
Towards IEC 61499 Models of Computation in
Ptolemy II

Cheng Pang1, Wenbin Dai2, and Valeriy Vyatkin1,3
1Department of Electrical Engineering and Automation, Aalto University, Finland

2Department of Automation, Shanghai Jiao Tong University, China
3Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Sweden

cheng.pang.phd@ieee.org, w.dai@ieee.org, vyatkin@ieee.org

Abstract—The prospects of cyber-physical systems (CPS)
have been well disseminated and recognized in diverse industries.
In industrial automation domain, continuous research on CPS
technologies has been funded strategically and globally. One
important research challenge in industrial CPS is the modelling
of physical processes in continuous domains connected with
control systems in discrete domains. Such co-modelling must
leverage state-of-the-art standards and tools for practicality. One
feasible combination is the IEC 61499 standard for event-driven
control and the Ptolemy II platform for heterogeneous model
composition. Furthermore, by implementing the computational
models of IEC 61499 in Ptolemy II, the behavioural discrepancies
of the same IEC 61499 application under different execution
semantics can be analysed. As a foundation work towards these
goals, this paper investigates the principles of modelling basic
IEC 61499 elements using existing Ptolemy II structures. It is
aimed to provide some initial insights for engineering industrial
CPS based on IEC 61499 and Ptolemy II.

Keywords—indutrial cyber-physical systems; hybrid simulation;
co-modelling; model of computation; IEC 61499; Ptolemy II

I. INTRODUCTION
Recent advancements in information and communication

technologies are leading to the emergence of new intelligent
systems that are now conceptualized as cyber-physical systems
(CPS) [1]. CPS are envisioned as the next primary source of
disruptive technologies [2]. The engineering of CPS
emphasizes the seamless coupling and coordination between
the physical and information worlds. This joint consideration,
in the broad sense, differentiates CPS from conventionally
engineered systems, which compositionally can also be treated
as CPS [3]. By synergizing development of communication,
control, and computing technologies with physical dynamics as
well as human factors, CPS provide the opportunities to realize
a new dimension of integrated intelligence. However, such
technology convergence, in turn, significantly increases the
complexity of system engineering, as many simplification
techniques are no longer applicable. For example, the well-
known separation of concerns design principle cannot be
effectively applied to CPS as design concerns in CPS are too
closely interrelated to be handled separately. Therefore, new
theories and methodologies for engineering CPS must be
developed. This new science of CPS cannot be the simple
union of existing technologies from information and physical
sciences. On the contrary, it must apply systematically

integrated multi-disciplinary knowledge to investigate the
properties of and interactions between physical, computing,
and communication components using techniques such as co-
modelling.

Modelling of CPS is intrinsically heterogeneous, where
models of physical dynamics in continuous domains and
models of computational processes in discrete domains must be
jointly considered. The integration of models from different
domains is the pivotal challenge [4]. For example, in industrial
automation, closed-loop control systems are typically modelled
and analysed in continuous time domain. On the other hand,
control logics implemented following discrete event models are
not unusual. The modelling principles for both domains are
well established but not their combination. As a result, the
software realization of a stable control loop proved in
continuous domain may present instable behaviour after
deploying onto control devices.

This work is largely inspired by the Ptides programming
approach [5] based on Ptolemy II [6] targeting the above
issues. Ptides provides a coordination language for designing
CPS, where both computational and physical processes can be
modelled in the same framework without knowing hardware
details. Ptides is able to explicitly model temporal behaviours
of system components, such as computation and
communication delays in controllers, sensors, actuators, and
networks. From Ptides models, platform-specific executables
can be generated with the guaranteed temporal behaviour.
While Ptides focuses more on embedded systems, this work
attempts to bridge it to industrial automation platforms. In
particular, the IEC 61499 control architecture [7] and the
Ptolemy II modelling framework are combined. IEC 61499
defines a reference event-driven control architecture for
distributed industrial automation systems, which addresses
many engineering challenges related to CPS [8]. Ptolemy II
supports heterogeneous modelling of diverse semantic domains
known as models of computation (MoCs). These MoCs and
their compositions have rigorous formal foundations [9].
Therefore, by porting the execution semantics of IEC 61499 as
MoCs in Ptolemy II, it would be possible to co-simulate
distributed event-driven control applications connected with
continuous-time plant models with explicitly defined execution
semantics for the entire system.

However, the execution semantics of IEC 61499 is not
exhaustively defined [10], which results in possibly different
behaviour of a control application under different IEC 61499-
compliant implementations. Obviously, this is contrary to the
standard’s original intention of portability, but different IEC
61499 execution models do show their practicality in specific
application domains [11]. It is hence beneficial to understand
the effects of various execution models on the same IEC 61499
application, and, most importantly, this effect must be
investigated in terms of the physical system the application
controls. This can be achieved by implementing these
execution models as MoCs in Ptolemy II, whose formal
semantics of heterogeneous model composition provides the
basis for later analysis. Moreover, the concept of time-stamped
events in Ptolemy II can be leveraged to address the
deterministic execution issues of IEC 61499 applications [12]
by complementing the event-driven control chain with the
notion of time [13]. Towards these goals, this paper, as a
foundation, investigates the modelling principles of basic IEC
61499 elements using existing Ptolemy II structures.

The remainder of this paper is structured as follows.
Section II first revises the existing execution models of IEC
61499 and the related works on co-modelling with IEC 61499.
Then, Section III delves into the modelling details using an
intuitive example. Finally, the paper is concluded in Section
IV.

II. RELATED WORKS

A. Execution Semantics of IEC 61499
In this section we discuss the main characteristics of

execution models used in the five most actively developed IEC
61499 tools with reference to the formal semantics they
implemented.

FBDK [14] is the first tool developed to demonstrate the
concepts of IEC 61499. Its runtime implements an execution
model called non-preemptive multi-threading resource
(NPMTR) [15], where events are handled immediately after
their occurrence following a depth-first scheduling mechanism.
As the runtime is none pre-emptive, control algorithms must be
short to not block other threads. Moreover, feedback event
loops must be avoided to prevent starvation situations. A
formal description of NPMTR based on the 1st edition of IEC
61499 can be found in [16].

ISaGRAF [17] is the first commercial tool supporting IEC
61499. For backwards compatibility reasons and for the sake of
determinism, it adopts the IEC 61131-3 [18] cyclic scan-based
execution model. In each scan, function blocks (FBs) in an IEC
61499 applications are invoked sequentially in a fixed order
regardless of whether they receive events or not. This may lead
to quite different execution results as discussed in [19]. The
formal description of IEC 61131-3 cyclic execution semantics
can be found in [20-22] .

4DIAC [23] and nxtStudio [24] are based on the FORTE
runtime [25], which implements a queue-based execution
model. In general, events in FORTE are stored in a first-in-
first-out queue. An event is only dispatched if its preceding
event in the queue has been handled. As 4DIAC’s runtime is
now compliant with the standard’s 2nd edition while

nxtStudio’s runtime is still based on the 1st edition, there are
several subtle discrepancies between them as exemplified in
[10]. A formal description of the sequential execution
semantics can be found in [16].

The runtime of BlokIDE [26] implements a synchronous
semantics inspired by the Esterel programming language [27].
At the start of each logical instant of time, called tick, a
snapshot of the input events and data is taken. Then, the FBs
received input events in current tick will be evaluated
simultaneously. The newly generated output events and data
will be available at the start of next tick to avoid causality loop
issues. This model is quite similar to the cyclic scan-based
model except that FBs can be executed in parallel and the
duration of each scan depends on the length of each tick. The
formal description of BlokIDE’s synchronous semantics can be
found in [11].

B. Co-Modelling with IEC 61499
There exists many commercial frameworks for modelling

physical systems, such as MATLAB/Simulink, Modelica, and
Apros. Most existing works on co-modelling with IEC 61499
hence leveraged them. For example, Yang et al. [28] proposed
a co-simulation framework of distributed control systems for
smart grids. Smart grids are modelled in MATLAB/Simulink
while control systems are modelled using IEC 61499. A proxy-
based mechanism was proposed to coordinate the different
execution speeds of the control and physical models. In [29],
Thramboulidis and Buda presented a similar co-modelling
framework based on IEC 61499 and Modelica. The focus of
this work was more on an integrated modelling approach,
where SysML was used to provide a holistic view of the whole
design. In both works, socket communication was used to
transfer data between plant and controller models. Nikula et al.
demonstrated another co-simulation environment for district
heating networks in [30]. A broker was implemented to
synchronize the execution of the IEC 61499 control model and
the Apros physical model. In particular, the broker uses OPC
UA interface to advance Apros simulation steps. At the end of
each simulation step, the broker transfers the outputs of Apros
model to the IEC 61499 model via UDP packets. The new
control commands, generated by the IEC 61499 model, are
then relayed by the broker to trigger the next Apros simulation
step. As different to the majority of the above-mentioned tools,
Ptolemy II enables modelling of heterogeneous CPS with well-
defined system-level semantics. This is the main reason for
adopting this approach in this paper.

III. MODELLING OF IEC 61499 IN PTOLEMY II

A. Ptolemy II Actor Semantics
Ptolemy II pursues an actor-oriented design paradigm [31]

for conceptualizing and structuring system models. In general,
each actor represents a system component. The composition,
execution, and communication of actors are governed by sets
of rules termed MoCs. The same actor model under different
MoCs could behave quite differently. Ptolemy II supports a
rich set of MoCs, such as synchronous reactive, discrete event,
continuous time, and modal models, for different semantic
domains. Each MoC implements the actor abstract semantics
[32], which establishes the formal foundations for hierarchical

compositions of heterogeneous MoCs. Along with the
development of Ptolemy, its actor semantics has also evolved.
This work leverages the latest Ptolemy II’s formal semantics
[9], where a unified framework has been proposed to formally
define various MoCs. The basics of actor semantics are briefly
reproduced and adapted below.

Definition 1. Variables and valuation:
Let 𝑉 be a set of variables. A valuation over 𝑉 is defined as

𝑥:𝑉 → 𝒰, where 𝒰 is the set of all possible values. The set of
all possible assignments over 𝑉 is indicated as 𝑉. In Ptolemy II,
there are two special values in 𝒰:

• ⊥ represents the variable’s value is unknown; and
• 𝑎𝑏𝑠𝑒𝑛𝑡 represents the value is absent.

Definition 2. An Actor, 𝑎, is defined as a 8-tuple:
𝑎 = 𝐼,𝑂, 𝑆, 𝑠!, 𝑓, 𝑝,𝑑, 𝑡

where:
• 𝐼 is a set of input variables;
• 𝑂 is a set of output variables;
• 𝑆 is a set of state variables;
• 𝑠! is the initial state, 𝑠! ∈ 𝑆;
• 𝑓 is a fire function: 𝑓: 𝑆×𝐼 → 𝑂;
• 𝑝 is a postfire function: 𝑝: 𝑆×𝐼 → 𝑆;
• 𝑑 is a deadline function: 𝑑: 𝑆×𝐼 → ℝ!

!; and
• 𝑡 is a time-update function: 𝑡: 𝑆×𝐼×ℝ! → 𝑆.
The actor abstract semantics specifies the execution of an

actor as follows. At state 𝑠! , an actor 𝑎 is fired with input
𝑥! ⊆ 𝐼. Firstly, the fire function 𝑓 is invoked to produce output
𝑦! ⊆ 𝑂. Then, the state of 𝑎 is temporarily updated to 𝑠!! by its
postfire function 𝑝. The actor computes its deadline for next
firing using the deadline function 𝑑. At last, the environment
(i.e. a MoC) decides the amount of time, to advance. According
to this time, 𝑎 updates its state to 𝑠!!!, by calling its time-
update function, 𝑡. Depending on the implementations of these
four functions, an actor can model different behaviours. For
example, if 𝑑 always return infinity, then 𝑎 is untimed. If 𝑡
always returns the same state as 𝑝, i.e. 𝑠!!! = 𝑠!! , then 𝑎 is
delay independent.

In this work, two types of actors in Ptolemy II are of
interest: extended state machines (ESM) and Modal Models
(MM). An ESM can be naturally modelled by Definition 2. In
particular, 𝑆 corresponds to locations of an ESM; 𝑓 and 𝑝 are
defined by the rules of transition evaluation. ESMs are delay
independent and untimed Mealy machines. A MM is a network
of actors.

Definition 3. A Modal Model, 𝑀, is defined as a set of actors:
𝑀 = 𝑎! ,𝐴𝑅

where:
• 𝑎! is the controller of 𝑀, which is an ESM;
• 𝐴𝑅 is a set of refinement actors for states in 𝑎!, which

are executed when corresponding states in 𝑎! are entered;
and

• All actors in 𝑀 share the same input and output variables.

B. Basics of IEC 61499
This section only recapitulates the basics of IEC 61499.

The more exhaustive formal definitions can be found in [21,
33]. The primary building units in IEC 61499 are basic FBs.

Definition 4. A Basic Function Block, 𝑓𝑏, is an 7-tuple:
𝑓𝑏 = 𝐸𝐼,𝐸𝑂,𝐷𝐼,𝐷𝑂,𝜔! ,𝜔!, 𝑒𝑐𝑐

where:
• 𝐸𝐼 and 𝐸𝑂 are respective sets of event inputs and outputs;
• 𝐷𝐼 and 𝐷𝑂 are respective sets of data inputs and outputs;
• 𝜔! and 𝜔! are the respective functions to associate event

ports with data ports: 𝜔!:𝐸𝐼 → 2!" and 𝜔!:𝐸𝑂 → 2!";
• 𝑒𝑐𝑐 is an execution control chart (ECC).
The algorithm invocation sequence of a basic FB is

specified by its ECC, which can be seen as an extended Moore
machine.

Definition 5. An Execution Control Chart, 𝑒𝑐𝑐, is a 5-tuple:
𝑒𝑐𝑐 = 𝐸𝑆, 𝑒𝑠!,𝐸𝑇,𝐸𝐴, 𝛿

where:
• 𝐸𝑆 is a set of execution control (EC) states;
• 𝑒𝑠! is the initial state, 𝑒s! ∈ 𝐸𝑆;
• 𝐸𝑇 is a set of EC transitions;
• 𝐸𝐴 is a set of EC actions; and
• 𝛿 is an assignment function: 𝛿: 𝑆 → 2!".

Definition 6. An Execution Control Action, 𝑒𝑎, is a pair:
𝑒𝑎 = 𝑎𝑙𝑔, 𝑒𝑜

where:
• 𝑎𝑙𝑔 is an algorithm; and
• 𝑒𝑜 is an event output, 𝑒𝑜 ∈ 𝐸𝑂.

Definition 7. An Execution Control Transition, 𝑒𝑡, is a 3-tuple:
𝑒𝑡 = 𝑠𝑠, 𝜃,𝑑𝑠

where:
• 𝑠𝑠 is an initial EC state, 𝑠𝑠 ∈ 𝐸𝑆;
• 𝜃 is a guard function that evaluates 𝜃: 𝐸𝐼 ∪ {1} ×2!"×
2!"×2!" → 𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒 ; and

• 𝑑𝑠 is a destination EC state, 𝑑𝑠 ∈ 𝐸𝑆.

C. Modelling Details
Both IEC 61499 and Ptolemy II follow the component-

based design paradigm. Simple actors and FBs can be
connected via input and output ports to form more complex
ones. Due to this syntactic similarity, in principle, the
modelling of a basic FB in Ptolemy II can be achieved by
mapping its structures to the counterparts of a MM actor. The
initial syntactic mapping can be defined as follows.

Input: A basic FB, 𝑓𝑏 = 𝐸𝐼,𝐸𝑂,𝐷𝐼,𝐷𝑂,𝜔! ,𝜔!, 𝑒𝑐𝑐 and an
empty MM, 𝑀 = 𝑎! = ∅,𝐴𝑅 = ∅ .

Output: A populated MM, 𝑀 = 𝑎! ,𝐴𝑅 .
1: procedure 𝑀𝑎𝑝𝑝𝑖𝑛𝑔 𝑓𝑏,𝑀
2: Create an empty ESM, 𝑎 ∶= 𝐼,𝑂, 𝑆, 𝑠!, 𝑓, 𝑝,𝑑, 𝑡 ;
3: foreach 𝑖 ∈ 𝐸𝐼!" ∪ 𝐸𝑂!" do
4: if 𝑖 ∈ 𝐸𝐼!" then
5: Create an input variable, 𝑏𝑖, of type Boolean;

6: 𝐼! ← 𝐼! ∪ 𝑏𝑖 ;
7: else if 𝑖 ∈ 𝐸𝑂!" then
8: Create an output variable, 𝑏𝑜, of type Boolean;
9: 𝑂! ← 𝑂! ∪ 𝑏𝑜 ;
10: end if
11: end foreach
12: // As 𝐷𝐼!" ∪ 𝐷𝑂!" ⊂ 𝐼! ∪ 𝑂!, so direct mappings of

data types are possible.
13: foreach 𝑗 ∈ 𝐷𝐼!" ∪ 𝐷𝑂!" do
14: if 𝑗 ∈ 𝐷𝐼!" then
15: Create an input variable, 𝑑𝑖, with the same type as 𝑗;
16: 𝐼! ← 𝐼! ∪ 𝑑𝑖 ;
17: else if 𝑗 ∈ 𝐷𝑂!" then
18: Create an output variable, 𝑑𝑜, with the same type as 𝑗;
19: 𝑂! ← 𝑂! ∪ 𝑑𝑜 ;
20: end if
21: end foreach
22: 𝑠!! ← 𝑒𝑠!!"";
23: foreach 𝑒𝑠 ∈ 𝐸𝑆!"" do
24: Create an actor state, 𝑠, based on 𝑒𝑠;
25: 𝑆! ← 𝑆! ∪ 𝑠 ;
26: end foreach
27: foreach 𝑒𝑡 ∈ 𝐸𝑇!"" do
28: Update 𝑓! and 𝑝!, based on 𝑒𝑡;
29: end foreach
30: foreach 𝑒𝑎 ∈ 𝐸𝐴!"" do
31: Create a refinement actor, 𝑎!, based on 𝑒𝑎;
32: 𝐴𝑅! ← 𝐴𝑅! ∪ 𝑎! ;
33: end foreach
34: 𝑎!! ← 𝑎;
35: return 𝑀;
36: end procedure

It can be spotted from the above algorithm that FB events
are mapped to Boolean variables in actors. This is because
actors communicate with each other via tokens. A token
carrying a Boolean value is hence equivalent to an FB event.
On the other hand, data variables can be directly mapped.
Moreover, as actors always use the latest inputs, the association
functions, 𝜔! ,𝜔!, are not mapped. This is equivalent to an FB
having all its data ports associated with all event ports.
Therefore, we consider a simplified FB semantics by using this
“all sampled” rule.

In a MM, its ESM defines its execution behaviour.
Similarly, in a basic FB, its ECC specifies the invocation
sequence of its algorithms. It should be noted that ESMs are
Mealy machines while ECCs are Moore machines. Fig. 1
illustrates the semantic mappings between ECC and ESM
using the AddSub FB.

Fig. 1. AddSub FB: (a) Interface in nxtStudio Debug Mode and (b) ECC.

The function of AddSub is as follows: when event ADDe
arrives, the value of Z is updated to X+Y. If event SUBe
arrives, the value of Z is set to X-Y. The behaviourally
equivalent actor model of AddSub is illustrated in Fig. 2. By
comparing Fig. 1 and Fig. 2 (b), one can see the clear one-to-
one syntactic mappings for ports and states. On the other hand,
mapping of transitions is not straightforward. In general,
different types of ESM transitions are used to model different
ECC operations. There are 3 types of ESM transitions used as
listed in TABLE I.

TABLE I. TYPES OF USED ESM TRANSITIONS [6].

Type Notation Description

Ordinary
Transition

Fire if g is true; upon
transitioning the output
variables are set.

Immediate
Default

Transition

Fire immediately if g is
true and the preceding
transition to s1 is also
fired. Default transitions
have lower priority than
ordinary ones.

Transition
with

Refinement
actors

An ordinary transition
with refinement actors,
which are fired first
before the transition is
fired.

According to the ECC Operation State Machine defined in
the IEC 61499 standard, simple EC transitions without EC
action, such as STARTàINITs in Fig. 1 (b), can be directly
mapped to an ordination ESM transition by copying the guard
conditions. EC transitions with guard condition “1”, must be
converted into an immediate default transition in ESM and
setting its guard to TRUE. Moreover, in Ptolemy II, ESM
transitions can have only two levels of priority: default and
ordinary. In general, ordinary transitions have higher priority

than default transitions. If two ordinary transitions with the
same level of priority are enabled simultaneously, Ptolemy II
will throw an exception indicating this nondeterministic
behaviour. In IEC 61499, the priorities of EC transitions are
determined by the order in which they are specified in the
XML file. If this order must be preserved in the actor model,
additional guards must be introduced. Next, for EC transitions
with EC actions, each EC action will be modelled by a
refinement actor. As indicated in Fig. 2 (c), the EC action
associated with EC state ADDs is modelled by the
ADDs_Action actor, which is again a MM actor. The
ADDs_Action actor is added to ESM transition

STARTàADDs instead of the ADDs state as ESMs in
Ptolemy II are Mealy machines. The ADDs_Action actor will
be executed when the ESM transition STARTàADDs is fired.
Moreover, as multiple EC actions can be added to an EC state,
multiple refinement actors can also be added to an ESM
transition. Refinement actors are executed sequentially based
on the order in which they are added. This can be used to
model the execution order of EC actions, which depends on
their orders in the XML file again. Furthermore, simple
algorithms involving conditional statements, assignments, etc.
can be directly translated into an ESM as exemplified in Fig. 2
(d).

Fig. 2. (a) Interactive Setup, (b) AddSub Actor, (c) STARTàADDs Transition Refinement, and (d) ADDs_Action Actor.

Finally, as shown in Fig. 2 (a) an interactive setup has been
developed in Ptolemy II to simulate the debug mode in
nxtStudio (Fig. 1 (a)). This provides an intuitive way to test the
functions of modelled FBs. It has been validated that the actor
model of AddSub FB produces the same calculation results.

D. Further Discussion
As previously mentioned in Section III.A, there are a

number of predefined MoCs in Ptolemy II. Some of these
MoCs have very similar execution semantics as the IEC 61499
runtimes summarized in Section II.A. For instance, both the
synchronous reactive (SR) MoC and the BlokIDE runtime

follow the principles of synchronous languages. While the SR
MoC implements the fixed-point semantics ([6], Chapter 5),
BlokIDE is based on the Esterel language ([11], Chapter 3).
This commonality is the foundation for porting BlokIDE
execution model to Ptolemy II. Another example is the discrete
event (DE) MoC and the FORTE runtime. They are both event-
driven. However, the DE MoC allows simultaneous processing
of events, while events are handled sequentially in FORTE. To
map the FORTE runtime to Ptolemy II, an explicit model of
event queue must be created in the DE MoC to enforce the
sequential dispatching of events. It is also possible to simulate

the cyclic execution semantics of ISaGRAF in DE MoC. This
will require an additional clock to generate periodic events.

IV. CONCLUSION
The intelligence of CPS emerges from seamless integration

and interaction between physical and cyber components. New
engineering approaches for CPS require the joint consideration
of computational and physical behaviours, which are likely
based on co-modelling approaches. This paper investigated the
possibility of modelling IEC 61499 control applications in the
Ptolemy II framework. Specifically, as the foundation work,
this paper illustrated the formal semantic mappings between
basic IEC 61499 structures and Ptolemy II actor models. An
intuitive example has been demonstrated.

In subsequent research, the more exhaustive
implementation of various IEC 61499 execution models will be
developed in Ptolemy II. In particular, the runtime models of
nxtStudio and BlokIDE will be considered first. This will allow
systematic analysis and correct-by-construction synthesis of
IEC 61499 executable code from Ptolemy II actor models.
Moreover, co-modelling of industrial CPS can be achieved in a
unified manner. Another ongoing work [13] is to introduce the
notion of time-stamped events from Ptolemy II into the IEC
61499 control architecture. It is envisioned that the symbiosis
of time-driven and event-driven design paradigms can offer
better engineering methodologies with improved system
performance. One such desirable design feature is invariance of
software behaviour when deployed to different hardware
topologies, as illustrated in [34].

ACKNOWLEDGMENT
This work is partially supported by the S-STEP and

SAUNA projects.

REFERENCES

[1] K.-D. Kim and P. R. Kumar, "Cyber-Physical Systems: A Perspective
at the Centennial," Proceedings of the IEEE, vol. 100, pp. 1287-1308,
2012.

[2] NIST. (2013). Strategic Vision and Business Drivers for 21st Century
Cyber-Physical Systems [Online]. Available:
http://www.nist.gov/el/upload/Exec-Roundtable-SumReport-Final-1-
30-13.pdf

[3] C. Pang, V. Vyatkin, and H. Mayer, "Towards Cyber-Physical
Approach for Prototyping Indoor Lighting Automation Systems," in
2014 IEEE International Conference on Systems, Man, and Cybernetics
(SMC 2014), San Diego, CA, US, 2014, pp. 3643-3648.

[4] A. Fisher, C. Jacobson, E. Lee, R. Murray, A. Sangiovanni-Vincentelli,
and E. Scholte, "Industrial Cyber-Physical Systems – iCyPhy," in
Complex Systems Design & Management, M. Aiguier, F. Boulanger, D.
Krob, and C. Marchal, Eds., ed: Springer International Publishing,
2014, pp. 21-37.

[5] J. C. Eidson, E. A. Lee, S. Matic, S. A. Seshia, and Z. Jia, "Distributed
Real-Time Software for Cyber-Physical Systems," Proceedings of the
IEEE, vol. 100, pp. 45-59, 2012.

[6] System Design, Modeling, and Simulation Using Ptolemy II:
Ptolemy.org, 2014.

[7] IEC Standard 61499-1, "Function blocks — Part 1: Architecture," ed,
2012.

[8] C.-H. Yang, V. Vyatkin, and C. Pang, "Model-Driven Development of
Control Software for Distributed Automation: A Survey and an
Approach," IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 44, pp. 292-305, 2014.

[9] S. Tripakis, C. Stergiou, C. Shaver, and E. A. Lee, "A modular formal
semantics for Ptolemy," Mathematical Structures in Computer Science,
vol. 23, pp. 834-881, 2013.

[10] C. Pang, S. Patil, C.-W. Yang, and V. Vyatkin, "A Portability Study of
IEC 61499: Semantics and Tools," in 12th IEEE Conference on
Industrial Informatics (INDIN 2014), Porto Alegre, Brazil, 2014, pp.
440-445.

[11] L. H. Yoong, P. S. Roop, Z. E. Bhatti, and M. M. Y. Kuo, Model-
Driven Design Using IEC 61499: Springer International Publishing,
2015.

[12] T. Strasser, A. Zoitl, J. H. Christensen, Su, x, and C. nder, "Design and
Execution Issues in IEC 61499 Distributed Automation and Control
Systems," IEEE Transactions on Systems, Man, and Cybernetics, Part
C: Applications and Reviews, vol. 41, pp. 41-51, 2011.

[13] C. Pang, J. Yan, and V. Vyatkin, "Time-Complemented Event-Driven
Architecture for Distributed Automation Systems," IEEE Transactions
on Systems, Man, and Cybernetics: Systems, vol. PP, pp. 1-13, 2014.

[14] Holobloc Inc. (2015, April 30). FBDK 2.2 - The Function Block
Development Kit [Online]. Available: http://www.holobloc.com/fbdk2/

[15] C. Sünder, A. Zoitl, J. H. Christensen, V. Vyatkin, R. W. Brennan, A.
Valentini, et al., "Usability and Interoperability of IEC 61499 based
distributed automation systems," in 4th IEEE International Conference
on Industrial Informatics (INDIN 2006), Singapore, 2006, pp. 31-37.

[16] G. Cengic and K. Akesson, "On Formal Analysis of IEC 61499
Applications, Part B: Execution Semantics," IEEE Transactions on
Industrial Informatics, vol. 6, pp. 145-154, 2010.

[17] ICS Triplex ISaGRAF. ISaGRAF Workbench [Online]. Available:
http://www.isagraf.com

[18] IEC Standard 61131-3, "Programmable controllers — Part 3:
Programming languages," ed, 2013.

[19] V. Vyatkin and J. Chouinard, "On Comparisons of the ISaGRAF
Implementation of IEC 61499 with FBDK and other Implementations,"
in 6th IEEE International Conference on Industrial Informatics (INDIN
2008), Daejeon, Korea, 2008, pp. 289-294.

[20] W. Dai, V. N. Dubinin, and V. Vyatkin, "Migration From PLC to IEC
61499 Using Semantic Web Technologies," IEEE Transactions on
Systems, Man, and Cybernetics: Systems, vol. 44, pp. 277-291, 2014.

[21] S. Patil, V. Dubinin, C. Pang, and V. Vyatkin, "Neutralizing Semantic
Ambiguities of Function Block Architecture by Modeling with ASM,"
in Perspectives of System Informatics. vol. 8974, A. Voronkov and I.
Virbitskaite, Eds., ed: Springer Berlin Heidelberg, 2015, pp. 76-91.

[22] P. Tata and V. Vyatkin, "Proposing a novel IEC61499 runtime
framework implementing the Cyclic Execution semantics," in 7th IEEE
International Conference on Industrial Informatics (INDIN 2009)
Cardiff, Wales, UK, 2009, pp. 416-421.

[23] 4DIAC Consortium. (2008). Framework for Distributed Industrial
Automation (4DIAC) [Online]. Available: http://www.fordiac.org

[24] nxtControl GmbH. (2015). nxtSTUDIO [Online]. Available:
http://www.nxtcontrol.com/en/engineering/

[25] T. Strasser, M. Rooker, G. Ebenhofer, A. Zoitl, C. Sunder, A.
Valentini, et al., "Framework for Distributed Industrial Automation and
Control (4DIAC)," in 6th IEEE International Conference on Industrial
Informatics (INDIN 2008), Daejeon, Korea, 2008, pp. 283-288.

[26] PRETzel. (2015). BlokIDE [Online]. Available: http://timeme.io/
[27] G. Berry and G. Gonthier, "The Esterel synchronous programming

language: design, semantics, implementation," Science of Computer
Programming, vol. 19, pp. 87-152, 1992.

[28] C.-H. Yang, G. Zhabelova, C.-W. Yang, and V. Vyatkin,
"Cosimulation Environment for Event-Driven Distributed Controls of
Smart Grid," IEEE Transactions on Industrial Informatics, vol. 9, pp.
1423-1435, 2013.

[29] K. Thramboulidis and A. Buda, "3+1 SysML View Model for
IEC61499 Function Block Control Systems," in 8th IEEE International
Conference on Industrial Informatics (INDIN 2010), Osaka, Japan,
2010, pp. 175-180.

[30] H. Nikula, E. Vesaoja, S. Sierla, T. Karhela, P. G. Flikkema, A. Aikala,
et al., "Co-Simulation of a Dynamic Process Simulator And an Event-
Based Control System: Case District Heating System," in 19th IEEE

International Conference on Emerging Technologies and Factory
Automation (ETFA 2014), Barcelona, Spain, 2014, pp. 1-7.

[31] E. A. Lee, S. Neuendorffer, and M. J. Wirthlin, "Actor-Oriented Design
Of Embedded Hardware and Software Systems," Journal of Circuits,
Systems, and Computers, vol. 12, pp. 231-260, 2003.

[32] J. Eker, J. W. Janneck, E. A. Lee, L. Jie, L. Xiaojun, J. Ludvig, et al.,
"Taming Heterogeneity—The Ptolemy Approach," Proceedings of the
IEEE, vol. 91, pp. 127-144, 2003.

[33] G. Cengic and K. Akesson, "On Formal Analysis of IEC 61499
Applications, Part A: Modeling," IEEE Transactions on Industrial
Informatics, vol. 6, pp. 136-144, 2010.

[34] V. Vyatkin, C. Pang, and S. Tripakis, "Towards Cyber-Physical
Agnosticism by Enhancing IEC 61499 with PTIDES Model of
Computations," in 41th Annual Conference of the IEEE Industrial
Electronics Society (IECON 2015), Yokohama, Japan, 2015, p.
submitted.

