
Abstract – The Service Oriented Architecture (SOA), initially 
developed for general purpose computing, is becoming increasingly 
popular in industrial automation, especially due to the growing 
importance of distributed measurement and control systems, Internet 
of Things and wireless sensor network infrastructures. There are two 
serious gaps in the current implementations of SOA for automation: 
the lack of a proper standard form for representing the logical 
relation between services at the system level, and, in particular, lack 
for a proper visual representation format enabling intuitive 
understanding and reconfiguration of services during the system 
lifecycle. In this paper, it is shown how these gaps can be filled using 
the IEC 61499 function block architecture in the most intuitive and 
natural way. The ideas are illustrated on example of systems, 
composed form intelligent mechatronic devices. Such features, as 
software reuse, flexibility, reconfigurability and scalability are 
demonstrated. The paper shows complementarity of the SOA and 
IEC 61499.  

I.  INTRODUCTION 

Industrial automation experiences the growing importance 
of distributed measurement and control systems, Internet of 
Things and wireless sensor network infrastructures. Service 
Oriented Architecture (SOA) [[1]], initially developed for 
general purpose computing, is becoming increasingly popular 
in industrial automation. In the SOA way of thinking, 
functionalities are encapsulated in services. Services are 
communicating with others only by using message passing 
mechanism. A service sends a request message, another 
service receives the message, executes the service invoked 
and sends a response message if needed.  

There are several research works on applying SOA in the 
industrial automation domain [[2]-[7]]. However, there are 
two serious gaps in the current implementations of SOA for 
automation: the lack of a proper standard form for 
representing the logical relation between services at the 
system design level, and, in particular, lack for a proper visual 
representation format enabling intuitive understanding and 
reconfiguration of services during the system lifecycle.  

The analysis, presented in [[8]], shows that IEC 64199 
architecture for distributed automation, is appropriate to apply 
the SOA paradigm in the industrial automation domain. In 
this paper, it is further shown how the above mentioned gaps 
can be filled using the IEC 61499 function block architecture 
in the most intuitive and natural way. The ideas are illustrated 

on example of systems composed form intelligent 
mechatronic devices. Such features as software reuse, 
flexibility, reconfigurability and scalability are demonstrated.  

The paper shows complementarity of the SOA and IEC 
61499. The graphical representation of function block 
networks fits perfectly to the role of top level description 
diagram of services and relations between them. The rest of 
the paper is structured as following. In the section II, the basic 
principles of SOA in automation are provided. Then the idea 
is illustrated on a case study example in the section III. In the 
section IV, two important SOA concepts: service 
orchestration and composition are discussed. Finally, the 
recommendations of implement SOA in industrial automation 
using FB are listed. 

II.  SERVICE-ORIENTED ARCHITECTURE IN AUTOMATION: 
BASIC PRINCIPLES 

Main concepts of service-oriented architecture in 
industrial automation (SOA/IA) can be formulated as follows:  

On the logical level:  

1) The functionality is encapsulated into atomic elements 
called services.  

2) Services may invoke other services via message passing.  
3) All process data (sensors and actuators) are independently 

accessible and addressable, and access to them is also 
implemented via services, e.g. Sensor1.GetValue(), or 
Actuator2.SetValue(1).   

 

On the physical level, these assumptions presume total 
connectivity of all actors in the automation system via a 
network, e.g. the Internet or industrial fieldbuses. With this 
assumption, the allocation of services to particular hardware 
devices is not important, provided that performance and 
communication penalties are within acceptable boundaries. In 
particular, it is widely discussed that some services can be 
executed right at the embedded computing devices, even 
within (smart) sensors and actuators, while others can be 
executed in the Cloud. One of the key features of SOA is that 
services are loosely coupled. This feature provides extreme 
flexibility with which services could be discovered and 
accessed from different execution platforms.  
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A downside of the SOA concept is the lack of 
dependability: it is hard to validate system’s behaviour 
without having the explicit system-level “picture” of the 
entire distributed functionality. Despite some works on 
illustrating service sequence diagrams, programmers still need 
to put in manual efforts as it is not a standard part of SOA. 
The first step in the validation is understanding. Even that is 
hard without having a visual representation of all related 
services and interconnections between them. That is why 
there is ongoing pursuit of a proper visual representation form 
that could capture such aspects as relation between services 
and their internal organisation.  

The function block architecture of IEC 61499 contains all 
necessary artefacts to provide a solution for this task as it is 
conceptually illustrated in Fig. 1. Function block types are 
considered as service type definitions. Message passing 
between services is represented by connections between 
function blocks. There are two types of connections in the 
IEC 61499 standard: event and data. Data inputs and outputs 
must be associated with event input and outputs in order to 
pass values in and out of function blocks. In the SOA view, 
each event connection is referred to as a message type. Data 
variables associated with this event are used as the input 
parameters of the message. 

 

Fig. 1: A function block application generated to implement 
requirements specified in the form of services.  

III.  ILLUSTRATIVE EXAMPLE 

In this paper, a family of reference examples with 
increasing level of complexity will be considered. The first 
one in Fig. 2 consists of just one linear motion pusher. Once a 
workpiece is placed in front of the pusher (that is detected by 

WPS sensor), the desired service of this system is to push the 
workpiece to the destination sink and retract the pusher to the 
initial state. The Figure also shows the hardware architecture 
of this system that fits to the Internet of Things vision: here 
all sensor and actuator devices are equipped with embedded 
microcontrollers and network interfaces.  

This provision could be regarded as extreme and 
redundant at the current level of technology development, 
however it may well be valid as a long term vision. The 
benefit of such architecture is the ease of integration of 
various components into a system. In this study, this 
assumption motivates investigation of the intelligence 
implementation in a form of device independent services. 
This way, software components, encapsulating the devices’ 
functionality can be also easier assembled to a working 
software system. With such a software architecture, the need 
for having an embedded microcontroller in each physical 
device, like sensor or actuator, is not compulsory: several 
services can be combined in one hosting microcontroller, if 
this is justified by the costs or performance reasons.  

 

Fig. 2: Workpiece transfer system with one linear motion 
pusher.  

Further in the paper, several more complicated modular 
mechatronic examples will be considered that are composed 
of the same mechatronic parts and whose (much more 
complicated) behavior can be “composed” from the same set 
of services.  

 

Fig. 3: Graphical representation of a service orchestration.  

 

A.  Specification and implementation of the control 
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The functional components of this system in terms of 
SOA can be represented as a service orchestration graph, 
where nodes represent services and directed edges represent 
the direction of service requests, as shown in Figure 3. 
Service orchestration is a kind of service composition that 
assumes a central coordination entity.  Alternatively, service 
choreography relies on ability of services to coordinate in a 
purely distributed way without a central coordinator. Each 
service request may be accompanied by a confirmation 
message, going in the reversed direction, but it is not shown 
in the diagram.  

The behaviour of “linear motion pusher” system is 
implemented as orchestration of three services: workpiece 
sensor, cylinder and drop, interacting with the Manufacturing 
Execution Systems (MES). The latter is service requester, 
orchestrating the behaviour of the three components into the 
system’s behaviour. The Cylinder component, in turn, is 
represented as a composite service, having its own, internal 
orchestrator that translates external service requests into a 
sequence of service requests to its component sensors and 
actuators.  

The operation of the system is specified by the sequence 
diagram in Fig. 4, and its function block implementation is 
presented in Fig. 5.  

As one can see from the sequence diagram, the operation 
is initiated by the arrival of a workpiece to the position in 
front of the pusher. This is detected by the WPS sensor that 
sends a notification message to the MES service. This 

message can be seen as a reply to the service request by MES 
that was implicitly made at the initialisation (i.e. by the INIT 
message). After receiving the notification, the MES requests 
the service “trip” from the cylinder. The cylinder, in turn, 
requests the push valve to be opened at 100%. The valve 
replies with a confirmation reporting its status (100%), and so 
on. When the pusher reaches the rightmost position, the end 
position sensor sends a notification to the cylinder that can be 
seen either as an independent service request, or a reply to the 
INIT service request.  

 

Fig. 5: Function block implementation of service-oriented 
intelligence in the linear pusher system.   
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Fig. 4 Trace of communication between the mechatronic components towards execution of the “trip” service. 
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The FB diagram in Fig. 5 is further specifying the abstract 
picture of Figure 3, although conceptually it bears the same 
information on the system’s architecture. Each function block 
corresponds to one of the graph nodes in Fig. 3, but the 
semantics of connecting links is refined. The channels, 
connecting the CylMES function block with the FBs 
representing workpiece sensor, cylinder and sink, contain 
more detailed information on the communication protocol 
than arrows in the abstract diagram in Fig. 3. These are 
implemented by the IEC 61499 mechanism of adapter 
connections, described in the next section. 

The function block CControlTRAS has been designed 
with special provisions for implementing interlocking by 
using the ring token mutual exclusion algorithm. For that 
purpose an adapter input MTXIN and output MTXOUT are 
reserved. Their use will be discussed in the next section. 

B.  Adapter based implementation of service connections 

The one-line connections between circles representing 
services in Figure 3 are implemented by one-line adapter 
connections between function blocks in Fig. 5. The 
mechanism of adapter connections is explained in Fig. 6 on 
example of the MES -> Cylinder connection. The connection 
implies signal and data flow in both directions, although the 
services are requested by MES from Cylinder. The Cylinder 
can reply to the request immediately (e.g. Request is 
accepted), or later, (e.g. Request is completed). 

In this paper, a single adapter type “service” is used to 
implement all services. Its interface includes two event inputs 
and two event outputs, associated with dedicated data inputs 
and outputs. This is sufficient to implement interaction 
between a service requester and a service provider, including 
service invocation, reply to the invocation, along with 
subsequent messages from the service provider with service 
execution results, etc.  

Internal organization of controller 

The orchestration of component services into 
functionality of a cylinder is implemented as a composite 
function block type CControlTRAS illustrated in Fig. 7. It has 
one input service interface (adapter socket) for 
communication with the workpiece sensor, and two interfaces 
for requesting services from the cylinder and the sink.  

 

Fig. 7: Internal structure of the service orchestration function 
block (controller). 

The logic of service orchestration is defined in the 
function block type ServCylControl as a state machine, 
presented in Fig. 8.  

IV.  COMPOSITION AND ORCHESTRATION 

A.  Interlocking 

The control logic of a single cylinder, presented in the 
previous section, was capable of automatically resolving 
conflicts with other intelligent mechatronic devices without 

 

Fig. 6: Implementation of the abstract service request link by means of service adapters. 
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additional coordination logic. 

Fig. 8: State machine implementation of the orchestration 
logic.  

For example, when the linear pushers are composed into a 
system as the one in Fig. 9, there is a potential clash area 
where the cylinders may collide, if they enter this area 
simultaneously (which may happen if work pieces appear 
simultaneously, or nearly simultaneously).   

 

Fig. 9: System of two cylinders.  

The corresponding function block application is shown in 
Fig. 10. As one can observe, this application consists of two 
applications for a single cylinder pusher case. The 
interlocking condition is implemented by connecting the 
MTXIN and MTXOUT of the FBs into a ring. This way the 
ring token protocol of mutually exclusive access of a cylinder 
to the operation area is implemented.  

B.  Scalability and orchestration of more complex behaviour 

A more complicated class of problems related to the 
integration of SO- systems can be illustrated on example 
based on four linear pushers in Fig. 11. Here, again, it is 
assumed that each actor (pusher) has its autonomous 
behaviour (workpiece delivery to the destination) performed 
under constraints of not clashing with other counterparts. A 
simple service orchestration application is shown in Fig. 12. It 
will enable operation of the system and interlocking between 
the cylinders.  

 

Fig. 10: FB implementation of the two cylinder system with 
interlocking implemented via the ring token protocol. 

 

Fig. 11: System composed of four linear pushers. 

  

Fig. 12: Function block diagram for the four cylinder system 
with interlocking.  
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In automation systems, a more complicated logic of 
operation of basic actors is often desired. For example, in our 
example, this can be a more complex trajectory of workpiece 
motion, requiring collaborative effort of two pushers. This 
will be implemented as a composite service, resulted from 
orchestration of basic services of pushers. The 
implementation architecture can resemble the one in Fig. 13. 
Here the “Orchestrator” function block type receives 
notifications from the sensors and requests services from 
cylinders.  

 

Fig. 13: Architecture implementing orchestrated services. 

Capabilities of IEC 61499 tools allow for immediate 
simulation and validation. The simulation of the implemented 
case study is shown as illustrated in Fig. 14.   

 

Fig. 14: Visualisation of the simulation of four pushers. 

V.  DISCUSSION AND CONCLUSIONS 

In this case study, it was proposed to use IEC 61499 
function blocks architecture as a convenient graphical 
modelling language for applying design level service-oriented 
architecture concept for automation systems. The application 
of SOA during software design allows quick prototyping of 
systems in an intuitive way. Moreover, the IEC 61499 tools 

give a lot of freedom in deploying a function block 
application to a network of distributed control devices.  

The proposed design method with FB enjoys many 
benefits of SOA, main of which is flexibility. For example, 
substituting a pneumatic pusher with an electric pusher, or 
changing a type of valve from proportional to discrete would 
not require any change in the application’s logic, provided 
that both types of cylinders support the same services. Adding 
and removing of one pusher would be convenient even during 
the operation of the rest of the system due to the loose 
coupling feature of the proposed SOA design paradigm.  

SOA also simplifies adding more functionality on top of 
the existing, as it was illustrated in Fig. 13. Instead of 
showing only software components with interconnections, 
semantic information such as description of automation 
processes could be illustrated in front of users.   

The conducted case study on application of IEC 61499 
function block architecture for implementation of service-
oriented architecture has fully proven the feasibility and 
benefits of this approach. It enables modelling distributed SO-
systems composed of heterogeneous controllers, including SO 
PLC, such as S1000 [[9]], and supports the plug-and 
composition of intelligent mechatronic devices equipped with 
intelligent sensors and actuators, implementing the Internet of 
Things vision.  
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