
Service-Oriented Distributed Control
Software Design for Process Automation Systems

1Wenbin (William) Dai IEEE Member, 2Jukka Peltola, 1,2Valeriy Vyatkin IEEE Senior Member1, Cheng Pang IEEE
Member

1Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Sweden
and 2Department of Information and Computer Systems in Automation, Aalto University, Finland

w.dai@ieee.org, jukka.peltola@aalto.fi, vyatkin@ieee.org, cheng.pang@ltu.se

Abstract — Improving software development efficiency and
reusability of existing programs is an important topic for
industrial automation. Recently, modern software paradigms
have been introduced into the automation domain such as
object-oriented programming using the IEC 61131-3 standard
and component-based design based on the IEC 61499 standard.
In this paper, another software paradigm – service-oriented
architecture is applied to the software design for automation
programs. The proposed SOA pattern is based on a multi-
layered structure with enhanced reusability and flexibility. A
case study of water heating system is implemented to prove the
concept of SOA paradigm.

Keywords — Service-Oriented Architecture; Component-
based design; Object-Oriented Programming; IEC 61131-3
PLCs; IEC 61499 Function Blocks.

I. INTRODUCTION
With increasing complexity of industrial automation

systems, software design of automation programs has
experienced two evolutions. In the old days, control logic
was implemented in electrical circuits and automation
systems consisted of combinations of relays, cam timers,
drum sequencers and dedicated closed-loop controllers. The
design and development of such logic is extremely
complicated and time consuming. There is no way for
engineers to identify correctness of control logic except by
testing with real automation systems.

In early programmable logic controllers (PLC), programs
were written in proprietary languages. In 1990s, ladder
logic, which resembles a schematic diagram of physical
relay logic, was invented for general-purpose automation
programs. In 1993, the first edition of international standard
for PLC – IEC 61131-3 was published and recently revised
third edition was released in 2013 [1]. Four programming
languages ladder logic (LD), structure text (ST), instruction
list (IL) and function block diagram (FBD) plus a state
machine based language Sequential Function Chart (SFC) is
defined in the IEC 61131-3 standard. Programming
organization units (POU) – functions and function blocks
are also introduced by the IEC 61131-3 standard. As a
result, control logic could be encapsulated in POUs and
reused for future. The efficiency of PLC software design
and development is improved significantly by using those
languages and POUs. Object-oriented programming (OOP)

is also introduced to PLCs in the latest edition of IEC
61131-3 [2].

Nowadays, physical size and functionalities of
manufacturing plants are continuously increasing and
computing power provided by PLCs cannot match the
requirements. It is often not feasible to control such
automation systems by a central PLC. Instead, a better
performance could be achieved if the control logic was
distributed across several PLCs collaborating with each
other. However, the IEC 61131-3 standard’s architecture
does not fit to the distributed system architecture. To
address the shortcomings of IEC 61131-3, another
international standard, IEC 61499 [3] was published in 2005
and revised in 2012 in order to assist development of
distributed automation systems.

The IEC 61499 standard paves the way to practical use of
component-based software design paradigm (CBD) in
industrial automation domain as exemplified in [4]. As
defined in the IEC 61499 standard, all control logic must be
encapsulated in function blocks. A function block is a
software component, which could be reused by mapping its
interface. The paradigm shift is to build automation
programs from a standard library rather than start from
scratch every time. Automation programs can be generated
by configuring required software components [5]. However,
managing a large software component library is also a
challenge. Besides, programs must be regenerated if any
modification to the interface of a software component is
required.

In order to improve flexibility and reusability of
distributed automation programs, service-oriented
architecture (SOA) is considered as the enabler for future
collaborative cloud-based industrial automation [6]. Loosely
coupled software units in the SOA ensure high flexibility
and interoperability. More importantly, in SOA the
description of the entire automation process could be
integrated within control logics. The process description
provides better understanding of system overview and
improves designer’s productivity.

This paper aims to provide a guideline on how to apply
the SOA paradigm into the software design of distributed
automation programs to improve flexibility and efficiency.
The rest of the paper is organized as follows: In the section
II, related works of industrial automation software design

2014 IEEE International Conference on Systems, Man, and Cybernetics
October 5-8, 2014, San Diego, CA, USA

978-1-4799-3840-7/14/$31.00 ©2014 IEEE 3637

approaches and paradigms are reviewed. Then, comparison
of various programming paradigms in automation domain,
namely object-oriented programming, component-based
design and service-oriented architecture, is provided in the
section III. Then, a case study of water heating system is
introduced in the section IV and implemented using the
SOA paradigm. Finally, in the section V and VI, the
discussion of how to apply SOA paradigm in the industrial
automation is summarized and concluded.

II. RELATED WORKS
Software design paradigms are popular research topics in

industrial automation domain. One famous software
paradigm widely applied in the general information and
communication technologies (ICT) is the object-oriented
programming. Many research works have been dedicated to
application of this concept in the automation domain. For
example, Young et al. [7] proposed an object-oriented
model for programming control systems based on unified
modeling language (UML). Control systems are modeled
using UML so that all processes are mapped to functions in
object definitions. The UML model is then transformed into
control code.

Werner describes the object-oriented extensions for the
IEC 61131-3 standard in [8]. Object-oriented programming
concepts (OOP) including methods, access specifiers
(public, private and protected), inheritance and
polymorphism (extends, interface and implements) are
added in the latest edition of the IEC 61131-3 standard. The
advantages of OOP such as better program structure,
extensibility and reusability are illustrated in the paper.

There is no proven evidence that all characteristic OOP
features mentioned above are equally valuable in industrial
automation software development. Even in the general
purpose ICT world, the usefulness vs. harm of inheritance
and polymorphism is often disputed. The conceptual
framework for object-oriented design of automation
software was introduced in [9] with implementation based
on IEC 61499 standard. IEC 61499 supports most important
features of such design, such as encapsulation and reuse of
automation code models: state machines as well as legacy
PLC languages [10]. Combined with the abilities of being
executed immediately and on distributed platforms these
features represent an interesting set of opportunities for
efficient automation software development.

A number of researchers have used the IEC 61499 models
for more efficient design, that is often referred to as object-
based or component-based, to differentiate it from the
object-oriented programming. For example, Zoitl et al. [11]
propose guidelines and patterns for building hierarchical
automation systems using IEC 61499 as the modeling
language. The structuring principles for hierarchical control
architectures using the IEC 61499 language are illustrated in
this paper. The component-based design is achieved by
mapping layered elements into function blocks.

Black et al. [12] provides a case study of airport baggage
handling system based on the component-based architecture

and the IEC 61499 standard. For each device, e.g. a
conveyor, there is a software component type that is taken
from a library and instantiated. The component-based design
is proven as scalable, reconfigurable and fault tolerant.
Furthermore, intelligent self-configuration is also feasible
by applying the component-based design.

A method of applying component-based design to
intelligent control of batch processes using IEC 61499 and
ISA S88 is proposed by Ivanova et al. [13]. The control
logic is encapsulated to IEC 61499 function blocks and can
be reused for different scenarios. The scheduling of logic
components is implemented as an IEC 61499 FB (Function
Block).

Cengic et al. [14] propose a framework for component
based distributed control software also using the IEC 61499
standard. Automation components are introduced, which can
be hierarchically embedded to create new components. The
system hierarchy is presented by encapsulation of multi-
layered automation components. The framework aims at
platform independence, thanks to the IEC 61499
compliance.

Overall, one can observe a variety of design approaches
in automation that are motivated by mechatronic modularity
of physical systems and object-oriented modeling and
programming. The object-oriented design of automation
systems is implemented using UML in most existing works.
The component-based design is natively suitable for IEC
61499.

III. MODERN SOFTWARE PARADIGMS IN AUTOMATION:
OBJECT-ORITEND PROGRAMMING VS COMPONENT-BASED

DESIGN VS SERVICE-ORIENTED ARCHITECTURE
Industrial automation programming methods have been

continuously influenced by modern software engineering
paradigms [15]. One of the popular topics is to introduce the
Object-Oriented Programming concept into industrial
automation. The key of the OOP is the object [16]. Objects
are defined as software entities that encapsulate data and
methods of data processing. In industrial automation,
software objects are often related to physical objects, aka
devices, such as conveyors, sensors and machinery [17].
Devices are controlled by control signals that can be
generated by its associated software objects directly, or
through a more complex invocation chain by other software
objects. For example, in a baggage-handling system (BHS),
a conveyor section could be waked up by a request to start
signal sent from an upstream conveyor, when it starts
moving. The use of OOP in automation domain aims at
increase of code reusability. Automation software could be
built from a library of device classes with specified relations
between devices. The system could be extended easily by
inserting more instances of objects. If any functionality of a
machine needs to be modified or a new type of machine is
brought in, device classes could be adjusted rapidly to meet
new requirements by using inheritance and polymorphism
of the OOP concept. One should note, however, that using
polymorphism at execution time is associated with an extra
computational cost, and is therefore often prohibited in

3638

automation and embedded systems. Besides, it may hamper
determinism of computations. Therefore, automation
systems developers often prefer using only design time
inheritance, deriving software components from the existing
ones by extension of their data, methods and interfaces.

The approach that can be referred to as component-based
(or object-based) design is not concerned with the
techniques for derivation of components from other
components (inheritance, polymorphism), but focusing on
methodologies of components creation, composition and
execution. The IEC 61499 standard perfectly matches the
concept of component-based design with a function block
modelling a component. The function blocks are connected
to other function blocks via predefined interfaces (event and
data connections). A component can also be composed of
other components, which enables modelling of hierarchical
structures that can help in reusing design of entire
subsystems, such as screening subsystem that consists of X-
Ray screening machines and automatic tag readers.

With rapid adoption of Ethernet-based communication at
the factory floor, the service-oriented architecture (SOA) is
becoming especially appealing as a framework for
distributed automation software systems. The SOA-based
architecture is a set of software components whose interface
descriptions can be published and discovered [18]. Service
providers and consumers are loosely coupled to ensure
minimum dependencies between services. The interaction
between services is defined in the service contract, which
can be published to the service repository. Such interaction
can be also represented using the artefacts of IEC 61499. To
ensure loose coupling in IEC 61499 programs, function
blocks should encapsulate most of the service
functionalities, which only require minimum external data.
For example, a small airport baggage handling system
consists of the conveyor control service, the emergency stop
service and the check-in procedure service. In this case,
signals that need to be sent between services are minimized.
From emergency stop services, only the status of emergency
stop zone is required by conveyor control service. Check-in
procedure service will only inform the conveyor control
service when a new bag is inducted into the baggage
handling system.

The characteristics of OOP, CBD and SOA are
summarized in the TABLE 1 below. As seen from the table,
OOP, CBD and SOA are all invented for improving
reusability and programming efficiency by introducing
reusable software units. All those programming paradigms
provide encapsulation concepts to library elements.
Components are easier to integrate compared to objects by
introducing the idea of assembly: components can embed
their meta-models as component networks. Objects rely on
external meta-models such as UML diagrams.

TABLE I. COMPARISON BETWEEN OOP, CBD AND SOA

 OOP CBD SOA
Software
Unit

Classes (Objects) Software
Component

Software Service

Features Inheritance,
Polymorphism

Encapsulation Loose Coupling,
Discoverability

Interface Method call Predefined
Interface

Service Contract

Reusable
Source

Object Library Component
Library

Service
Repository

System
Hierarchy

Nested Classes Nested
Components

Service
Orchestration,
Composition

Meta
Model

Class Diagram
(UML)

Network of
Components

Business Process
Execution
Language, Service
Sequence Diagram

SOA has the best flexibility overall due to the

configurable interface defined by separated service contract
between software units. In addition, SOA is the only
approach, which could be integrated with enterprise service
bus by using Business Process Execution Language (BPEL).
The enterprise resource planning (ERP) software could
impact services directly via service bus. In order to enhance
flexibility and interoperability for distributed automation
systems, adopting SOA concept on the software design level
is a feasible approach.

IV. DESIGN OF HEAT PRODUCTION PROCESS CONTROL
APPLICATION USING SOA PARAGIDM

 The case study uses a heat production process (HPP)
system [20] as shown in the piping and instrumentation
diagram (P&ID) in Fig. 1. Firstly, cold water is supplied
into the makeup water tank (B400). The water from the
makeup tank will be fed to the preheater tank (B100) via
control valve Y101 when the water level in the preheater
tank is determined too low. There is a heater installed in the
preheater tank, which will heat the water close to the boiling
point. Hot water is pumped into the feed water tank (B200)
by using a control valve Y102 and a pump M100. When the
boiler (B300) is ready, water from the feed water tank will
be pumped into the boiler via valve Y201 and pump M200.
There is a pressure indicator and a temperature sensor
installed in the boiler to avoid over heating or over pressure.
When any emergency situation happens, the valve Y204
may be opened to lower the pressure and temperature in the
boiler. In each tank, there is a set of high (Lx01 – Analog,
Lx00 - Digital) and low (Lx02 - Analog) level indicators to
measure level and detect abnormal conditions. Pressurized
water in the boiler tank will be supplied to the customer via
the supply valve Y305. Finally, water can be discharged by
opening the valve Y105.

The water heating system will be developed according to
the SOA paradigm using IEC 61499 function blocks. In the
general computing domain, SOA is presented in a layered
architecture of composite services, which align with
business processes [19]. A similar concept can also be
applied to the industrial automation domain. The layered
view of SOA is illustrated in Fig. 2.

3639

Fig. 2 Multi-Layered Abstract View of SOA in Industrial

Automation.
The bottom layer is the controller layer, which consists of

operating system and execution environment (runtime) for
controllers. On top of the controller layer, services including
built-in functions and communication handlers (for external
message exchanging and fieldbus access in PLCs) are
defined in the core services layer. The next layer is the user
defined services layer. Functions or function blocks
developed in this layer can act as service consumers
invoking services from providers of the core services layer.
The second top layer is the process layer, which contains
information of individual physical processes controlled by
automation functions such as filling water. Finally, the top
layer is the presentation layer, which forms individual
processes into a complete system by using sequence
diagram and flow chart. The presentation layer also contains
knowledge of the entire automation system.

Firstly, the design of core services layer function blocks is
given in Fig. 3. The built-in libraries, communication to FB
in external controllers and fieldbus are usually implemented
in Service Interface Function Blocks (SIFB). SIFBs are
designed for platform dependent functionalities in the IEC
61499 standard. In this case, built-in functions such as cycle
event source FB (E_CYCLE), inverter FB (NOT), and
fieldbus I/O access FB - Analog inputs and outputs (FB_AI,

FB_AO) and Digital inputs and outputs (FB_DI, FB_DO)
are implemented in the core services layer.

Fig. 3 Core Services Layer Implementation.

A part of user defined services layer function block
implementation for the HPP system is shown in Fig. 4. Four
types of services are defined in this layer: analog sensor
measurement (Service_AIMeasure), analog actuator control
(Service_AOControl), digital sensor measurement
(Service_DIMeasure) and digital actuator control
(Service_DOControl). Analog and digital measurement
function blocks take readings from water level proximities
(Lx00, Lx01 and Lx02), temperature sensors (Tx00),
pressure sensors (Px00), and flow measurement sensors
(Fx00) and generate alarms from each process variable.
There are five alarm types generated for each sensor: HH,
H, L, LL and F which refer to High Alarm, High Warning,
Low Warning, Low Alarm and Fault respectively. Actuator
control can be manually overridden by operators for testing
purpose or fault recovery. Each actuator service function
block takes two inputs: one from the upper level (automatic
mode) and one from the Human-Machine Interface (HMI,
manual mode).

Fig. 1 Heat Production Process Piping and Instrumentation Diagram.

3640

The next layer above the user-defined services layer is the
process layer. In the process layer, services are grouped by
functionalities in the process, namely tank control
(FB_TankControl), PID control (FB_PIDControl), heater
control (FB_HeaterControl), pump control
(FB_PumpControl) and valve control (FB_ValveControl) as
given in Fig. 5. The tank control service collects alarm
signals from sensor measurement services and generates
tank status like is tank ready for feed in and out water, can
tank be heated and is tank over pressured. The PID control
service reads process value from the flow measurement
service and recalculates control value for valve and pump
control services. The heater, pump and valve control
services check that the control value is in the valid range
and produce output command to actuator control services.

Fig. 4 User-Defined Services Layer Implementation.

Fig. 5 Process Layer Implementation.

On the top layer, two services are defined: sequence
control service and interlock service. The sequence control
service controls all valves, heater and pumps based on the

feedback collected from tank control services in the process
layer. The sequence diagram of the HPP is defined using the
execution control chart (ECC) in the sequence control FB.
The HPP sequence is defined as six sequential steps
including Filling, Wait, Start-up, Supply, Shutdown and
Emptying.

Fig. 6 Presentation Layer and Sequence Control Implementation.

Finally, the overview of the HPP system configuration in
IEC 61499 is given in Fig. 7. An individual instance is
created for each object due to limitation of the IEC 61499
standard: there is no shared memory so data cannot be
stored globally; each data input can only be connected to
one data output so a service cannot be shared by multiple
instances.

Fig. 7 Heat Production Process System Design Overview.

V. DISCUSSION
The aim for adopting SOA paradigm in the design level

of automation programs is to provide better reusability and

3641

flexibility as well as improve software development
efficiency and productivity. A guideline on how to design a
system according to the SOA paradigm for software
engineers is required. A multi-layered approach is proposed
and demonstrated in the previous section. In this approach,
upper layer services trigger lower layer services by sending
request signals and collect response data from lower layer
services. The presentation layer in the SOA approach
provides a semantic view of system configurations. Instead
of just illustrating connections between software units like
OOP and CBD, SOA based approach describes the
automation solution as a sequence, which specifies the
actions the system will perform in a particular process state.
The SOA paradigm fills the gap for integrate meta-models
within the control logic for automation programs.

In the proposed SOA structure, the core service layer is
designed for FBs provided by vendors. Those services are
platform-dependent and usually implemented in SIFBs for
IEC 61499. The user defined services layers are reusable
functions developed in this system configuration which
could be utilized in the future. Those services provide an
abstract layer for core services and a bridge between
processes and base functions. The process layer composes
basic functionalities from user-defined services and core
services to form simple sequences. Finally, the presentation
layer is the “brain” of the control system. Service sequences
indicating control flow are implemented in ECC or FB
network to provide semantic information by arranging
simple sequences in correct order.

Applying SOA paradigm can bring substantial benefits
into the software design of industrial automation. The SOA
based systems are easy to extend, modify and debug. There
is no encapsulation of function blocks needed like
components of components in CBD. In the SOA view,
encapsulation is fulfilled by using service choreography,
which defines the global view on the service interaction.
Different from the hiding of complexity concept in
component-based design, SOA provides a “flat” structure,
which is convenient to identify the target function block for
modification during debug process.

VI. CONCLUSION AND FUTURE WORKS
A multi-layered service-oriented architecture is proposed

for software design in industrial automation. In order to find
out a proper approach to introduce SOA on the design level,
a process control case study of a heat production process is
presented and a reference implementation of SOA-based
IEC 61499 application is developed. The guideline provided
on how to use SOA paradigm in automation application
design is also applicable for Internet-of-Things (sensors,
actuators and embedded controllers).

This work will be continued with formal definition of the
SOA paradigm for industrial automation and formal design
rules. Software agents could be introduced on the
presentation layer of the SOA paradigm to enable self-
management of software services. Finally, the integration
between industrial automation and Internet-of-Things could
be achieved by using the proposed SOA design approach.

REFERENCES
[1] IEC 61131-3, Programmable controllers - Part 3: Programming

languages, International Standard, Second Edition, 2003
[2] B. Werner, “Object-Oriented Extensions for IEC 61131-3”, IEEE

Industrial Electronics Magazine, Vol. 3, Issue 4, Page 36 – 39, 2009
[3] IEC 61499, Function Blocks, International Standard, International

Electrotechnical Commission, Geneva, Switzerland, Second Edition,
2012

[4] W. Dai and V. Vyatkin, “A Component-based design pattern for
improving reusability of automation programs”, 39th Annual
Confrence of the IEEE Industrial Electronics Society (IECON),Page
4328 – 4333, 2013

[5] W. Dai, V. Dubinin and V. Vyatkin, “Migration From PLC to IEC
61499 Using Semantic Web Technologies”, IEEE Transactions on
Systems, Man, and Cybernetics: Systems, Vol 44, Issue 3, page 277 –
291, 2014

[6] S. Karnouskos, A. Colombo, T. Bangemann, K. Manninen, R. Camp,
M. Tilly, P. Stluka, F. Jammes, J. Delsing and J. Eliasson, “A SOA-
based architecture for empowering future collaborative cloud-based
industrial automation”, 38th Annual Conference on IEEE Industrial
Eletronics Society, Page 5766 – 5772, 2012

[7] K. W. Young, R. Piggin and P. Rachitrangsan, “An Object-Oriented
Approach to an Agile Manufacturing Control System Design”, The
International Journal of Advanced Manufacturing Technology, Vol.
17, No. 11, pp 850 – 859, 2001

[8] B. Werner, “Object-oriented extensions for IEC 61131-3”, IEEE
Industrial Electronics Magazine, Vol. 3, No. 4, pp 36 – 39, 2009

[9] V. Vyatkin, J. Christensen, J. L. Lastra, “An Open, Object-Oriented
Knowledge Economy for Intelligent Distributed Automation”, IEEE
Transactions on Industrial Informatics, 1, (1), pp. 4-17, 2005

[10] V. Vyatkin, “IEC 61499 as Enabler of Distributed and Intelligent
Automation: State of the Art Review”, IEEE Transactions on
Industrial Informatics, 7(4), 2011, pp. 768-781

[11] A. Zoitl and H. Prahofer, “Guidelines and Patterns for Building
Hierarchical Automation Solutions in the IEC 61499 Modeling
Language”, IEEE Transactions on Industrial Informatics, Vol. 9, No.
4, pp 2387 – 2396, 2013

[12] G. Black and V. Vyatkin, “Intelligent Component-Based Automation
of Baggage Handling Systems with IEC 61499”, IEEE Transactions
on Automation Science and Engineering, Vol 7, No. 2, pp 337 – 351,
2010

[13] D. Ivanova, G. Frey and I. Batchkova, “Intelligent component based
batch control using IEC 61499 and ANSI/ISA S88”, 4th International
IEEE Conference on Intelligent Systems, Vol. 1, pp 444 – 449, 2008

[14] G. Cengic, O. Ljungkrantz and K. Akesson, “A Framework for
Component Based Distributed Control Software Development Using
IEC 61499”, IEEE Conference on Emerging Technologies and
Factory Automation, pp 782 – 789, 2006

[15] V. Vyatkin, “Software Engineering in Factory and Energy
Automation: State of the Art Review”, IEEE Transactions on
Industrial Informatics, 9(3), 2013, pp. 1234 - 1249

[16] B. Meyer, “Object-Oriented Software Construction”, Cambridge:
Prentise Hall International Series in Computer Science, p. 23,
ISBN 0-13-629049-3, 1988

[17] W. Dai, V. Vyatkin, “Redesign Distributed PLC Control Systems
Using IEC 61499 Function Blocks”, IEEE Transactions on
Automation Science and Engineering, Vol. 9, No. 2, pp 390 – 401,
2012

[18] Web Services Glossary [Online, 2004], available from
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/

[19] A. Arsanjani, “Service-oriented modeling and architecture” [Online,
2004], available from
https://www.ibm.com/developerworks/library/ws-soa-design1/

[20] J. Peltola, S. Sierla, P. Aarnio and K. Koskinen, “Industrial
Evaluation of Functional Model-Based Testing for Process Control
Applications Using CAEX”, IEEE Int. Conf. on Emerging
Technologies in Factory Automation, 2013, Cagliari, Italy.

3642

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

