
Enhancing Distributed Automation Systems with
Efficiency and Reliability by Applying Autonomic

Service Management
Wenbin (William) Dai IEEE Member, Lulea University of Technology, Sweden, w.dai@ieee.org

Valeriy Vyatkin Senior IEEE Member, Lulea University of Technology, Sweden and Aalto University, Helsinki, Finland,
vyatkin@ieee.org

Victor Dubinin, University of Penza, Russia, victor_n_dubinin@yahoo.com

James H. Christensen, Holobloc Inc., USA, james.h.chrsitensen@gmail.com

Abstract – Improvement of flexibility and interoperability is a

usual concern of industrial automation systems developers.
Service-oriented architecture is one approach promising
improvement of flexibility and interoperability in existing
distributed automation systems. However, the intelligent self-
managing features cannot be fully achieved by just applying the
service-oriented architecture. In order to improve efficiency and
reliability of distributed automation systems, the service-
oriented architecture is extended in this paper by autonomic
service management. The design of the autonomic service
manager is provided and some key features such as self-
configuration, self-healing and self-optimization are
demonstrated. The design of a flexible and interoperable
execution environment is also illustrated. Some preliminary tests
are completed with a case study.

Index Terms — Service-Oriented Architecture, Distributed
Automation Systems, IEC 61499 Function Blocks,
Interoperability, Flexibility, Autonomic Service Management,
Self-* Properties, Ontology, Knowledge Base, Ontology Web
Language (OWL), Reasoning, SWRL.

I. INTRODUCTION

Nowadays with increasing complexity and physical size of
industrial plants, the developers of automation systems often
choose to distribute control logic across several controllers.
At the same time the requirements to efficiency and reliability
of such distributed automation systems are also increasing. It
is expected to be achieved with less or none human effort on
account of using more intelligent system management
algorithms.

 Programmable logic controllers (PLC) are widely used in
industrial automation due to their reliability and standardised
way of software development compliant with the IEC 61131-
3 standard [1]. Another complementary international standard
for PLCs, the IEC 61499 standard [2] has been recently
released in its second edition. The purpose of this standard is
to fill the gap between the IEC 61131-3 standard and
distributed automation systems. The key feature of the IEC
61499 standard is event-triggered function blocks which can
be deployed across PLCs by simply assigning mapping for
each function block. The IEC 61499 compliant PLCs such as
NxtControl [3] are more suitable for highly distributed and
modulated systems like building automation systems.

 IEC 61131-3 PLCs lack of interoperability and flexibility:

enabling different brands of IEC 61131-3 PLCs to
interoperate is quite difficult. Also changing deployment of
existing PLC programs is time-consuming. On the other
hand, the IEC 61499 standard provides a higher level of
interoperability and flexibility. IEC 61499 function blocks
could be easier reallocated from one PLC to another by
modifying their mapping to devices. IEC 61499 PLCs from
various vendors are able to communicate with each other via
standard PUBLISH/SUBSCRIBE function blocks.

 However, designing applications with distributed logic is
challenging from the perspectives of logic synchronisation.
Service-oriented Architecture (SOA) provides a promising
solution for reducing this complexity. Because of that it
attracts lately attention of many researchers. In [4] it was
proposed to implement SOA by means of the IEC 61499
architecture. In SOA-related research such features as self-
configuration, self-healing, self-optimisation and self-
protection have been addressed by proposing autonomic
management mechanisms. Therefore, in order to enhance
energy efficiency and reliability of distributed automation
systems, a new PLC execution environment architecture with
autonomic management is required.

The benefits of shifting to Service-oriented automation
design (SOAD) paradigm are tremendous. Self-configuration
of PLC program deployment enabled by the SOAD will
reduce PLC software development workload significantly.
Self-management functionalities such as self-healing and self-
optimization could provide effective assistances for reduce
down-time and increase system reliability.

In order to apply self-management, the autonomic service
management is essential. The objective of applying
autonomic service management is to enable distributed
automation systems to manage themselves so that the human
intervention could be minimized. The intention of the
autonomic service management is to automate management
function and externalize this function according to the
behaviour defined by management interface [10]. In order to
achieve a self-adaptive system, there must be an automatic
method to collect all information required from the managed
system. Then the collected information could be further
analysed to determine if any change is required to be made.
The changes must be specified as a plan or a sequence of

2014 IEEE Emerging Technology and Factory Automation (ETFA)
978-1-4799-4845-1/14/$31.00 c©2014 IEEE

actions. Finally, the change plan or the sequence of actions
must be executed to form an intelligent control loop.

This paper aims for providing a more intelligent service-
oriented architecture design by using the autonomic service
management. The rest of the paper is organized as follows: In
the Section II, the application of SOA concept in the
industrial automation domain as well as existing approaches
of autonomic service management is reviewed. In section III,
the introduction of autonomic service management and
application with SOA-based distributed automation system is
described. An IEC 61499 resource model design based on the
autonomic service manager and SOA is provided in the
following section. In the section V, several key features of
autonomic service management such as self-configuration
and self-optimisation are illustrated. In the section VI, the
concept will be applied to a case study. Finally, the paper is
concluded in the section VII and recommendations for future
work are provided.

II. RELATED WORKS

The service-oriented architecture is initially introduced into
the industrial automation domain by Jammes et. al. [5]. The
idea of drive the intelligence of computing and
communications down to the device level is illustrated by
adopting network-connected devices with service-oriented
architecture and Web Services standards.

 Lastra et. al. [6] [7] investigated benefits of using Web
Services and Semantic Web technologies for SOA based non-
time-critical automation systems. Ontological knowledge
base is applied to factory automation systems to achieve
flexible control. Based on the SOA concept, recovery
techniques for fault handling of automation systems can be
achieved.

There are also some agent-based approaches for enabling
intelligence in industrial automation. Strasser et. al. [8]
discussed the autonomous application recovery in IEC 61499
systems. The proposed approach is based on the concept of
self-organisation where devices are capable to identify faults
and recover automatically. However, many additional
features must be implemented in the IEC 61499 standard in
order to achieve this idea practically.

Another agent-based approach for dynamic reconfiguration
of real-time distributed automation systems based on IEC
61499 is proposed by Brennan et al. [9]. The system model
and agents are encapsulated into IEC 61499 function blocks.
In order to achieving dynamic reconfiguration, agents for
coordination, mobility and cohort are designed.

Autonomic Service Management reference architecture is
originally proposed by IBM [10] for the computer science
domain [11] and recently has been applied to many domains
such as Grid [12], Home Automation [13], and
telecommunication [14]. Autonomic service management is
tightly connected with Service-Oriented Architecture
generally.

Mezni et. al. [15] proposed an autonomic registry-based
SOA model by combining self-* properties and policy-based
management. The Web Service standard WS-Policy is used

and extended with extra information on service specific
adaptation actions. Also the Universal Description, Discovery
and Integration (UDDI) are extended in order to support
policy-based self-management. The model is implemented
using a multi-agent based architecture where an individual
agent is designed for providing service registry, operating as
service provider and service planner. Also agents are capable
for monitoring Quality of Service.

A set of policies and principles is defined for SOA
governance by Parejo et. al. [16]. A SOA governance model
is presented based on the OASIS reference model for SOA.
Two new features process and policy are added to the model
so that self-configuration, self-optimization, self-healing and
self-protection can be achieved both in design time and at
runtime.

Autonomic SOA concept is proposed by Bhakti et. al. [17]
in order to achieve dynamically organizing topologies of
services and interactions between the services. An interaction
model of Autonomic SOA is also presented in a
computational engineering framework.

Alaya et. al. [18] also designs a context aware extensible
autonomic framework for machine-to-machine networks.
Autonomic service managers could communicate with each
other based on knowledge models and reasoning rules. The
idea is demonstrated on a smart meeting use case. The
ontological knowledge base model as well as SWRL rules for
querying the knowledge base are provided [19].

Finally, there are several existing research results on
autonomic computing which could be useful. Calinescu [20]
proposes a reconfigurable service-oriented architecture for
autonomic computing. A combination of automated code
generation, model-based and object-oriented development
techniques is presented to ensure that the framework can be
used to add autonomic capabilities to systems. The data-
centre resource management is illustrated as the case study.

Overall, the application of autonomic service management
with SOA is well-proven in the general-purpose computing
and communication world. The self-organizing intelligent
control is enabled by introducing autonomic service
management into SOA-based architecture. This will improve
flexibility and interoperability significantly to fulfil
intelligent, efficient and reliable distributed automation
systems.

III. APPLYING AUTONOMIC SERVICE MANAGEMENT IN SOA-
BASED DISTRIBUTED AUTOMATION SYSTEMS

As described in the previous section, in order to apply
autonomic service management in distributed automation
systems, a flexible and interoperable execution environment
is necessary. In the previous work [21], an IEC 61499
compliant PLC runtime (with IEC 61131-3 programing
languages supported) – Function Block Service Runtime
(FBSRT) based on service-oriented architecture is developed.
Each function block is operated as a service and events
passed between function blocks are considered as messages
between services. As a result, services (function blocks) could
be created, modified and deleted dynamically without

affecting normal function block execution. However, the
dynamic reconfiguration was limited by sending management
commands to the FBSRT manually. In this paper, the runtime
structure will be extended with intelligence introduced by
autonomic service management.

A. Introduction on Autonomic Service Management
Reference Architecture

The autonomic service management architecture is
implemented as an autonomic service manager, which is
referred as a “MAPE-K” approach usually [22]. The
autonomic service manager “MAPE-K” internal architecture
proposed by IBM is given in Fig. 1.

The “MAPE-K” refers to a set of functionalities: Monitor,
Analyze, Plan and Execute with Knowledge source support.
The Monitor function polls information from managed
resources via sensors and manipulate collected data to create
symptoms that need to be further investigated. Symptoms are
analysed by the Analyze function to decide whether any
change is required to be made to the managed system. The
decision is influenced by a local knowledge base. A change
request is generated and passed to the Plan function and an
appropriate plan is selected from the knowledge source
according to the plan. Finally, the change plan is performed
by the Execute function. The procedure is carried out to the
managed resource via Effector. The entire control loop is
supported by the knowledge source. The knowledge source
consists of both syntactic and semantic data like symptoms,
change requests, change plans and other policies. The
knowledge source can be easily extended to perform
additional tasks, for example, recognizing a new symptom or
create a new change plan.

There are four key features of self-management: self-
configuration, self-healing, self-optimisation and self-
protection [22]. Self-configuration refers to the system ability
to dynamically reconfigure itself according to changing
environmental. Self-healing aims for detects faults and
recoveries from breakdown automatically. Self-optimisation
is to optimize system performance. Self-protection provides
prevention from external threats to ensure system security.

As described previously [4], the IEC 61499 standard can be
used to implement SOA in a nature way. In order to achieve
self-manageable PLCs, an autonomic service manager is
placed in each IEC 61499 resource. Each function (Monitor,
Analyze, Plan and Execute) in the autonomic service manager
is implemented as a software service. Overall, the autonomic
service manager provides a management service which
composes from those services.

Those four key features of autonomic management can be
applied in industrial automation domain as follows. Self-
configuration refers to automatic deployment of IEC 61499
system configurations as opposed to manual deployment by
developers: applications will be allocated to available
hardware resources by autonomic service managers. Self-
healing means that PLC has the ability to discover faults on
any PLC within the network and relocate function blocks
operating on the faulted PLC to another available PLC. Self-
optimisation mostly works on performance – if one PLC

workload is minimal and can be covered by another PLC, all
assigned function blocks will be shifted to the other PLC.
This PLC will turn into energy conservation mode. Finally,
self-protection is mainly for protecting PLCs from
unauthorized external access. Detailed implementation of
these features will be provided in the section V.

B. Autonomic Service Manager Design for IEC 61499
Resource

In the previous section, the responsibility of the autonomic
server manager for IEC 61499 systems was clarified. In the
following part, the design of autonomic service manager for
IEC 61499 will be discussed. The architecture is illustrated in
Fig. 1.

Fig. 1 Autonomic Service Manager Design for IEC 61499.

The managed resource refers to other services in the IEC
61499 runtime (details of those services are provided in the
section IV). As stated previously, each function is also
implemented as a software service. Information required by
all functions is stored in a knowledge base using Ontology
Web Language (OWL) [23] [25]. In the knowledge base, data
are linked together by properties and presented in a logical
way. A knowledge base inference engine is built to query
knowledge base from all services. The inference engine is a
rule-based query engine. Rules are defined in the Semantic
Web Rule Language (SWRL) [24] that both human and
machine can read and easily extend.

The knowledge base definition is given in the Fig. 2. There
are four root objects in the knowledge base: Symptom,
Change Request, Action Plan and Message. The monitor
service subscribes to events from other services in the
execution environment such as monitoring service, which
provides information about hardware healthy status (power
supply and battery percentage) and performance (last and
worst execution time of last event). Each message contains
information about source service, type of message data and its
value.

Symptoms generated from the message data are filtered by
the SWRL rules. For example, a symptom - NotResponding is
discovered when a particular function block service is not
responding to the monitoring service. The situation is

described as the following SWRL rule in the Fig. 3.

Fig. 2 Knowledge Base Definition for IEC 61499 Resource
Autonomic Service Manager.

Message(?m) ^ Has_Message_Type(?m, ?type)
^ swrlb:stringEqualIgnoreCase(?type, “NotResponding”)
^ Has_Message_Source(?m, ?fbsource)
^ Has_Message_Value(?m, ?value) ^ swrlb:equal(?value, 0)
-> Symptom(NotResponding)
^ Has_Symptom_Source(NotResponding, ?fbsource)

Fig. 3. Example SWRL Rule for Symptom

The symptom will be further analysed by the Analyze
service to identify what change are required to be made.
When a service component is not responding to the
monitoring service, a change request of restarting this
function block will be raised. The following SWRL rule is
created for creation of the change request.

Symptom(NotResponding)
^ Has_Symptom_Source(NotResponding, ?fbsource)
-> ChangeRequest(RestartFBService)
^ Has_ChangeRequest_Destination(RestartFBService, ?fbsource)

Fig. 4. Example SWRL Rule for Change Request

The last step in the ASM loop is to select a proper action
plan to complete the change request. An action plan consists
of a sequence of service requests. To invoke a function from a
service, two things must be defined: function name and
parameter values. The invoked function may also return a
parameter back. The action plan example of a function block
restart is given as stated in Fig. 5.

ChangeRequest(RestartFBService)
^ Has_ChangeRequest_Destination(RestartFBService, ?fbsource)
-> ActionPlan(RestartFB)
^ Has_ServiceRequest(RestartFB, ?service)
^ Has_ServiceRequest_TargetService(?service, ?fbsource)
^ Has_Request(?service, ?req)
^ Has_Request_Name(?req, ?name)
^ Has_Request_Parameter(?req, ?reqpara)
^ Has_Response(?service, ?res)
^ Has_Response_Paramter(?res, ?respara)

Fig. 5. Example SWRL Rule for Action Plan

The selected service sequence finally will be executed by
the Execute function.

IV. SOA-BASED MODEL FOR IEC 61499 RESOURCE

In this section, a complete SOA-based model with
autonomic service manager built-in for IEC 61499 resource
will be provided. The SOA-based IEC 61499 resource model
is illustrated in Fig. 6.

Fig. 6 SOA-Based IEC 61499 Resource Model.

There are two types of services in the model: pre-defined
services and user-defined services. Pre-defined services are
the built-in functionalities in the IEC 61499 resource model
which cannot be deleted or modified. The autonomic service
manager is the core service in the pre-defined services. The
autonomic service manager acts as “brain” for the IEC 61499
resource model. It communicates with other resource models
via external services.

External services include discovery service, coordination
service, file transfer service and authorization service as
shown in Fig. 7.

Fig. 7 External Service Definitions.

The discovery service is responsible for search other IEC
61499 resources on the same network. The Web Service
discovery protocol – WS-Discovery is implemented in order
to achieve discoverability [26]. Once another IEC 61499
resource is found by the discovery function, the address of the
new IEC 61499 resource will be recorded by the Repository
service. The coordination service provides cooperation
mechanism with other IEC 61499 resources. The coordination
service act as a communication gateway, which handles
external assistance requests and negotiate with other available
resources for assistance. The next service, the file transfer
service, is mainly responsible for exchanging definitions of
user-defined services between resources. New service
definition will be placed to the correct path by the file
management service. The last external service is the
authorization service. The authorization service ensures there
is no unauthorized connection can give orders to the
autonomic service manager. A user could be registered,
modified and unregistered from the Authorization Service.

Fig. 8 Internal Service Definitions.

Secondly, internal services are responsible for controlling
user-defined services as listed in Fig. 8. The configuration
service is able to create or delete function blocks, connections
and parameters dynamically during the operation. After
function blocks are configured, they must be scheduled into
the operation by the execution scheduling service. The
execution scheduling service provides features such as
modifying status of a particular function block, start/stop its
execution and reschedule function block network in an IEC
61499 resource. Finally the monitoring service gathers status
of each user-defined service. The data collected by the
monitoring service will be used for assisting the autonomic

service manager.

Implementation of IEC 61499 function block application is
reflected as user-defined services. For each resource and
function block type in the system configuration, a separate
service definition is created. For each function block instance,
an individual data service is added. The detailed design for
basic, composite and service interface function block service
are already discussed in the previous work [21]. The new
service, resource service, is defined in Fig. 9. The resource
service only contains static definitions of resource
information and function block network encapsulated. An
execution scheduler is designed for scheduling the execution
order of function block network assigned in this resource. The
execution scheduler could be configured by the Execution
Scheduling Service.

Fig. 9 Resource Service Definitions.

V. SELF-MANAGEMENT IMPLEMENTED VIA AUTONOMIC
SERVICE MANAGER

To achieve efficient and reliable control of distributed
automation systems, several self-management features will be
demonstrated in this section. To provide better understanding,
each feature will be illustrated using a service sequence
diagram. The service sequence presented in each diagram is
stored as an action plan in the knowledge base.

Firstly, self-configuration is demonstrated in Fig. 10. When
autonomic service manager receives a request to deploy an
IEC 61499 system configuration (programming tool will send
the request to the first discovered autonomic service
manager), it will determine if the local resource is capable to
handle the entire system configuration. The get FB status and
get worst-case execution time function are invoked by the
monitoring service. The autonomic service manager can also
send a “search other available resources” request to the
coordination service. The coordination service utilizes the
discovery service to identify whether any resources is
available. The autonomic service manager then generates a
deployment plan based on the capability of each PLC. If more
than one resource is required, then an assistance request is
sent by the coordination service. The local deployment plan is
executed by the configuration services where all local
function blocks, event and data connections and parameters
are created. The final step is to reschedule the resource and
start execution by invoking the execution scheduling service.
The self-configuration provides the ability that the system
configuration can be deployed without any human effort.

Fig. 10 Automatic Deployment (Self-Configuration) Service Sequence Definition.

Fig. 11 Automatic Fault Detection and Recovery (Self-Healing) and Automatic Load Share (Self-Optimisation) Service

Both self-healing and self-optimization rely on the dynamic
reconfiguration feature. When an autonomic service manager
detects the resource which is not responding (self-healing) or
the monitoring service issues an overload event when the
worst execution time is longer than the I/O refresh rate (self-
optimization), the autonomic service manager will start
reconfiguration of the system as shown in Fig. 11. The
procedure is similar to the self-configuration service sequence.
For the self-healing case, when another resource is not
responding, control logic assigned to that resource will be
recreated on other available resources by the coordination
service. In the case of self-optimization, an overload event
will be generated when a resource is busy. Those function
blocks will be created at the new allocated resource and the
original definition will be deleted by the configuration service
on the existing resource.

VI. AUTONOMIC SERVICE MANAGEMENT CASE STUDY

A preliminary experiment on autonomic service
management is performed on an airport baggage handling
system subsystem. As shown in Fig. 12, the test case is a
screening subsystem of the airport baggage handling system
(BHS). There are four screening lines (CB-A, CB-B, CB-C
and CB-D) which are feed by two induction lines (CI-A and
CI-B). Bags are distributed to four screening lines by push
diverters (PLD1 to PLD4). The bags cleared from the
Exposure Detection Machines (EDS1 to EDS4) will be sent
to the sortation system via CCx lines. Bags detected as
suspicious will be sent to further investigation via CFx lines.

Fig. 12 Airport Baggage Handling System Layout.

 During normal operation, large volume of bags is sent to
manual inspection during peak hours. In order to reduce
workload for operators, the queuing functionality –
“indexing” intends to be added to every conveyor in the
subsystem. The indexing functionality is enabled to
accumulate bags when the downstream conveyors are
stopped. Conveyor leaves indexing mode when the
downstream line returns to full flow automatically.

In order to achieve that, the ECC in the conveyor control
BFB (type FB_Conveyor_I) must be modified by inserting a
new EC state “INDEX”. The steps of the reconfiguration
sequence are listed in Table 1 below which adds the queuing
functionality without stop normal operation. The sequence for
changing every conveyor control FB is: stop this FB instance;
delete all connections from/to this FB instance; delete this FB
instance; Create new conveyor control FB type; create new
FB instance; Re-create all connections and restart this FB
instance.

Steps Management Commands
1: STOP CBA03 FB
(Type:FB_Conveyor_S)

<Request ID=”1” Action=”STOP”>
 <FB Name=”CBA03” Type=”FB_Conveyor_S” />
</Request>

2: DELETE all Event
and Data connections
from/to CBA03 FB

<Request ID=”2” Action=”DELETE”>
 <Connection Source=”…” Destination=”…” />
</Request>

3: Delete CBA03 FB <Request ID=”3” Action=”DELETE”>
 <FB Name=”CBA03” Type=”FB_Conveyor_S”
/>
</Request>

4: Create FB Type:
FB_Conveyor_I

<Request ID=”4” Action=”CREATE”>
 <FBType Name=”FB_Conveyor_I” >
 … // FB Type Definition for FB_Conveyor_I
 </FBType>
</Request>

5: Create FB CBA03
(Type:FB_Conveyor_I)

<Request ID=”5” Action=”CREATE”>
 <FB Name=”CBA03” Type=”FB_Conveyor_I”
/>
</Request>

6: Create all Event and
Data connections
from/to CBA03 FB

<Request ID=”6” Action=”CREATE”>
 <Connection Source=”…” Destination=”…” />
</Request>

7: Create new data
connection for Index

<Request ID=”7” Action=”CREATE”>
 <Connection Source=”CBA03.Index”
Destination=”CBA02.PrevSend” />
</Request>

8: Start FB CBA03 <Request ID=”8” Action=”START”>
 <FB Name=”CBA03” Type=”FB_Conveyor_I” />
</Request>

Table. 1 Reconfiguration Sequence for Inserting Queuing
Functionality.

VII. CONCLUSIONS AND FUTURE WORK

A new IEC 61499 execution environment based on the
SOA is proposed in this paper. The adoption of SOA at the
device level improves flexibility and interoperability of
industrial automation systems. The autonomic service
manager is introduced as a software service in the runtime
which provides intelligent self-manageable properties. Self-
Optimisation improves the performance and the efficiency.
Self-healing increases the reliability of the IEC 61499 system.
The autonomic service manager is implemented using the
Semantic Web technologies. Both OWL and SWRL are
human and machine readable, more importantly knowledge
can be easily extended. Rule-based query engine ensures new
knowledge can be added seamlessly.

Continuing from this work, self-management features will
be fully developed. Self-management rules will be formally

defined. The performance of the autonomic service
management will be analysed and the methodology of
estimating and measuring worst case response time will be
developed. Last but not the least, more complex use case will
be used to demonstrate self-manageable distributed
automation systems.

REFERENCES

[1] IEC 61131-3, Programmable controllers - Part 3: Programming
languages, International Standard, Second Edition, 2003

[2] IEC 61499, Function Blocks, International Standard,
International Electrotechnical Commission, Geneva,
Switzerland, Second Edition, 2012

[3] nxtControl GmbH, nxtStudio and nxtRT61499F - Next
generation software for next generation customers [Online,
2009, June]. Available: http://www.nxtcontrol.com/

[4] W. Dai, V. Vyatkin and J. Christensen, “The Application of
Service-Oriented Architectures in Distributed Automation
Systems”, IEEE International Conference on Robotics and
Automation, accepted, 2014.

[5] F. Jammes and H. Smit, "Service-Oriented Paradigms in
Industrial Automation," IEEE Transactions on Industrial
Informatics, vol. 1, pp. 62 - 70, 2005.

[6] M. Uddin, A. Dvoryanchikova, A. Lobov and J. Lastra, ”An
ontology-based semantic foundation for flexible manufacturing
systems”, IEEE Industrial Electronics Society Annual
Conference, Page 340 - 345, 2011.

[7] C. Popescu and J. Lastra, “Modeling breakdown handling for
SOA-based factory automation systems”, IEEE International
Conference on Industrial Technology, Page 1 - 7, 2009.

[8] T. Strasser and R. Foschauer, “Autonomous Application
Recovery in Distributed Intelligent Automation and Control
Systems”, IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, Vol. 42, Issue
6, Page 1054 – 1070, 2012.

[9] N. Cai, M. Gholami, L. Yang and R. Brennan, “Application-
Oriented Intelligent Middleware for Distributed Sensing and
Control”, IEEE Transactions on Systems, Man and Cybernetics,
Part C: Applications and Reviews, Vol. 42, No. 6, Page 947 –
956, 2012.

[10] IBM, “An Architecture Blueprint for Autonomic Computing
(7th ed.)”, white paper [Online, 2006], available from
http://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20
White%20Paper%20V7.pdf

[11] M. Parashar and S. Hariri, “Autonomic Computing: An
Overview”, Unconventional Programming Paradigms, ISSN:
0302-9743, page 257 – 269, 2005.

[12] H. Liu, V. Bhat, M. Parashar and S. Klasky, “An autonomic
service architecture for self-managing grid applications”, The
6th IEEE/ACM International Workshop on Grid Computing,
Page 132 – 139, 2005

[13] J. Bourcier, A. Diaconescu, P. Lalanda and J. McCann,
“AutoHome: An Autonomic Management Framework for
Pervasive Home Applications”, ACM Transactions on
Autonomous and Adaptive Systems, Vol. 6, Issue 1, Page 1 -9,
2011.

[14] C. Yu, A. Leon-Garcia and I. Foster, “Toward an Autonomic
Service Management Framework: A Holistic Vision of SOA,
AON and Autonomic Computing”, IEEE Communication
Magazine, Vol. 46, Issue. 5, Page 138 – 146, 2008

[15] H. Mezni, W. Chainbi and K. Ghedira, “An autonomic registry-
based SOA model”, IEEE International Conference on Service-
Oriented Computing and Application (SOCA), Page 1 -4, 2011.

[16] J. A. Parejo, P. Fern and A. Ruiz-cortes, “SOA Governance:
Exploring Challenges & Benefits from an Autonomic
Perspective”, International Conference on Software
Engineering and Databases, Vol. 3, No. 4, Page 52 – 61, 2009

[17] M. A. C. Bhakti and A. B. Abdullah, “Towards an autonomic
Service Oriented Architecture in computational engineering
framework”, 10th International Conference on Information
Sciences Signal Processing and Their Applications (ISSPA),
Page 741 – 744, 2010.

[18] M. B. Alaya, S. Matoussi, T. Monteil, and K. Drira,
“Autonomic computing system for self-management of
machine-to-machine networks”, Proceedings of the 2012
International Workshop on Self-aware internet of things, Page
25 – 30, 2012.

[19] M. B. Alaya, T. Monteil and K. Drira, “Autonomic framework
based on semantic models for self-management of ubiquitous
systems”, Proceedings of the 2012 ACM conference on
Ubiquitous Computing, Page 860 – 862, 2012.

[20] R. Calinescu, “Reconfigurable Service-Oriented Architecture
for Autonomic Computing”, International Journal on Advances
in Intelligent Systems, Vol. 2, No. 1, Page 38 – 57, 2009.

[21] W. Dai, V. Vyatkin, J. Christensen and V. Dubinin, “Bridging
Service-Oriented Architecture and IEC 61499 for Flexibility
and Dynamic Reconfigurability”, IEEE Transactions on
Industrial Informatics, submitted, 2014

[22] P. Lalanda, J. A. McCann and A. Diaconescu, “Autonomic
Computing: Principles, Design and Implementation”, Springer,
288 pages, 2013

[23] Ontology General Definition [Online], 2011, available from
http://semanticweb.org/wiki/Ontology

[24] SWRL: A Semantic Web Rule Language Combining OWL and
RuleML[Online], retrieved from
http://www.w3g.org/Submission/SWRL/

[25] F. Badder, D. Calavanese, D.L. McGuinness, D. Nardi and P.F.
Patel-Schneider, “The Description Logic Handbook, Theory,
Implementation and Applications, 2nd Edition.”, Published by
Cambridge University Press, 2007, ISBN 978-0-521-87265-4

[26] WS-Discovery – Web Services Dynamic Discovery [Online
2009], Available: http://docs.oasis-open.org/ws-
dd/discovery/1.1/wsdd-discovery-1.1-spec.html

