
V. Vyatkin, C. Pang, S. Tripakis, “Towards Cyber-Physical Agnosticism by Enhancing IEC 61499 with PTIDES Model of
Computations”, International Annual conference of IEEE Industrial Electronics Society, Yokohama, November, 2015

Towards Cyber-Physical Agnosticism by Enhancing
IEC 61499 with PTIDES Model of Computations

Valeriy Vyatkin1,3, Cheng Pang1, and Stavros Tripakis2,4

1Department of Electrical Engineering and Automation, Aalto University, Finland
2Department of Computer Science, Aalto University, Finland

3Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Sweden
4Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, USA

{vyatkin, cheng.pang.phd}@ieee.org, stavros@eecs.berkeley.edu

Abstract—This paper addresses software design for cyber-
physical automation systems that enables invariant properties
of the physical system in case of software reallocation to
different hardware. The proposed approach is based on the
distributed reference architecture of IEC 61499 standard
enhanced with a time-stamping mechanism. It is demonstrated
that the proposed approach complements the abilities of IEC
61499 to maintain correct causality of distributed system
execution with improved performance of physical system
property called cyber-physical agnosticism. The time-stamped
event semantics of IEC 61499 is introduced and mapped to the
PTIDES execution model of Ptolemy II. We have
experimentally validated that changing the model of
computation in distributed automation to a time-stamped
event-driven one can bring substantial improvements in
flexibility and reconfigurability of cyber-physical automation
systems.

Keywords— distributed automation, time-stamped events,
IEC 61499, PTIDES, Ptolemy II

I. INTRODUCTION
Applications of the Internet of Things (IoT) architecture

in industrial automation raise the question whether
automation systems can be efficiently implemented using
distributed and possibly wirelessly networked sensors and
actuators that communicate asynchronously, as opposed to
the currently used rigid wired fieldbus connections based on
synchronous communication protocols. As the automation
systems become more software intensive, it is desirable to
design and verify system-level models of software and
guarantee invariance of physical system behaviour when the
same software is executed on different IoT configurations.
Hardware agnostic software is the term introduced in
reconfigurable computing [1] for software that the same
logical and timing behaviour when executed on different
hardware platforms. In Cyber-Physical Systems (CPS) based
on the IoT architecture, software applications are executed
on networked devices, whose performance may change
during operations due to, for example, battery discharge,
wireless communication distortions, and changes of physical
location or environment parameters. Therefore, we call this
property Cyber-Physical Agnosticism, or CPA, instead of
hardware agnosticism. In particular, we will consider (a bit
futuristic) IoT architecture in which all distributed nodes

have tightly synchronised clocks and asynchronously
exchange messages that are tagged with timestamps. This
model of computation has been recently investigated in the
PTIDES/Ptolemy II framework [2] for CPS modelling and
our aim is to examine it in the distributed automation system
context.

In a recent work [3] we have prototyped a fully
distributed approach to automate a manipulator with an
extreme case of distributed automation architecture as shown
in Fig. 1, where each sensor and actuator is a kind of
intelligent device with embedded microcontroller and
wireless connectivity. This can be considered as IoT inside a
single machine, where the “things” are sensors and actuators.
It has been demonstrated that using the distributed function
block (FB) language of IEC 61499 standard architecture [4,
5] it is possible to port the code from being executed in one
device to the network of six devices without any
modifications and the system behaviour remains the same.
This is an important step towards reducing the development
efforts in flexible and reconfigurable systems, where changes
in hardware specifications and network configurations occur
on a regular basis. However, the quality of control is
certainly changing dependent on the performance of control
nodes and bandwidth and load of the network. Achieving a
solution also agnostic to those factors would mean that not
only the logic of the behaviour will remain the same, but also
the quality of control will not depend (to the limits
determined by the physical system properties) on the
hardware and network parameters.

The rest of this paper is structured in the following way.
Section II motivates the goal of achieving CPA by
considering an example of a simple automation system fully
based on wireless communication. Section III presents a
brief survey of related works in control, computing, and
automation. Then, Section IV elaborates the modifications to
existing IEC 61499 FB syntax in order to use time stamped
events. Section V elaborates the rules for manipulating
timestamps. The concept of CPA is experimentally validated
in Section VI. The paper is finally concluded in Section VII.

II. DISTRIBUTION TRANSPARENCY AND IEC 61499
The IEC 61499 standard introduces a system-level

reference software architecture for distributed automation

systems. The most essential claim of the IEC 61499
architecture is about minimizing developers’ efforts in
deploying automation software to different distributed
architectures of hardware. The event-driven activation
mechanism of FBs helps to preserve causality in distributed
systems, which is an important enabler of this distributed
deployment transparency. Fig 1 illustrates this idea in a
nutshell using the pick and place manipulator from [3] with
slightly modified control that is based on continuous control
of the cylinder positions according to position sensors rather
than the mere end position observation in [3]. The
manipulator is operated by a joystick device that determines
the desired target coordinates of the gripper. The control
logic is highly modular following the mechatronic
modularity of the manipulator, which consists of two
identical pneumatic cylinders. Each of the cylinders is
controlled by two proportional pneumatic valves: pop and
push. The valves are intelligent in the sense that they have
their own controllers that decide how much they should be
open in order to reach the desired position. Thus, each valve
and position sensor form a closed control loop. Besides there
is setpoint feeding from the joystick to the four valve
controllers.

For simplicity, we will be further considering an example
that is very close to just one out of those 4 closed loops, as
shown in Fig 2 (a). Here the FB application implements the
control of a “pneumatic cylinder with a retracting spring”,
using a position sensor and proportional valve actuator. It is
supposed that the control goal is to track a certain desired
position of the cylinder as provided by the setpoint input SP
of the FB "Error". The sensor reading is obtained and
initially processed in the FB "Sensor". Then it is passed to

the FB "Error" by emitting event. The FB "Error" calculates
the difference between SP and S and passes it to the FB
"Controller" that recalculates the control signal and passes it
to the "Actuator" FB.

 If the controller implements a continuous control
algorithm, such as proportional-integral-derivative (PID)
control, it relies on the periodic sampling of sensor readings.
The maximum sampling period is selected based on, for
example, the Nyquist frequency, while its minimum value is
limited by the computational delay of the controller
hardware, in principle the smaller, the better. In any case, the
fixed sampling rate value DT is important to know in order
to recalculate the value of process variables in the controller.
In order to achieve the fixed sampling rate in our example,
the FB "Sensor" needs to be activated periodically by the FB
“Clock” with period RT=DT.

In the most traditional central control hardware
architecture case, the application can be deployed to a single
microcontroller connected to both sensor and actuator (Fig 2
(b)). In this case, it is easier to estimate the worst case
computational delay. The sampling rate parameter DT can be
chosen to be greater than the estimated delay. Alternatively,
the very same application can be deployed to a distributed
network of two microcontrollers, one residing closer to the
position sensor and the other to the proportional valve
actuator, with wired or wireless communication between
them, as indicated in Fig 2(c). The sensor-attached
microcontroller may be sending the updated position
readings only in case its change is significant. Such a
distributed architecture has many benefits in automation
systems, such as reducing wiring and improving flexibility of

Fig. 1. Decentralized control logic of a “fully wireless” IoT based manipulator [3].

automation systems. Therefore, industrial network
technologies have been proliferating in the last couple of
decades. However, in order to ensure the correct causality in
execution of this distributed software, devices need to be
synchronised between each other and with the
communication channel. The event-driven execution
mechanism of FBs maps well to the message based network
protocols.

Hence, sequence of FBs invocations will remain the same
after distribution without additional efforts. However,
performance will certainly be affected as networks introduce
communication delays, which may be variable due to jitter.
In case of a distributed architecture, such as the one in Fig 2
(b), sampled data are transmitted via network in packets, and
times of their arrivals to the controller are variable due to the
network jitter. There are several ways to deal with this
situation. The most obvious one is to estimate the upper
bound value of the communication delay and select the
sampling interval to be greater than this upper bound. In case
if the next sensor reading arrives sooner than the upper
bound, the activation of the controller FB is delayed. This
approach, however, has obvious drawbacks, as it will affect
the quality of control responses to the changing values of
sensors.

Real deployment transparency of distributed control
applications could be achieved if the physical system’s
behaviour would not substantially change after changing the
topology of the target system. In this paper we investigate if
the knowledge of exact time taken by each packet with
sensor data can help in improving control quality when a
classic control algorithm is applied in the networked
architecture. For that, we will enhance the event mechanism
of FBs with timestamps. Knowing the time of packet’s
sending, it will be possible to calculate the transfer time at

the destination. The control application with "classic" PID
control not enhanced with any advanced techniques will be
taken for comparison.

III. RELATED DEVELOPMENTS
Traditionally, the problems related to CPA of automation

software have been addressed separately in computer science
and control science, but rarely in a synergetic conjunction.
This is insufficient in a view of IoT concept becoming a
major driver for many industrial applications. In
manufacturing, it leads to flattening of the control pyramid
thus increasing flexibility and enabling unprecedented level
of production flexibility and adaptability. This makes it
feasible to produce products in smaller amounts with shorter
time to markets and higher economic efficiency. For
example, according to the German development agenda
Industrie 4.0 [6], the main driving forces of the new
industrial revolution are IoT and CPS. In the manufacturing
environment, CPS comprise smart machines, storage systems
and production facilities capable of autonomous and
collaborative actions. Another promising application area for
IoT is SmartGrid: energy generation, distribution, and
consumption infrastructure based on the wide use of
renewables and ICT intertwined with classic power system
control. The growing interest in using distributed hardware
architectures in automation has led to the creation of the IEC
61499 standard, which presents a component-based software
reference architecture. This architecture uses the concept of
event-driven invocation of components that maps well to the
message passing mechanism of network communication.
This helps to achieve a certain degree of transparency in
mapping software to hardware.

The control systems theory has reacted to the networking
revolution first by the avalanche of works on networked
control, and later, more specifically, with theories of event-

Fig. 2. Cylinder control function block application: (a) centralized deployment and (b) distributed deployments of the function block control application.

based control, for example developed by Aström [7] and
Årzen [8]. The networked control methods are based on
robust control algorithms with the purpose of reducing
impact of the variability of sampling period on the quality of
control. Such advanced control methods help to achieve
better control quality in the case of uncertain sampling rates.
Such methods, however, are more complex in
implementation and more resource hungry. One possible
way of handling uncertainty is using a model-based
prediction of system behaviour. The obvious limitation of
any such prediction method is that the real system’s
behaviour may be hard to predict.

The efficient use of event-driven methods by automation
system developers is hampered by the lack of support in
programming languages, commercial control devices, and
design tools. Computer scientists have been more concerned
with investigating and guaranteeing timing properties of
software executed on a single computer node or on a
network thereof. This is an important prerequisite for, but
does not explicitly address, meeting requirements for the
performance of physical systems under control. Synergy of
these aspects is in the core of research on CPS. The term
CPS has been coined to emphasise the cross-disciplinary
nature of computer interactions with the physical world, in
which both parts influence each other and efficient design is
impossible staying within classical disciplines of computer
science, or control theory, or communications. Modelling
CPS with the purpose of validating their behaviour is an
intrinsically hard problem due to the need of taking into
account computational correctness aspects, control
correctness aspects, dynamic behaviour of the physical
environment along with communication, and especially the
cross-dependencies between these factors.

A notable development in CPS is the Ptolemy II/PTIDES
approach [9] that has been gaining momentum in the general
embedded systems arena. The PTIDES programming model
is designed as a coordination language for CPS, providing
robust distributed real-time software models, whose
behaviour is independent of hardware deployment. PTIDES
also provides deterministic execution semantics, in which
variability in clock synchronisation and network latencies
can be eliminated from the physical plant model of any CPS.
The PTIDES semantics is based on a tagged-signal model,
which provides deterministic temporal semantics.
Interactions of control programs and physical processes are
represented in the same system model without specifying
hardware details. As real-time constraints are met at sensors,
actuators, and network interfaces, modifications in hardware
details or small variations in program execution time will not
affect the system behaviours. This characteristic is extremely
important for design and analysis of CPS. The use of the
PTIDES semantics in the implementation language of FBs
could achieve the desired CPA in the example presented in
Fig 1 and in other similar IoT architectures. The basic
assumption for applying PTIDES, however, is quite strong:
tight synchronisation of clocks in all distributed cyber-nodes.
However, there has been substantial progress to this end in
the industrial domain, for example, associated with adoption
of the IEEE 1588 standard [10] that provides clock

synchronisation technology for mass applications. There are
plenty of cost effective hardware devices on the market,
which enable clock synchronisation to the microsecond
level.

As far as the design of distributed automation systems
with essentially distributed logic is concerned, the FB
architecture introduced in the IEC 61499 remains the most
credible system level reference architecture with sufficient
industrial adoption prospects and potential of defining
appropriate formal semantics [11]. Recognizing this
technological trend, there has been growing interest in
industrial automation domain in efficient applications of this
technology to derive tangible benefits in design of
dependable distributed systems. For example, several
developments have been conducted towards proving
feasibility of automation systems based on peer-to-peer
communicating actuators [12, 13]. Multi-agent architectures
have been applied at the application level to achieve
autonomy and self-configuration of systems, in particular in
SmartGrid automation [14-17]. The service-oriented
architecture (SOA) has been extended and bridged with
current automation practices [18-20] to enable
interoperability and simplify design, and the cyber-physical
component architecture (CPCA) was introduced in [21] to
facilitate the design and validation of IoT-applications. The
IEC 61499 reference component architecture for distributed
automation systems was attempted to be applied as a “glue”
between these two and the legacy automation approaches,
and the follow-up works, e.g. [22], suggested how software
systems made of such components can be made self-
configurable similar to eco-systems of living organisms. This
raises concerns as to what extent system-level software
models can define behaviour of such systems in a manner
that is independent of the underlying computer hardware.

In this paper we enhance the IEC 61499 standard with
event time-stamping mechanism, which simplifies the
achievement of cyber-physical invariance of system-level
models of distributed systems.

IV. MODIFIED SYNTAX OF FUNCTION BLOCKS
Some minor additions to the syntax of FBs are required

in order to use time-stamped events. It is proposed to treat
event variables as complex data types.

EVENT= STRUCT
value : BOOL;
ts_last : TIME;
ts_born : TIME;
SID : FBI_ID;

END_STRUCT;

The logical value of an event input of an FB is referred to
as value of type BOOL. There are two timestamps associated
with an event, each being a variable of the data type TIME.
The ts_born is assigned to the current system clock when the
event is created at the event-source FB. Then this value is
copied along the event chain. The ts_last contains the
timestamp of the last FB when the event is emitted. SID is

the identifier of the FB instance where the event was created.
Other required syntax extensions are as follows.

The proposed rule for timestamp assignment requires
determination of what is invocation event for the current run
of FB. For that, we introduce the reference to event by which
the current run of a basic FB was invoked.

1) INVOKEDBY : EVENT;

The assignment of timestamps will require access to
system clocks of devices. We assume it is provided by the
variable:

2) systemclock: TIME;

V. RULES FOR TIMESTAMP MANIPULATION

A. Timestamp Creation and Modification
As depicted in Fig. 1, if FB1 is invoked by event

FBSRC.EO and emits event FB1.EO, the event properties
can propagate through the chain as follows:

Fig. 1. Simple event chain of function blocks.

1) // At source event, timestamps are initialised with the
current reading of system clocks.

FBSRC.EO.ts_born := FBSRC.systemclock;

FBSRC.EO.ts_last := FBSRC.systemclock;

2) // Invocation of FB1 by event EI

// Timestamp is copied from FBSRC.EO;

FB1.EI1 := FBSRC.EO;

FB1.INVOKEDBY:=FB1.EI1;

...

// Before output event EO is emitted by FB1

// Its birth time is assigned from that of the input event.

// The last timestamp is assigned with the current reading
of system clocks.

FB1.EO.ts_born := FB1.INVOKEDBY.ts_born;

FB1.EO.ts_last := FB1.systemclock;

// Activation of FB2 is similar to that of FB1.

3) FB2.EI:=FB1.EO;

B. Timestamps in Communication FBs
The Send/Rcv pair of communication function blocks

implements event and data transfer between devices (in real
implementations these can be PUBLISH/SUBSCRIBE and
CLIENT/SERVER FBs). Event transfer from Send to Rcv

happens as if they were connected by direct event link as
shown in Fig. 2. As a result:

Rcv.EO.ts_born = Clock.EO.ts_born; //and

Rcv.EO.ts_last = current D2 system clock at the moment
of packet arrival.

Fig. 2. Event chain of function blocks distributed across two devices.

C. Usage of Timestamps
To determine sampling duration in algorithm invoked by

event REQ:

timegap:= REQ.ts_born - systemclock;

It is assumed that the event's source is the same FB where
the sensor value is sampled. In order to measure the duration
of event propagation from any point, the unique FB instance
identifier SID is used, and an operation that allows
overwriting of the ts_born parameter in FB algorithms is
applied.

VI. EXPERIMENTAL VALIDATION OF CPA
Let us consider what would be the performance of the

distributed system in case if the actual communication delay
was known for each sensor value sampled and compare it
with the case when the delay is uncertain but a fixed DT
value is used in the controller. These two cases will be
compared with the ideal case of fixed time delay and fixed
DT parameter of the controller. In order to make the
comparison, we created models in the Ptolemy II
environment corresponding to all three cases as shown in
Fig. 3.

Fig. 3. PtolemyII model of three communication delay cases for
comparison.

Ptolemy II enables heterogeneous semantics of modelling
and simulation. The Discrete Event execution model of
Ptolemy II is based on event-driven invocation of blocks and
supports time stamping of events. Therefore, it is possible to
calculate the time interval between two consecutive events
within a module. The results of the comparison are presented
in Fig. 4 below.

”Ideal” case: sampling delay is
constant in controller and in reality.

Using event timestamping to
determine actual duration of

sampling delay.

Controller uses constant
sampling delay, while the

real delay is variable.

Sensor sampling events

Setpoint

t

X

Fig. 4. Plot of process variables in three comparison cases.

The ideal reference case is plotted in red. It exhibits
smooth tracking of the setpoint. The impact of running the
same application in presence of variable communication
delay is the black plot, which shows good deal of oscillations
This is undesirable impact on the quality of control and
physical system properties. The green plot represents
behaviour of the physical system after changing the model of
computation to the time-stamped events. The properties of
tracking are certainly worse than the ideal case but free of
oscillations, which is a great improvement in the quality of
control. This result inspires optimism and justifies the effort
on implementing the proposed model of computation in IEC
61499.

VII. CONCLUSION
In this paper we estimated the impact of introducing

time-stamped event mechanism of IEC 61499 function
blocks on achieving cyber-physical agnosticism of
distributed automation software. An initial experimentation
was conducted using the Ptolemy II simulation environment
without implementation of dedicated new compiler or
runtime of IEC 61499. The results demonstrated tangible
benefits of enhancing IEC 61499 with the PTIDES model of
computation for maintaining cyber-physical system
properties in case of hardware/software reconfigurations.

REFERENCES
[1] M. Vuletid, L. Pozzi, and P. Ienne, "Seamless Hardware-Software

Integration in Reconfigurable Computing Systems," IEEE Design &
Test of Computers, vol. 22(2), pp. 102-113, 2005.

[2] Z. Jia, S. Matic, E. A. Lee, T. H. Feng, and P. Derler, "Execution
Strategies for PTIDES, a Programming Model for Distributed
Embedded Systems," in 15th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS 2009), San Francisco,
CA, US, 2009, pp. 77-86.

[3] D. Kleyko, E. Osipov, S. Patil, V. Vyatkin, and Z. Pang, "On
Methodology of Implementing Distributed Function Block
Applications using TinyOS WSN nodes," in 19th IEEE International

Conference on Emerging Technologies and Factory Automation
(ETFA 2014), Barcelona, Spain, 2014, pp. 1-7.

[4] Function blocks — Part 1: Architecture, IEC Standard 61499-1, 2012.
[5] V. Vyatkin, "IEC 61499 as Enabler of Distributed and Intelligent

Automation: State-of-the-Art Review," IEEE Transactions on
Industrial Informatics, vol. 7(4), pp. 768-781, 2011.

[6] Industrie 4.0 Working Group. (2013). Recommendations for
implementing the strategic initiative INDUSTRIE 4.0 [Online].
Available: http://www.plattform-i40.de/finalreport2013

[7] K. J. Åström, "Event Based Control," in Analysis and Design of
Nonlinear Control Systems, A. Astolfi and L. Marconi, Eds., ed:
Springer Berlin Heidelberg, 2008, pp. 127-147.

[8] K.-E. Årzén, "A Simple Event-based PID Controller," in 14th IFAC
World Congress, Bejing, China, 1999, pp. 423-428.

[9] J. C. Eidson, E. A. Lee, S. Matic, S. A. Seshia, and Z. Jia, "Distributed
Real-Time Software for Cyber-Physical Systems," Proceedings of the
IEEE, vol. 100(1), pp. 45-59, 2012.

[10] IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems, IEEE Standard 1588-
2008.

[11] V. Vyatkin, "Software Engineering in Industrial Automation: State-of-
the-Art Review," IEEE Transactions on Industrial Informatics, vol.
9(3), pp. 1234-1249, 2013.

[12] M. Sorouri, S. Patil, and V. Vyatkin, "Distributed Control Patterns for
Intelligent Mechatronic Systems," in 10th IEEE International
Conference on Industrial Informatics (INDIN 2012), Beijing, China,
2012, pp. 259-264.

[13] J. Yan and V. Vyatkin, "Distributed Software Architecture Enabling
Peer-to-Peer Communicating Controllers," IEEE Transactions on
Industrial Informatics, vol. 9(4), pp. 2200-2209, 2013.

[14] P. Vrba, V. Marik, P. Siano, P. Leitao, G. Zhabelova, V. Vyatkin, et
al., "A Review of Agent and Service-Oriented Concepts Applied to
Intelligent Energy Systems," IEEE Transactions on Industrial
Informatics, vol. 10(3), pp. 1890-1903, 2014.

[15] G. Zhabelova, V. Vyatkin, and V. N. Dubinin, "Toward Industrially
Usable Agent Technology for Smart Grid Automation," IEEE
Transactions on Industrial Electronics, vol. 62(4), pp. 2629-2641,
2015.

[16] M. Degefa, A. Alahäivälä, O. Kilkki, I. Seilonen, and M. Lehtonen,
"MAS-based Active Network Model for State Estimation and
Beyond," IEEE Transactions on Industrial Electronics, accepted,
2015.

[17] S. Patil, V. Vyatkin, and B. McMillin, "Implementation of FREEDM
Smart Grid distributed load balancing using IEC 61499 function
blocks," in 39th Annual Conference of the IEEE Industrial Electronics
Society (IECON 2013), Vienna, Austria, 2013, pp. 8154-8159.

[18] W. Dai, V. Vyatkin, J. H. Christensen, and V. Dubinin, "Function
Block Implementation of Service Oriented Architecture," in 12th IEEE
International Conference on Industrial Informatics (INDIN 2014),
Porto Alegre, Brazil, 2014, pp. 112-117.

[19] W. Dai, J. Peltola, V. Vyatkin, and C. Pang, "Service-Oriented
Distributed Control Software Design for Process Automation
Systems," in 2014 IEEE International Conference on Systems, Man,
and Cybernetics (SMC 2014), San Diego, CA, US, 2014, pp. 3637-
3642.

[20] G. Zhabelova, C.-W. Yang, S. Patil, C. Pang, J. Yan, and V. Vyatkin,
"Cyber-Physical Components for Heterogeneous Modeling, Validation
and Implementation of Smart Grid Intelligence," in 12th IEEE
Conference on Industrial Informatics (INDIN 2014), Porto Alegre,
Brazil, 2014, pp. 411-417.

[21] J. Yan, C. Pang, C.-W. Yang, and V. Vyatkin, "Adaptable Software
Components: Towards Digital Ecosystems and Software Evolution in
the Industrial Automation Domain," in 40th Annual Conference of the
IEEE Industrial Electronics Society (IECON 2014), Dallas, TX, US,
2014, pp. 2512-2518.

[22] A. Choudhari, H. Ramaprasad, T. Paul, J. W. Kimball, M. Zawodniok,
B. McMillin, et al., "Stability of a Cyber-physical Smart Grid System
Using Cooperating Invariants," in 37th IEEE Annual Computer
Software and Applications Conference (COMPSAC 2013), Kyoto,
Japan, 2013, pp. 760-769.

