
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 11, NO. 3, JUNE 2015 771

Bridging Service-Oriented Architecture and IEC
61499 for Flexibility and Interoperability

Wenbin Dai, Member, IEEE, Valeriy Vyatkin, Senior Member, IEEE, James H. Christensen, and Victor N. Dubinin

Abstract—In recent years, requirements for interoperability,
flexibility, and reconfigurability of complex automation indus-
try applications have increased dramatically. The adoption of
service-oriented architectures (SOAs) could be a feasible solu-
tion to meet these challenges. The IEC 61499 standard defines a
set of management commands, which provides the capability of
dynamic reconfiguration without affecting normal operation. In
this paper, a formal model is proposed for the application of SOAs
in the distributed automation domain in order to achieve flexi-
ble automation systems. Practical scenarios of applying SOA in
industrial automation are discussed. In order to support the SOA
IEC 61499 model, a service-based execution environment architec-
ture is proposed. One main characteristic of flexibility—dynamic
reconfiguration—is also demonstrated using a case study example.

Index Terms—Dynamic reconfiguration, flexibility, function
blocks, IEC 61499, IEC 61131-3, industrial automation, interoper-
ability, programmable logic controllers (PLCs), service discovery,
service-oriented architecture (SOA), simple object access protocol
(SOAP), Web services description language (WSDL).

I. INTRODUCTION

T HE INDUSTRIAL automation landscape is dominated by
the hardware and software paradigm of programmable

logic controllers (PLCs). PLCs are widely deployed in almost
every branch of industry: manufacturing and assembly lines,
building automation, process control, material handling sys-
tems, etc. PLC software is commonly developed in accordance
with the IEC 61131-3 standard [1], which defines a set of tex-
tual and graphical programming languages. However, to the
disappointment of system integrators, code portability between
various PLC platforms is not fully achievable, due to PLC
vendors’ own interpretation of the standard and the need for
backward compatibility with their legacy systems. An addi-
tional drawback is that the design of distributed automation
systems is essentially beyond the scope of the IEC 61131-3
standard: the “configuration,” considered as the highest level
of its software model, is limited to a single PLC device [1],

Manuscript received February 10, 2014; revised February 05, 2015 and
April 01, 2015; accepted April 01, 2015. Date of publication April 15, 2015;
date of current version June 02, 2015. Paper no. TII-14-1329.

W. Dai is with Shanghai Jiao Tong University, Shanghai 200240, China
(e-mail: w.dai@ieee.org).

V. Vytakin is with the Lulea University of Technology, Lulea 97187,
Sweden, and also with Aalto University, Espoo 02150, Finland (e-mail:
vyatkin@ieee.org).

J. H. Christensen is with Holobloc, Inc., Cleveland, OH 44121 USA (e-mail:
james.h.christensen@gmail.com).

V. N. Dubinin is with the University of Penza, Penza 440026, Russia (e-mail:
victor_n_dubinin@yahoo.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TII.2015.2423495

[2]. Therefore, substantial overhead is incurred in a distributed
system design using PLCs under the IEC 61131-3 paradigm [3].

A distributed automation system can be designed using the
IEC 61499 standard [4] in an abstract, platform-independent
way. The initial ambiguities of execution semantics have been
resolved in the 2nd edition of IEC 61499, of which Part 1 and
Part 2 were published in 2012 and Part 4 was published in
2013. Targeted as solving existing issues of the IEC 61131-3
standard for distributed automation systems, the IEC 61499
standard has its own unique characteristics. First, all algorithms
and data must be encapsulated in a software component called a
“function block.” In the IEC 61131-3 standard, program organi-
zation units (POU) including programs, functions, and function
blocks are defined for encapsulation. Second, the concept of
global variables makes IEC 61131-3 POUs extremely difficult
to be distributed. In contrast, the absence of global variables
in IEC 61499 simplifies reallocation of IEC 61499 function
blocks to other devices in distributed automation systems, while
the mapping of function block instances (FBIs) to devices is
required only at the last stage prior to deployment. Finally, a
management model is introduced in the standard to facilitate
reconfigurability at runtime [5]. The management model con-
sists of a distribution model, communication interfaces between
devices, a set of commands, and suggested protocols.

There are several IEC 61499 implementations, usually
including a development environment and runtime execution
environment, some of which are developed in research and
academia (FBDK/FBRT [6] and 4DIAC-IDE/FORTE [7]), and
others being commercial products (nxtStudio/nxtRT61499F
[8] and ISaGRAF Workbench/ISaGRAF runtime [9]).
Interoperability, portability, and reconfigurability are partially
achieved among those IEC 61499 vendors [10]. For example,
function block library elements are portable between FBDK,
4DIAC-IDE, and nxtStudio thanks to XML-based representa-
tion. As demonstrated in [11], a basic level of interoperability,
based on a PUBLISH/SUBSCRIBE communication model
implemented via service interface function blocks (SIFBs), can
be achieved between all major IEC 61499 platforms, such as
FBRT, FORTE, nxtRT61499F, ISaGRAF, and BlokIDE [12].
Since SIFBs are commonly used to access hardware/firmware-
provided services, SIFBs developed for one runtime are not
usually portable to another platform. However, with the use
of proper interface abstractions, SIFB-type definitions may be
portable among development environments.

The runtime environments support some reconfiguration
actions through device management interfaces, which imple-
ment, for instance, such commands as creation and deletion
of FBIs during execution. Approaches to more intelligent

1551-3203 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



772 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 11, NO. 3, JUNE 2015

actions, such as automatic deployment [13] and automatic fault
recovery [5], have been proposed and demonstrated, but are
not yet standardized, while other advanced capabilities such
as automatic load sharing between controllers are yet to be
implemented.

The concept of service-oriented architecture (SOA) has been
introduced in the general computing domain to facilitate the
creation of distributed networked computer systems. The appli-
cation of SOA and Semantic Web technologies in industrial
automation was proposed by Jammes and Smit [14]. There
are several existing approaches to dynamic reconfiguration
based on the IEC 61499 standard. A concept of an engineering
support environment based on SOA for dynamically recon-
figuring IEC 61499 systems is proposed by Thramboulidis
et al. [15]. However, it seems to be limited only to the design
level as no detail on a service-oriented runtime environment
is given. The management model is investigated and a ref-
erence implementation is provided by Zoitl [16] and an IEC
61499 standard-compliant reconfiguration method is proposed
by Strasser et al. [17]. One premise of these approaches is
that function block-type definitions already exist in the target
execution environment, which imposes a serious limitation to
runtime reconfigurability of systems. This paper proposes an
SOA-based runtime architecture to remove this limitation.

SOA provides a software design pattern, in which software
components are only connected via messaging. This design
pattern is consistent with primitives of distributed automation
systems: modularity and communication [2], [18]. The loose
coupling introduced by SOA ensures interoperability between
various platforms regardless of their hardware and software
architecture. Finally, each service registered at a service repos-
itory could be discovered and invoked from other services by
exchanging service contracts. This increases the reusability of
programs.

In this paper, a method for the application of SOA to dis-
tributed automation systems is proposed. This approach aims
at increasing system flexibility and reducing costs of devel-
opment and integration. This paper is organized as follows.
In Section II, recent relevant research works on applying the
SOA concept in the industrial automation domain and exist-
ing dynamic reconfiguration approaches are reviewed. The
potential benefits of SOA principles for distributed automation
systems are discussed with applicable scenarios in Section III.
A formal model and definitions for mapping SOA princi-
ples to IEC 61499 are described in Section IV. Section V
illustrates an IEC 61499 execution environment architecture
based on SOA. One of the main features of flexibility—
dynamic reconfiguration—is demonstrated with a case study in
Section VI. Following that, a preliminary analysis and compar-
ison of the proposed SOA-based runtime is provided. Finally,
conclusion as well as possible future works is provided in
Section VIII.

II. RELATED WORKS

Several researchers share the ideas of applying SOA as a kind
of middleware to achieve interoperability and communication
between distributed nodes in the industrial automation domain.

Lastra et al. [19] discussed current trends in industrial
automation, especially in factory automation, concluding that
immediate benefits could be provided to factory automation
by introducing XML, Web services (WSs), and Semantic Web
Technologies. Delamer et al. [20] proposed a middleware based
on the CAMX event and SOA, enabling discovery, message
exchanging, and self-configuration in distributed factory sys-
tems. A new protocol is invented in order to propagate semantic
service descriptions. Lobov et al. [21] investigated applying
Semantic WSs and ontologies into the manufacturing indus-
tries. In their solution, ontology and reasoning are used to
define responsibilities for each device (possibly from differ-
ent vendors), and Semantic Web technologies are used to query
operations (services) of industrial processes.

Candido et al. [22] investigated a common architecture to
support different phases of the device lifecycle by combining
evolvable production systems and SOA. As a result, a modular,
adaptive, and open infrastructure is formed, in which com-
ponents can interact and be combined to meet legacy system
specifications. The authors also illustrate a dynamic deploy-
ment process, which uses a PLCopen device configuration
XML file [23] to fill in a predefined service class template and
convert to XML deployment file using WS management (WS-
management) [24]. This process focuses on providing dynamic
deployment to IEC 61131-3 PLCs from a model-driven engi-
neering perspective. No improvement is made on the execution
environment, whereas this paper aims for enabling flexibility on
the runtime level.

Stoidner et al. [25] propose a SOAP4PLC engine to invoke
a manufacturing task running on a PLC via WSs. In their
approach, which aims at IEC 61131-3 PLCs, adding SOA FBs
to process SOAP messages does not seem to improve flexibil-
ity and reconfigurability; however, the fundamental concepts
of mapping FB to services and using SOAP messages are also
applicable for IEC 61499.

Various formal models of SOA have been developed in the IT
and Internet-of-Things (IoT) domain [26]–[28]. However, these
formal models cannot directly apply to automation systems. For
example, in [28], the business process scripts, procedural pack-
ages, and all package headers are defined in a system structure
which does not exist in the automation domain. Software struc-
tures in automation systems are also not covered by any of these
models, since there is no function block concept in the general
computing domain.

Finally, there are also some SOA-related works in the area of
dynamic reconfiguration of industrial automation systems.

Middleware is proposed by Valls et al. [29], [30] for recon-
figuration of distributed real-time systems based on SOA. A
formal system and software model are developed to support
the middleware. The dynamic reconfiguration is bounded with
time and service composition and is performed at the resource
manager during runtime. The entire control is implemented as
an automation agent incorporating high-level control and low-
level control (LLC). However, dynamic creation and deletion of
LLC components’ types during operation is not covered in the
middleware.

A knowledge-based framework for dynamically adaptive
systems is proposed by Thramboulidis et al. [15]. The



DAI et al.: BRIDGING SOA AND IEC 61499 FOR FLEXIBILITY AND INTEROPERABILITY 773

knowledge-based framework is based on ontologies, SOA,
and Semantic Web languages. The SOA-based framework is
integrated with software agents to achieve negotiation between
support systems.

A general concept of autonomous application recovery in
distributed intelligent automation and control systems is pre-
sented by Strasser et al. [5], [17]. The reconfigurability pro-
vided by the IEC 61499 standard is used as the basis for
dynamic reconfiguration and recovery. IEC 61499 management
commands are utilized to create and initialize function blocks at
the runtime level. State and data could also be transferred from
one IEC 61499 resource to another by management commands.
An IEC 61499 standard-compliant reconfiguration method is
also proposed [17]. The SOA-based runtime architecture pre-
sented in this paper is complementary to the reconfiguration
methods proposed by Strasser. The methods could be applied to
the proposed SOA-based execution environment without major
modifications.

An agent-based approach for dynamic reconfiguration of
real-time distributed control systems is proposed by Brennan
et al. [31]. IEC 61499 function blocks are used to model the
system and agents, including coordinator agent, mobile agent,
and cohort agent, to achieve dynamic reconfiguration. A similar
idea using agents for self-reconfiguration of IEC 61499 systems
is presented by Lepuschitz et al. [13], [32]. Reconfiguration is
managed by an application implemented on the function block
level and reconfiguration models are defined using an ontolog-
ical knowledge base. The reconfiguration model presented by
Lepuschitz is based on the model provided by Zoitl in [16] and
covers the changing of program sequences; adding, deleting,
relocating, and replacing instances of software components;
and changing parameters of software components. Dynamically
adding, deleting, relocating, and replacing definitions of soft-
ware components are feasible using these models but not yet
fulfilled by the execution environment.

Applying the SOA concept to the implementation of the IEC
61499 standard at the device level is a feasible solution, which
provides interoperable automation systems. This paper aims at
bridging the gaps in existing reconfiguration models to enhance
interoperability and flexibility in distributed automation sys-
tems. Not only creating instances but also type definitions [such
as function block types (FBTs) and subapplication types] is
covered by a new flexible and interoperable execution envi-
ronment architecture. The flexible and interoperable runtime is
also applicable for adapting both legacy- and future-distributed
automation systems.

III. INTEROPERABLE AND FLEXIBLE DISTRIBUTED

AUTOMATION SYSTEMS BY APPLYING SOA PRINCIPLES

There are several well-known principles of SOA defined in
the software engineering domain [37]. The principal aim of
SOA is to improve the flexibility, interoperability, and abstrac-
tion level of software components. Two key principles of
SOA are loose coupling and discoverability. SOA defines that
logic must be encapsulated into services, which could only be
accessed via messages. The loosely coupled software compo-
nents ensure future expansion to various platforms and future

technologies. Complex logic hidden in services provides an
abstraction for the system-level overview.

Services and messages are formally defined by contracts.
A service contract consists of all primary definitions: general
information of service, such as name, type, owner, version, and
responsibility; functional description including requirements,
service operations, and how to invoke the service (message
components); and additional information such as quality of ser-
vice, security, semantics, and description of the service. Service
contracts are registered at service repositories, so that services
could be discovered and invoked by other services.

Existing IEC 61131-3 PLC POUs are tightly coupled.
Dynamic reconfiguration of IEC 61131-3 systems is achieved
by switching between multiple instances of resource configura-
tions created on PLCs. Online editing is also available in most
IEC 61131-3 implementations. However, these implementa-
tions are all proprietary and there is no mechanism of managing
POUs defined in the IEC 61131-3 standard. Therefore, in this
paper, the IEC 61499 architecture will be used as the target
platform.

Dynamic reconfiguration is the key to achieve interoperabil-
ity and flexibility in distributed automation systems. The IEC
61499 standard defines a management model with a set of com-
mands, which have capabilities to create and delete FBIs as well
as connections between FBs. FBs can also be started, reset, or
stopped using these commands. Benefits and applicable sce-
narios of dynamic reconfiguration of IEC 61499-compliant
systems have been researched in a number of works, e.g., [16],
[17], and [31]. These approaches improve flexibility of dis-
tributed automation systems. By introducing industrial software
agents, intelligent features such as automatic deployment, auto-
matic load sharing, automatic fault detection, and recovery can
be achieved [5], [13].

Flexibility requirements are tightly intertwined with the
implementation of functional and nonfunctional requirements.
For example, even a standalone part of an automation system,
such as a safety subsystem that is handling emergency situa-
tions, may require the reconfiguration of hardware or software.
It is often the case that the safety subsystem needs updates
to cover hazards discovered during system operation, which is
done by the deployment of new software components to PLCs.
Similarly, in airport baggage handling systems (BHSs), bag-
gage screening policies are continuously improving to ensure
safety and security. These new functionalities in the baggage
screening process must be introduced without stopping systems
in airports operating 24 h a day.

The IEC 61499 management model is well suited to address
these requirements. Not only FBIs, but also definitions of FBTs,
adapter types, and data types can be created or deleted by just
sending management commands. In order to achieve that, intro-
ducing SOA at the runtime level is an appropriate mechanism.
Loosely coupled services ensure that software components can
be inserted or removed anytime during execution without any
dependency between them. The idea of enabling SOA on the
runtime level is already experimented in the automation domain
by Candido et al. [33] using Inico S1000 remote terminal
unit (RTU) [34]. The Inico S1000 RTU provides XML/SOAP
[37] external interface, access to I/O modules, and integrated



774 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 11, NO. 3, JUNE 2015

HMI panels. The integration of WSs into PLCs has also been
demonstrated by Mathes et al. [35].

One of the benefits of bridging SOA with IEC 61499 is
that plug and play software components at runtime level (PnP)
[36] are enabled by the service discovery mechanism. PnP is
widely adopted in the computing world, e.g., in the USB inter-
face. In industrial automation, plug and play relies on service
discoverability, i.e., the ability of a new controller to be recog-
nized automatically by other controllers on the same network
when it is plugged into industrial fieldbuses. By exchang-
ing service contracts between the new controller and existing
controllers, the new controller could identify existing system
configurations.

A second benefit of SOA is achieving interoperability
between PLCs regardless of the details of internal imple-
mentations. In the IEC 61499 standard, SIFBs are usually
platform-dependent; to access those blocks from another plat-
form, communication blocks must be inserted. Considering
each function block as a running service, function blocks run-
ning in one PLC could be invoked by other function blocks in
other distributed PLCs without involving any SIFB within the
same framework. Consequently, a PLC program could be built
based on invoking external service libraries if external com-
munication latencies are minimal compared to execution time
of function blocks. Those FB libraries could be located at and
invoked from PLCs in existing systems implemented by another
system integrator even if their original source code is hidden.

Finally, the SOA-based approach brings benefits in terms
of cost savings. The existing redundancy approaches for PLCs
are mostly hardware-oriented: a duplicated (backup) controller
is operating in parallel with the primary controller—reading
inputs but not emitting outputs. A dedicated link between the
primary and the backup PLC is continuously monitoring health
status of the primary PLC. When a failure occurs in the pri-
mary PLC, the dedicated link will activate the backup PLC. By
adopting SOA-based PLCs, complete sets of redundant hard-
ware are not necessary. The redundancy could be achieved in
a software-oriented approach using available computing power
on other PLCs and allocating tasks automatically to available
PLCs. Potentially, physical PLCs could be moved to a local
cloud. Virtual PLCs could be setup on the local cloud to provide
cheaper but more powerful redundancy solutions. When a soft
PLC is faulted, the local cloud could immediately create a new
instance of the soft PLC and switch tasks over. The hardware
cost could be reduced significantly by eliminating redundant
hardware.

IV. FORMAL MAPPING BETWEEN IEC 61499 FUNCTION

BLOCKS AND SOA

In order to investigate what SOA features can be achieved in
IEC 61499, a formal mapping is defined in this section. Some
SOA characteristics may not be necessary in the IEC 61499
standard. The proposed formal mapping will provide only the
relevant parts. The basic principles of SOA are loose coupling
and discovery, whose implementation implies the existence of
a service requester, a service provider, and a service repository.
In the general definitions of SOA, the logic is encapsulated into

service providers and registered at service repositories. When
a program intends to invoke a particular logic from a service
provider, the requested service will be located by the service
repository for the service requester. Consequently, the service
requester can access the service provider via sending messages.

SOA is defined in [27] as a four tuple

SOA = (S, Spro, Sreq, Srepo)

where S is a set of services; Spro is a set of service providers;
Sreq is a set of service requesters; and Srepo is a service
repository.

Considering the IEC 61499 architecture, all services can be
divided into function block services (SF ), resource services
(SR), and device services (SD)

S = SF ∪ SR ∪ SD, SF ∩ SR = �,

SR ∩ SD = �, SF ∩ SD = �.

Only function block services are considered in this section.
Definition 1: Each service s ∈ SF is mapped to an IEC

61499 FBT

s.t. : SF → FBType

where FBType is a set of IEC 61499 FBTs. One FBT can be
mapped to more than one service from SF because of multiple
instantiation of FBT.

A service could be either atomic (self-contained without
invoking other services) or composite (consist of other ser-
vices) [37]

S = Sc ∪ Sa

where Sa is a set of atomic services and Sc is a set of com-
posite services. A composite service sc ∈ Sc consists a set of
interconnected other (internal) services

sc = fc(s1, s2, . . . , sn), si ∈ S, i ∈ [1, n]

where fc is a composition function.
There are three FBTs defined in the IEC 61499 standard:

basic function block (BFB), composite function block (CFB),
and SIFB

FBType = BFBType ∪ CFBType ∪ SIFBType

BFBType ∩ CFBType = �.

The functionality of basic FB is defined by a state machine
[execution control chart (ECC)] and algorithms activated dur-
ing state transitions. Service interface FB is used as a “black
box,” which is mainly responsible for external communications
and platform-dependent functions. Based on the SOA approach,
both BFB and SIFB cannot encapsulate other function blocks
(implementation of an SIFBType as a BFBType or a CFBType
is not limited in the IEC 61499 standard, but in principle,
the details of an SIFBType’s internal implementation may be
hidden from the user).

Definition 2: An atomic service is used to represent every
IEC 61499 basic and SIFB

∀s ∈ SF [st(s) ∈ (BFBType ∪ SIFBType) → s ∈ Sa].



DAI et al.: BRIDGING SOA AND IEC 61499 FOR FLEXIBILITY AND INTEROPERABILITY 775

In the standard IEC 61499 implementation, to create inter-
communication between two BFBs, SIFBs must be inserted
in both resources where the BFBs reside. In the SOA-based
approach, BFBs are able to send and receive messages from
any other FBs under the same service framework.

Composition of other services (encapsulation of BFBs and
SIFBs) is achievable using the composite FBT in the IEC 61499
standard. The CFB encapsulates BFBs, SIFBs, or even CFBs,
which form a function block network.

Definition 3: A composite service type is used to represent
every IEC 61499 CFB

∀s ∈ SF [st(s) ∈ CFBType → s ∈ Sc].

The top-level entity for IEC 61499 is the system configura-
tion. Each system configuration consists one or several devices.
Each device may contain one or more resources. FBIs are cre-
ated in a function block network (application) initially, then
allocated to various resources and devices. One of the key fea-
tures of the IEC 61499 standard is event-triggered execution—
an FB instance is only activated when any input event connected
from another FB instance is triggered. A FBI is defined as a five
tuple

FBI = (EIS, EOS, DIS, DOS, IVS)

where EIS is a set of event inputs; EOS is a set of event outputs;
DIS is a set of data inputs (DI); DOS is a set of data outputs
(DO); and IVS is a set of internal variables.

In terms of SOA, when an FB instance is triggered by
another FB instance, this FB instance is considered as a service
provider.

Definition 4: An FB instance FBI performs as a service
provider when an event input is triggered

(ei ∈ EIS [fei(ei) = true]) → FBI ∈ Spro

where ei is an event input of the FB instance; fei is an event
input trigger function whose result is true when any input event
is detected.

Vice versa, if the FB instance emits an output event, it is a
service requester.

Definition 5: An FB instance FBI performs as a service
requester (or notification) when an output event is emitted

(eo ∈ EOS [feo(eo) = true]) → FBI ∈ Sreq

where eo is an event output of the FB instance; feo is an output
event emit function whose result is true when any output event
is fired.

The last element in the SOA definition is the service repos-
itory. Service repository is a storage, which maintains a col-
lection of service definitions—service contracts. A service con-
tract defines a communication agreement, which is independent
from implementation. The service repository is defined as

Srepo = {scnt(s)|s ∈ S}
where scnt is a service description function, and scnt(s) is a
particular service description.

Fig. 1. SOA basic structure in IEC 61499.

As shown in Fig. 1, function blocks communicate with each
other via event and data connections. In the SOA view, one
event connection with associated data connections between two
function blocks is considered as the message pattern. Each
event connection is registered as a message type in the service
contract. In the message content, all the variables associated
with the event by a standard WITH declaration in the FB-type
definition are encapsulated.

In the general SOA implementation, each message is defined
as a two-way communication where response data could be sent
back to service requesters. This is also not necessary in the
IEC 61499 mapping, as event and data connections are one-way
communication only. Response messages will be considered as
new request messages from service providers back to service
requesters.

Message types are defined in each service contract. The IS-
PART-OF relation between services and messages types can be
defined by sm function

sm : MSGType → S

where MSGType is a set of message types used in the SOA.
Every message type MSG ∈ MSGType consists of one

request message type (MSGreq) and any number i >= 0 (0,
1 or more) of response message types (MSGres)

MSG = (MSGreq,MSGres)

i > 0 → MSGres = {MSGres1, . . . ,MSGresi}
i = 0 → MSGres = �.

Definition 6: A request message type (MSGreq) comprises a
message name (MSGname) mapped to event input ei and mes-
sage parameters (MSGparam) mapped as DI associated with
this event input in a FB interface

MSGreq = (MSGname,MSGparam)

MSGname ↔ ei

MSGparam ↔ DI.

Definition 7: A response message type (MSGres) comprises
a message name (MSGname) mapped to event output eo and



776 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 11, NO. 3, JUNE 2015

Fig. 2. SOA-based IEC 61499 runtime class diagram.

message parameters (MSGparam) mapped as DO associated
with this event output in a FB interface

MSGres = (MSGname, MSGparam)

MSGname ↔ eo

MSGparam ↔ DO.

Another option is to use adapter connections as defined in
the IEC 61499 standard for representing bidirectional commu-
nication.

The proposed formal mapping between SOA and IEC 61499
provides a guideline on how to implement the IEC 61499
service-based execution environment architecture and inter-FB
communications.

V. INTEROPERABLE AND FLEXIBLE IEC 61499
EXECUTION ENVIRONMENT ARCHITECTURE BASED

ON SOA

In order to implement creating and deleting FB-type def-
initions dynamically, an SOA-based IEC 61499 runtime is
proposed in this section based on the formal mapping presented
in the previous section. The class diagram of the SOA-based
IEC 61499 runtime architecture design is shown as Fig. 3.
Each class in the diagram is implemented as a software service
according to the Definition 1.

The key service is the resource manager. The resource man-
ager is responsible for receiving and interpreting management
commands from IEC 61499 IDEs, and in principle from other
function blocks as well, and composing a response. As defined
in the IEC 61499 standard, key words for management com-
mands are CREATE, DELETE, START, STOP, KILL, QUERY,
READ, WRITE, and RESET . The target element could be

one of the following: FB, Connection, FBType, AdapterType,
DataType, and Parameter. The resource manager is also imple-
mented as the service repository, which keeps a list of all FB
types and instances.

The basic pattern for the function block service execution
model is given in Fig. 2. A function block service contains three
service components: 1) predefined service (static); 2) com-
piled service (dynamic); and 3) data service. The core part is
static service whose service contract is predefined. As shown
in Fig. 2, the static service refers to the FB service, which con-
tains interface definitions compulsory for every FB type. When
a request to create a new FB type is received at the resource
manager, a new FB service instance is instantiated and the ser-
vice endpoint of this instance is registered in the repository list
(Fig. 1) by invoking the CreateFBType function. When ser-
vice types are no longer needed, these FB service instances
and their endpoints can be deleted by calling the DeleteFBType
function via management commands. Multiple FB instances of
the same type will share the same FB service interface defi-
nition and logic implementation. Dynamic services are unique
for each function block definition, e.g., logic in a SIFB or EC
state algorithm in a BFB. Again, only one dynamic service
interface definition and logic implementation is needed for one
FB type. The last part of the FB service definition is data ser-
vices. Data services are responsible for storing all FBI data such
as values of all input, internal, and output variables. For every
FB instance, an individual FB data service instance is instanti-
ated when the CreateFBInstance function is invoked. Service
endpoints of both FB types and instances will be stored in
the resource manager once created. To remove an FB instance
and its registration from the repository, the DeleteFBInstance
function will be activated. Separation between logic and data
ensures no wasted program memory due to duplicated logic.



DAI et al.: BRIDGING SOA AND IEC 61499 FOR FLEXIBILITY AND INTEROPERABILITY 777

Fig. 3. Design pattern for SOA-based IEC 61499 FBs.

Following the basic pattern, a BFB service is defined as illus-
trated in the top row of Fig. 3. Basic FB service inherits from the
base FB service, which contains the interface list. In addition,
EC state declarations including state transition declarations and
state actions are defined in basic FB services. EC state actions
include service endpoints, which indicate the address of the
assigned EC algorithm in the dynamic services of this FBT.
Service endpoints of EC actions are retrieved from the resource
manager as well (refer to Fig. 1).

Dynamic services of basic FBTs refer to EC algorithms and
EC transition conditions. EC algorithms are normally writ-
ten in one of the IEC 61131-3 programming languages. Most
commonly, they are coded in the structured text (ST) and lad-
der diagram (LD) languages. For efficiency purposes, each EC
algorithm in ST, LD, or any other language can be compiled
into a function in the dynamic service instead of interpreting
those languages at runtime level. When an EC transition condi-
tion is activated, related EC algorithm(s) will be invoked via the
predefined service endpoint from the static service. The same
approach applies to EC transition conditions as well. In order to
avoid complicated interpretation of Boolean algebra, each EC
transition condition is also compiled into a function. A Boolean
value is returned to indicate whether the Boolean expression is
true.

The base FB data service class is mainly responsible for
storing FB status (IDLE, RUNNING, KILLED, or STOPPED)
and variable values of FB instances. The basic FB data service
extends the base FB data service with internal variables and EC
states. Current EC state could be fetched from or updated to
data services. Internal variable values could be accessed from,
written to, and be overridden in data services.

Secondly, for service interface FB types, as seen from the
second row in Fig. 2, service sequence definitions and algo-
rithms associated with SIFB service definitions are extended.
Service sequence in SIFB is a set of ordered transactions,
which describes a particular functionality or process. In the
dynamic definitions, all algorithms defined in service sequences
are compiled and service points are stored in the repository
located inside the resource manager (refer to Fig. 1). From the
data services part, the only difference is that the current ser-
vice sequence status is in place instead of current EC state. In

some existing IEC 61499 platforms, any change required for
SIFB will lead to recompiling the entire runtime. By adopt-
ing the proposed SOA-based design pattern, SIFBs could also
be dynamically created, modified, or deleted. SIFBs are typi-
cally applied for communicating with I/O modules and exter-
nal devices. Fieldbus protocols are implemented using SIFBs,
which provide access to I/O modules. Multiple FBs are able to
read input values from a single-input module SIFB. Each out-
put can only be written by one FB due to limitation of IEC
61499 data connection: only one data connection is allowed to
each DI of any function block. This ensures that I/O can only
be accessed by PLC internally and one-to-one output mapping
ensures data integrity.

Finally, for a composite FB service, there is no dynamic defi-
nition and no extension to data services required as shown in the
last row of Fig. 3. In the static definitions, there is a new FB net-
work definition, which contains all nested FBs and connections
between those FBs. For every FB encapsulated in a composite
FB, a new data service is created for this FB instance.

The execution of an FB network is implemented based on
the event-queuing system concept from discrete-event systems
theory [38]. A first-in first-out (FIFO) message queue is intro-
duced for each IEC 61499 resource manager. The resource
manager will keep monitoring this message queue after the
StartExecution() function is invoked. When an output event is
triggered by any FB, this FB acts as service requester (refer to
Definition 5). A request message that includes this output event
with associated DO is queued (refer to Definition 7). While
the event queue is not empty, the resource manager will fetch
the next request message from the FIFO (refer to Definition 6)
and trigger the corresponding event input from the target FB as
service provider by invoking RunFBInstance() function (refer
to Definition 4). Composite FBs shall only be invoked by the
resource manager (refer to Definition 3). Basic FBs (run ECC)
and service interface FBs (run service sequence) could be called
from either the resource manager or other composite FBs (refer
to Definition 2). The FIFO message queue ensures no message
lost between services and only one message is delivered to one
FB service at the same time. An FB network is executed in
sequential order according to the service sequence generated
by ScheduleFBNetwork() function.

In the current implementation of IEC 61499 service-based
runtime, WSs description language (WSDL) [37] is used for
defining service contracts. Request and response messages
between function block services are encoded using simple
object access protocol (SOAP) [37]. Function block service
types are discoverable by the resource management service
using the WS-discovery protocol [37]. Management commands
are interpreted and the resulting actions are handled by the
resource management service as the body of SOAP messages.

VI. DYNAMIC RECONFIGURATION EXAMPLE USING SOA

Many research results have already proved that IEC 61499
is capable for dynamically reconfigurable distributed automa-
tion systems at the runtime level [5], [13], [16]. In this work,
dynamic reconfiguration will be only demonstrated in some
enhanced features based on the service-oriented runtime—in



778 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 11, NO. 3, JUNE 2015

Fig. 4. BHS screening subsystem layout and FB dynamic reconfiguration implementation.

this case, delete existing FB type and create a new FB type.
A screening subsystem of an airport BHS is used as the case
study example here.

As shown in the device layout diagram (Fig. 4), baggage
units are inducted from the in-feed conveyor lines CI-B01 to
08 into the two screening lines (CB-A and CB-B). Bags are
equally distributed to two lines by plough diverters (PLD1 and
PLD2). An exposure detection system (EDS) X-ray machine
(EDS1 and EDS2) is the core part of each screening line. Bags
cleared from the security check by EDS machines will be sent to
sortation subsystems. When none of the screening lines is oper-
able (fault) or die-back occurs due to exceeding the maximum
system throughput, bags will be sent to CIB-06 for manual
inspection.

During normal operation, a large volume of bags is sent to
manual inspection during peak hours. In order to reduce work-
load for operators, “indexing” (queuing) functionality needs to
be added to conveyor CB-A03 and CB-B03. The indexing func-
tionality is enabled to accumulate bags when the downstream
conveyors are stopped. A conveyor leaves indexing mode auto-
matically when the downstream line returns to full flow.

As seen in Fig. 4, a new EC state “INDEX” is inserted
into the conveyor control BFB-type FB_Conveyor_I. A new
event input “INDEX” is added to indicate when a downstream
conveyor is stopped. When this event is triggered, the EC tran-
sition condition from state “RUN” to “INDEX” is satisfied. The
conveyor will switch back to RUN mode when downstream

conveyors are available. Table I lists the steps of the reconfig-
uration sequence that adds the queuing functionality without
stopping normal operation.

VII. PRELIMINARY ANALYSIS OF SOA-BASED RUNTIME

The case study example is tested with the BHS emulator
provided by Glidepath Group [39] and the function block ser-
vice runtime (FBSRT) on a Beaglebone Black board [40] with
AM335x 1 Ghz CPU, 512M DDR3 RAM and 4 GB ROM.
The FORTE runtime [7] will be used as the comparison refer-
ence as similar implementation (both using C++). The message
throughput test is performed by repeating 10 000, 100 000,
and 1 million times according to the reconfiguration sequence
demonstrated in Table I.

As seen from the result of the message throughput test in
Fig. 5, the average time for a SOAP message is approximately
0.4 ms on a persistent connection between services. The aver-
age time is five times more (2.4 ms for each message) if
connections are closed after messages are sent. From tests for
10 000, 100 000, and 1 million messages, the measured connec-
tion establishment time is 2 ms. In the FORTE approach, func-
tion blocks are invoked by method calls between classes. As a
result, there is no connection overhead. In the FBSRT approach,
SOAP messages are passed over local TCP/IP stack within
same device and over Ethernet between devices. Persistent
connection between services is a feasible solution. However,



DAI et al.: BRIDGING SOA AND IEC 61499 FOR FLEXIBILITY AND INTEROPERABILITY 779

TABLE I
RECONFIGURATION SEQUENCE FOR ADDING INDEX FUNCTIONALITY

Fig. 5. SOAP message throughput test on FBSRT.

the number of persistent connections must be limited due to the
large memory requirement imposed by numerous active service
endpoints.

Second, the memory requirement test is performed. Two
compiled function block file sizes are compared between
FBSRT and FORTE as shown in Fig. 6: basic FB—
FB_Conveyor_I and composite FB—FB_EStopZone. The basic
FB file size in FBSRT is twice as large as the FORTE version.
SOAP message send and receive functions must be embedded
into every FBT in FBSRT. FBTs are separated in individual
files, which can be created or deleted. FORTE compiles all files
into one single executable file, which is more efficient on mem-
ory consumption; however, this reduces flexibility. Nested FBs
in a CFB are flattened to individual software services, so no
compiled file is required for CFB in FBSRT. The CFB type only
contains its service call sequence and interface data. Overall,
the FORTE version for two files is still 19.3K smaller compared
to the FBSRT version (48.7K vs. 68K).

Fig. 6. Size for compiled FB files on FBSRT and FORTE.

To conclude, FORTE is designed for small devices with lim-
ited memory and computing power and the tightly coupled and
minimal communication overhead architecture fits well for its
scope. FBSRT demonstrates a qualitatively new level of flexi-
bility with slightly higher hardware performance requirements
than FORTE. The SOA-based structure ensures flexibility and
interoperability for future-proof automation systems.

VIII. CONCLUSION AND FUTURE WORK

With the goal of improving reconfigurability, flexibility, and
interoperability of distributed automation systems, the fea-
sibility of applying the SOA into the industrial automation
domain has been investigated. Based on formal definitions for
implementing SOA with the IEC 61499 standard presented,
any element from all FB types as well as instances could be
dynamically created or deleted without interrupting normal exe-
cution in the SOA-based IEC 61499 runtime. Original source
code could also be retrieved from the runtime in case the
original code is missing or out-of-date. Enhanced interoperabil-
ity enables platform-independent external services (from other
automation systems or even Internet of Things) to communicate
with FBSRT using standard WSs protocols.

Continuing from this work, the plug-and-play feature
using service discovery protocol will be further investigated.
Autonomic service management will be introduced in order
to achieve self-manageable and adaptive systems. Rule-based
configurable execution behaviors will be defined in order to
support various existing IEC 61499 execution semantics and
performance comparison. Finally, the optimization of SOA
at the runtime level will be investigated to reduce memory
consumption and communication overhead.

REFERENCES

[1] IEC 61131-3:2013, Programmable Controllers–Part 3: Programming
Languages. Geneva, Switzerland: International Electrotechnical
Commission, 2013.

[2] V. Vyatkin, “Software engineering in industrial automation: State-of-the-
art review,” IEEE Trans. Ind. Informat., vol. 9, no. 3, pp. 1234–1249,
Aug. 2013.

[3] W. Dai, V. Vyatkin, and J. Christensen, “Applying IEC 61499 design
paradigms: Object-oriented programming, component-based design,
and service-oriented architecture,” in Distributed Control Applications:
Guidelines, Design Patterns, and Application Examples with the IEC
61499. Boca Raton, FL, USA: CRC Press, 2015.

[4] Function Blocks: International Electrotechnical Commission, Geneva,
Switzerland, International Standard IEC 61499-1:2012 et seq.



780 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 11, NO. 3, JUNE 2015

[5] T. Strasser and R. Foschauer, “Autonomous application recovery in dis-
tributed intelligent automation and control systems,” IEEE Trans. Syst.
Man Cybern. Part C, Appl. Rev., vol. 42, no. 6, pp. 1054–1070, Nov. 2012.

[6] FBDK. (2005). Function Block Development Kit/FBRT–Function Block
Runtime [Online]. Available: http://www.holobloc.com/

[7] (2011). 4DIAC-IDE/FORTE: An Open Source IEC 61499 IDE and
Runtime [Online]. Available: http://www.fordiac.org

[8] (2009, Jun.). nxtControl GmbH, nxtStudio and nxtRT61499F—Next
Generation Software for Next Generation Customers [Online]. Available:
http://www.nxtcontrol.com/

[9] (2005). ISaGRAF Workbench and Runtime [Online]. Available:
http://www.isagraf.com

[10] J. Christensen, T. Strasser, A. Valentini, V. Vyatkin, and A. Zoitl, “The
IEC 61499 function block standard software tools and runtime platforms,”
presented at the ISA Automation Week: Asset Performance, 2012.

[11] J. Yan and V. Vyatkin, “Distributed software architecture enabling peer-
to-peer communicating controllers,” IEEE Trans. Ind. Informat., vol. 9,
no. 4, pp. 2200–2209, Nov. 2013.

[12] BlokIDE, Model-Driven Engineering Design Environment [Online].
Available: http://www.timeme.io

[13] W. Lepuschitz, A. Zoitl, and M. Vallee, “Toward self-reconfiguration of
manufacturing systems using automation agents,” IEEE Trans. Syst. Man
Cybern. C, Appl. Rev., vol. 41, no. 1, pp. 52–69, Jan. 2011.

[14] F. Jammes and H. Smit, “Service-oriented paradigms in industrial
automation,” IEEE Trans. Ind. Informat., vol. 1, no. 1, pp. 62–70, Feb.
2005.

[15] G. Koumoutsos and K. Thramboulidis, “A knowledge-based frame-
work for complex, proactive and service-oriented e-negotiation systems,”
Electron Commerce Res., vol. 9, pp. 317–349, 2009.

[16] A. Zoitl, Real-Time Execution for IEC 61499. Research Triangle Park,
NC, USA: ISA, ISBN: 978193439-4274, 276 pp., 2009.

[17] T. Strasser, M. Rooker, G. Ebenhofer, and A. Zoitl, “Standardized
dynamic reconfiguration of control applications in industrial sys-
tems,” Int. J. Appl. Ind. Eng., vol. 2, no. 1, pp. 57–73, 2014. doi:
10.4018/ijaie.2014010104.

[18] Q. Zhu, Y. Yang, M. Natale, E. Scholte, and A. Sangiovanni-Vincentelli,
“Optimizing the software architecture for extensibility in hard real-time
distributed systems,” IEEE Trans. Ind. Informat., vol. 6, no. 4, pp. 621–
636, Nov. 2010.

[19] J. Lastra and I. Delamer, “Semantic web services in factory automation:
Fundamental insights and research roadmap,” IEEE Trans. Ind. Informat.,
vol. 2, no. 1, pp. 1–11, Feb. 2006.

[20] I. Delamer and J. Lastra, “Service-oriented architecture for distributed
publish/subscribe middleware in electronics production,” IEEE Trans.
Ind. Informat., vol. 2, no. 4, pp. 281–294, Nov. 2006.

[21] J. Puttonen, A. Lobov, and J. Lastra, “Semantics-based composition of
factory automation processes encapsulated by web services,” IEEE Trans.
Ind. Informat., vol. 9, no. 4, pp. 2349–2359, Nov. 2013.

[22] G. Candido, A. Colombo, J. Barata, and F. Jammes, “Service-oriented
infrastructure to support the deployment of evolvable production sys-
tems,” IEEE Trans. Ind. Informat., vol. 7, no. 4, pp. 759–767, Nov.
2011.

[23] PLCopen, “PLCopen technical committee 6: XML formats for IEC
61131-3,” Tech. Rep. v2.01, 80 pp., 2009.

[24] Web Services for Management (WS-Management) Specifications, DMTF
Standard DSP 0226, 2010.

[25] C. Stoidner and B. Freislenben, “Invoking web services from pro-
grammable logic controllers,” in Proc. IEEE Int. Conf. Emerg. Technol.
Factory Autom., 2010, pp. 1–5.

[26] R. Kyusakov, J. Eliasson, J. Delsing, and J. van Deventer, “Integration of
wireless sensor and actuator nodes with IT infrastructure using service-
oriented architecuture,” IEEE Trans. Ind. Informat., vol. 9, no. 1, pp. 34–
51, Feb. 2013.

[27] M. Clavreul, S. Mosser, M. Blay-Fornarino, and R. France, “Service-
oriented architecture modeling: bridging the gap between structure and
behavior,” Model Driven Eng. Lang. Syst., vol. 6981, pp. 289–303, 2011.

[28] S. Cherif, R. Ben Djemaa, and I. Amous, “ReMoSSA: Reference model
for specification of self-adaptive service-oriented architecture,” in New
Trends in Databases and Information Systems, New York, NY, USA:
Springer, 2014, pp. 121–128.

[29] M. Valls, I. Lopez, and L. Villar, “iLAND: An enhanced middleware
for real-time reconfiguration of service oriented distributed real-time
systems,” IEEE Trans. Ind. Informat., vol. 9, no. 1, pp. 228–236, Feb.
2013.

[30] M. Vallee, M. Merdan, W. Lepuschitz, and G. Koppensteiner,
“Decentralized reconfiguration of a flexible transportation system,” IEEE
Trans. Ind. Informat., vol. 7, no. 3, pp. 505–516, Aug. 2011.

[31] R. Brennan, M. Fletcher, and D. Norrie, “An agent-based approach to
reconfiguration of real-time distributed control systems,” IEEE Trans.
Rob. Autom., vol. 18, no. 4, pp. 444–451, Aug. 2002.

[32] M. Merdan, M. Vallee, W. Lepuschitz, and A. Zoitl, “Monitoring and
diagnostics of industrial systems using automation agents,” Int. J. Prod.
Res., vol. 49, no. 5, pp 1497–1509, 2011.

[33] G. Candido, C. Sousa, G. Di Orio, J. Barata, and A. Colombo, “Enhancing
device exchange agility in Service-oriented industrial automation,” in
Proc. IEEE Int. Symp. Ind. Electron., 2013, pp. 1–6.

[34] (2010). Inico S1000 User Manual [Online]. Available: http://www.
inicotech.com/doc/S1000%20User%20Manual.pdf

[35] A. Girbea, C. Sucio, S. Nechifor, and F. Sisak, “Design and implemen-
tation of a service-oriented architecture for the optimization of industrial
applications,” IEEE Trans. Ind. Informat., vol. 10, no. 1, pp. 185–196,
Feb. 2014.

[36] M. Sorouri, V. Vyatkin, S. Xie, and Z. Salcic, “Plug-and-play design and
distributed logic control of medical devices using IEC 61499 function
blocks,” Int. J. Biomechatron. Biomed. Rob., vol. 2, no. 2, pp. 102–110,
2013.

[37] T. Erl, Service-Oriented Architecture: Concepts, Technology and Design.
Englewood Cliffs, NJ, USA: Prentice-Hall, 2005, 760pp.

[38] C. Cassandras and S. Lafortune, Introduction to Discrete Event Systems,
2nd ed., Berlin, Germany: Springer-Verlag, 2008, vol. XXIV, 776 pp.

[39] Glidepath Group. (2005). Airport Baggage Handling System Integrator
[Online]. Available: http://www.glidepathgroup.com

[40] BeagleBoard.org Foundation. (2015). BeagleBone Black [Online].
Available: http://beagleboard.org/black

Wenbin Dai (GM’09–M’13) received the Bachelor
of Engineering (with Hons.) degree in computer sys-
tems engineering, and the Ph.D. degree in electri-
cal and electronic engineering from the University
of Auckland, Auckland, New Zealand, in 2006 and
2012, respectively .

He is an Assistant Professor with Shanghai Jiao
Tong University, Shanghai, China. He was a Postdoc
Fellow with Lulea University of Technology, Lulea,
Sweden, from 2013 to 2014. He was also a Software
Engineer with Glidepath Limited --D, a New Zealand-

based airport baggage handling system provider, from 2007 to 2013. His
research interests include IEC 61131-3 programmable logic controllers, IEC
61499 function blocks, industrial cyber-physical systems, cloud-based simula-
tion, and software architecture in industrial automation.

Valeriy Vyatkin (M’03–SM’04) received the Ph.D.
degree in computer science from the State University
of Radio Engineering, Taganrog, Russia, in 1992.

He is on joint appointment as Chaired Professor
of Dependable Computation and Communication
Systems, Lulea University of Technology, Lulea,
Sweden, and a Professor of Information and
Computer Engineering in Automation, Aalto
University, Helsinki, Finland. Previously, he
was a Visiting Scholar at Cambridge University,
Cambridge, U.K., and had permanent academic

appointments with the University of Auckland, Auckland, New Zealand; the
Martin Luther University of Halle-Wittenberg, Halle, Germany; as well as
in Japan and Russia. His research interests include dependable distributed
automation and industrial informatics; software engineering for industrial
automation systems; and distributed architectures and multi-agent systems
applied in various industry sectors, including smart grid, material handling,
building management systems, and reconfigurable manufacturing.

Dr. Vyatkin was the recipient of the Andrew P. Sage Award for the Best IEEE
Transactions paper in 2012.



DAI et al.: BRIDGING SOA AND IEC 61499 FOR FLEXIBILITY AND INTEROPERABILITY 781

James H. Christensen received the Ph.D. degree in
chemical engineering and computer science from the
University of Wisconsin at Madison, Madison, WI,
USA, in 1967.

He is currently with Holobloc Inc., Cleveland
Heights, OH, USA. He is an internationally recog-
nized expert in the standardization and application
of advanced software technologies to the automation
and control of manufacturing processes.

Dr. Christensen was the recipient of the Rockwell
International Engineer of the Year and Lynde Bradley

Innovation Awards in 1991 for his achievements in pioneering applications of
object-oriented programming in Smalltalk, and in 2007, he received the IEC
1906 Award and Process Automation Hall of Fame membership for recognition
of his accomplishments in the international standardization of programming
languages and architectures for industrial automation.

Victor N. Dubinin received the Diploma degree in
computer science and the Ph.D. degree in computer
science from the University of Penza, Penza, Russia,
in 1981 and 1989, respectively.

From 1981 to 1989, he was a Researcher, and
from 1989 to 1995, he was a Senior Lecturer
with the University of Penza. Since 1995, he has
been an Associate Professor with the Department
of Computer Science, University of Penza. In 2003,
2006, and 2010, he was awarded the German
Academic Exchange Service (DAAD)-grants to work

as a Guest Scientist at Martin-Luther-University, Halle-Wittenberg, Germany.
He was a Visiting Researcher at the University of Auckland, Auckland, New
Zealand, in 2011, and at the Lulea University of Technology, Lulea, Sweden,
in 2013 and 2014. His research interests include formal methods for specifi-
cation, verification, synthesis, and implementation of distributed and discrete
event systems.


