higher 
flexibility, reconfigurability and maintainability [4-7], but the 
learning curve is quite steep and the cost of required initial 
research and development is high. Therefore it is important to 
provide an easy migration path for existing PLC programs 
into IEC 61499 compliant platforms as the first step towards 
widespread adoption of the new standard.  
There exist several migration approaches [8–12] but none of 
them provides a generic rule for automatic generation an IEC 
61499 system from code developed for various PLC brands. 
Although most vendors claim their PLCs are compliant with 
the IEC 61131-3 standard, none of them is compatible with 
each other [13]. The migration process proposed in this paper 

is not trying to replace the IEC 61131-3 standard with the 
IEC 61499 standard completely. This complies with the 
vision of many industry practitioners (e.g. [20]) who see IEC 
61499 as a complement rather than a substitute to IEC 61131-
3. Instead, the IEC 61499 standard is used as the top-level 
design framework in conjunction with the IEC 61131-3 
standard. In this approach, entire IEC 61131-3 PLC programs 
are encapsulated in the IEC 61499 function blocks and reused 
in the new IEC 61499 system configuration. In order to 
achieve cyclic execution behaviour of the original PLC 
applications in the generated IEC 61499 systems, a formal 
IEC 61131-3 execution model is defined. However, the first 
edition of IEC 61499 allowed for some semantic ambiguities, 
leading to several execution models for IEC 61499: 
sequential [21], parallel [22], cyclic [23] and synchronous 
[24] (in more detail discussed in Section IV). Due to the 
different execution semantics, same IEC 61499 
configurations could have different behaviours when run on 
various execution semantics. In order to avoid that, the 
equivalent execution model in IEC 61499 is built on 
application level according to the PLC execution model.  
This paper proposes a novel, tool-supported transformation 
process implemented by a tool based on the Semantic Web 
technologies. The proposed ontology-based approach is using 
knowledge bases to describe the model and transformation 
between the models. This substantially differs from the usual 
XML transformation methods, such as the ones based on 
XSLT translation table or XQuery, in which case it would be 
much harder to take into account the execution semantics of 
the transformed artifacts, and translation rules would be hard-
coded. In the proposed method, source code of PLC programs 
is converted into a platform independent ontology knowledge 
base. The execution order of the PLC source code is also 
stored in the same knowledge base. Then, all instances of this 
IEC 61131-3 ontological model are transformed to the IEC 
61499 ontological model based on the generic migration 
rules. The scheduling function blocks are inserted to control 
the execution order of the resulting IEC 61499 function 
blocks. Finally, the resulting IEC 61499 system configuration 
is generated automatically from the IEC 61499 knowledge 
base. 
The execution behaviour of the migrated IEC 61499 systems 
is identical to the IEC 61131-3 version, taking into account 
tasks priorities and interruption between periodic and 
continuous tasks. However, thanks to IEC 61499 features, the 
migrated function block systems can be easier distributed to 
multiple small PLCs without any code change. 
Communications between FB instances are established 
automatically at runtime level in IEC 61499 implementations. 
As most of PLC code is reused in new function block 
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systems, the cost of redesigning IEC 61131-3 systems in IEC 
61499 can be reduced significantly. Using the IEC 61499 
standard as a top level design language provides a better 
overview of systems compared to IEC 61131-3 programs. 
Finally, the insertion of scheduling function blocks during the 
migration process ensures that the generated systems behave 
identically to their PLC version even if different distributed 
nodes follow different execution semantics of IEC 61499. 
The rest of the paper is structured as follows: several 
migration and transformation approaches are reviewed in 
section II. In section III, the overview of the migration path 
from IEC 61131-3 to IEC 61499 using ontological knowledge 
base is illustrated. In section IV, the execution model of the 
IEC 61131-3 is defined and an equivalent IEC 61499 version 
is created. Importing code and structure from PLC programs 
is discussed in the section V. In section VI, general migration 
rules are provided as ontology mapping between the 
knowledge bases. Code generation for IEC 61499 is provided 
in section VII, followed by a case study of an airport baggage 
handling system. The paper is concluded with discussion of 
limitations and future works. 

II. RELATED WORKS 

Several researchers have published on migration from IEC 
61131-3 PLCs to IEC 61499 FBs. Peltola et al. [8] provided 
an example on manual migration of IEC 61131-3 PLC control 
code for a batch process to IEC 61499 function blocks with 
integrated HMI views. The paper has proven that using IEC 
61499 function blocks replacing for IEC 61131-3 PLCs is 
feasible. 
Another example of manual PLC controller migration to an 
IEC 61499 distributed control system is given by Hussain et 
al. [9]. PLC based control of a FESTO MPS model assembly 
plant is transformed to the IEC 61499 function block based 
control. The original control algorithm in state machine is 
converted to the execution control chart (ECC) of the basic 
function block. The performance of the new FB system based 
on event-driven execution is measured. However, no generic 
rule or migration guideline is provided. 
A model-based transformation and semantic correction from 
IEC 61131-3 to IEC 61499 is proposed by Wenger et al. [10] 
[11]. Authors proved that with IEC 61131-3 and IEC 61499 
libraries available, it is possible to transform source IEC 
61131-3 model into an internal E-core model and then write it 
in the target IEC 61499 XML model. Recreating IEC 61131-3 
execution order in IEC 61499 is feasible but how to connect 
events in order automatically is still not completely solved. 
However, this approach focuses on the translation of the PLC 
code sentence by sentence. The entire PLC program structure 
was not considered. 
Sunder et al. [12] proposed a solution for converting IEC 
61131-3 automation projects into IEC 61499 standard. 
Differences between two standards are carefully compared. 
The mapping between two software models is also provided. 
The variables with various level of access are considered. 
However, mapping of global variables which are commonly 
used by IEC 61131-3 to an IEC 61499 format is not solved 
and automatic transformation is not implemented using this 
approach. 
Beyond existing migration approaches, there are several 

papers providing useful ideas that could be applied in the 
migration process. Basile et al. [14] show how object-oriented 
programming could implicitly make the event-based PLC 
software behaviour. Authors propose a solution which is the 
combination of two existing approaches in introducing 
object-oriented programming into PLCs: adding object-
oriented support in the IEC 61131-3 standard or adopting the 
IEC 61499 standard. The IEC 61131-3 programming 
language SFC is used to develop a proper object-oriented 
approach. Our work goes beyond object-oriented 
programming, focusing on migration to distributed systems, 
which is the main strength of the IEC 61499 architecture. 
Goh and Dint in [15] describe an approach to code generation 
for IEC 61499 based on the iterative knowledge base. The 
iterative knowledge base is represented in the form of XML 
and Extended Backus-Naur Form (EBNF). The goal of that 
approach is to eliminate any additional script language to be 
used in the code generation. Also the translation rules are 
configurable and reusable to improve the accuracy of 
translation rules. In order to achieve this goal, rule-based 
blocks are built for each IEC 61499 XML element. During 
the code generation process when the pre-defined rules are 
satisfied, the related block of code will be generated and data 
types and connections will be also inserted. XML and EBNF 
based approach is syntax-oriented while OWL, 
SQWRL/SWRL based ontology driven approach is more 
semantic-oriented and human readable. Besides, automatic 
generation of code template is not covered in that paper. It 
could be difficult to modify knowledge base when code 
template is changed. 
Younis et al. [16] propose an XML and XSLT based approach 
for re-implementing existing PLC programs. State machines 
stored in XML format are translated into IEC 61131-3 POUs 
and regenerated for a different controller. This work only 
covers migration between IEC 61131-3 platforms and 
original PLC code must be defined using assembler-like 
languages.  
Weisenborn et al. [17] registered a patent on conversion from 
a hardware configuration and corresponding control logic 
program from one PLC to another equivalent PLC using  a 
knowledge-based translator. However, the premise of this 
approach is that the hardware configurations must be 
equivalent. The migration process described in this paper 
aims at transform between multiple platforms supporting 
various PLC programming languages to cover multiple 
platforms. Also that approach uses a proprietary language for 
describing mapping rules and is intended mainly for 
migration of ladder logic control programs.  
Fay et al. [18] propose an automatic graphical knowledge-
based approach to address the modernization problem of a 
control system for a technical plant. This approach proves 
rule-based transformation is very useful for function block 
based control program. However, the platform used in this 
approach is not compliant with IEC 61499 standard. In 
addition, this approach needs to develop a specific rule 
execution engine. Its formats are proprietary that complicates 
integration of the proposed tool with other tools of the design 
chain. On the contrary, Semantic Web- based approaches 
support open standards, expansibility, reconfigurability, reuse 
of previous decisions, and use standard software (for 
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example, reasoners). 
Mader et al. [19] investigate how to obtain proper functioning 
from PLC applications using formal methods. A schema of 
PLC applications is presented in this paper to indicate how to 
evaluate results gained by formal methods as well as find out 
which aspects are treated by a certain method in the control 
system design. Unfortunately, the schema proposed describes 
the process of PLC-based systems design through analysis 
but it does not show the role of formal methods in the process 
of synthesis of these systems.  
Overall, there is no systematic approach to automatic 
migration between an IEC 61131-3 PLC and IEC 61499 
function blocks available. Approaches from [8] and [9] 
provide some useful migration ideas, but formulating 
migration rules is missing. In this paper, such migration rules 
are proposed. Most of the rules proposed by Sunder’s 
approach can be applied here. Mapping of global variables,  
missing in the Sunder’s et al. work, is also covered in this 
paper. The transformation process proposed by Wenger et al. 
is driven by a meta-model defined in the standard XML 
format. The approach does not provide the mapping between 
other IEC 61131-3 languages except FBD to IEC 61499 as 
well as is not generic which could be applied to other IEC 
61131-3 XML formats. The mapped function block systems 
using this approach cannot automatically connect event 
connections and associate them with proper data variables. 
Furthermore, none of the existing approaches offers an 
identical IEC 61131-3 execution model in IEC 61499. This 
paper aims at addressing these issues. 

III. MIGRATION PROCESS FROM IEC 61131-3 TO IEC 
61499 USING ONTOLOGY  

The proposed migration approach aims at automatic 
recreation of IEC 61131-3 PLC code behaviour in IEC 61499. 
The entire process includes importing of PLC programs into a 
knowledge base, automatic mapping from IEC 61131-3 
knowledge base elements to IEC 61499 version, recreation of 
original execution models and code generation to IEC 61499 
platforms. The proposed design approach is illustrated in 
Fig.1. 
On the left hand side of Fig.1, source code of single PLCs 
written in IEC 61131-3 languages is imported into the IEC 
61131-3 knowledge base as instances. The IEC 61131-3 
knowledge base is defined in the Semantic Web language 
OWL [25]. An ontological knowledge base consists of two 
parts: T-Box and A-Box. In the ontological terms, definitions 
are belonging to the taxonomy box (T-Box) which contains 
general properties of the ontological concepts. When this is 
applied to the IEC 61131-3 standard, a T-Box contains 
definitions of all IEC 61131-3 program elements concepts in 
the XML format and program hierarchy between those IEC 
61131-3 concepts. Those concepts are linked together by 
using object properties and described in the description logic 
[26] which ontology is mainly defined in. Actual data of 
concepts are stored in data properties. In the other part of the 
knowledge base, instances are stored into the assertion box 
(A-Box) which consists of knowledge that is specific to the 
individual system design. In the migration process, an A-Box 
retains all instances imported from PLC configurations. That 
information is saved as ontology individuals in the A-Box. 
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Fig. 1  Migration Process from IEC 61131-3 PLCs to IEC 61499 FBs. 

The source code of PLCs represented in XML is interpreted 
during the import process and stored into the IEC 61131-3 
knowledge base in the OWL format which relies on XML as 
well. The import process consists of two parts. The first part 
is to detect PLC execution order including scheduled 
parameters of tasks and programs. This step also gathers PLC 
tasks execution order, priority and other useful information 
that is required later in the migration process. The second part 
is to store the original algorithms encapsulated in function 
blocks, functions and subroutines written in IEC 61131-3 
languages. Those algorithms are considered as fundamental 
components and will be reused again. If algorithms in IEC 
61131-3 function blocks with protected source code still can 
be used in the migrated code being encapsulated into event-
driven IEC 61499 function block. Details of such 
encapsulation are subject to support at the device level. For 
example, such FBs can be called from algorithms in basic 
FBs.  
After the knowledge base for the original PLC code has been 
created, the next action is to transform all IEC 61131-3 
elements into the IEC 61499 format according to the general 
migration rules. The execution model of IEC 61131-3 is 
recreated by inserting scheduling function blocks in IEC 
61499. Tasks and programs from PLC codes are rearranged 
according to the original order with new introduced 
scheduling function blocks. The transformation engine is 
based on the Semantic Query-enhanced Web Rule Language 
(SQWRL) [27] that is intended to extract information from 
OWL knowledge bases. Similar to SPARQL, which queries 
RDF knowledge base [28], SQWRL is the query language for 
OWL. Mapping rules defined as complete SQWRL queries 
are taken into the transformation engine.  The results of those 
queries provide the information required to construct desired 
IEC 61499 systems. 
The last step in the chain is the code generation part. Based 
on the target platform, the respected code templates and 
related instances are combined by the code generation engine 
and output as IEC 61499 XML files. The generated code can 
be viewed and edited in any IEC 61499 IDE and immediately 
deployed using its mechanisms of compilation and 
deployment. The example platform is this paper is FBDK 
[29] although there are many IEC 61499 platforms such as 
nxtStudio [30], 4DIAC-IDE [31], FBench [32] and CORFU 
[33]. 
Further lifecycle steps, such as deployment to distributed 
devices and modifications are performed using IEC 61499 
tools. One major advantage of the IEC 61499 standard is 
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facilitation of distributed control by providing flexibility for 
code distribution. The generated IEC 61499 systems can be 
deployed to multiple distributed controllers by simply 
assigning target device for each FB instance. The event-
driven IEC 61499 execution and communication model is 
based on message passing which guarantees correctness of 
execution regardless of performance of devices and networks. 
A PLC-based distributed system must use shared variables 
concept, whose semantics will depend on timing of each PLC 
scan and of the communication networks involved. Besides, 
IEC 61499 engineering tools automatically insert 
communication code when connections between function 
blocks cross boundaries of devices. On the other hand, 
implementing data sharing by several PLCs is a lot more 
cumbersome requiring lots of manual modifications. Also 
using global variables in PLC program could reduce the 
system reliability and performance and increases maintenance 
costs in general. 
Another advantage is that the IEC 61499 approach promotes 
component-based design [34]. Functions or function blocks 
designed in original PLC programs are transformed by the 
migration process to re-useable library components. Those 
components could be reused over and over again. 
Maintenance of the resulting migrated code with IEC 61499 
tools will not be difficult due to the use of the same 
mnemonic notation of variable names and code labels (e.g. 
states and actions as shown in Fig. 15 below). Original 
function names are identical to target function block names as 
well as instance names as illustrated in Fig. 19 and 20 in the 
case study. Minor specific changes which are not supported 
by the migration process could be added by using IEC 61499 
tools. Major changes could be achieved by modifying source 
IEC 61131-3 programs and regenerate target IEC 61499 
programs again. The migration process provides a momentary 
result in some cases (distributed PLC systems). The main 
effort of the migration process is to help at the initial stage of 
a transition from centralized PLC-based control to distributed 
control systems. 

IV. FORMAL MODELS OF IEC 61131-3 FOR MIGRATION 

Before starting migration process, one more important issue 
needs to be resolved, namely, the execution semantics. In the 
migration approach proposed in this paper, the execution 
semantics of PLC is recreated by means of IEC 61499. This 
includes not only cyclic execution model which is achievable 
by some function block runtimes (e.g. ISaGRAF [35]), but 
also other PLC key features such as priority of tasks and 
interrupts between periodic and continuously executed tasks. 
As a starting point, a formal model of IEC 61131-3 is 
required. The IEC 61131-3 basic high level language 
elements and their relationships are illustrated in the Fig. 2.  

 

Fig. 2  IEC 61131-3 Software Model [3]. 
In an IEC 61131-3 system configuration, each resource 
corresponds to a physical device - PLC. Every PLC may have 
one or more tasks which contains one or more programs. 
Inside each program, functions and function blocks can be 
invoked from any program of any task in the same resource. 
Programs, functions and function blocks are fundamental 
programming organization units (POUs) of IEC 61131-3. 
Nested structures of POUs are also supported. Four 
programming languages are defined in IEC 61131-3. 
Graphical languages includes ladder logic diagram (LD) and 
function block diagram (FBD). Structure text (ST) and 
instruction list (IL) are textual based languages. All languages 
can be encapsulated into POUs. Sequential function chart 
(SFC) is defined in common elements of the IEC 61131-3 
standard to represent logic in form of state machines. 
For the purposes of formal definition of transformations, an 
IEC 61131-3 resource is defined as a tuple: 

Res = (Task, GlobalVar, UseTG, UpdTG),  (4.1) 
where Task = {task1, task2, … , taskn}   is a non-empty set of 
tasks scheduled in the PLC; GlobalVar = {globalVar1, 
globalVar2, …, globalVarm} is a set of global variables of the 
resource; UseTG ⊆ Task × GlobalVar  is a relation of using 
the global variables in the tasks (for reading); UpdTG ⊆ Task 
× GlobalVar  is a relation of changing the global variables in 
the tasks. 
Each task is defined as a tuple: 

task = (Program, LocalVar, UsePL, UpdPL), (4.2) 
where Program = {program1, program2, … , programp} is a 
non-empty set of programs scheduled in a PLC task; 
LocalVar = {localVar1, localVar2, …, localVars} is a set of 
local variables used in one or more PLC program of this task; 
UsePL ⊆ Program × LocalVar  is a relation of using the local 
variables in the programs (for reading); UpdPL ⊆ Program × 
LocalVar  is a relation of changing the local variables in the 
programs. There must be some variables defined in the 
resource so: 
For taski and taskj (i≠j) it holds:  

Programi ∩ Programj = ∅ 
Here the upper indexes i and j are used to refer to the 
corresponding tasks. 
Function blocks can be called along with algorithms inside a 
program: 
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Program = (Alg, FB, Func),  (4.3) 
where Alg is representing the actual PLC algorithms consists 
of statements and operators written in one of the five 
programming languages in this particular program not 
including hierarchy levels of functions or function blocks 
invoked; FB = {FB1, FB2, … , FBk} is a set of function block 
instances used in the program;  Func = {Func1, Func2, … , 
Funch} is a set of functions instances used in the program. 
A function block is defined as a 3-tuple: 

FB = (Interface, AlgFB, Var),  (4.4) 
where Var = {var1, var2, …, varx} is a set of internal variables 
used in the function block; AlgFB is an algorithm 
incorporated into FB.	
  
Interface in FB is defined as: 

Interface = (VI, VO, VIO, EN, ENO),  (4.5) 
where VI = {vi1, vi2, … , vir} is a set of input variables; VO = 
{vo1, vo2, … , voq} is a set of output variables; VIO = {vio1, 
vio2, … , viot} is a set of in/out variables; EN is a Boolean 
type input variable to indicate the function block activation 
status; ENO is a Boolean type output variable to indicate the 
function block is operating. 	
  
After the basic elements of IEC 61131-3 are defined, the 
execution function using those elements is also required for 
the migration process. The IEC 61131-3 execution is based 
on scan cycles [3]. As shown in Fig. 3, during each scan, a 
PLCs runs communication services first, reads all inputs data 
from input modules, then executes through all tasks and 
updates all outputs data to the out modules finally. The 
execution order in this model is sequential. A new execution 
cycle starts immediately once the previous cycle is completed.  

 
Fig. 3  IEC 61131-3 Execution Semantics Timing Diagram. 

The formal IEC 61131-3 execution model for a PLC resource 
is given as a tuple: 

1,( , ,{ } , ),i i nM Res If Tf Of
=

= (4.6) 
where If is a function servicing input data from the input PLC 
modules; Of is a function updating data to the output PLC 
modules; Tfi is a task execution function ( 1,i n= ) which 
consists of multiple program execution functions Pfj

i
 

( 1, ij p= ); Res refers to an IEC 61131-3 resource as defined 
in (4.1). 
The global variables can be divided into three classes: 
GlobalVar = InputVar ∪ OutputVar ∪ UDVar. 
InputVar ∩ OutputVar ∩ UDVar = ∅, 
where InputVar is a set of variables mapping from the PLC 

input modules; OutputVar is a set of variables mapping to the 
PLC output modules; UDVar is a set of variables defined by 
the users to be used in multiple programs. 

The essence of function If is to sample the values of PLC data 
inputs to variable from InputVar. Function Of “copies” the 
values of variables from OutputVar to PLC data outputs. 
There are two types of tasks in the IEC 61131-3 standard: 
periodic tasks and continuous tasks. Periodic tasks execute at 
a customizable non-zero time interval. Continuous tasks keep 
looping through all associated programs until interrupted by 
periodic tasks. Each task also has a different preset priority 
level. In a preemptive PLC runtime environment, a lower 
priority periodic task will be interrupted by a higher priority 
periodic task when the execution of this lower priority task 
cannot be accomplished before the next turn of that higher 
priority task starts. Once the higher priority task terminates, 
the lower priority task will resume execution at the place 
where it was interrupted. In a non-preemptive PLC runtime 
environment, the higher priority task will wait until the lower 
priority task terminates. If two tasks have same priority and 
all waiting for execution, the task with longer waiting time 
will have the priority. For the continuous tasks, the priority 
means the execution order. Higher priority continuous tasks 
always execute first followed by the lower priority continuous 
tasks. The execution of the continuous task will resume from 
the place where it was interrupted as well. Given an IEC 
61131-3 resource Resource as defined in (4.1), the task 
execution function for taski∈Task is defined as i

i j
j

Tf Pf=U . 
,The execution function Pfj

i of the programj in the taski is 
defined as 

( , ) ( , )

( , ) ( , )

: ( ) ( )

( ) ( )

i
i k j t

i
i z j u

i
j k t

task globalVar UseTG program localVar UsePL

z u
task globalVar UpdTG program localVar UpdPL

Pf Dom globalVar Dom localVar

Dom globalVar Dom localVar

∈ ∈

∈ ∈

× →

×

∏ ∏

∏ ∏
 

The algorithm for a PLC execution scan is given as: 
1: for all taski  Continuous Task do 
2:   for all programj ∈ Programi  do 
3:      if taski is interrupted by taskk∈ Periodic Task then 
4:       for all programm ∈ Programk do 
5:         Compute Pfm

k  
6:       end for 
7:     end if 
8:     Compute Pfj

i  
9:   end for 
10: end for 

The scan time of a PLC cycle time is defined as: 

( )i i j
i j

Tscan x TP TC Tcomm= × + +∑ ∑  

when Tcomm is also the time of servicing communications 
and I/Os; TPi is i-th individual periodic task execution time; 
TCj is j-th individual continuous task execution time; xi is 
representing the number of times periodic tasks execute. 
In a PLC cycle, all scheduled continuous tasks will be 
executed once. The periodic tasks will execute zero or more 
times depends on duration of each PLC scan cycle time. If the 
scheduled continuous tasks execute fast enough, the periodic 
tasks may only be executed every several scan cycles. Or if 
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the scheduled continuous tasks execute extremely slow, the 
periodic tasks may execute several times before the scan 
terminates.  
In a task, there are multiple programs executed in a sequential 
sequence. The total execution time of a task is: 

i
i

Ttask Tpro=∑  

where Tproi is i-th individual program execution time. 
On the other hand, the IEC 61499 standard has a variety of 
execution semantics as stated in the introduction section, 
three of which are most known: sequential, parallel and 
synchronous. In the sequential semantics, all FB instances run 
like in a single thread with only FB active at any moment of 
time. In the parallel execution semantics several FB instances 
can be active simultaneously. In the synchronous execution 
semantics the concept of logical tick is introduced as an 
interval in which all FBs are executed with the same set of 
input data. Their exchange events and data at the end of one 
tick, and take the changes into account in the next tick. In the 
cyclic model, all FBs are executed once in a pre-defined 
sequence, between updates of input and output variables. 
Synchronous and cyclic execution semantics are similar in a 
way to cyclic scan based execution of programs in PLCs. 
In order to apply the IEC 61131-3 execution model in all 
those runtime semantics, a scheduler system in function 
blocks is built at the application level. The hierarchy of this 
proposed scheduler system given in Fig. 4 ensures PLC 
cyclical behaviour – only one function block of a program in 
a task is activated at one time. There are three layers of 
schedulers: a PLC main scheduler, a task scheduler and a 
program scheduler.  

 
Fig. 4  IEC 61499 Scheduler System for IEC 61131-3 Execution Semantics. 

The PLC main scheduler controls the order of tasks’ 
execution. The main scheduler is a basic function block type 
and its interface, execution control chart (ECC) and 
algorithms are illustrated in Fig. 5 for a preemptive PLC scan.  

 
Fig. 5  Main Scheduler Interface, Execution Control Chart (ECC) and 
scheduling algorithms (for preemptive PLC execution semantics). 

There are three tasks in this example. P1 and P2 are periodic 
tasks with different scan time and priority. In this case, P1 has 
a faster scan time of 20 milliseconds (ms) and higher priority 
than P2 which executes every 35 ms. C1 refers to a 
continuous task. Here C1 is preempted by P1 and P2. 
The PLC main scheduler is implemented as a basic function 
block with the following structure. Its execution control chart 
(ECC) includes four states: INIT, REQ, P1_DONE and 
P2_DONE. The core part REQ state is triggered by the TICK 
event that is raised by an E_CYCLE service interface 
function block (SIFB) (say, every millisecond in FBDK, this 
can be shorter if microsecond is supported for E_CYCLE in 
other platforms). An internal timestamp is counted up by one 
every millisecond as well. This timestamp is cleared in the 
INIT state once the system started. It is continuously counting 
up to the preset PLC scan time value from SCAN_TIME 
input then wrapping around back to zero again. There is a 
dedicated enable signal output for each task in the main 
scheduler. When a task is scheduled to be executed, the 
corresponding enable bit is set. For example, when timestamp 
is counted up to 20ms, the task P1 will be activated and 
P1_ENABLE is set to true. The P1 will be enabled 
unconditionally due to its highest priority in the entire PLC 
configuration and preemptive PLC scan. For a non-
preemptive PLC scan, P1 will only be enabled when no other 
periodic task is enabled. A terminate event will be emitted 
from the P1 task scheduler when it ends processing. This 
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P1_DONE event will trigger the P1_DONE state which resets 
P1_ENABLE signal back to false. Another internal Boolean 
variable P1_ENABLE_ONS is set once the P1 task is 
triggered every scan. It is reset by the end of the scan to 
ensure no periodic task is triggered more than once in single 
scan. Similar task trigger and task termination feedback 
mechanisms are set for P2 as well. When the timestamp is 
counted up to 35ms, it will activate the P2 task scheduler by 
setting the P2_ENABLE signal to true. However the P2 
execution will be held until the P1 finishes processing due to 
its lower priority. The continuous task C1 will be enabled as 
long as no periodic task is enabled.  
On the next level of the scheduling system, the task scheduler 
is used for scheduling the execution order of associated 
programs. The standard interface, ECC and algorithms of the 
task scheduler function block are provided in Fig. 6.  
When the main scheduler enables a task, an event at the REQ 
input is received with ENABLE signal set to true. It will 
immediately activate the PROGRAM1 state and 
PROGRAM1_ENABLE signal is raised to trigger the 
PROGRAM1 program scheduler. Once the PROGRAM1 
execution is completed and this task is still enabled, 
PROGRAM2 will start execution without any delay. Same as 
the main scheduler, the TICK event input is connected to the 
one millisecond E_CYCLE SIFB. If this task is interrupted 
by another higher priority task during processing the 
PROGRAM1, the ENABLE bit will be reset back to false. 
The task scheduler will complete the PROGRAM1 execution 
and wait at PROGRAM1 state. When this program is 
scheduled to be executed in the next scan cycle, the ENABLE 
bit will be set again and the task will resume from executing 
the PROGRAM2. Once all programs in the chain are 
processed, a done signal is sent back to the main scheduler to 
switch to the next scheduled task. The task scheduler will 
remain idle until be activated again in the next round.  

 
Fig. 6 Task Scheduler Interface, ECC and algorithms 

The Program scheduler is responsible for arranging the 
execution order of routines, functions and function blocks 
inside a particular program. The program scheduler function 
block is very similar to the task scheduler function block. 
Instead of scheduling programs, the program scheduler 
enables routines, functions or function blocks in the 
predefined order. The ECC state will be named following 
functions, routines or function blocks rather than using 
program names in the task scheduler. 
The sequential execution semantics of any IEC 61131-3 
configuration can be implemented in any IEC 61499 
execution semantics with this scheduling system. A similar 
approach has been demonstrated and validated in [36]. 
It should be noted that in order to increase system 
performance and responsiveness all the schedulers can be 
implemented in the form of SIFB rather than as basic FB. 

V. MIGRATION MAPPING BY QUERYING THE 
ONTOLOGICAL KNOWLEDGE BASE 

A. Knowledge Base for Migration Mapping Rules 
All scheduler function blocks are not unique for different 
PLC program structures. Although the function block pattern 
is generic, customization based on the number and the type of 
tasks as well as the number and the execution order of 
programs of each project is still required. It is essential to 
auto generate scheduling functions as well as all mapping 
other function blocks for both usability and generality 
purposes. 
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 Fig. 7  Knowledge Base Definition for Migration Mapping Rules 

In order to create the scheduling function blocks and map 
other tasks and programs automatically, a set of generic 
migration mapping rules is purposed. These generic migration 
mapping rules are providing the ontology mapping of classes 
and properties between the IEC 61499 and IEC 61131-3 
knowledge bases. The structure of mapping rules knowledge 
base is illustrated in Fig. 7. 
As defined in the knowledge base, each migration rule is 
stored as a step. Each step may have one or more actions. The 
step ontology individual template is given in Fig. 8. All step 
individuals with name Step_Name have a type of Step and 
associated with one or more actions identified by 
Action_Name. Nonterminal elements representing names are 
marked in bold in following templates. 

<owl:NamedIndividual rdf:about="&xsd;Step_Name"> 

    <rdf:type rdf:resource="#Step" /> 

    <Has_Action rdf:resource="#Action_Name"  /> 

… 
</owl:NamedIndividual> 

Fig. 8. Step Ontology Individual Template. 

An action is responsible for mapping from one OWL 
class/object property/data property in the original knowledge 
base to another OWL class/object property/data property in 
the target knowledge base. An action consists of a source, a 
destination and a script. The template for the action is given 
in Fig. 9. 

<owl:NamedIndividual rdf:about="&xsd;ActionInstance_Action_Name"> 

    <rdf:type rdf:resource="#Action" /> 

    <Has_Source rdf:resource="#Source_Name "  /> 

    <Has_Destination rdf:resource="#Destination_Name"/> 

    <Has_Script rdf:resource="#Script_Name"  /> 

    <Has_Action_Name rdf:datatype="#CDATA">Action_String_Name 

    </Has_Action_Name> 

</owl:NamedIndividual> 

Fig. 9. Action Ontology Individual Template. 

The source refers to the original node in the IEC 61131-3 
knowledge base. The name Source_Name of the original node 
and the mapping type (Class/Object Property/Data Property) 
are associated with the source. 

<owl:NamedIndividual rdf:about="&xsd;Source_Name"> 

    <rdf:type rdf:resource="#Source" /> 

    <Has_Source_Name rdf:datatype="#CDATA"> 

    Original_Node_Name</Has_Source_Name> 

    <Has_Source_Type rdf:datatype="#CDATA" > 

    (Class/ObjectProperty/DataProperty)</Has_Source_Type> 

</owl:NamedIndividual> 

Fig. 10. Source Ontology Individual Template. 

Similar to the source, the destination is linked to the target 
node in the IEC 61499 knowledge base with its node name 
and type (Class/Object Property/Data Property). In an action, 
there can be one or more scripts. The script is associated with 
a template and a query as shown in Fig. 11. 

<owl:NamedIndividual rdf:about="&xsd;Script_Name"> 

    <rdf:type rdf:resource="#Script" /> 

    <Has_Template rdf:resource="#Template_Name"  /> 

    <Has_Query rdf:resource="#Query_Name"  /> 

</owl:NamedIndividual> 

Fig. 11. Script Ontology Individual Template. 

The template in Fig. 12 keeps the content of the actual value 
to be written into the target node. Content is a data template 
which consists of a combination of text and SQWRL query 
target variables. The migration engine will pick up the 
content in the template first then replace variable symbols 
with the SQWRL query results for those variables. For 
example, the content is defined as “System_?a”. ?a is a 
variable in the SQWRL query and VAR node for selecting 
the system name. The system name will be replaced in the 
content and finally result is shown as “System_Name”. 

  <owl:NamedIndividual rdf:about="&xsd;Template_Name"> 

   <rdf:type rdf:resource="#Template" /> 

    <Has_Template_Content rdf:datatype="#CDATA" >Content 
    </Has_Template_Content> 

</owl:NamedIndividual> 

Fig. 12. Template Ontology Individual Template. 

Some values from the original node may be required as a part 
of the target value. A query engine for fetching relevant 
information from the ontological knowledge base would be 
helpful. The SQWRL provides the ability to extract 
information from the ontological knowledge base. SQWRL is 
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based on the Semantic Web Rule Language (SWRL) [40] and 
extended with string processing, aggregation, counting and 
many other features. The SQWRL query (more precisely, its 
left-hand side) can be stored in the SQWRL node and the 
result variable name(s) (that is after keyword "select" in 
SQWRL query) is kept in the VAR node. If there is more 
than one result in the result set, the variable will be replaced 
by multiple results as one single text block. When the 
migration process starts, the migration engine will fetch all 
steps with actions from a procedure and run through them. In 
each action, an OWL individual instance is created if the 
destination type is an OWL class. This instance name is 
provided by the content of the template which is filled by the 
SQWRL query from the Query node. If the destination type is 
a relation, an object property instance or a data property 
instance is created and attached to that OWL individual 
instance. The referred OWL individual instance from the 
object property instance or the value from the data property 
instance is selected by the query in the SQWRL node. 

  <owl:NamedIndividual rdf:about="&xsd;Query_Name"> 

    <rdf:type rdf:resource="#Query" /> 

    <Has_Query_SQWRL rdf:datatype="#CDATA" >SQWRL_QUERY 
    </Has_Query_SQWRL> 

    <Has_Query_VAR rdf:datatype="#CDATA" >Variable_List</Has_Query_VAR>  

</owl:NamedIndividual> 

Fig. 13. Query Ontology Individual Template. 

A migration engine is built in Microsoft Visual C# and 
running on Microsoft .NET framework to process these 
ontological mapping rules. The engine processes rules as 
follows: 
 
1: for all Step do 
2:   for all Action do 
3:       for all Script do 
3:        Execute SQWRL Query from the original IEC 61131-3 KB and Select 
            variable Results from VAR 
4:         for all Results of VAR do 
5:             Replace Variable in the Template with SQWRL Query Results 
6:             Create an Instance in the target IEC 61499 KB with Template  
               Content 
7:         end for 
7:     end for 
8:   end for 
9:  end for 

 
Each step is responsible for processing an ontology node, and 
actions are handling the mapping between class, object 
properties and data properties of this node. The engine will 
loop through steps and actions in each step. For each action, 
the engine will run the SQWRL query in the Script node 
which using SQWRL node as left hand side and VAR node as 
right hand side.  Variables in the Template node are replaced 
with SQWRL query results. A new OWL instance is created 
in the IEC 61499 knowledge base which has a type and name 
defined in the Destination node with the content in the 
Template node. This new instance could be a new OWL class 

instance node in the target knowledge base, an object 
property instance linked to another node or a data property 
associated with some values. This new individual instance 
naming conversion is defined as: 

RootNodeType_SubNodeType_..._InstanceName 
For example, if a program instance is created by the engine, it 
will be named as Project_Task_Program_<ProgramName>. 
B. Migration rules 
In this subsection the migration process will be described. In 
the approach by Sunder et al. [12], an IEC 61131-3 resource 
is mapped to an IEC 61499 resource and tasks and programs 
in the PLC are mapped to the IEC 61499 application. The 
cyclical execution behavior is also created in that approach, 
but no consideration of preemptive PLC runtime is presented. 
In this particular example, a different approach is proposed 
with the complete consideration of preemptive execution 
semantics. The Rockwell ControlLogix PLC is selected as the 
source and the FBDK is used as the destination function 
block editor. Following the approach of [41], an IEC 61499 
system configuration S is defined as a tuple: 

S = (Dev, Seg, App, Map) (5.1) 
where Dev = {Dev1, Dev2, …, Devn} is a set of devices; Seg is 
the network segment for this IEC 61499 system configuration; 
App = {App1, App2, …, Appn}  is a set of applications defined. 
Map = {Map1, Map2, …, Mapn} is a set of mappings of 
function blocks between applications and devices. 
A system configuration is generated for each PLC project. 
The PLC name is mapped into the system configuration name. 
An action is created with mapping from RSLogix5000Content 
node in the PLC to the System node in the FB. The script has 
a content of ?b which refers to a SQWRL variable in the 
template for selecting the project name. 
The main operator of the SQWRL is sqwrl:select. It will fill a 
table which uses arguments as column names from the target 
knowledge base. The data property TargetName of the class 
RSLogix5000Content is selected as the name of the mapped 
system configuration. The swrlb:stringConcat in the query is 
one of the built-in functions from SWRL for construct string 
values. The results of the system name from the SQWRL 
query are stored in the variable ?b. The actual value replaces 
the ?b in the data template of the content and this information 
is used by creating an ontology individual of the given class 
and its naming. 
Mapping Rule 1: An IEC 61131-3 resource Res is mapped to 
an IEC 61499 device: Res à Dev. 
Next, a step is created for mapping from all IEC 61131-3 
resources to IEC 61499 devices. The source of this action is 
the PLC resource instance (see Controller class in the PLC 
ontology) and the destination is the device instance of type 
RMT_DEV (Remove Device) in the FB ontology. The 
SQWRL query for selecting controller name as the new 
device name is: 
RSLogix5000Content(?a)  
^ Has_RSLogix5000Content_Controller(?a, ?b)  
^ Has_Controller_Name(?b, ?name) 
-> sqwrl:select(?name)     (S.1) 
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As extra step, a main PLC scheduling function block is 
required for each mapped IEC 61499 device. A new device 
named scheduling is inserted into the system configuration as 
a migration action. The first action of this step is to recognize 
all periodic tasks and schedule those tasks properly into the 
main PLC scheduling function block. To construct the main 
PLC scheduling function block, the first SQWRL node of the 
Query in this Action is to find all periodic tasks and place 
them into the main scheduling function block: 
Task(?Task) ^ Has_Task_Name(?Task, ?Name) 
 ^ Has_Task_Rate(?Task, ?Rate) ^ Has_Task_Priority(?Task, ?Priority)  
^ Has_Task_Type(?Task, ?Type)  
^ swrlb:stringEqualIgnoreCase(?Type, “PERIODIC”)  
-> sqwrl:select(?Name, ?Priority, ?Rate)    (S.2) 

The above query retrieves names, types and priorities of all 
tasks in a PLC configuration. Has_Task_Name, 
Has_Task_Type, Has_Task_Rate and Has_Task_Priority are 
the data properties of the object - task. The 
swrlb:stringEqualIgnoreCase is the SWRL function for 
comparing string values. The sqwrl:makeSet is also a built-in 
collection operator to construct and manipulate sets. The 
main purpose of this operator is to support the closure 
operations for queries with negation or complex aggregation 
functionalities. The last operator sqwrl:groupBy is used to 
group sets of entities together. By using this query, all names, 
priorities, scan rate of tasks with type of periodic are listed in 
the resulting table. 
After the data is ready, the query results need to be filled into 
the step template. A pair of event input and output as well as 
an enabling bit in the template of the main scheduling 
function block interface is created using the name of the task.  
Also an EC state named <taskname>_DONE is created for 
acknowledging the process complete signal from task 
schedulers and disabling that task. The REQ state is always 
inserted into the main scheduling function block. Emitting 
tasks triggers are created in the REQ state according to the 
orders of priorities. The REQ algorithm consists of three parts: 
time stamp calculation (?TimeStampPart), periodic task (?PTaskPart) 
and continuously task (?CTaskPart). 
 
 
 
The data template of the content is given as: 
Timestamp := Timestamp + 1; 

IF Timestamp >= SCAN_TIME THEN 

 Timestamp := Timestamp - SCAN_TIME; 

 ?TimeStampPart  

END_IF; 

?PTaskPart  

?CTaskPart  

The script also consists of three SQWRL queries. The first 
SQWRL script is given as: 
Task(?Task)  

^ Has_Task_Name(?Task, ?TaskName)  ^ Has_Task_Type(?Task, ?Type)  

^ swrlb:stringEqualIgnoreCase(?Type, “PERIODIC”) 

^ swrlb:stringConcat(?TimeStampPart, ?TaskName, “_ENABLE := FALSE;”)      (S.3) 

All names of periodic tasks are attached to “_ENABLE := 

FALSE;” replace the ?TimeStampPart  in the content of the data 
template as a single block. (For example: two periodic tasks 
P1 and P2 constructed a string “P1_ENABLE := FALSE; P2_ENABLE := 

FALSE;” replace the ?TimeStampPart) 
The second script is to collect periodic tasks with their 
interval rate: 
Task(?Task)  

^ Has_Task_Name(?Task, ?TaskName)  ^ Has_Task_Type(?Task, ?Type)  

^ Has_Task_Rate(?Task, ?Rate) 

^ swrlb:stringEqualIgnoreCase(?Type, “PERIODIC”) 

^ swrlb:stringConcat(?NotTaskName, “& NOT(“, ?TaskName, “_ENABLE) & 

NOT(“, ?TaskName, “_ENABLE_ONS)”) 

^ swrlb:stringConcat(?PTaskPart, “IF Timestamp >= “, ?Rate, ?NotTaskName, 

“ THEN\r\n”, ?TaskName, “_ENABLE := true;\r\n”, ?TaskName, “_ENABLE_ONS := 

true;\r\n END_IF; \r\n”)      (S.4) 
The result algorithm in the EC State for a task named P1 with 
interval 20ms will be: 
IF Timestamp >= 20 & NOT(P1_ENABLE)  

 & NOT(P1_ENABLE_ONS) THEN 

 P1_ENABLE := true; 

 P1_ENABLE_ONS := true; 

END_IF; 

The third SQWRL script is similar to the second query. 
Instead of searching periodic tasks, continuously tasks are 
replaced.  
The second action of this step is to find all continuous tasks 
from the code knowledge base by executing the following 
query: 
Task(?Task) ^ Has_Task_Name(?Task, ?Name)  
^ Has_Task_Priority(?Task, ?Priority) ^ Has_Task_Type(?Task, ?Type)  
^ swrlb:stringEqualIgnoreCase(?Type, “CONTINUOUS”)  
-> sqwrl:select(?Name, ?Priority)    (S.5) 

Similar to the periodic task, all names and priorities of 
continuous tasks are listed. When no periodic or higher 
priority continuous task is activated, the continuous task will 
keep executing. 
After the system configuration is defined, the next level of 
IEC 61499 element is a device. An IEC 61499 device Dev is 
defined as a 2-tuple: 

Dev = (Resr, FBN),  (5.2) 
where Resr = {Resr1, Resr2, …, Resry}  is a set of resources 
used in the device; FBN is a function block network. 
Mapping Rule 2: An IEC 61131-3 task Task is mapped to an 
IEC 61499 resource Resr: Task à Resr. 
According to the second rule, all IEC 61131-3 tasks are 
mapped to IEC 61499 resources. The source of this action is 
the PLC task instance (see Task class in the PLC ontology) 
and the destination is the resource instance of type 
EMB_RES (Embedded Resource) in the FB ontology. The 
PLC task name is used as the FB resource name. 
After the resource is constructed, a task scheduling FB is 
necessary for each IEC 61499 resource to schedule programs 
in this task. Task scheduling function blocks are also added to 
the resource created previously and identical for both periodic 
and continuous tasks. In order to generate task schedulers, a 
list of programs and their execution orders is required for 
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filling into the content template. A SQWRL query for 
selecting all programs in the execution order of a task is given 
as: 
Task(?Task) 
^ Has_Task_Name(?Task, ?TaskName) 
^ swrlb:stringEqualIgnoreCase(?TaskName, <TaskName>)  
^ Has_ScheduledProgram (?Task, ?Program)  
^ Has_ScheduledProgram_Name(?Program, ?Name)  
-> sqwrl:select(?Name)     (S.6) 

For each program, a separate EC state, EC state algorithm and 
a pair of completed Boolean input and enable output are 
inserted into the task scheduling FB similar to the main 
scheduler FB. The EC state algorithm is generated in the 
same way as stated for the EC state of the main PLC 
scheduler FB. 
The next level of the PLC code hierarchy is routines, 
functions and function blocks inside a program. An IEC 
61499 function block network FBN is defined as a 3-tuple: 

FBN = (FBI, EConn, DConn), (5.3) 
where FBI = {FBI1, FBI2, …, FBIn}  is a set of function block 
instances defined in a function block network; EConn is a set 
of event connections; DConn is a set of data connections. 
An IEC 61499 composite function block CFB is defined as: 

CFB = (Interface’, FBN) (5.4) 
where Interface’ is IEC 61499 function block interface 
(including input/output events and data), FBN is a function 
block network;. 
Mapping Rule 3a: An IEC 61131-3 program Program is 
mapped to an IEC 61499 composite function block CFB if 
there is some function or function block that is used inside a 
program: Program à CFB (with function and function block). 
First, the program must be checked if any function or 
function block is invoked. The partial SQWRL queries are: 
Program(?Prog)  

^ Has_Function(?Prog, ?Func)      (S.7) 

And the second rule: 

Program(?Prog)  

^ Has_FunctionBlock(?Prog, ? Func)    (S.8) 

Mapping Rule 3b: An IEC 61131-3 program Program is 
mapped to an IEC 61499 basic function block BFB if there is 
no function or function block that is used inside a program: 
Program à BFB (without function and function block). 
 If there is no function or function block calls in the original 
function block design, then a basic function block is used to 
encapsulate the algorithm instead of a composite function 
block. The check for function or function block exists in the 
Rule 3a can used in the opposite way to avoid duplicated 
generation of programs. Otherwise, the target code will be 
represented as multiple IEC 61499 function blocks. The rungs 
or lines before the instance call of a function or function 
block call, after the instance call of a function or function 
block call and between two functions or function blocks will 
be placed into another basic function block. Those IEC 61499 
function blocks are linked following the original execution 
order. A SQWRL query can be used to list all functions and 
function blocks in a PLC program. The generated function 

blocks are saved as OWL files back into the ontological 
knowledge base. Similar approach will be applied to the 
function or function block conversion if the IEC 61131-3 
function or function block has nested structure inside. 
The generation procedure for the program scheduling FB is 
almost equivalent to the task scheduler except the actual 
scheduling target are functions and function blocks inside the 
program instead of programs. 
Now scheduling function blocks are all mapped. The 
execution order of the original PLC configuration is restored 
in the resulting function block system configuration. The 
architecture transformation of an IEC 61131-3 application to 
an IEC 61499 system is completed. However, there are 
several issues on the code level still need to be resolved in the 
generated system. 
The first issue is how to map routines, functions and function 
blocks into IEC 61499 manners. The migration rules 
reconstruct the program structure but still no code is filled 
into that structure yet. Several approaches of PLC systems 
redesign into function block systems are proposed by the 
authors in the previous work [39]. One of those approaches is 
to reuse PLC code in function block designs. In that approach, 
no PLC code modification is required when transformed into 
function block networks. Although other approaches are also 
feasible, reusing PLC code suits better for the migration 
process as it requires less human efforts and saving cost and 
work time. 
An IEC 61499 basic function block (BFB) is defined as: 

BFB = (Interface’, ECC, Alg, IntData),  (5.5) 
where Interface’ is IEC 61499 function block interface; ECC 
is representing an execution control chart in the basic 
function block; Alg is a set of algorithms associated with EC 
states; IntData is a set of internal variables only used in this 
basic function block. 
PLC program can be written in one of the four programming 
languages of the IEC 61131-3 standard or a graphical 
language SFC. For a program written in ladder logic diagram 
(LD), instruction list (IL) or structure text (ST), the code can 
be placed directly into an algorithm of a basic function block. 
However, there is one exception – the case, when another IEC 
61131-3 function or function block is invoked in this program. 
This requires calling an instance of a function block inside a 
basic function block. This is not supported by the existing 
IEC 61499 tools and not specified in the standard itself. The 
idea of the solution is illustrated in the Fig. 14 below.  
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Fig. 14  Reuse PLC code in IEC 61499 function blocks for LD, IL and ST. 

If there is no function or function block instance called in the 
program, the entire logic can be placed into a Basic FB. 
Otherwise those function or function block instances are 
mapped to an inherited CFB and logics around are mapped 
into separated BFBs. 
An IEC 61499 execution control chart ECC is defined as: 

ECC = (ECstate, ECTrans, ECTCond, L)  (5.6) 
where ECstate is a set of EC states; ECTrans is a set of EC 
transitions; ECTCond is a set of EC transition conditions; L: 
ECTrans → ECTCond is a function assigning EC transition 
conditions to EC transitions.  
Mapping Rule 4: An IEC 61131-3 SFC program Program is 
mapped to an ECC inside the IEC 61499 basic function 
block : Program à ECC (if program is written in SFC). 
If the original program is written in the sequential function 
chart (SFC), the SFC can be converted to the ECC inside a 
basic function block [42]. Each SFC step is mapped to an EC 
state. SFC transitions, transition conditions, step algorithms 
are mapped to EC transition, EC transition conditions and EC 
state algorithm correspondingly by using SQWRL queries 
and the transformation engine as showing in the Fig. 15. 
However, parallel SFC steps are allowed in IEC 61131-3 but 
no concurrent ECC is defined in the IEC 61499 standard. 
This is not considered in this paper, however a solution is 
proposed by Riedl et al. [42]. 

 
Fig. 15  IEC 61131-3 SFC mapping to IEC 61499 ECC 

Mapping Rule 5: An IEC 61131-3 FBD program Program is 
mapped to an IEC 61499 composite function block CFB: 
Program à CFB (if program is written in FBD). 

 
Fig. 16  IEC 61131-3 FBD mapping to IEC 61499 Composite FB. 

If the original program is written in the function block 
diagram language, it can be converted to the function block 
network of IEC 61499. Each function block in the FBD of 
IEC 61131-3 is converted to an IEC 61499 function block and 
connections between function blocks are easily established. 
All function blocks converted from the original PLC version 
must be in a single event chain in order to be executed once 
in each scan in sequential order as illustrated in the Fig. 16. 
This can be achieved by applying SQWRL queries selecting 
all original function blocks in their original order and 
inserting the corresponding function blocks to the IEC 61499 
application. 
The other issue of the migration process is related to treating 
the global and program variables used in the PLC code. There 
are two levels of variables in the PLC program: controller 
(global) variables and program (local) variables. A controller 
variable can be accessed from anywhere in the PLC 
configuration. A program variable can only be accessed from 
a particular program. There is no global variable concept in 
the IEC 61499 standard as it is designed for distributed 
systems control. The only place where a variable might be 
stored is a basic function block. The alternative choice is to 
build a service interface function block (SIFB) to access some 
external data sources. But the SIFB is implementation 
dependent which means a different SIFB must be created 
manually for every IEC 61499 platform. For the automatic 
migration process, using basic function blocks to store 
variables is more suitable. In order to access global variables 
from any level in the IEC 61499 hierarchy, a pair of Publish 
and Subscribe function block is inserted. As indicated in Fig. 
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17, a basic function block is used as the global variable 
storage. Each variable has a data input publishing its value 
and subscribing writing requests over the entire PLC 
configuration. The same procedure is repeated again for all 
global variables that are listed by using SQWRL queries of 
selecting all global variables. Publish and subscribe function 
blocks are named as variable names they refer to. 

 
Fig. 17  Global/local Variable Composite Function Block. 

The data storage function block is also suitable for program 
variables. The same procedure is applied with SQWRL 
queries selecting all program variables from the knowledge 
base.  
At this stage, mapping the original PLC code to the function 
block version is defined completely in the transformation 
procedure. By using the migration engine, all artifacts of the 
original PLC code are transformed into the function block 
knowledge base. Finally, code generation applied to the 
knowledge base will deliver IEC 61499 code. 

VI. CASE STUDY ON BAGGAGE HANDLING SYSTEM 

An inbound baggage handling system (BHS) as shown in Fig. 
18 is used as the case study for migrating from IEC 61131-3 
PLCs to IEC 61499 function blocks. The original PLC 
program is written in the Rockwell ControlLogix PLC. There 
are five conveyors and one inbound baggage carousel in the 
system. Bags are inducted from the IB101 take-away 
conveyor and merged into the IB1 carousel. There are also 
three emergency stops located around the system. 

 
Fig. 18  Case study inbound baggage handling system layout. 

 
Fig. 19  Original PLC Configuration Structure. 

The original PLC code structure is shown as Fig. 19. There 
are two tasks scheduled in the PLC. The FastTask is a 
periodic task which executes every 25ms. A program 
FastProgram is associated with this task. There is one merge 
control and three emergency stop controls scheduled in the 
program. Also there is a continuously task 
ConveyorControlTask which has a program ConveyorControl 
in the PLC configuration. Inside the program, there are six 
conveyor control function blocks schedule. Each of them is 
controlling a physical conveyor in the system. Inside all 
function blocks, there is no nested level of functions or 
function blocks invoked. 
The resulting IEC 61499 system configuration achieved by 
applying the migration process is given in Fig. 20.  
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Fig. 20  Generated Function Block Configuration Structure and Main PLC 
Scheduler FB Algorithm. 

The resulting system configuration has three resources. The 
periodic task FastTask is mapped to the resource FastTask. 
Each function block in the PLC program FastProgram is 
converted to an IEC 61499 function block. Those function 
blocks are linked according to the order of their counterparts 
in the PLC program. The resource ConveyorControlTask 
includes all six conveyor control function blocks in the order 
of the original PLC program. A new resource Scheduling has 
a main PLC scheduling FB, two task scheduling FBs and two 
program scheduling FBs. The enable event is raised by the 
program scheduling FBs to either FastTask resource or 
ConveyorControlTask resource. Once all function blocks in 
the FastTask resource are executed, an acknowledgement 
event is send back to the program scheduling FB to indicate 
the execution of the periodic task is accomplished. The main 
scheduling function block will switch to the continuously 
executed task until the pre-defined execution cycle for the 
periodic task arrives again.  
This case study is supported by the automatic migration tool 
developed by the authors. The tool imports PLC code in the 
XML format (for example, PLCOpen XML [37] and 

Rockwell [38]) and converts it into the IEC 61131-3 
knowledge base. Then those instances in the IEC 61131-3 
knowledge base are mapped to the IEC 61499 knowledge 
base by the migration engine. Finally the FB version of the 
code is generated. The complexity of this migration process is 
linear to the size of the original PLC program. An 8MB PLC 
XML file takes approximately 5 minutes to complete the 
entire migration process. 

VII. CONCLUSIONS 

A new ontological based migration procedure is proposed in 
this paper that can be applied to IEC 61131-3 compliant PLC 
source code to transform it to IEC 61499 platforms. In order 
to achieve that, a formal model of IEC 61131-3 application 
particularly for migration and its execution model are defined. 
Also the mapping rules between migration models are 
provided. Code import, automatic mapping and 
transformation between standards and code generation are 
achieved by using knowledge base queries. The main 
advantage of this approach is reliance on the Semantic Web 
technologies. The developed migration tool can use the 
standard S(Q)WRL engine that is configurable by the rules. 
This approach is more flexible and less resource consuming 
in development as compared to hard coding the 
transformation rules. The ontological knowledge base 
provides a higher abstract level view of the migration process. 
A case study has been conducted to prove the automatic 
migration from IEC 61131-3 PLCs to IEC 61499 function 
blocks is feasible. 
Future work will also include detailed comparison of the 
obtained IEC 61499 code with the code designed manually 
using the approaches proposed in [21] both in terms of 
performance and code maintainability. 
The known limitations of this approach are as follows. Firstly 
the target IEC 61499 platforms must support all instructions 
used in the original IEC 61131-3 PLC programs in order to 
reuse the entire PLC program. Secondly, the source IEC 
61131-3 platforms must support export to the XML file 
format. IEC 61131-3 function blocks with source protection 
enabled must be available as SFIB in the target IEC 61499 
runtime. The interface of those IEC 61131-3 function blocks 
must be as available in XML format. Also the generated 
scheduling system can only be interrupted after the current 
function block is completely executed. The IEC 61131-3 PLC 
will interrupt at instructions level and resume from there. 
Finally, the minimum tick in IEC 61499 is one millisecond 
due to the platform used. The PLC normally executes at 
microsecond’s level. This is caused by the FBRT IEC 61499 
runtime running on a PC-based controller with non-real time 
operation systems (The minimum time scale on MS Windows 
is 1 ms). The E_CYCLE SIFB can generate events at 
microsecond’s level if the target controller is running a real 
time operation system instead. 
Future work will also concern with semantic analysis of 
generated function block systems and correction of errors 
introduced during the migration process. The accuracy of the 
generated IEC 61499 systems will be improved by 
introducing ECC refactoring [21]. Finally, more PLC 
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platforms and complicated examples will be tested with the 
proposed migration rules. 
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