
The Application of Service-Oriented
Architectures in Distributed Automation Systems

Wenbin (William) Dai, Luleå University of Technology, Sweden, IEEE Member, w.dai@ieee.org
Valeriy Vyatkin, Luleå University of Technology, Sweden and Aalto University, Helsinki, Finland,

Senior IEEE Member, vyatkin@ieee.org
James H. Christensen, Holobloc Inc, james.h.christensen@gmail.com

Abstract – The complexity and scale of automation industry
applications have increased substantially in recent years, posing
new challenges to fulfill growing requirements for reusability,
interoperability, flexibility and reconfigurability. The adoption
of service-oriented architectures (SOAs) could be a feasible
solution to meeting these challenges. Based on a comparison
between the conceptual frameworks of SOAs versus modern
standards for distributed automation, a methodology is
proposed for the application of SOAs in the distributed
automation domain. The implementation of the Service-
Oriented Architecture based PLC execution environment is
demonstrated on a case study.

Index Terms — Service-Oriented Architecture, Industrial
Automation, IEC 61499, function blocks, IEC 61131-3, PLC,
Reusability, Interoperability, flexibility, SOAP, WSDL.

I. INTRODUCTION

 The hardware and software paradigm of programmable
logic controllers (PLC) dominates the industrial automation
landscape. PLCs are widely used in almost every branch of
industry: material handling systems, manufacturing systems,
process control, building automation, traffic light control,
etc. The software of PLCs is most commonly developed
under the guidance of the IEC 61131-3 standard [1] that
defines a set of programming languages. However, PLC
vendors implement this standard based on their own
interpretation and taking into account compatibility with
legacy systems. This creates interoperability issues between
various PLC platforms. An additional drawback is that the
IEC 61131-3 standard is not oriented toward distributed
automation systems; the highest level of its software model,
the “configuration,” is limited to a single PLC device [1] [4].
For this reason, substantial design overhead is incurred in the
design of a distributed system using PLCs under the IEC
61131-3 paradigm [2].
 The IEC 61499 standard [3], whose 2nd edition has been
released recently, presents some approaches to the solution
of the existing issues of the IEC 61131-3 standard in
designing distributed automation systems [4]. The IEC
61499 standard allows developers to design an abstract
system without identifying hardware platforms, thus
improving interoperability. Assignment of function blocks to
devices can be deferred until deployment. The IEC 61499
standard uses an XML file format to avoid portability issues.
Additionally, management commands defined in the
standard enable reconfigurability at runtime [5].
 In existing implementations of the IEC 61499 standard,
interoperability, portability and reconfigurability are partially

achieved. There are still some compatibility issues between
different IEC 61499 vendors. For example, service interface
function blocks (SIFB) developed for one platform in most
cases is not portable to another platform. Several features
(for instance, create and delete function block instances
during execution) are fulfilled for reconfiguration.
Approaches to more intelligent actions, such as automatic
deployment [11] and automatic fault recovery [5] have been
proposed and demonstrated, but are not yet standardized,
while other advanced capabilities such as automatic load
sharing between controllers are yet to be implemented.
 In the general computing domain, the concept of Service-
Oriented Architecture (SOA) is used to design distributed
networked systems. SOA provides a software design pattern
in which software components are only connected via
messaging. This loose coupling feature ensures
interoperability between various platforms and languages as
well as flexibility. Furthermore, each service must register a
service contract in the service repository in order to be
discoverable from other services. This increases reusability
of programs.

This research aims to apply the SOA in the automation
domain in order to enable more intelligent control and reduce
development and maintenance costs. The rest of the paper is
organized as follows: In Section II, relevant research on
applying the SOA concept in the industrial automation
domain is reviewed. In Section III, SOA principles are
compared to both the IEC 61131-3 standard and the IEC
61499. Section IV then presents and discusses examples of
the potential applications of SOA using IEC 61499 function
blocks. In Section V, the implementation of the SOA based
IEC 61499 execution environment is demonstrated. Finally,
Section VI presents an evaluation of the feasibility of this
approach and lists possible future work.

II. RELATED WORKS

 Several researchers discussed recently the ideas of
applying SOA in the industrial automation domain.
 The feasibility of applying Semantic Web technologies
and service-oriented architecture in automation industry has
been discussed by Jammes and Smit [6]. Their work
illustrates the usefulness of applying SOA and Web services
standards to meet the challenges of interoperability,
scalability, plug-and-play connectivity and seamless
integration of automation systems.
 Lastra [7] discussed the current trends in industrial

2014 IEEE International Conference on Robotics & Automation (ICRA)
Hong Kong Convention and Exhibition Center
May 31 - June 7, 2014. Hong Kong, China

978-1-4799-3685-4/14/$31.00 ©2014 IEEE 252

automation, especially in factory automation, concluding that
immediate benefits could be provided to factory automation
by introducing XML, Web Services and Semantic Web
Technologies.
 Delamer et al. [8] discussed software abstractions that
could facilitate the implementation of loosely-coupled
automation systems, proposing a service-oriented
architecture and event-based middleware to easily add,
remove or replace software components. Web services
technologies and ontology are used for the middleware
implementation. Lobov et al. [9] investigated applying
Semantic Web services based on ontologies into the
manufacturing industries. The solution separated
responsibilities between various machines from different
vendors. Ontology and reasoning are used to define
responsibilities for each device in the system. However,
neither of these works takes IEC 61131-3 or IEC 61499 into
consideration.
 Thramboulidis et al. [10] proposed a SOA based
engineering support system for IEC 61499 in industrial
automation systems, which can be easily extended. Design
features are defined as services and published in the public
domain. Those features could be reused by other developers.
This proposal is only intended for application at the design
level.

Overall, one can conclude that there is no existing work on
applying the SOA concept to the low level control of PLCs.
This paper aims at bridging this gap in order to achieve
flexibility and interoperability between various automation
systems.

III. SERVICE-ORIENTED ARCHITECTURE PRINCIPLES IN THE
AUTOMATION DOMAIN

 There are several well-known principles of service-
oriented architecture defined in the software engineering
domain [12]. In this section, those common principles will be
applied to both IEC 61131-3 PLCs and IEC 61499 function
blocks. In Fig. 1, all common principles and their
relationships of SOA are illustrated. Each SOA principle,
and its relationship to the IEC 61131-3 and 61499 standards,
is explained in detail below.

Fig. 1 SOA Principles Diagram.

 First of all, reusability, the fundamental principle of SOA,

is achieved by encapsulating logic into a service, which
could be used by more than one service requestor. In the IEC
61131-3 standard, logic could be placed in one of the
program organization unit (POU) types: functions or
function blocks. Both functions and function blocks are
designed for the purpose of reuse; however, the top-level
IEC 61131-3 POU, the “program”, is not reusable except via
the error-prone procedure of copy and paste.In the IEC
61499 standard, all logic must be encapsulated in a function
block type (basic, composite or service interface). IEC 61499
function blocks are naturally designed as reusable
components, as are all architectural elements up to the device
level. Overall, there is no doubt that from a reusability point
of view, SOA could be applied to existing IEC 61131-3 and
IEC 61499 architecture.
 Secondly, services are formally defined by contracts. A
service contract consists of all primary definitions: general
information of service, such as name, type, owner, version,
responsibility; functional description including requirements,
service operations, how to invoke the service (message
components); and additional information like quality of
service, security, semantics, description of the service, etc. In
the PLC implementation, there is no means for such formal
definitions except for comments and descriptions that may
be stored inside the PLC code or saved as a separate
document using any format. The IEC 61499 standard
provides a better solution via the mechanism of service
sequences. As illustrated in Fig 2 in an example of the
generic IEC 61499 REQUESTER function block, the
behaviour of a function block can be described via the
graphical language of service primitives. This is
complementary to service implementation that can be done
via a variety of models and languages.

Fig. 2 Example of service primitives in IEC 61499
REQUESTER Service Interface Function Block.
 Loose Coupling is another key principle of SOA. Services
are independent from other services, which can only
communicate with each other via messaging. Loosely
coupled services ensure future expansion from various
vendors with different technologies. The existing PLC POUs
are tightly coupled. Variable values are passed directly into
and out from functions and function blocks. Since variables
could be stored in global memory of PLCs, whenever such a
variable is processed by a POU, a new value must be

253

returned to the PLC global memory. On the other hand, IEC
61499 function blocks can communicate only via event and
data connections that can be seen as a model of message
passing. All variables must be kept inside a function block
instance, implying the absence of global memory. Therefore
the IEC 61499 function blocks can be considered as loosely
coupled.
 Loosely-coupled services enable another character of SOA
– Abstraction. Services hide their (potentially complex) logic
from the external environment, being a kind of black box. A
system in SOA can be represented by services and
communications between them. The action of an IEC 61499
function block can be invoked only by events, which makes
it perfect for representing invocation of services by other
services. Abstraction hides complexity of the underlying
logic from users and developers. IEC 61131-3 PLCs provide
some degree of abstraction by hiding logic inside functions
and function blocks. Similar structures are provided in IEC
61499. At the application level, there only exist function
block instances and connections between those instances.
 Next, services are Composable with other services. The
main purpose of this feature is to ensure services could be
utilized effectively whenever required by other services, that
is a form of reusability. In terms of composability, both IEC
61131-3 PLCs and IEC 61499 FBs are perfectly in-line with
SOA. A new POU could be built by encapsulating the
existing ones.
 However, a certain range of logic can only be accessed by
a service during execution time; this is called Autonomy.
There are two types of autonomy: the service has total
control over the underlying logic or services have clear
boundaries but may share some underlying logic. In PLCs,
functions can be shared between POUs. In order to use an
IEC 61131-3 function block type, a new instance must be
initialized whenever is required. This is also the case for IEC
61499 function block types. Function blocks from both
standards have full control of their underlying logic.
 Statelessness requires that only a minimum amount of
state information shall be kept in the service. The service is
stateless when there is no message present. The main reason
is to ensure reusability of services and scalability for the
application. PLC POUs are stateless if all status data are kept
in the global memory. When a PLC POU is invoked,
variable values are passed into this POU. New values will be
updated back to the global memory and POU itself remains
stateless. The same design approach is certainly achievable
in IEC 61499. In a IEC 61499 FBs a service can be
associated with an input event and an algorithm invoked
upon the event. Inside the algorithm, the corresponding
design pattern (supported by tools) can prohibit certain uses
of internal and output variables that would violate
statelessness of the service.
 The last principle is Discoverability. Services shall have
abilities to discover other services in order to avoid creating
duplicated services or logic on the service level. Also,
services are discoverable via service repository on the SOA
level. There is no such feature available in the IEC 61131-3
standard. All functionalities are predefined during the design

stage. The earlier discussed mechanism of service sequences
in IEC 61499 creates a great pre-requisite for implementing
service discovery mechanism. It can be accompanied by
open device management services of IEC 61499 that allow
querying devices with open XML based protocol in order to
discover the list of function block instances located in the
device and their descriptors. However, some means of
retrieving the service sequences needs to be provided. This
could be done either by extending the management services,
or by defining a separate service that can access a repository
containing the IEC 61499 XML definitions of function block
types, which include their service sequences.
 The support of major SOA principles in PLCs and IEC
61499 is given in the table 1 below.

TABLE I.
SOA Principle Support in IEC 61131-3 and IEC 61499

SOA PRINCIPLES IEC 61131-3 IEC 61499

REUSABILITY YES YES

SERVICE
CONTRACT

NO PARTIALLY

LOOSE COUPLING NO PARTIALLY

ABSTRACTION PARTIALLY YES

COMPOSABILITY PARTIALLY PARTIALLY

AUTONOMY PARTIALLY PARTIALLY

STATELESSNESS POSSIBLE POSSIBLE

DISCOVERABILITY NO PARTIALLY

Reusability is supported in IEC 61131-3 PLCs. There is

certain support of abstraction, composability, autonomy and
statelessness in PLCs. But formal definition (service
contract), loose coupling and discoverability are missing
from the current standard. There are more similar principles
between the IEC 61499 standard and the service-oriented
architecture: all SOA principles are fully or partially
supported by this architecture. Overall, the IEC 61499
standard is more feasible for adoption of the SOA.

IV. MAPPING BETWEEN SOA AND THE IEC 61499
STANDARD

 In the previous section, the feasibility of applying SOA
principles to IEC 61131-3/IEC 61499 was investigated. As
stated in the introduction, the motivation of this work is to
improve flexibility, and interoperability. In order to achieve
this goal, the SOA principles will be applied to the IEC
61499 standard.
 A standard SOA design pattern for the IT industry is
shown in Fig. 3 [12]. The top layer is defined as a highly
abstracted diagram, which is used to describe business

254

processes (for example, UML, flow chart, etc.). The middle
layer is the service interface layer. The service interface
layer provides a lower abstraction view of how processes
defined in the process layer could be mapped to services.
The bottom layer is the application layer where services are
actually deployed to multiple applications.

Fig. 3 SOA Layer Definition.

 The flow-chart describing the functionality of the “Process
layer” refers to features defined in functional design
specifications for a particular automation system or machine.
The service interface layer refers to actual overall low level
control design of control logics. The application layer
reflects the mapping between function blocks (services) and
actual IEC 61499 resources (hardware/devices). The IEC
61499 standard fully covers this feature and is well
supported in all function block IDEs as FBDK [15], 4DIAC
IDE [16], NxtOne [17].

Fig. 4. SOA in IEC 61499 approach.

 In the service interface layer, a function block is reflected
as a service entity. Each event connection is considered as a
message type. All data variables associated with an event are
used as input parameters for the message type. The IEC

61499 function block network could be imagined as a service
sequence diagram. Indeed, IEC 61499 function block
network in service sequence diagram format provides a more
compact view of overall system design. Between two
function blocks (as services), only event connections (as
message flows) should be displayed. All data variables are
hidden from the function block interface; this data could be
considered to comprise all the variables associated with the
event by a standard WITH declaration in the FB type
definition. A message path is shown to indicate the output
event from the FB A to the input event from the FB B.
 Up to this point, all basic SOA principles are fulfilled in
the IEC 61499 standard. However, there is no mechanism
implemented in the IEC 61499 standard in order to discover
other distributed nodes and understand their functionalities.
Discoverability could improve intelligent control by
providing improved support for downtime-less redundancy,
dynamic reconfiguration, automatic load share between
distributed nodes, etc. In order to discover a service from the
network, a service repository is compulsory. A service
repository deployed in each device on the application layer
ensures all services (function blocks) are registered as soon
as been created. When a function block triggers an event
request (message) to another function block, it will search
the destination address of the target function block on the
service repository. This SOA structure ensures
discoverability and interoperability between various
implementation of IEC 61499 platforms.
The one main principle of the SOA is that services could
compose other services to create new services – called
service orchestration. This is achievable in the IEC 61499
standard by using the composite function block type. The
composite function block encapsulates basic function blocks,
service interface function blocks or even composite function
blocks, which form a function block network. The IEC
61499 standard allows function block type definitions to be
downloaded to a device during execution. To create a new
function block definition during runtime, IEC 61499
management commands could be sent from IEC 61499 IDEs,
but, in principle, from other function blocks as well. On the
other hand, services could be decomposed when they are no
longer needed by processes. Fortunately, function block
instances and type definitions can be deleted also via
management commands.

V. IMPLEMENTATION AND CASE STUDY

In order to prove the concepts described in the previous
section, a SOA-based IEC 61499 execution environment
(Compiler + Runtime) is needed. In this section, some
preliminary works on the SOA-based IEC 61499 execution
environment is illustrated.

The first step is to compile each function block into a
collection of services. The proposed mechanism is as
follows: function blocks are compiled to dynamic link
libraries (DLL) which could be created as services using a
standard web services platform such as Microsoft .Net
Framework and windows communication foundations
(WCF). During the compilation, the interface part of each

255

function block definition is converted to a Web Service
Definition Language (WSDL) [19] file, which can be
published at service repositories. In the WSDL 2.0, several
properties are defined to describe a service including
interfaces, bindings, services, element declarations and type
definitions. Type definitions contain data type definitions
and are compulsory in the WSDL. These would be used in
the declaration of data input and output variables are
declared in this part for IEC 61499 function blocks. The
WSDL interface part is used to define messages that are
available in this service. These definitions would be used to
declare event inputs and outputs of function blocks including
the WITH declarations of the associated input and output
variables, respectively.

Protocol and data format are defined in the binding part of
WSDL. In the IEC 61499 standard, protocols used between
function blocks are not specified. It provides flexibility to
developers to use any protocol by inserting extra
communication function blocks in between. For each event,
the type of message channel could be specified which
represents a protocol.

Finally, the service section of WSDL defines end points of
services and which interface defined in this service should be
applied. The end points indicate where services are placed.
The addressing information, such as names, IP addresses and
URLs for each function block instances is stored in the
endpoints so other services can access via these addresses.

Fig. 5 WSDL Example for IEC 61499 Message between
FBs.

An example of a simple function block which returns the
sum of two values read from sensors and its service
definition is illustrated in Fig. 5. Data input and output
variables are defined in the type section. Then those
variables are used in the interface definition. Finally, the
binding and the service are declared.

The next important part is communication between
services. Each event connection inside function block
designs is considered as a SOAP message type [18]. Data
connections associated with this event connection are placed
in the SOAP message content. SOAP messages allow a two-
way communication: request and response. In the same
manner as functions in programming languages, a service
provider can provide response messages back to the service
requestor after execution is completed. However, IEC 61499
event and data flows are unidirectional, which means that a
service call with reply is not supported. In order to
implement the response message, a new event connection is
created to provide a response channel to the service requester.
Data connections are attached to this event connection when
return values are required by the service requester. However,
this will cause massive event and data connections in the
function block design. Adapter connections as defined in the
IEC 61499 standard can be used directly to represent such
bidirectional communication, and the associated service
sequence diagrams of the corresponding adapter types can
be used directly to represent each of the service messaging
interactions. Hence, SOA communications can be fully
represented using existing IEC 61499 elements.

Fig. 6 BHS Screening Subsystem Layout.

A screening subsystem of an airport baggage handling
system (BHS) is used as the case study example as shown in
Fig. 6. Baggage units are inducted from two in-feed
conveyor lines into the screening BHS subsystem. The
subsystem includes four screening lines. Bags are equally
distributed to four lines by plough diverters. An exposure
detection system (EDS) X-Ray machine is the core part of
each screening line. Bags cleared from the security check by
EDS machines will be diverted to downstream sortation

256

subsystems. Suspect bags will be sent to further
investigation.

The FB implementation of the BHS subsystem is given in
Fig. 7. All function blocks are compiled into services and
registered on the corresponding service repository in each
PLC. PLC1 and PLC2 are running half of the screening lines
individually. Another controller - PLC3 - is responsible for
feed-in lines.

Fig. 7 BHS Screening Subsystem FB implementation.
The preliminary results demonstrate that by combining

SOA with IEC 61499, the flexibility and interoperability of
IEC 61499-compliant PLCs could be substantially
improved.

VI. CONCLUSIONS AND FUTURE WORK

With the goal of improving reconfigurability, flexibility
and interoperability for distributed automation systems, the
feasibility of applying the service-oriented architecture into
the industrial automation domain has been investigated. An
analysis of mapping SOA principles in both IEC 61131-3
PLCs and IEC 61499 function blocks was performed. The
result indicates the IEC 61499 standard is more suitable than
IEC 61131-3 for implementation of service-oriented
architectures. A mapping of elements of the SOA into an
IEC 61499 standard-compliant application has been
presented.
Future work is planned to investigate formal rules for
mapping SOA into the IEC 61499. Features such as plug and
play and dynamic reconfiguration using SOA for IEC 61499
function blocks also need to be investigated. The compiler
and the runtime based on the SOA should be further
enhanced in order to test advanced features such as dynamic
reconfiguration and downtime-less redundancy.

VII. REFERENCES

[1] IEC 61131-3, Programmable controllers - Part 3:
Programming languages, International Standard, Second
Edition, 2003

[2] W. Dai, V. Vyatkin and J. Christensen, “Essential Elements
for Programming of Distributed Automation and Control
Systems”, IEEE International Conference on Emerging
Technology and Factory Automation (ETFA), Cagliari,
September, 2013.

[3] IEC 61499, Function Blocks, International Standard,
International Electrotechnical Commission, Geneva,
Switzerland, Second Edition, 2012

[4] V. Vyatkin, “IEC 61499 as Enabler of Distributed and
Intelligent Automation: State of the Art Review”, IEEE
Transactions on Industrial Informatics, 7(4), 2011, pp. 768-
781

[5] T. Strasser and R. Foschauer, “Autonomous Application
Recovery in Distributed Intelligent Automation and Control
Systems”, IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, Vol. 42, Issue
6, Page 1054 – 1070, 2012.

[6] F. Jammes and H. Smit, "Service-Oriented Paradigms in
Industrial Automation," IEEE Transactions on Industrial
Informatics, vol. 1, pp. 62 - 70, 2005.

[7] J. Lastra and I. Delamer, “Automation 2.0: current trends in
Factory Automation”, IEEE International Conference on
Industrial Informatics, Page 1321 - 1323, 2008.

[8] I. Delamer and J. Lastra, “Loosely-coupled Automation
Systems using Device-level SOA”, IEEE International
Conference on Industrial Informatics, Vol. 2, Page 743 - 748,
2007.

[9] A. Lobov, F. Lopez, V. Herrera, J. Puttonen and J.
Lastra, ”Semantic Web Services Framework for
Manufacturing Industries”, IEEE International Conference on
Robotics and Biomimetics, page 2104 – 2108, 2008.

[10] K. Thramboulidis, G. Koumoutsos and G. Doukas, “Towards a
Service-oriented IEC 61499 compliant Engineering Support
Environment”, IEEE International Conference on Emerging
Technology and Factory Automation (ETFA), Page 758 - 765,
2006.

[11] A. Zoitl, W. Lepuschitz, M. Merdan, M. Vallee, “A real-time
reconfiguration infrastructure for distributed embedded control
systems”, IEEE International Conference on Emerging
Technology and Factory Automation (ETFA), Page 1 - 8, 2010.

[12] T. Erl, “Service-oriented architecture: concepts, technology
and design”, Prentice Hall Professional Technical Reference,
760 pages, 2005.

[13] Unified Modeling Language [Online], available:
http://www.uml.org

[14] Joiner Associates Staff, “Flowcharts: Plain & Simple:
Learning & Application Guide”, ISBN 978-1884731037, 118
Pages, 1995.

[15] FBDK – Function Block Development Kit [Online], available
from http://www.holobloc.com/

[16] 4DIAC, An open source IEC 61499 IDE and runtime [Online,
2011], available from http://www.fordiac.org

[17] nxtControl GmbH, nxtControl - Next generation software for
next generation customers [Online, 2009, June]. Available:
http://www.nxtcontrol.com/

[18] SOAP – Simple Object Access Protocol [Online 2000],
Available: http://www.w3.org/TR/soap/

[19] WSDL – Web Services Description Language [Online 2001],
Available: http://www.w3.org/TR/wsdl/

257

