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Abstract—This paper addresses software design for cyber-
physical automation systems that enables invariant properties 
of the physical system in case of software reallocation to 
different hardware. The proposed approach is based on the 
distributed reference architecture of IEC 61499 standard 
enhanced with a time-stamping mechanism. It is demonstrated 
that the proposed approach complements the abilities of IEC 
61499 to maintain correct causality of distributed system 
execution with improved performance of physical system 
property called cyber-physical agnosticism. The time-stamped 
event semantics of IEC 61499 is introduced and mapped to the 
PTIDES execution model of Ptolemy II. We have 
experimentally validated that changing the model of 
computation in distributed automation to a time-stamped 
event-driven one can bring substantial improvements in 
flexibility and reconfigurability of cyber-physical automation 
systems. 

Keywords— distributed automation, time-stamped events, 
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I.  INTRODUCTION 
Applications of the Internet of Things (IoT) architecture 

in industrial automation raise the question whether 
automation systems can be efficiently implemented using 
distributed and possibly wirelessly networked sensors and 
actuators that communicate asynchronously, as opposed to 
the currently used rigid wired fieldbus connections based on 
synchronous communication protocols. As the automation 
systems become more software intensive, it is desirable to 
design and verify system-level models of software and 
guarantee invariance of physical system behaviour when the 
same software is executed on different IoT configurations. 
Hardware agnostic software is the term introduced in 
reconfigurable computing [1] for software that the same 
logical and timing behaviour when executed on different 
hardware platforms. In Cyber-Physical Systems (CPS) based 
on the IoT architecture, software applications are executed 
on networked devices, whose performance may change 
during operations due to, for example, battery discharge, 
wireless communication distortions, and changes of physical 
location or environment parameters. Therefore, we call this 
property Cyber-Physical Agnosticism, or CPA, instead of 
hardware agnosticism. In particular, we will consider (a bit 
futuristic) IoT architecture in which all distributed nodes 

have tightly synchronised clocks and asynchronously 
exchange messages that are tagged with timestamps. This 
model of computation has been recently investigated in the 
PTIDES/Ptolemy II framework [2] for CPS modelling and 
our aim is to examine it in the distributed automation system 
context.  

In a recent work [3] we have prototyped a fully 
distributed approach to automate a manipulator with an 
extreme case of distributed automation architecture as shown 
in Fig. 1, where each sensor and actuator is a kind of 
intelligent device with embedded microcontroller and 
wireless connectivity. This can be considered as IoT inside a 
single machine, where the “things” are sensors and actuators. 
It has been demonstrated that using the distributed function 
block (FB) language of IEC 61499 standard architecture [4, 
5] it is possible to port the code from being executed in one 
device to the network of six devices without any 
modifications and the system behaviour remains the same. 
This is an important step towards reducing the development 
efforts in flexible and reconfigurable systems, where changes 
in hardware specifications and network configurations occur 
on a regular basis. However, the quality of control is 
certainly changing dependent on the performance of control 
nodes and bandwidth and load of the network. Achieving a 
solution also agnostic to those factors would mean that not 
only the logic of the behaviour will remain the same, but also 
the quality of control will not depend (to the limits 
determined by the physical system properties) on the 
hardware and network parameters.  

The rest of this paper is structured in the following way. 
Section II motivates the goal of achieving CPA by 
considering an example of a simple automation system fully 
based on wireless communication. Section III presents a 
brief survey of related works in control, computing, and 
automation. Then, Section IV elaborates the modifications to 
existing IEC 61499 FB syntax in order to use time stamped 
events. Section V elaborates the rules for manipulating 
timestamps. The concept of CPA is experimentally validated 
in Section VI. The paper is finally concluded in Section VII. 

II. DISTRIBUTION TRANSPARENCY AND IEC 61499 
The IEC 61499 standard introduces a system-level 

reference software architecture for distributed automation 



 
 

systems. The most essential claim of the IEC 61499 
architecture is about minimizing developers’ efforts in 
deploying automation software to different distributed 
architectures of hardware. The event-driven activation 
mechanism of FBs helps to preserve causality in distributed 
systems, which is an important enabler of this distributed 
deployment transparency. Fig 1 illustrates this idea in a 
nutshell using the pick and place manipulator from [3] with 
slightly modified control that is based on continuous control 
of the cylinder positions according to position sensors rather 
than the mere end position observation in [3]. The 
manipulator is operated by a joystick device that determines 
the desired target coordinates of the gripper. The control 
logic is highly modular following the mechatronic 
modularity of the manipulator, which consists of two 
identical pneumatic cylinders. Each of the cylinders is 
controlled by two proportional pneumatic valves: pop and 
push. The valves are intelligent in the sense that they have 
their own controllers that decide how much they should be 
open in order to reach the desired position. Thus, each valve 
and position sensor form a closed control loop. Besides there 
is setpoint feeding from the joystick to the four valve 
controllers.  

For simplicity, we will be further considering an example 
that is very close to just one out of those 4 closed loops, as 
shown in Fig 2 (a).  Here the FB application implements the 
control of a “pneumatic cylinder with a retracting spring”, 
using a position sensor and proportional valve actuator. It is 
supposed that the control goal is to track a certain desired 
position of the cylinder as provided by the setpoint input SP 
of the FB "Error". The sensor reading is obtained and 
initially processed in the FB "Sensor". Then it is passed to 

the FB "Error" by emitting event. The FB "Error" calculates 
the difference between SP and S and passes it to the FB 
"Controller" that recalculates the control signal and passes it 
to the "Actuator" FB. 

 If the controller implements a continuous control 
algorithm, such as proportional-integral-derivative (PID) 
control, it relies on the periodic sampling of sensor readings. 
The maximum sampling period is selected based on, for 
example, the Nyquist frequency, while its minimum value is 
limited by the computational delay of the controller 
hardware, in principle the smaller, the better. In any case, the 
fixed sampling rate value DT is important to know in order 
to recalculate the value of process variables in the controller. 
In order to achieve the fixed sampling rate in our example, 
the FB "Sensor" needs to be activated periodically by the FB 
“Clock” with period RT=DT.   

In the most traditional central control hardware 
architecture case, the application can be deployed to a single 
microcontroller connected to both sensor and actuator (Fig 2 
(b)). In this case, it is easier to estimate the worst case 
computational delay. The sampling rate parameter DT can be 
chosen to be greater than the estimated delay. Alternatively, 
the very same application can be deployed to a distributed 
network of two microcontrollers, one residing closer to the 
position sensor and the other to the proportional valve 
actuator, with wired or wireless communication between 
them, as indicated in Fig 2(c). The sensor-attached 
microcontroller may be sending the updated position 
readings only in case its change is significant. Such a 
distributed architecture has many benefits in automation 
systems, such as reducing wiring and improving flexibility of 

 
Fig. 1. Decentralized control logic of a “fully wireless” IoT based manipulator [3]. 



 
 

automation systems. Therefore, industrial network 
technologies have been proliferating in the last couple of 
decades. However, in order to ensure the correct causality in 
execution of this distributed software, devices need to be 
synchronised between each other and with the 
communication channel. The event-driven execution 
mechanism of FBs maps well to the message based network 
protocols.  

Hence, sequence of FBs invocations will remain the same 
after distribution without additional efforts. However, 
performance will certainly be affected as networks introduce 
communication delays, which may be variable due to jitter. 
In case of a distributed architecture, such as the one in Fig 2 
(b), sampled data are transmitted via network in packets, and 
times of their arrivals to the controller are variable due to the 
network jitter. There are several ways to deal with this 
situation. The most obvious one is to estimate the upper 
bound value of the communication delay and select the 
sampling interval to be greater than this upper bound. In case 
if the next sensor reading arrives sooner than the upper 
bound, the activation of the controller FB is delayed. This 
approach, however, has obvious drawbacks, as it will affect 
the quality of control responses to the changing values of 
sensors.  

Real deployment transparency of distributed control 
applications could be achieved if the physical system’s 
behaviour would not substantially change after changing the 
topology of the target system. In this paper we investigate if 
the knowledge of exact time taken by each packet with 
sensor data can help in improving control quality when a 
classic control algorithm is applied in the networked 
architecture. For that, we will enhance the event mechanism 
of FBs with timestamps. Knowing the time of packet’s 
sending, it will be possible to calculate the transfer time at 

the destination. The control application with "classic" PID 
control not enhanced with any advanced techniques will be 
taken for comparison. 

III. RELATED DEVELOPMENTS 
Traditionally, the problems related to CPA of automation 

software have been addressed separately in computer science 
and control science, but rarely in a synergetic conjunction. 
This is insufficient in a view of IoT concept becoming a 
major driver for many industrial applications. In 
manufacturing, it leads to flattening of the control pyramid 
thus increasing flexibility and enabling unprecedented level 
of production flexibility and adaptability. This makes it 
feasible to produce products in smaller amounts with shorter 
time to markets and higher economic efficiency. For 
example, according to the German development agenda 
Industrie 4.0 [6], the main driving forces of the new 
industrial revolution are IoT and CPS. In the manufacturing 
environment, CPS comprise smart machines, storage systems 
and production facilities capable of autonomous and 
collaborative actions. Another promising application area for 
IoT is SmartGrid: energy generation, distribution, and 
consumption infrastructure based on the wide use of 
renewables and ICT intertwined with classic power system 
control. The growing interest in using distributed hardware 
architectures in automation has led to the creation of the IEC 
61499 standard, which presents a component-based software 
reference architecture. This architecture uses the concept of 
event-driven invocation of components that maps well to the 
message passing mechanism of network communication. 
This helps to achieve a certain degree of transparency in 
mapping software to hardware.   

The control systems theory has reacted to the networking 
revolution first by the avalanche of works on networked 
control, and later, more specifically, with theories of event-

 
Fig. 2. Cylinder control function block application: (a) centralized deployment and (b) distributed deployments of the function block control application. 



 
 

based control, for example developed by Aström [7] and 
Årzen [8]. The networked control methods are based on 
robust control algorithms with the purpose of reducing 
impact of the variability of sampling period on the quality of 
control. Such advanced control methods help to achieve 
better control quality in the case of uncertain sampling rates. 
Such methods, however, are more complex in 
implementation and more resource hungry. One possible 
way of handling uncertainty is using a model-based 
prediction of system behaviour. The obvious limitation of 
any such prediction method is that the real system’s 
behaviour may be hard to predict.  

The efficient use of event-driven methods by automation 
system developers is hampered by the lack of support in 
programming languages, commercial control devices, and 
design tools. Computer scientists have been more concerned 
with investigating and guaranteeing timing properties of 
software executed on a single computer node or on a 
network thereof. This is an important prerequisite for, but 
does not explicitly address, meeting requirements for the 
performance of physical systems under control. Synergy of 
these aspects is in the core of research on CPS. The term 
CPS has been coined to emphasise the cross-disciplinary 
nature of computer interactions with the physical world, in 
which both parts influence each other and efficient design is 
impossible staying within classical disciplines of computer 
science, or control theory, or communications. Modelling 
CPS with the purpose of validating their behaviour is an 
intrinsically hard problem due to the need of taking into 
account computational correctness aspects, control 
correctness aspects, dynamic behaviour of the physical 
environment along with communication, and especially the 
cross-dependencies between these factors.  

A notable development in CPS is the Ptolemy II/PTIDES 
approach [9] that has been gaining momentum in the general 
embedded systems arena. The PTIDES programming model 
is designed as a coordination language for CPS, providing 
robust distributed real-time software models, whose 
behaviour is independent of hardware deployment. PTIDES 
also provides deterministic execution semantics, in which 
variability in clock synchronisation and network latencies 
can be eliminated from the physical plant model of any CPS. 
The PTIDES semantics is based on a tagged-signal model, 
which provides deterministic temporal semantics. 
Interactions of control programs and physical processes are 
represented in the same system model without specifying 
hardware details. As real-time constraints are met at sensors, 
actuators, and network interfaces, modifications in hardware 
details or small variations in program execution time will not 
affect the system behaviours. This characteristic is extremely 
important for design and analysis of CPS. The use of the 
PTIDES semantics in the implementation language of FBs 
could achieve the desired CPA in the example presented in 
Fig 1 and in other similar IoT architectures. The basic 
assumption for applying PTIDES, however, is quite strong: 
tight synchronisation of clocks in all distributed cyber-nodes. 
However, there has been substantial progress to this end in 
the industrial domain, for example, associated with adoption 
of the IEEE 1588 standard [10] that provides clock 

synchronisation technology for mass applications. There are 
plenty of cost effective hardware devices on the market, 
which enable clock synchronisation to the microsecond 
level. 

As far as the design of distributed automation systems 
with essentially distributed logic is concerned, the FB 
architecture introduced in the IEC 61499 remains the most 
credible system level reference architecture with sufficient 
industrial adoption prospects and potential of defining 
appropriate formal semantics [11]. Recognizing this 
technological trend, there has been growing interest in 
industrial automation domain in efficient applications of this 
technology to derive tangible benefits in design of 
dependable distributed systems. For example, several 
developments have been conducted towards proving 
feasibility of automation systems based on peer-to-peer 
communicating actuators [12, 13]. Multi-agent architectures 
have been applied at the application level to achieve 
autonomy and self-configuration of systems, in particular in 
SmartGrid automation [14-17]. The service-oriented 
architecture (SOA) has been extended and bridged with 
current automation practices [18-20] to enable 
interoperability and simplify design, and the cyber-physical 
component architecture (CPCA) was introduced in [21] to 
facilitate the design and validation of IoT-applications. The 
IEC 61499 reference component architecture for distributed 
automation systems was attempted to be applied as a “glue” 
between these two and the legacy automation approaches, 
and the follow-up works, e.g. [22], suggested how software 
systems made of such components can be made self-
configurable similar to eco-systems of living organisms. This 
raises concerns as to what extent system-level software 
models can define behaviour of such systems in a manner 
that is independent of the underlying computer hardware.  

In this paper we enhance the IEC 61499 standard with 
event time-stamping mechanism, which simplifies the 
achievement of cyber-physical invariance of system-level 
models of distributed systems. 

IV. MODIFIED SYNTAX OF FUNCTION BLOCKS 
Some minor additions to the syntax of FBs are required 

in order to use time-stamped events. It is proposed to treat 
event variables as complex data types. 

EVENT= STRUCT  
value : BOOL; 
ts_last : TIME; 
ts_born : TIME; 
SID       : FBI_ID; 

END_STRUCT; 

The logical value of an event input of an FB is referred to 
as value of type BOOL. There are two timestamps associated 
with an event, each being a variable of the data type TIME. 
The ts_born is assigned to the current system clock when the 
event is created at the event-source FB. Then this value is 
copied along the event chain. The ts_last contains the 
timestamp of the last FB when the event is emitted. SID is 



 
 

the identifier of the FB instance where the event was created. 
Other required syntax extensions are as follows.  

The proposed rule for timestamp assignment requires 
determination of what is invocation event for the current run 
of FB. For that, we introduce the reference to event by which 
the current run of a basic FB was invoked. 

1) INVOKEDBY : EVENT;  

The assignment of timestamps will require access to 
system clocks of devices. We assume it is provided by the 
variable: 

2) systemclock: TIME; 

V. RULES FOR TIMESTAMP MANIPULATION 

A. Timestamp Creation and Modification 
As depicted in Fig. 1, if FB1 is invoked by event 

FBSRC.EO and emits event FB1.EO, the event properties 
can propagate through the chain as follows: 

 
Fig. 1. Simple event chain of function blocks. 

1) // At source event, timestamps are initialised with the 
current reading of system clocks.   

FBSRC.EO.ts_born := FBSRC.systemclock; 

FBSRC.EO.ts_last   := FBSRC.systemclock; 

2) // Invocation of FB1 by event EI  

// Timestamp is copied from FBSRC.EO; 

FB1.EI1 := FBSRC.EO;  

FB1.INVOKEDBY:=FB1.EI1; 

... 

// Before output event EO is emitted by FB1 

// Its birth time is assigned from that of the input event. 

// The last timestamp is assigned with the current reading 
of system clocks.   

FB1.EO.ts_born := FB1.INVOKEDBY.ts_born;  

FB1.EO.ts_last   := FB1.systemclock; 

// Activation of FB2 is similar to that of FB1.  

3) FB2.EI:=FB1.EO; 

B. Timestamps in Communication FBs 
The Send/Rcv pair of communication function blocks 

implements event and data transfer between devices (in real 
implementations these can be PUBLISH/SUBSCRIBE and 
CLIENT/SERVER FBs). Event transfer from Send to Rcv 

happens as if they were connected by direct event link as 
shown in Fig. 2. As a result: 

Rcv.EO.ts_born = Clock.EO.ts_born; //and 

Rcv.EO.ts_last = current D2 system clock at the moment 
of packet arrival. 

 
Fig. 2. Event chain of function blocks distributed across two devices. 

C. Usage of Timestamps 
To determine sampling duration in algorithm invoked by 

event REQ:  

timegap:= REQ.ts_born - systemclock; 

It is assumed that the event's source is the same FB where 
the sensor value is sampled. In order to measure the duration 
of event propagation from any point, the unique FB instance 
identifier SID is used, and an operation that allows 
overwriting of the ts_born parameter in FB algorithms is 
applied.   

VI. EXPERIMENTAL VALIDATION OF CPA 
Let us consider what would be the performance of the 

distributed system in case if the actual communication delay 
was known for each sensor value sampled and compare it 
with the case when the delay is uncertain but a fixed DT 
value is used in the controller. These two cases will be 
compared with the ideal case of fixed time delay and fixed 
DT parameter of the controller. In order to make the 
comparison, we created models in the Ptolemy II 
environment corresponding to all three cases as shown in 
Fig. 3.  

 
Fig. 3. PtolemyII model of three communication delay cases for 
comparison. 



 
 

Ptolemy II enables heterogeneous semantics of modelling 
and simulation. The Discrete Event execution model of 
Ptolemy II is based on event-driven invocation of blocks and 
supports time stamping of events. Therefore, it is possible to 
calculate the time interval between two consecutive events 
within a module. The results of the comparison are presented 
in Fig. 4 below.  

”Ideal” case: sampling delay is 
constant in controller and in reality.

Using event timestamping to 
determine actual duration of 

sampling delay.

Controller uses constant 
sampling delay, while the 

real delay is variable. 

Sensor sampling events

Setpoint

t

X

 
Fig. 4. Plot of process variables in three comparison cases. 

The ideal reference case is plotted in red. It exhibits 
smooth tracking of the setpoint. The impact of running the 
same application in presence of variable communication 
delay is the black plot, which shows good deal of oscillations 
This is undesirable impact on the quality of control and 
physical system properties. The green plot represents 
behaviour of the physical system after changing the model of 
computation to the time-stamped events. The properties of 
tracking are certainly worse than the ideal case but free of 
oscillations, which is a great improvement in the quality of 
control. This result inspires optimism and justifies the effort 
on implementing the proposed model of computation in IEC 
61499. 

VII. CONCLUSION 
In this paper we estimated the impact of introducing 

time-stamped event mechanism of IEC 61499 function 
blocks on achieving cyber-physical agnosticism of 
distributed automation software. An initial experimentation 
was conducted using the Ptolemy II simulation environment 
without implementation of dedicated new compiler or 
runtime of IEC 61499. The results demonstrated tangible 
benefits of enhancing IEC 61499 with the PTIDES model of 
computation for maintaining cyber-physical system 
properties in case of hardware/software reconfigurations. 
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