
Abstract – The Service Oriented Architecture (SOA), initially
developed for general purpose computing, is becoming increasingly
popular in industrial automation, especially due to the growing
importance of distributed measurement and control systems, Internet
of Things and wireless sensor network infrastructures. There are two
serious gaps in the current implementations of SOA for automation:
the lack of a proper standard form for representing the logical
relation between services at the system level, and, in particular, lack
for a proper visual representation format enabling intuitive
understanding and reconfiguration of services during the system
lifecycle. In this paper, it is shown how these gaps can be filled using
the IEC 61499 function block architecture in the most intuitive and
natural way. The ideas are illustrated on example of systems,
composed form intelligent mechatronic devices. Such features, as
software reuse, flexibility, reconfigurability and scalability are
demonstrated. The paper shows complementarity of the SOA and
IEC 61499.

I. INTRODUCTION

Industrial automation experiences the growing importance
of distributed measurement and control systems, Internet of
Things and wireless sensor network infrastructures. Service
Oriented Architecture (SOA) [[1]], initially developed for
general purpose computing, is becoming increasingly popular
in industrial automation. In the SOA way of thinking,
functionalities are encapsulated in services. Services are
communicating with others only by using message passing
mechanism. A service sends a request message, another
service receives the message, executes the service invoked
and sends a response message if needed.

There are several research works on applying SOA in the
industrial automation domain [[2]-[7]]. However, there are
two serious gaps in the current implementations of SOA for
automation: the lack of a proper standard form for
representing the logical relation between services at the
system design level, and, in particular, lack for a proper visual
representation format enabling intuitive understanding and
reconfiguration of services during the system lifecycle.

The analysis, presented in [[8]], shows that IEC 64199
architecture for distributed automation, is appropriate to apply
the SOA paradigm in the industrial automation domain. In
this paper, it is further shown how the above mentioned gaps
can be filled using the IEC 61499 function block architecture
in the most intuitive and natural way. The ideas are illustrated

on example of systems composed form intelligent
mechatronic devices. Such features as software reuse,
flexibility, reconfigurability and scalability are demonstrated.

The paper shows complementarity of the SOA and IEC
61499. The graphical representation of function block
networks fits perfectly to the role of top level description
diagram of services and relations between them. The rest of
the paper is structured as following. In the section II, the basic
principles of SOA in automation are provided. Then the idea
is illustrated on a case study example in the section III. In the
section IV, two important SOA concepts: service
orchestration and composition are discussed. Finally, the
recommendations of implement SOA in industrial automation
using FB are listed.

II. SERVICE-ORIENTED ARCHITECTURE IN AUTOMATION:
BASIC PRINCIPLES

Main concepts of service-oriented architecture in
industrial automation (SOA/IA) can be formulated as follows:

On the logical level:

1) The functionality is encapsulated into atomic elements
called services.

2) Services may invoke other services via message passing.
3) All process data (sensors and actuators) are independently

accessible and addressable, and access to them is also
implemented via services, e.g. Sensor1.GetValue(), or
Actuator2.SetValue(1).

On the physical level, these assumptions presume total
connectivity of all actors in the automation system via a
network, e.g. the Internet or industrial fieldbuses. With this
assumption, the allocation of services to particular hardware
devices is not important, provided that performance and
communication penalties are within acceptable boundaries. In
particular, it is widely discussed that some services can be
executed right at the embedded computing devices, even
within (smart) sensors and actuators, while others can be
executed in the Cloud. One of the key features of SOA is that
services are loosely coupled. This feature provides extreme
flexibility with which services could be discovered and
accessed from different execution platforms.

Function Block Implementation of Service
Oriented Architecture: Case Study
Wenbin (William) Dai,

Luleå University of Technology, Sweden,
IEEE Member, w.dai@ieee.org

Valeriy Vyatkin,
Luleå University of Technology, Sweden and Aalto

University, Finland, Senior IEEE Member,
vyatkin@ieee.org

James H. Christensen,

Holobloc Inc,
 james.h.christensen@gmail.com

Victor Dubinin,
Penza State University, Russia
victor_n_dubinin@yahoo.com

978-1-4799-4905-2/14/$31.00 ©2014 IEEE 112

A downside of the SOA concept is the lack of
dependability: it is hard to validate system’s behaviour
without having the explicit system-level “picture” of the
entire distributed functionality. Despite some works on
illustrating service sequence diagrams, programmers still need
to put in manual efforts as it is not a standard part of SOA.
The first step in the validation is understanding. Even that is
hard without having a visual representation of all related
services and interconnections between them. That is why
there is ongoing pursuit of a proper visual representation form
that could capture such aspects as relation between services
and their internal organisation.

The function block architecture of IEC 61499 contains all
necessary artefacts to provide a solution for this task as it is
conceptually illustrated in Fig. 1. Function block types are
considered as service type definitions. Message passing
between services is represented by connections between
function blocks. There are two types of connections in the
IEC 61499 standard: event and data. Data inputs and outputs
must be associated with event input and outputs in order to
pass values in and out of function blocks. In the SOA view,
each event connection is referred to as a message type. Data
variables associated with this event are used as the input
parameters of the message.

Fig. 1: A function block application generated to implement
requirements specified in the form of services.

III. ILLUSTRATIVE EXAMPLE

In this paper, a family of reference examples with
increasing level of complexity will be considered. The first
one in Fig. 2 consists of just one linear motion pusher. Once a
workpiece is placed in front of the pusher (that is detected by

WPS sensor), the desired service of this system is to push the
workpiece to the destination sink and retract the pusher to the
initial state. The Figure also shows the hardware architecture
of this system that fits to the Internet of Things vision: here
all sensor and actuator devices are equipped with embedded
microcontrollers and network interfaces.

This provision could be regarded as extreme and
redundant at the current level of technology development,
however it may well be valid as a long term vision. The
benefit of such architecture is the ease of integration of
various components into a system. In this study, this
assumption motivates investigation of the intelligence
implementation in a form of device independent services.
This way, software components, encapsulating the devices’
functionality can be also easier assembled to a working
software system. With such a software architecture, the need
for having an embedded microcontroller in each physical
device, like sensor or actuator, is not compulsory: several
services can be combined in one hosting microcontroller, if
this is justified by the costs or performance reasons.

Fig. 2: Workpiece transfer system with one linear motion
pusher.

Further in the paper, several more complicated modular
mechatronic examples will be considered that are composed
of the same mechatronic parts and whose (much more
complicated) behavior can be “composed” from the same set
of services.

Fig. 3: Graphical representation of a service orchestration.

A. Specification and implementation of the control

113

The functional components of this system in terms of
SOA can be represented as a service orchestration graph,
where nodes represent services and directed edges represent
the direction of service requests, as shown in Figure 3.
Service orchestration is a kind of service composition that
assumes a central coordination entity. Alternatively, service
choreography relies on ability of services to coordinate in a
purely distributed way without a central coordinator. Each
service request may be accompanied by a confirmation
message, going in the reversed direction, but it is not shown
in the diagram.

The behaviour of “linear motion pusher” system is
implemented as orchestration of three services: workpiece
sensor, cylinder and drop, interacting with the Manufacturing
Execution Systems (MES). The latter is service requester,
orchestrating the behaviour of the three components into the
system’s behaviour. The Cylinder component, in turn, is
represented as a composite service, having its own, internal
orchestrator that translates external service requests into a
sequence of service requests to its component sensors and
actuators.

The operation of the system is specified by the sequence
diagram in Fig. 4, and its function block implementation is
presented in Fig. 5.

As one can see from the sequence diagram, the operation
is initiated by the arrival of a workpiece to the position in
front of the pusher. This is detected by the WPS sensor that
sends a notification message to the MES service. This

message can be seen as a reply to the service request by MES
that was implicitly made at the initialisation (i.e. by the INIT
message). After receiving the notification, the MES requests
the service “trip” from the cylinder. The cylinder, in turn,
requests the push valve to be opened at 100%. The valve
replies with a confirmation reporting its status (100%), and so
on. When the pusher reaches the rightmost position, the end
position sensor sends a notification to the cylinder that can be
seen either as an independent service request, or a reply to the
INIT service request.

Fig. 5: Function block implementation of service-oriented
intelligence in the linear pusher system.

MES WPS CYL CYL.start CYL.end CYL.push CYL.pop

INIT
INIT

INIT
INIT

INIT
INIT

RSP, “WPS,1”

REQ,”trip”

REQ, “100”

RSP, “CYL, STARTED”

Workpiece
arrived

RSP, “start,1”

RSP, “end,0”

RSP, “push,100”

RSP, “WPS,0”

INIT

RSP, “end,1”

DS

REQ, “drop”

RSP, “ack”

Pusher
reached end
position

RSP, “CYL, END POS”

RSP, “end,0”

REQ, “0”

RSP, “push,0”

REQ, “100”

RSP, “pop,100”

RSP, “start,1”

REQ, “0”

RSP, “pop,0”

RSP, “CYL, START POS”Pusher
reached

start position

RSP, “CYL, Trip Complete”Service
completed

Fig. 4 Trace of communication between the mechatronic components towards execution of the “trip” service.

114

The FB diagram in Fig. 5 is further specifying the abstract
picture of Figure 3, although conceptually it bears the same
information on the system’s architecture. Each function block
corresponds to one of the graph nodes in Fig. 3, but the
semantics of connecting links is refined. The channels,
connecting the CylMES function block with the FBs
representing workpiece sensor, cylinder and sink, contain
more detailed information on the communication protocol
than arrows in the abstract diagram in Fig. 3. These are
implemented by the IEC 61499 mechanism of adapter
connections, described in the next section.

The function block CControlTRAS has been designed
with special provisions for implementing interlocking by
using the ring token mutual exclusion algorithm. For that
purpose an adapter input MTXIN and output MTXOUT are
reserved. Their use will be discussed in the next section.

B. Adapter based implementation of service connections

The one-line connections between circles representing
services in Figure 3 are implemented by one-line adapter
connections between function blocks in Fig. 5. The
mechanism of adapter connections is explained in Fig. 6 on
example of the MES -> Cylinder connection. The connection
implies signal and data flow in both directions, although the
services are requested by MES from Cylinder. The Cylinder
can reply to the request immediately (e.g. Request is
accepted), or later, (e.g. Request is completed).

In this paper, a single adapter type “service” is used to
implement all services. Its interface includes two event inputs
and two event outputs, associated with dedicated data inputs
and outputs. This is sufficient to implement interaction
between a service requester and a service provider, including
service invocation, reply to the invocation, along with
subsequent messages from the service provider with service
execution results, etc.

Internal organization of controller

The orchestration of component services into
functionality of a cylinder is implemented as a composite
function block type CControlTRAS illustrated in Fig. 7. It has
one input service interface (adapter socket) for
communication with the workpiece sensor, and two interfaces
for requesting services from the cylinder and the sink.

Fig. 7: Internal structure of the service orchestration function
block (controller).

The logic of service orchestration is defined in the
function block type ServCylControl as a state machine,
presented in Fig. 8.

IV. COMPOSITION AND ORCHESTRATION

A. Interlocking

The control logic of a single cylinder, presented in the
previous section, was capable of automatically resolving
conflicts with other intelligent mechatronic devices without

Fig. 6: Implementation of the abstract service request link by means of service adapters.

115

additional coordination logic.

Fig. 8: State machine implementation of the orchestration
logic.

For example, when the linear pushers are composed into a
system as the one in Fig. 9, there is a potential clash area
where the cylinders may collide, if they enter this area
simultaneously (which may happen if work pieces appear
simultaneously, or nearly simultaneously).

Fig. 9: System of two cylinders.

The corresponding function block application is shown in
Fig. 10. As one can observe, this application consists of two
applications for a single cylinder pusher case. The
interlocking condition is implemented by connecting the
MTXIN and MTXOUT of the FBs into a ring. This way the
ring token protocol of mutually exclusive access of a cylinder
to the operation area is implemented.

B. Scalability and orchestration of more complex behaviour

A more complicated class of problems related to the
integration of SO- systems can be illustrated on example
based on four linear pushers in Fig. 11. Here, again, it is
assumed that each actor (pusher) has its autonomous
behaviour (workpiece delivery to the destination) performed
under constraints of not clashing with other counterparts. A
simple service orchestration application is shown in Fig. 12. It
will enable operation of the system and interlocking between
the cylinders.

Fig. 10: FB implementation of the two cylinder system with
interlocking implemented via the ring token protocol.

Fig. 11: System composed of four linear pushers.

Fig. 12: Function block diagram for the four cylinder system
with interlocking.

116

In automation systems, a more complicated logic of
operation of basic actors is often desired. For example, in our
example, this can be a more complex trajectory of workpiece
motion, requiring collaborative effort of two pushers. This
will be implemented as a composite service, resulted from
orchestration of basic services of pushers. The
implementation architecture can resemble the one in Fig. 13.
Here the “Orchestrator” function block type receives
notifications from the sensors and requests services from
cylinders.

Fig. 13: Architecture implementing orchestrated services.

Capabilities of IEC 61499 tools allow for immediate
simulation and validation. The simulation of the implemented
case study is shown as illustrated in Fig. 14.

Fig. 14: Visualisation of the simulation of four pushers.

V. DISCUSSION AND CONCLUSIONS

In this case study, it was proposed to use IEC 61499
function blocks architecture as a convenient graphical
modelling language for applying design level service-oriented
architecture concept for automation systems. The application
of SOA during software design allows quick prototyping of
systems in an intuitive way. Moreover, the IEC 61499 tools

give a lot of freedom in deploying a function block
application to a network of distributed control devices.

The proposed design method with FB enjoys many
benefits of SOA, main of which is flexibility. For example,
substituting a pneumatic pusher with an electric pusher, or
changing a type of valve from proportional to discrete would
not require any change in the application’s logic, provided
that both types of cylinders support the same services. Adding
and removing of one pusher would be convenient even during
the operation of the rest of the system due to the loose
coupling feature of the proposed SOA design paradigm.

SOA also simplifies adding more functionality on top of
the existing, as it was illustrated in Fig. 13. Instead of
showing only software components with interconnections,
semantic information such as description of automation
processes could be illustrated in front of users.

The conducted case study on application of IEC 61499
function block architecture for implementation of service-
oriented architecture has fully proven the feasibility and
benefits of this approach. It enables modelling distributed SO-
systems composed of heterogeneous controllers, including SO
PLC, such as S1000 [[9]], and supports the plug-and
composition of intelligent mechatronic devices equipped with
intelligent sensors and actuators, implementing the Internet of
Things vision.

VI. REFERENCES

[1] T. Erl, “Service-oriented architecture: concepts, technology and
design”, Prentice Hall Professional Technical Reference, 760
pages, 2005

[2] F. Jammes and H. Smit, "Service-Oriented Paradigms in
Industrial Automation," IEEE Transactions on Industrial
Informatics, vol. 1, pp. 62 - 70, 2005

[3] A. Lobov, F. Lopez, V. Herrera, J. Puttonen and J. Lastra,
“Semantic Web Services framework for manufacturing
industries”, IEEE International Conference on Robotics and
Biomimetics (ROBIO 2008), pp. 2104-2108, 2008.

[4] K. Thramboulidis, G. Koumoutsos and G. Doukas, “Towards a
service-oriented IEC 61499 compliant engineering support
environment”, IEEE Conference on Emerging Technologies
and Factory Automation (ETFA'06), pp. 758-765, 2006.

[5] T. Cucinotta, A. Mancina, G. Anastasi, G. Lipari, L.
Mangeruca, R. Checcozzo, and F. Rusina, "A Real-Time
Service-Oriented Architecture for Industrial Automation", IEEE
Transactions on Industrial Informatics, vol.5, no.3, pp.267 -
277, 2009.

[6] S. V. Ragavana, I. K. Kusnantoa, and V. Ganapathyb, “Service
Oriented Framework for Industrial Automation Systems”,
Procedia Engineering, Volume 41, 2012, Pages 716–723

[7] Mendes, J.; Leitão, P.; Restivo, F.; Colombo, A. W. (2009) -
Service-oriented agents for collaborative industrial automation
and production systems, 4th International Conference on
Industrial Applications of Holonic and Multi-Agent Systems,
Linz, Austria. p. 1-12

[8] W. Dai, V. Vyatkin and J. Christensen, “The Application of
Service-Oriented Architectures in Distributed Automation
Systems”, IEEE Conference on Robotics and Automation
(ICRA’14), 2014, accepted, Hong Kong

[9] Service oriented controller S1000, Inicotech, online:
http://www.inicotech.com/s1000_overview.html

117

Powered by TCPDF (www.tcpdf.org)

