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Abstract—The prospects of cyber-physical systems (CPS) 
have been well disseminated and recognized in diverse industries. 
In industrial automation domain, continuous research on CPS 
technologies has been funded strategically and globally. One 
important research challenge in industrial CPS is the modelling 
of physical processes in continuous domains connected with 
control systems in discrete domains. Such co-modelling must 
leverage state-of-the-art standards and tools for practicality. One 
feasible combination is the IEC 61499 standard for event-driven 
control and the Ptolemy II platform for heterogeneous model 
composition. Furthermore, by implementing the computational 
models of IEC 61499 in Ptolemy II, the behavioural discrepancies 
of the same IEC 61499 application under different execution 
semantics can be analysed. As a foundation work towards these 
goals, this paper investigates the principles of modelling basic 
IEC 61499 elements using existing Ptolemy II structures. It is 
aimed to provide some initial insights for engineering industrial 
CPS based on IEC 61499 and Ptolemy II. 
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I.  INTRODUCTION 
Recent advancements in information and communication 

technologies are leading to the emergence of new intelligent 
systems that are now conceptualized as cyber-physical systems 
(CPS) [1]. CPS are envisioned as the next primary source of 
disruptive technologies [2]. The engineering of CPS 
emphasizes the seamless coupling and coordination between 
the physical and information worlds. This joint consideration, 
in the broad sense, differentiates CPS from conventionally 
engineered systems, which compositionally can also be treated 
as CPS [3]. By synergizing development of communication, 
control, and computing technologies with physical dynamics as 
well as human factors, CPS provide the opportunities to realize 
a new dimension of integrated intelligence. However, such 
technology convergence, in turn, significantly increases the 
complexity of system engineering, as many simplification 
techniques are no longer applicable. For example, the well-
known separation of concerns design principle cannot be 
effectively applied to CPS as design concerns in CPS are too 
closely interrelated to be handled separately. Therefore, new 
theories and methodologies for engineering CPS must be 
developed. This new science of CPS cannot be the simple 
union of existing technologies from information and physical 
sciences. On the contrary, it must apply systematically 

integrated multi-disciplinary knowledge to investigate the 
properties of and interactions between physical, computing, 
and communication components using techniques such as co-
modelling.  

Modelling of CPS is intrinsically heterogeneous, where 
models of physical dynamics in continuous domains and 
models of computational processes in discrete domains must be 
jointly considered. The integration of models from different 
domains is the pivotal challenge [4]. For example, in industrial 
automation, closed-loop control systems are typically modelled 
and analysed in continuous time domain. On the other hand, 
control logics implemented following discrete event models are 
not unusual. The modelling principles for both domains are 
well established but not their combination. As a result, the 
software realization of a stable control loop proved in 
continuous domain may present instable behaviour after 
deploying onto control devices.  

This work is largely inspired by the Ptides programming 
approach [5] based on Ptolemy II [6] targeting the above 
issues. Ptides provides a coordination language for designing 
CPS, where both computational and physical processes can be 
modelled in the same framework without knowing hardware 
details. Ptides is able to explicitly model temporal behaviours 
of system components, such as computation and 
communication delays in controllers, sensors, actuators, and 
networks. From Ptides models, platform-specific executables 
can be generated with the guaranteed temporal behaviour. 
While Ptides focuses more on embedded systems, this work 
attempts to bridge it to industrial automation platforms. In 
particular, the IEC 61499 control architecture [7] and the 
Ptolemy II modelling framework are combined. IEC 61499 
defines a reference event-driven control architecture for 
distributed industrial automation systems, which addresses 
many engineering challenges related to CPS [8]. Ptolemy II 
supports heterogeneous modelling of diverse semantic domains 
known as models of computation (MoCs). These MoCs and 
their compositions have rigorous formal foundations [9]. 
Therefore, by porting the execution semantics of IEC 61499 as 
MoCs in Ptolemy II, it would be possible to co-simulate 
distributed event-driven control applications connected with 
continuous-time plant models with explicitly defined execution 
semantics for the entire system.  



However, the execution semantics of IEC 61499 is not 
exhaustively defined [10], which results in possibly different 
behaviour of a control application under different IEC 61499-
compliant implementations. Obviously, this is contrary to the 
standard’s original intention of portability, but different IEC 
61499 execution models do show their practicality in specific 
application domains [11]. It is hence beneficial to understand 
the effects of various execution models on the same IEC 61499 
application, and, most importantly, this effect must be 
investigated in terms of the physical system the application 
controls. This can be achieved by implementing these 
execution models as MoCs in Ptolemy II, whose formal 
semantics of heterogeneous model composition provides the 
basis for later analysis. Moreover, the concept of time-stamped 
events in Ptolemy II can be leveraged to address the 
deterministic execution issues of IEC 61499 applications [12] 
by complementing the event-driven control chain with the 
notion of time [13]. Towards these goals, this paper, as a 
foundation, investigates the modelling principles of basic IEC 
61499 elements using existing Ptolemy II structures. 

The remainder of this paper is structured as follows. 
Section II first revises the existing execution models of IEC 
61499 and the related works on co-modelling with IEC 61499. 
Then, Section III delves into the modelling details using an 
intuitive example. Finally, the paper is concluded in Section 
IV. 

II. RELATED WORKS 

A. Execution Semantics of IEC 61499 
In this section we discuss the main characteristics of 

execution models used in the five most actively developed IEC 
61499 tools with reference to the formal semantics they 
implemented.  

FBDK [14] is the first tool developed to demonstrate the 
concepts of IEC 61499. Its runtime implements an execution 
model called non-preemptive multi-threading resource 
(NPMTR) [15], where events are handled immediately after 
their occurrence following a depth-first scheduling mechanism. 
As the runtime is none pre-emptive, control algorithms must be 
short to not block other threads. Moreover, feedback event 
loops must be avoided to prevent starvation situations. A 
formal description of NPMTR based on the 1st edition of IEC 
61499 can be found in [16].  

ISaGRAF [17] is the first commercial tool supporting IEC 
61499. For backwards compatibility reasons and for the sake of 
determinism, it adopts the IEC 61131-3 [18] cyclic scan-based 
execution model. In each scan, function blocks (FBs) in an IEC 
61499 applications are invoked sequentially in a fixed order 
regardless of whether they receive events or not. This may lead 
to quite different execution results as discussed in [19]. The 
formal description of IEC 61131-3 cyclic execution semantics 
can be found in [20-22] .  

4DIAC [23] and nxtStudio [24] are based on the FORTE 
runtime [25], which implements a queue-based execution 
model. In general, events in FORTE are stored in a first-in-
first-out queue. An event is only dispatched if its preceding 
event in the queue has been handled. As 4DIAC’s runtime is 
now compliant with the standard’s 2nd edition while 

nxtStudio’s runtime is still based on the 1st edition, there are 
several subtle discrepancies between them as exemplified in 
[10]. A formal description of the sequential execution 
semantics can be found in [16].  

The runtime of BlokIDE [26] implements a synchronous 
semantics inspired by the Esterel programming language [27]. 
At the start of each logical instant of time, called tick, a 
snapshot of the input events and data is taken. Then, the FBs 
received input events in current tick will be evaluated 
simultaneously. The newly generated output events and data 
will be available at the start of next tick to avoid causality loop 
issues. This model is quite similar to the cyclic scan-based 
model except that FBs can be executed in parallel and the 
duration of each scan depends on the length of each tick. The 
formal description of BlokIDE’s synchronous semantics can be 
found in [11]. 

B. Co-Modelling with IEC 61499 
There exists many commercial frameworks for modelling 

physical systems, such as MATLAB/Simulink, Modelica, and 
Apros. Most existing works on co-modelling with IEC 61499 
hence leveraged them. For example, Yang et al. [28] proposed 
a co-simulation framework of distributed control systems for 
smart grids. Smart grids are modelled in MATLAB/Simulink 
while control systems are modelled using IEC 61499. A proxy- 
based mechanism was proposed to coordinate the different 
execution speeds of the control and physical models. In [29], 
Thramboulidis and Buda presented a similar co-modelling 
framework based on IEC 61499 and Modelica. The focus of 
this work was more on an integrated modelling approach, 
where SysML was used to provide a holistic view of the whole 
design. In both works, socket communication was used to 
transfer data between plant and controller models. Nikula et al. 
demonstrated another co-simulation environment for district 
heating networks in [30]. A broker was implemented to 
synchronize the execution of the IEC 61499 control model and 
the Apros physical model. In particular, the broker uses OPC 
UA interface to advance Apros simulation steps. At the end of 
each simulation step, the broker transfers the outputs of Apros 
model to the IEC 61499 model via UDP packets. The new 
control commands, generated by the IEC 61499 model, are 
then relayed by the broker to trigger the next Apros simulation 
step. As different to the majority of the above-mentioned tools, 
Ptolemy II enables modelling of heterogeneous CPS with well-
defined system-level semantics. This is the main reason for 
adopting this approach in this paper. 

III. MODELLING OF IEC 61499 IN PTOLEMY II 

A. Ptolemy II Actor Semantics 
Ptolemy II pursues an actor-oriented design paradigm [31] 

for conceptualizing and structuring system models. In general, 
each actor represents a system component. The composition, 
execution, and communication of actors are governed by sets 
of rules termed MoCs. The same actor model under different 
MoCs could behave quite differently. Ptolemy II supports a 
rich set of MoCs, such as synchronous reactive, discrete event, 
continuous time, and modal models, for different semantic 
domains. Each MoC implements the actor abstract semantics 
[32], which establishes the formal foundations for hierarchical 



compositions of heterogeneous MoCs. Along with the 
development of Ptolemy, its actor semantics has also evolved. 
This work leverages the latest Ptolemy II’s formal semantics 
[9], where a unified framework has been proposed to formally 
define various MoCs. The basics of actor semantics are briefly 
reproduced and adapted below.  

Definition 1. Variables and valuation:  
Let 𝑉 be a set of variables. A valuation over 𝑉 is defined as 

𝑥:𝑉 → 𝒰, where 𝒰 is the set of all possible values. The set of 
all possible assignments over 𝑉 is indicated as 𝑉. In Ptolemy II, 
there are two special values in 𝒰: 

• ⊥ represents the variable’s value is unknown; and 
• 𝑎𝑏𝑠𝑒𝑛𝑡 represents the value is absent. 

Definition 2. An Actor, 𝑎, is defined as a 8-tuple: 
𝑎 = 𝐼,𝑂, 𝑆, 𝑠!, 𝑓, 𝑝,𝑑, 𝑡  

where: 
• 𝐼 is a set of input variables; 
• 𝑂 is a set of output variables; 
• 𝑆 is a set of state variables; 
• 𝑠! is the initial state, 𝑠! ∈ 𝑆; 
• 𝑓 is a fire function: 𝑓: 𝑆×𝐼 → 𝑂; 
• 𝑝 is a postfire function: 𝑝: 𝑆×𝐼 → 𝑆; 
• 𝑑 is a deadline function: 𝑑: 𝑆×𝐼 → ℝ!

!; and 
• 𝑡  is a time-update function: 𝑡: 𝑆×𝐼×ℝ! → 𝑆. 
The actor abstract semantics specifies the execution of an 

actor as follows. At state 𝑠! , an actor 𝑎 is fired with input 
𝑥! ⊆ 𝐼. Firstly, the fire function 𝑓 is invoked to produce output 
𝑦! ⊆ 𝑂. Then, the state of 𝑎 is temporarily updated to 𝑠!! by its 
postfire function 𝑝. The actor computes its deadline for next 
firing using the deadline function 𝑑. At last, the environment 
(i.e. a MoC) decides the amount of time, to advance. According 
to this time, 𝑎 updates its state to 𝑠!!!, by calling its time-
update function, 𝑡. Depending on the implementations of these 
four functions, an actor can model different behaviours. For 
example, if 𝑑  always return infinity, then 𝑎 is untimed. If 𝑡 
always returns the same state as 𝑝, i.e. 𝑠!!! = 𝑠!! , then 𝑎 is 
delay independent.  

In this work, two types of actors in Ptolemy II are of 
interest: extended state machines (ESM) and Modal Models 
(MM). An ESM can be naturally modelled by Definition 2. In 
particular, 𝑆 corresponds to locations of an ESM; 𝑓 and 𝑝 are 
defined by the rules of transition evaluation. ESMs are delay 
independent and untimed Mealy machines. A MM is a network 
of actors.  

Definition 3. A Modal Model, 𝑀, is defined as a set of actors: 
𝑀 = 𝑎! ,𝐴𝑅  

where: 
• 𝑎! is the controller of 𝑀, which is an ESM;  
• 𝐴𝑅 is a set of refinement actors for states in 𝑎!, which 

are executed when corresponding states in 𝑎! are entered; 
and 

• All actors in 𝑀 share the same input and output variables. 

B. Basics of IEC 61499 
This section only recapitulates the basics of IEC 61499. 

The more exhaustive formal definitions can be found in [21, 
33]. The primary building units in IEC 61499 are basic FBs. 

Definition 4. A Basic Function Block, 𝑓𝑏, is an 7-tuple: 
𝑓𝑏 = 𝐸𝐼,𝐸𝑂,𝐷𝐼,𝐷𝑂,𝜔! ,𝜔!, 𝑒𝑐𝑐  

where: 
• 𝐸𝐼 and 𝐸𝑂 are respective sets of event inputs and outputs; 
• 𝐷𝐼 and 𝐷𝑂 are respective sets of data inputs and outputs; 
• 𝜔! and 𝜔! are the respective functions to associate event 

ports with data ports: 𝜔!:𝐸𝐼 → 2!" and 𝜔!:𝐸𝑂 → 2!";  
• 𝑒𝑐𝑐 is an execution control chart (ECC). 
The algorithm invocation sequence of a basic FB is 

specified by its ECC, which can be seen as an extended Moore 
machine. 

Definition 5. An Execution Control Chart, 𝑒𝑐𝑐, is a 5-tuple: 
𝑒𝑐𝑐 = 𝐸𝑆, 𝑒𝑠!,𝐸𝑇,𝐸𝐴, 𝛿  

where: 
• 𝐸𝑆 is a set of execution control (EC) states; 
• 𝑒𝑠! is the initial state, 𝑒s! ∈ 𝐸𝑆; 
• 𝐸𝑇 is a set of EC transitions; 
• 𝐸𝐴 is a set of EC actions; and 
• 𝛿 is an assignment function: 𝛿: 𝑆 → 2!". 

Definition 6. An Execution Control Action, 𝑒𝑎, is a pair: 
𝑒𝑎 = 𝑎𝑙𝑔, 𝑒𝑜  

where: 
• 𝑎𝑙𝑔 is an algorithm; and 
• 𝑒𝑜 is an event output, 𝑒𝑜 ∈ 𝐸𝑂. 

Definition 7. An Execution Control Transition, 𝑒𝑡, is a 3-tuple: 
𝑒𝑡 = 𝑠𝑠, 𝜃,𝑑𝑠  

where: 
• 𝑠𝑠 is an initial EC state, 𝑠𝑠 ∈ 𝐸𝑆; 
• 𝜃 is a guard function that evaluates 𝜃: 𝐸𝐼 ∪ {1} ×2!"×
2!"×2!" → 𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒 ; and 

• 𝑑𝑠 is a destination EC state, 𝑑𝑠 ∈ 𝐸𝑆. 

C. Modelling Details 
Both IEC 61499 and Ptolemy II follow the component-

based design paradigm. Simple actors and FBs can be 
connected via input and output ports to form more complex 
ones. Due to this syntactic similarity, in principle, the 
modelling of a basic FB in Ptolemy II can be achieved by 
mapping its structures to the counterparts of a MM actor. The 
initial syntactic mapping can be defined as follows. 

Input: A basic FB, 𝑓𝑏 = 𝐸𝐼,𝐸𝑂,𝐷𝐼,𝐷𝑂,𝜔! ,𝜔!, 𝑒𝑐𝑐  and an 
empty MM, 𝑀 = 𝑎! = ∅,𝐴𝑅 = ∅ . 

Output: A populated MM, 𝑀 = 𝑎! ,𝐴𝑅 . 
1: procedure 𝑀𝑎𝑝𝑝𝑖𝑛𝑔 𝑓𝑏,𝑀  
2:     Create an empty ESM, 𝑎 ∶= 𝐼,𝑂, 𝑆, 𝑠!, 𝑓, 𝑝,𝑑, 𝑡 ; 
3:     foreach 𝑖 ∈ 𝐸𝐼!" ∪ 𝐸𝑂!" do 
4:         if 𝑖 ∈ 𝐸𝐼!" then 
5:             Create an input variable, 𝑏𝑖, of type Boolean;  



6:             𝐼! ← 𝐼! ∪ 𝑏𝑖 ; 
7:         else if 𝑖 ∈ 𝐸𝑂!" then 
8:             Create an output variable, 𝑏𝑜, of type Boolean;  
9:             𝑂! ← 𝑂! ∪ 𝑏𝑜 ; 
10:         end if 
11:     end foreach 
12: // As 𝐷𝐼!" ∪ 𝐷𝑂!" ⊂ 𝐼! ∪ 𝑂!, so direct mappings of 

data types are possible. 
13:     foreach 𝑗 ∈ 𝐷𝐼!" ∪ 𝐷𝑂!" do 
14:         if 𝑗 ∈ 𝐷𝐼!" then 
15:       Create an input variable, 𝑑𝑖, with the same type as 𝑗;  
16:             𝐼! ← 𝐼! ∪ 𝑑𝑖 ; 
17:         else if 𝑗 ∈ 𝐷𝑂!" then 
18:       Create an output variable, 𝑑𝑜, with the same type as 𝑗; 
19:             𝑂! ← 𝑂! ∪ 𝑑𝑜 ; 
20:         end if 
21:     end foreach 
22:     𝑠!! ← 𝑒𝑠!!"";  
23:     foreach 𝑒𝑠 ∈ 𝐸𝑆!"" do 
24:         Create an actor state, 𝑠, based on 𝑒𝑠; 
25:         𝑆! ← 𝑆! ∪ 𝑠 ; 
26:     end foreach     
27:     foreach 𝑒𝑡 ∈ 𝐸𝑇!"" do 
28:         Update 𝑓! and 𝑝!, based on 𝑒𝑡; 
29:     end foreach     
30:     foreach 𝑒𝑎 ∈ 𝐸𝐴!"" do 
31:         Create a refinement actor, 𝑎!, based on 𝑒𝑎; 
32:         𝐴𝑅! ← 𝐴𝑅! ∪ 𝑎! ; 
33:     end foreach     
34:     𝑎!! ← 𝑎;  
35:     return 𝑀; 
36: end procedure 

It can be spotted from the above algorithm that FB events 
are mapped to Boolean variables in actors. This is because 
actors communicate with each other via tokens. A token 
carrying a Boolean value is hence equivalent to an FB event. 
On the other hand, data variables can be directly mapped. 
Moreover, as actors always use the latest inputs, the association 
functions, 𝜔! ,𝜔!, are not mapped. This is equivalent to an FB 
having all its data ports associated with all event ports. 
Therefore, we consider a simplified FB semantics by using this 
“all sampled” rule.   

In a MM, its ESM defines its execution behaviour. 
Similarly, in a basic FB, its ECC specifies the invocation 
sequence of its algorithms. It should be noted that ESMs are 
Mealy machines while ECCs are Moore machines. Fig. 1 
illustrates the semantic mappings between ECC and ESM 
using the AddSub FB. 

 
Fig. 1. AddSub FB: (a) Interface in nxtStudio Debug Mode and (b) ECC. 

The function of AddSub is as follows: when event ADDe 
arrives, the value of Z is updated to X+Y. If event SUBe 
arrives, the value of Z is set to X-Y. The behaviourally 
equivalent actor model of AddSub is illustrated in Fig. 2. By 
comparing Fig. 1 and Fig. 2 (b), one can see the clear one-to-
one syntactic mappings for ports and states. On the other hand, 
mapping of transitions is not straightforward. In general, 
different types of ESM transitions are used to model different 
ECC operations. There are 3 types of ESM transitions used as 
listed in TABLE I.  

TABLE I.  TYPES OF USED ESM TRANSITIONS [6]. 

Type Notation Description 

Ordinary 
Transition 

 

Fire if g is true; upon 
transitioning the output 
variables are set. 

Immediate 
Default 

Transition 

 

Fire immediately if g is 
true and the preceding 
transition to s1 is also 
fired. Default transitions 
have lower priority than 
ordinary ones. 

Transition 
with 

Refinement 
actors  

An ordinary transition 
with refinement actors, 
which are fired first 
before the transition is 
fired. 

According to the ECC Operation State Machine defined in 
the IEC 61499 standard, simple EC transitions without EC 
action, such as STARTàINITs in Fig. 1 (b), can be directly 
mapped to an ordination ESM transition by copying the guard 
conditions. EC transitions with guard condition “1”, must be 
converted into an immediate default transition in ESM and 
setting its guard to TRUE. Moreover, in Ptolemy II, ESM 
transitions can have only two levels of priority: default and 
ordinary. In general, ordinary transitions have higher priority 



than default transitions. If two ordinary transitions with the 
same level of priority are enabled simultaneously, Ptolemy II 
will throw an exception indicating this nondeterministic 
behaviour. In IEC 61499, the priorities of EC transitions are 
determined by the order in which they are specified in the 
XML file. If this order must be preserved in the actor model, 
additional guards must be introduced. Next, for EC transitions 
with EC actions, each EC action will be modelled by a 
refinement actor. As indicated in Fig. 2 (c), the EC action 
associated with EC state ADDs is modelled by the 
ADDs_Action actor, which is again a MM actor. The 
ADDs_Action actor is added to ESM transition 

STARTàADDs instead of the ADDs state as ESMs in 
Ptolemy II are Mealy machines. The ADDs_Action actor will 
be executed when the ESM transition STARTàADDs is fired. 
Moreover, as multiple EC actions can be added to an EC state, 
multiple refinement actors can also be added to an ESM 
transition. Refinement actors are executed sequentially based 
on the order in which they are added. This can be used to 
model the execution order of EC actions, which depends on 
their orders in the XML file again. Furthermore, simple 
algorithms involving conditional statements, assignments, etc. 
can be directly translated into an ESM as exemplified in Fig. 2 
(d).   

 
Fig. 2. (a) Interactive Setup, (b) AddSub Actor, (c) STARTàADDs Transition Refinement, and (d) ADDs_Action Actor. 

Finally, as shown in Fig. 2 (a) an interactive setup has been 
developed in Ptolemy II to simulate the debug mode in 
nxtStudio (Fig. 1 (a)). This provides an intuitive way to test the 
functions of modelled FBs. It has been validated that the actor 
model of AddSub FB produces the same calculation results. 

D. Further Discussion  
As previously mentioned in Section III.A, there are a 

number of predefined MoCs in Ptolemy II. Some of these 
MoCs have very similar execution semantics as the IEC 61499 
runtimes summarized in Section II.A. For instance, both the 
synchronous reactive (SR) MoC and the BlokIDE runtime 

follow the principles of synchronous languages. While the SR 
MoC implements the fixed-point semantics ([6], Chapter 5), 
BlokIDE is based on the Esterel language ([11], Chapter 3). 
This commonality is the foundation for porting BlokIDE 
execution model to Ptolemy II. Another example is the discrete 
event (DE) MoC and the FORTE runtime. They are both event-
driven. However, the DE MoC allows simultaneous processing 
of events, while events are handled sequentially in FORTE. To 
map the FORTE runtime to Ptolemy II, an explicit model of 
event queue must be created in the DE MoC to enforce the 
sequential dispatching of events. It is also possible to simulate 



the cyclic execution semantics of ISaGRAF in DE MoC. This 
will require an additional clock to generate periodic events. 

IV. CONCLUSION 
The intelligence of CPS emerges from seamless integration 

and interaction between physical and cyber components. New 
engineering approaches for CPS require the joint consideration 
of computational and physical behaviours, which are likely 
based on co-modelling approaches. This paper investigated the 
possibility of modelling IEC 61499 control applications in the 
Ptolemy II framework. Specifically, as the foundation work, 
this paper illustrated the formal semantic mappings between 
basic IEC 61499 structures and Ptolemy II actor models. An 
intuitive example has been demonstrated.  

In subsequent research, the more exhaustive 
implementation of various IEC 61499 execution models will be 
developed in Ptolemy II. In particular, the runtime models of 
nxtStudio and BlokIDE will be considered first. This will allow 
systematic analysis and correct-by-construction synthesis of 
IEC 61499 executable code from Ptolemy II actor models. 
Moreover, co-modelling of industrial CPS can be achieved in a 
unified manner. Another ongoing work [13] is to introduce the 
notion of time-stamped events from Ptolemy II into the IEC 
61499 control architecture. It is envisioned that the symbiosis 
of time-driven and event-driven design paradigms can offer 
better engineering methodologies with improved system 
performance. One such desirable design feature is invariance of 
software behaviour when deployed to different hardware 
topologies, as illustrated in [34]. 
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