
 1

Abstract—In this paper we report on a new formal approach to

validation of on-the-fly modification of control software in

automation systems. The concept of downtimeless system

evolution (DSE) is introduced. The DSE is essentially based on

the use of IEC 61499 system architecture and formal modeling

and verification of the hardware and software of an automation

device. The validation is performed by means of two

complimentary techniques: analytic calculations and formal

verification by model checking.

Index Terms—Automation and control systems, Dynamic

reconfiguration, Verification and Validation, Manufacturing

automation, Model checking

I. INTRODUCTION

any industrial automation systems require operation

without a single stop for weeks or even months. At the

same time, it may be necessary to make modifications

of the control program in order to achieve higher performance

by applying more efficient control, or to add new machines

into the manufacturing process, etc. In such cases, update of

the control application cannot be done in the usual way by

stopping and restarting the controller, instead a more

sophisticated ‗on the fly‘ update is required while the plant is

running, being driven by the program which undergoes

modifications. Some real-life scenarios, for example presented

in [1], include (but not limited to) wind turbine control, or

rolling mill control in steel making. In general, the ability to

do ‗on the fly‘ control reconfiguration can be regarded as one

of the major enablers of flexibility and reconfigurability in

manufacturing. Needless to say, the modification needs to be

done in a way not affecting essential parameters of processes

in the plant. For example, in steelmaking such a parameter can

be the thickness of the steel sheet.

Some advanced programmable logic controllers (PLC)

support such ‗on the fly‘ program modification, but this

feature comes with many restrictions. First, as indicated in

many research results, the PLCs themselves do not fit to many

requirements of flexible reconfigurable manufacturing.

Secondly, the PLCs are good for local central control, but not

for distributed control with decentralized logic.

For several years the authors have been involved in a

Christoph Suender is with Thales Austria, Vienna, Austria,

christoph.suender@thalesgroup.com
Valeriy Vyatkin is with the University of Auckland, New Zealand

v.vyatkin@auckland.ac.nz

Alois Zoitl is with Technical University of Vienna, Austria,
Zoitl@acin.tuwien.ac.at

research activity towards development of a more general

solution for downtimeless change of control logic in

automation systems. The core part of the developed εCEDAC

solution [2] is the use of new IEC 61499 programming

architecture [3], supported by novel software tools and

runtime environments. In the course of εCEDAC project the

term ―Downtimeless System Evolution (DSE)‖ was coined,

whose meaning in the automation control systems context is

explained as follows:
 Downtimeless: Changes have to be applied to a running

system with minimal disturbance to the process under

control.
 System: Although software is considered to be the central

element that is under change, change in hardware also may

be taken into account, so we can talk about evolution of a

system as a whole.
 Evolution: This term reflects the continuous and gradual

nature of the changes that are required during a system‘s

life-cycle.

The goal of the DSE validation is to make sure that the system

under control works correctly during and after DSE is applied.

This paper presents a novel solution for DSE evaluation based

on comprehensive formal modeling of the control device with

subsequent formal verification.

The paper is structured as follows. Section II presents the

broader context of the problem and related works in the areas

of software engineering, industrial automation and formal

methods. Section III gives a short overview on the

prerequisites for this work. The methodology for evaluation of

DSE is introduced in section IV, followed by the discussion

on appropriate evaluation means in section V. Section VI

provides a description of modeling DSE in the formal

language of Net Condition/Event Systems (NCES) [19]. A

simple example will be used to demonstrate the practical

application of the evaluation framework in section VII. The

paper will be concluded with a summary of open issues

(section VIII).

II. BROADER CONTEXT AND RELATED WORKS

In the last 30 years several studies concerning the behavior

of software over its life-cycle have resulted in the so-called

laws of software evolution, which are discussed with respect

to component-based software engineering by Lehmann and

Ramil [4]. According to these studies it can be stated that a

program has to be continually adapted in order to satisfy the

requirements of the user over its lifetime. Although the idea of

evolution was initially conceived to support such maintenance

steps as an update of a program to a newer version, it is also

Formal Validation of Downtimeless System

Evolution in Embedded Automation Controllers

Christoph Suender, Valeriy Vyatkin and Alois Zoitl

M

mailto:christoph.suender@thalesgroup.com
mailto:v.vyatkin@auckland.ac.nz
mailto:Zoitl@acin.tuwien.ac.at

 2

applicable to software engineering in a broader sense. The

need for software systems that run continuously without

downtime applies to both business software and control

applications used in automation and control systems (ACS).

The challenges for software evolution have been summarized

in Mens et al. [5] with the main statement that ―the only way

to overcome or avoid the negative effects of software aging is

by placing change and evolution in the center of the software

development process‖. Some challenges, according to [5], are:
 Evolution as a language construct: ―Programming (or

modeling) languages should provide more direct and

explicit support for software evolution.‖
 Post-deployment runtime environment: ―There is an

urgent need for proper support of runtime adaptations of

systems while they are running, without the need to pause

them, or even to shut them down.‖
 Formal support for evolution: ―In order to become

accepted as practical tools for software developers, formal

methods need to embrace change and evolution as an

essential fact of life‖.

This paper addresses these challenges specifically in ACS

by proposing rigorous techniques for evaluation of the impact

of evolution upon the system during DSE. The following

works have essentially influenced our research:

Kramer and Magee [6] used the term dynamic

configuration for ―the ability to modify and extend a system

while it is running‖. Their model for dynamic reconfiguration

is based on a configuration manager, which is capable of

translating requests for configuration changes expressed in the

CONIC configuration language into commands to the

operating system.

Walsh et al. [7] investigated a conceptual framework,

which systematically and consistently addresses problems and

solutions related to dynamic reconfiguration. The action of

dynamic reconfiguration is categorized into different change

types. For each change type the management of integrity is

considered. In that work, this is used for the design of a

system capable to provide dynamic reconfiguration by

building a domain model which also includes fault tolerance

modes.

The IEC 61499 standard [3] defines a reference system

architecture for the next generation of distributed embedded

control systems. This open architecture provides several

enabling technologies improving flexibility and

reconfigurability of industrial control systems, such as:

component-based design using function blocks (FBs),

configurability, interoperability and portability. With the

growing support of commercial tools and platforms (e.g.

ISaGRAF [8] and NxtControl [9]), this architecture makes a

good progress towards becoming the major enabler of flexible

automation solutions. There is great number of related

research works. Thus, Brennan et al. [10] describe an

enhanced model for IEC 61499 FBs that enables also the

modeling of reconfiguration. The general idea is based on two

different kinds of control paths within an IEC 61499

application: the execution path which is responsible for

operating the normal control flow, and, orthogonally, a

configuration control path that can be used for reconfiguration

of the control application.

The related research on formal verification in the

reconfiguration context is exemplified for instance by

Tešanović et al. [11], who present a model-checking

algorithm that is capable to verify properties of reconfigurable

components. Their approach is based on aspect-oriented

software development which modifies given components

during the establishment of a system by applying certain

aspects.

In several works related to reconfigurable manufacturing

Figure 1. The idea of evolution control application (ECA).

 3

systems, formal models were used in the design process in

order to generate the control logic. Kalita and Khargonekar

[12] present a methodology that combines both theorem

proving and model checking based on timed transition

models. Li et al. [13] aim at the design of reconfigurable logic

controllers by rewriting Petri net based controllers. A similar

approach with Petri net rewriting rules is given in Alcaraz-

Mejía and López-Mellado [14]. The dynamic reconfiguration

is expressed directly as model‘s rewriting. Park et al. [15]

consider a controller capable to change within three pre-given

modes. As a consequence, along with the formal model of

different controllers and their control modes, also the mode-

switching logic is included into the model of the system. This

approach is based on Petri nets and automatic code generation

from these models.

Although there are several developments aiming at dynamic

reconfiguration, the existing works focus only on certain

layers of software. No work is known to us that can model

changes to the whole system and rigorously evaluate the

evolution process. We are also not aware of any work towards

practical application of the dynamic reconfiguration methods

in the flexible automation context. The work, reported in this

paper, aims at bridging this gap.

III. DSE FRAMEWORK

The results of this work have been developed in εCEDAC

project. Some preliminary ideas of the DSE engineering

process and validation have been reported by Rooker et al. in

[2]. DSE is based on the services provided by the runtime

environment as described by Zoitl in [16].

A. Real-time reconfiguration runtime environment

DSE sets two important requirements to the runtime

environments of embedded controllers: support for dynamic

reconfiguration and execution with guaranteed real-time

properties. The real-time reconfiguration runtime

environment (R
3
E) [16] fulfills these requirements. R

3
E is a

fully functional IEC 61499 – compliant platform. In addition

to the event-driven execution of FBs, R
3
E supports the

execution of FB applications with regard to real-time

constraints by providing a real-time scheduling solution for

IEC 61499. The chain of FB executions started through an

event occurrence at one event source FB and ending in an

event sink FB serves as the execution context that is mapped

to tasks within the operating system. The real-time constraints

can be applied to the event source FBs within the application.

Further, the R
3
E provides enhanced capabilities for control

logic reconfiguration during its execution. It supports standard

management commands defined in IEC 61499, but enhances

this set to provide a complete basis for dynamic

reconfiguration. The enhancements are related, in particular,

to the access to FB internal variables and execution control

services for managed FBs. These commands are called basic

reconfiguration services and are implemented as a library of

FB types. A special kind of FB application—termed as an

evolution control application (ECA)—is constructed from the

instances of those FBs to implement the desired

reconfiguration. In Figure 1, a sample ECA is changing one

controller function block to another controller function block.

The control application is located in the lower part of the

Figure with gray shaded shapes of FBs, and the block to be

substituted is of white color. The ECA is in the top part of the

Figure. The logic of ECA execution is chain-like, upon

completion of one step the corresponding FB emits an event,

activating the next FB in the chain.

Since R
3
E can guarantee real-time properties of executed

FB application, it can guarantee the fulfillment of such

constraints for the combination of the original control

application and the ECA, providing the basis for

downtimeless system evolution.

The ECA is custom made for a particular control

application being reconfigured, but templates can be

developed for some typical cases. Thus Guler et al. [17]

provide an idea of such a template for transition management

in the case of the substitution of components (e.g., a controller

in a closed-loop circuit).

B. Execution of the Evolution Control Application

As shown in Figure 2, evolution starts with the upload of an

ECA into the device. If new hardware components are

necessary within the system evolution step, they have to be

made available already in this step. This is followed by three

core sequences for applying changes to the software within

the system, which are modeled according to the rules listed

below. Evolution is concluded by the deletion of the ECA

from the devices and the removal of the hardware that is no

longer required.

Figure 2. Execution phases of a system evolution step.

The steps in between apply changes to the control application

based on the execution of the ECA:

Initialization sequence (RINIT) is the first sequence within

the execution of the ECA. Typical actions within this

sequence are the creation of new FBs and their input

connections. No action within the RINIT sequence will affect

the execution and behavior of the current control application.

As a consequence these actions are not time critical and may

be executed whenever a control device is not busy with

executing control application‘s FBs.

Reconfiguration sequence (RECONF) follows the

initialization and is responsible for making behavioral changes

to the current control application. Based on the preparations

(RINIT sequence) the current application can be modified at

 4

this stage to the new application. The actions within the

reconfiguration sequence are time critical. In the case of FB

substitution, the output connections have to be reconnected

from old FBs to new FBs, and the internal states have to be

properly set in the new FBs.

Deinitialization sequence (RDINIT) is responsible for

bringing the system into a ―clean‖ state. As the RECONF

sequence is the critical one, no time should be spent at that

stage for deletion of old FBs or connections. These elements

can be deleted later within the RDINIT sequence. This

sequence is not time critical as it does not influence the

behavior of the control application.

C. Models for evaluation of ECA

The ECA formal evaluation technique developed in this

work is based on two recent developments discussed as

follows:

The authors have proposed in [23] a comprehensive

classification of control devices that reflects their multilayer

architecture and captures various characteristics, from

properties of hardware to details of a particular control

application. This allows representing each particular

configuration as an array of parameters; each of which is

associated with a numeric value. This array of parameters is

referred to as KAPPA vector. Based on the classification, a

universal analytic model of a control device was developed in

[23] that can provide, for a given configuration and state,

numeric estimations for such parameters as response time of

the device, or schedulability bounds of real-time constrained

function block chains [16]. The KAPPA vector is constant

during the normal system operation (as it does not include

internal variables of FBs), but may change after any change is

applied to the ACS during system evolution, as shown in

Figure 1. Stable states before and after DSE are characterized

by the vectors KAPPA1 and KAPPA6 respectively. The

vectors KAPPA2 to KAPPA5 correspond to the intermediate

configurations achieved after the application of different

reconfiguration command sequences of the system evolution

step.

Another foundation of this work is the recent progress in

comprehensive formal modeling and verification of control

systems. New modeling languages and tools have enabled

composition of formal models from pre-defined modules.

Model-generators can create models automatically given

source code of the controller. Powerful model-checking

software tools can check the validity of complex temporal

logic properties against such comprehensive models.

One such modular modeling language is Net

Condition/Event Systems (NCES) (Rausch and Hanisch [19]).

The dynamic behavior of modules is described as a Petri net

extended with condition and event signals. The composition

of such modules is achieved by interconnecting their event

and condition interfaces. The composition‘s result can also

have an interface, so it can be used in other composite models.

In this way complex models can be structured hierarchically.

In order to analyze such a hierarchical model by model

checking, it can be transformed into a flat model without

modules. The VisualVerification (ViVe) toolset [26] performs

the transformation to the flat model and model-checking

followed by visual interpretation of its results.

Substantial experience has been obtained in NCES

modeling of closed-loop automation systems, e.g. [21]

presents details of the modeling of both plant and controller

parts. Modeling of IEC 61499 function blocks was addressed

in [22] and [25]. The most important features of NCES for

DSE evaluation are:

Modularity: The model of a control device is a modular

and hierarchical composition of modules modeling details of

the plant and the control devices (including operating system,

the runtime environment, the control program, and so on).

Thus, model-checking can reveal how the changes, applied to

the controller, effect the behavior of plant.

Control flow via events: Invocation of a code segment can

be modeled by passing an event to the NCES transition,

modeling the first command in the segment.

Timing: The model can capture timing properties of the

controller commands, which also provides the possibility to

correctly model preemption of tasks by the operating system

(see [23] for details).

The NCES dialect used in this paper follows [20] and is

characterized by such features as timed arcs and arcs with

multiple tokens capacity, but no colored tokens. The approach

to NCES modeling of ECA and runtime environment is based

on the work [23] and [25]. Analytic evaluation and model-

checking are complementary techniques, and our approach

proposes using both, but for evaluation of different system

evolution steps. This will be further discussed in section V.

IV. METHODOLOGY OF DSE EVALUATION

The goal of this section is to extract properties that will be

checked at each step of DSE in order to evaluate its

correctness. For this purpose, the basic reconfiguration

services of the runtime environment R
3
E will be evaluated in

terms of the reference architecture for dynamic

reconfiguration [7] by Walsh et al., where a general model of

changes to a component-organized software system was

proposed, including system integrity characteristics.

We will apply the ideas of [7] in the context of IEC 61499,

regarding function blocks as software components, although a

more specific treatment may be required for Service Interface

Function Blocks (SIFBs) and composite FBs (for more

detailed analysis the interested reader is referred to [18]).

A. Changes of FB applications supported by R
3
E

The following general types of changes from [7] are supported

by the R
3
E run-time environment and taken into account in

our study:

 Protocol change refers to communication protocol used to

interact between parts of a distributed FB application. This

type of change can be achieved by re-directing

connections between existing FBs (to different

communication FBs (CFB)) or by assigning new

parameters to some CFBs. The software components (FB

instances) themselves may not need to be changed.
 Application topology change is achieved by modifications

to the software components, i.e. the FB instances. Two

kinds of changes can be applied: (1) the substitution of an

 5

FB type without changing its interface, and (2)the

relocation of application parts from one device to another.
 Architectural change can be defined as the combination

of the protocol and topology changes, covering most of

changes to an application within the ACS.
 Internal change: R

3
E supports access to internal variables

of an FB. This way internal change of a component can be

achieved, that can result in changing behavior of the FB

instance. The scope of supported internal changes is

limited to the values of the FB state vector. No basic

reconfiguration services exist in order to change the type

of an FB (for that a new FB type needs to be created).

Although FB type substitution is not possible by using the

basic reconfiguration services as a single command, it can

be implemented within an ECA by a combination of

topology, protocol and internal changes.

B. System integrity characteristics for DSE

During the evolution of a system, system integrity

characteristics must be preserved. These characteristics can be

derived taking into account the type of change and properties

of the particular application, including dynamic properties of

the controlled process and characteristics of the control

device. The following list describes the different system

integrity characteristics, which had to be enhanced in

comparison to the reference architecture [7]. The

enhancements, in particular, deal with composite FBs and

Service Interface FBs.

Global and local consistency: In terms of DSE, global

consistency preserves the specifications of the control

application and the process under control. These

specifications are split up into plant, process, and product

specifications. Each of these categories may have top-level

global integrity characteristics that may be split up into local

aspects that are mentioned within the local consistency

characteristic.

Presence of active references between components,

especially SIFBs, may impact on system integrity. A SIFB can

encapsulate any kind of service which can include also

dependencies on other SIFBs (this is typically the case in

communication SIFBs). Changes applied to such an active

reference may produce failures in the behavior of the control

application. On the one hand such a dependency may be

violated in the new system state and therefore has to be

detected during the evaluation of the new application. On the

other hand the dependency may be violated during the system

evolution step temporarily (e.g., due to a disorder of basic

reconfiguration services) which has to be proved by the

evaluation of DSE.

State management: Although no basic reconfiguration

service exists in order to exchange an FB instance it is

possible to implement such an exchange by a sequence of

commands. The state management requirement can be

represented as a property within the evolution specification

and proved with respect to both FB exchange and substitution

of the entire FB network.

Dependent DSE operations: The DSE actions need to be

applied in a proper order, for that the execution order needs to

be established. The order can be influenced by both event and

data flow interrelations between the function blocks being the

subject of the evolution. In contrast to the ―active reference‖

property, which aims at internal dependencies within SIFBs,

the dependent DSE operations refers to the dependencies

based on the execution of basic reconfiguration services.

Real-time constrained operation is a very important

requirement also within DSE. Usually it originates in the need

to achieve certain quality of control characteristics. As the

ECA reconfigures the control application, the changes to the

control application may be subject to certain real-time

constraints. This occurs during the RECONF sequence when

preserving the global and local consistency. Real-time

constrained operation is a part of these integrity characteristics

because any execution phase of a system evolution step can

influence the execution of the control application due to the

sharing of computational resources.

Requirements of resources: The most important resources

for DSE are:

- memory required to store the ECA;

- memory for intermediate results of the control application.

- computational performance of the control device

- availability of required FB types in the device library.

Requirements of resources are associated with architectural

change and global and local consistency through the

specifications of global and local properties.

V. DSE EVALUATION

The evaluation of DSE has to prove that the DSE complies

with the evolution specification by not violating any

properties of the plant, process, or product specification

(global and local consistency), and the other system integrity

characteristics. Verification by model checking is applied only

for the reconfiguration sequence. All other sequences can be

evaluated by using appropriate analytic methods determining

the quantitative effect of the ECA on the control application.

The reconfiguration sequence represents the most important

phase during the execution of a system evolution step. In this

phase, the control application undergoes modifications while

running, which implies the time critical execution of the basic

reconfiguration services and calculations included therein.

This situation requires investigation on the effects between the

control application and the ECA, which will be performed by

applying the model checking technique. The obvious

difficulty is that the model needs to be changed during the

model checking process. To the best of the authors‘

knowledge, no model-checking tool can do this directly, so

the developed solution is to include elements of self-

modification in the basic models of the FB language

constructs. The used models will be described in detail in

section VI.

The characteristics discussed in section IV translate to the

following properties that need to be checked for the RECONF

sequence:
 Global and local consistency check ensures that the

properties of the plant, process and the product

specifications hold during the reconfiguration sequence.
 Active references consider the interrelation of different

control application parts due to underlying services

 6

encapsulated in SIFBs. Specifically for RECONF the

temporal interruption of references needs to be considered

and avoided. In case of composite FBs the included

component FBs have to be considered, which may again

be SIFBs that encapsulate underlying services. The proof

of this property within the evolution specification requires

a detailed formal modeling of the underlying services.
 State management is added as a special property of the

evolution specification and is also checked by model

checking, because the target of DSE is minimization of

such disturbances. The behavior of the control application

(global and local consistency) is directly influenced by the

transition management method that is used. Depending on

the context, if the transition management fails, the

disturbances to the process may be tolerated by the plant,

process, and product specifications.
 Real-time constrained operation means checking

compliance of the timing requirements with respect to the

control application during this evolution phase. This is as

important as ensuring the functional properties. To achieve

this, the corresponding model needs to include information

about duration of actions in the control application and in

the ECA.

VI. NCES MODELING OF DYNAMIC RECONFIGURATION

The changes applied to the control application in DSE are

restricted to the creation and removal of connections between

FBs and setting values of parameters such as, for example,

internal variables. This allows building the formal NCES

model of DSE as a composition of models of a limited number

of basic reconfiguration services.

The prerequisite to DSE evaluation by formal verification is

availability of comprehensive formal models of control

devices. We follow here the modeling approach of [23], where

a range of NCES models for all elements of IEC 61499

compliant devices was developed: from the details of

hardware to the models of function blocks. In addition, a

formal model of a control device must cover the support of

basic reconfiguration services. Based on a given specification

and a given model the state space of the system will be

explored by model checking. Within this process, the model

does not need to be changed.

In the following subsections, we will exemplify the ideas of

NCES modeling of four different classes of change to the

system model. These classes cover the required set of basic

reconfiguration services within RECONF. The implemented

changes are basic in the sense that they do not include

structural changes to the system model.

A. Manipulation of connections

Event and data connections between FBs need to be treated

differently. According to the IEC 61499 standard, an event

connection is used to trigger the execution of FBs. Based on

the execution semantics of R
3
E the issuing of an output event

means that the input events at the arc‘s destination will be put

into the queue by the event dispatcher. The corresponding

NCES module ‗ManagedEventConnection‘ is depicted in

Figure 3.

Figure 3. NCES model of a managed event connection.

The model incorporates the creation and deletion of the

event connection. The input event ‗IN‘ receives an event if the

connection source FB emits the corresponding output event.

Based on the internal state of the event connection

(represented by places ‗p1‘ and ‗p2‘), two different paths are

available. If the event connection is enabled (i.e., it has been

created), the output event ‗Trigger‘ will be issued, which is

used to put the corresponding input event into the event

dispatcher. After a confirmation via the event input ‗Confirm‘

the output event ‗OUT‘ is triggered and the execution flow

within the connection source FB will be continued. But if the

event connection is disabled (i.e., it has been deleted), nothing

else will happen except the output event ‗OUT‘ is triggered.

In terms of IEC 61499 this means that the event connection

does not exist, because no corresponding entry exists within

the event dispatcher.

The creation and deletion of the event connection is

triggered by the input events ‗CREATE‘ and ‗DELETE‘,

which are issued by the basic reconfiguration services within

the ECA. The model in Figure 3 shows a model of an event

connection that is initially created (the model of an initially

disconnected event connection will be achieved by changing

the initial marking from ‗p1‘ to ‗p2‘).

The behavior of the data connection model is quite

different. In the R
3
E implementation a data connection

includes a storage element. As soon as an output event occurs

which is associated with the data output via the WITH

construct, the storage element of the data connection model is

assigned to the data output value of the FB. If several data

connections exist with the same source (several connections

from the same data output to several data inputs) only one

storage element will be used for all these data connections.

Despite the mentioned differences, the NCES model of a data

connection is quite similar to the event connections model, so

it is omitted for the sake of brevity.

B. Execution control of FB instances

A simplified model of a managed FB instance, shown in

Figure 4, reacts on the START and STOP management

commands that can change state of the FB instance from

‘IDLE‗ to ‘RUNNING‗ and ‘STOPPED‘ respectively. An

input event may trigger the operation of the FB, upon which

 7

this model will receive ‗IN‘ event.

Figure 4: NCES model of a managed FB instance.

If the FB is in the ‘IDLE‗ or ‘STOPPED‗ state, the

invocation will be ignored, resulting in immediate issuance of

the ‗OUT‘ event. This will be passed to the scheduler in order

to let another FB to run. Otherwise, if the FB is in the

‘RUNNING‗ state, the state ‘execute FB‗ will last for a

number of time units proportional to the duration of the FB‘s

internal logic execution. For a concrete FB instance, the

NCES model of this FB has to be used instead of the simple

time delay used in Figure 5. The current state of the FB

instance is available outside of the module via the condition

outputs ‗FBSidle‘, ‗FBSrunning‘, and ‗FBSstopped‘.

Such management commands as READ and WRITE can be

modeled without any additional effort in the NCES models.

Any variable is represented by a set of places within the

formal model. The model of the corresponding basic

reconfiguration service within the ECA has to be connected to

these places via condition arcs. As soon as the basic

reconfiguration service is executed it will gather the current

value of the variable.

C. Evolution control application

An ECA is modeled using the same concepts as used for

modeling of control applications. The only difference is the

use of special FB types implementing the basic

reconfiguration services. The formal model of a basic

reconfiguration service is similar to the model of any FB. The

only difference is that a special interface is added, as specified

by the IEC 61499 management commands that is incorporated

in the basic reconfiguration service. The interfaces for the

relevant management commands within the ECA are based on

the formal description of the effects of the basic

reconfiguration service described above. For a detailed

Figure 5. Simplified NCES model of reconfiguration of event connections between two FBs.

 8

description the interested reading is referred to [18].

D. Example of use

The use of the models introduced above will be illustrated

on a simple example of modeling of an event connection

substitution between two function blocks in Figure . Each of the

function blocks ‗FB1‘ and ‗FB2‘ is represented in the NCES

model by an instance of the model types ‗simpleFB1‘ and

‗simpleFB2‘ (termed FB1 and FB2 respectively). Interfaces of

these models are intentionally simplified to include only the

elements necessary for this illustration. Both event

connections are modeled as instances of NCES model type

‘ManagedEventConnection‗ (termed ‗EO_EI1‘ and ‗EO_EI2‘

respectively). In addition, models of ECA and of the event

dispatcher are also shown in the Figure.

The sending of an output event works in the manner already

described in section V.A. by inserting triggers into the event

dispatcher. But the ‗ManagedEventConnection‘ model sends a

request to the event dispatcher only if it is enabled. In the

initial configuration for this simple example ‗EO_EI1‘ is

enabled and ‗EO_EI2‘ is disabled. Therefore ‗FB2‘ will be

triggered by the input event ‗EI1‘. The ECA controls the

reconfiguration of the application and is able to switch

‗EO_EI1‘ to ―disabled‖ and ‗EO_EI2‘ to ―enabled‖ during the

verification process done by model checking. After the

emission of the two corresponding events, the ‗ECA‘ has

switched the event connection from ‗EI1‘ to ‗EI2‘.

One should note that this model is simplified in many

aspects. Nevertheless, it gives impression of the modeling

method. It is envisaged that such models can be automatically

generated for a given FB application and known details of the

control device (hardware, OS, run-time environment).

VII. ILLUSTRATIVE EXAMPLE OF DSE EVALUATION

We will demonstrate DSE and its evaluation by exchanging

function blocks during the execution of a simple FB

application. For illustrative purposes it is simpler than the one

in Figure 1, but similar verification experiments have been

conducted with that and other control applications.

The application in Figure 6 triggers cyclically the ‗E_CTU‘

FB, whose output value is added to an internal variable in

‗ADD_INT_TO_INTERNAL‘. The application stops after

this variable exceeds a given limit, detected by

‗CHECK_INT_GREATER‘.

The DSE substitutes the addition FB for the subtraction FB

‗SUB_INT_FROM_INTERNAL‘. After this change, the

application needs to stop if the variable goes below the given

limit (rather than above as in the original). Therefore also the

‗CHECK_INT_GREATER‘ FB has to be exchanged by

Figure 6. Practical example—mixed representation of current and new system state.

 CTL formula Description of used model elements

1 AG (p1251 AF (p1267)) p1251 … sending of output event ‗E_SWITCH.EO1‘

p1267 … sending of output event ‗TAKT.EO‘

2 AG (p1245 AF (p1254)) p1245 … sending of output event ‗E_SWITCH.EO0‘
p1254 … idle state of ‗TAKT‘

3 AG (p6436 AX ((p2421 = p3593) … (p2452 = p3624)) p6436 … sending of event ‗SET_FBINTVAR_INTERNAL.CNF‘,

p2421 to p2452 … internal variables ‗ADD_INT_TO_INTERNAL‘
p3593 to p3624 … internal variable ‗SUB_INT_FROM_INTENRAL‘

4 AG (p1267 p3376 A [(p1257 V AG (p3376)) W p3376]) p1267 … starting point of application flow (sending of ‗TAKT.EO‘)

p3376 … end point (triggering of ‗E_PERMIT.EI‘)

p1257 … marks the triggering of ‗TAKT‘ by the timer

5 AG (p5962 EF[0, a](p6565)) p5962 … starting point for the execution of the RECONF sequence

p6565 … end of execution of the RECONF sequence,

α … end of allowed time frame, e.g. 100000 as equivalent to 100 ms
(0,1 µs = 1 NCES time step)

Table 1: Evolution specifications in terms of CTL formulas.

 9

‗CHECK_INT_LESS‘ FB. A real-world motivation for such

an example is, for instance, a closed-loop control circuit, in

which the controller FB or a filter in the feedback loop can be

substituted during the operation. In our example we omitted

the model of plant (or a direct closed-loop connection to the

plant) for the sake of simplicity. However, from the viewpoint

of DSE all necessary elements are included. A detailed

description of this example as well as its evaluation can be

found in [18].

A. Analytic evaluations

The evaluation of system integrity characteristics based on

the analytic calculations according to Table 1 is implemented

as evaluation wizard in the 4DIAC IDE [24]. As our example

is not real-time constrained, the corresponding properties for

global and local consistency are not addressed.

The check for dependent DSE operation is split into two

parts. Static dependency check is included in the modeling

activities within the engineering tool. Dynamic dependency

check is done by first identifying the execution order of the

basic reconfiguration services. For each of these commands

the runtime environment has to be able to execute this type of

service and the parameters of the service need to be valid

(e.g., the resource/FB which is addressed by the command).

After each basic reconfiguration service within this execution

order the virtual KAPPA vector has to be updated according

to the effects of the command.

The requirements of resources belong to those properties,

which may be changed during the execution of a system

evolution step. In our case, these are FB types and memory

consumption. Based on the representation of the necessary

information within the KAPPA vector, the wizard is able to

apply these checks for the different sequences of the system

evolution step.

B. Verification by model checking

The developed set of properties, capturing the

characteristics for the RECONF sequence, have been

formalized in the Computation Tree Logic (CTL) language

and checked against the NCES model. The total model

combines the old and new FB applications, ECA, runtime

environment and characteristics of the control device. The size

of the NCES model, obtained as a result of flattening, is 6672

net places and 10563 net transitions. The reachability graph

includes 11116 states when using the ―Maximum set of

spontaneous‖ firing rule of NCES. This is a very reasonable

number, as ViVe model-checker is capable of dealing with

reachability spaces of several millions of states. Verification is

applied to each step of the verification sequence one-by-one,

therefore model-checking performance does not seem to

restrict scalability of this approach.

In this paper, we focus mainly on the applied checks,

referring the reader to [18] and [23] for the details of the

system model. The checked properties are discussed in detail

as follows:

Global and local consistency: As our example is purely

computational and does not interact with a plant, the

specifications refer only to the model of the FB application,

for instance as follows:

 ―If the user interface sends a start command, the FB

‗TAKT‘ has to send at least one output event some time

afterwards.‖ This property may be formulated as the CTL

formula as depicted in Table 1 (row 1).
 ―If the user interface sends a stop command, the FB

‗TAKT‘ has to be set to its idle state some time

afterwards.‖ This property may be formulated in a similar

manner as depicted in Table 1 (row 2).

Active references: This property is not applicable in our

example because no references to underlying services (e.g.

system timer) are included in the DSE.

State management: Within the control application the internal

state of FB ‗ADD_INT_TO_INTERNAL‘ has to be

transferred to FB ‗SUB_INT_FROM_INTERNAL‘ without

any additional calculations (this can be a common scenario in

the evolution of closed-loop control applications). In general,

the transition management policy may be evaluated according

to the effects on the plant. Since our control example does not

use a model of the plant, the evaluation of state management

is focused on the control application itself, expressed as the

following specification:

―After the execution of the ECA the internal variables of the

two FBs ‗ADD_INT_TO_INTERNAL‘ and

‗SUB_INT_FROM_INTERNAL‘ need to have the same

value‖.

This criterion has to be fulfilled exactly after the execution of

the corresponding basic reconfiguration service, or, more

precisely, right after finishing of the WRITE command. A

possible formulation is given in Table 1 (row 3).

The evaluation result of this property is a very important

measure for the quality of the whole system evolution step as

it reflects the level of disturbances to the system under

control. A more detailed discussion on the formulation of the

state management property can be found in [27].

Real-time constrained operation: Possible specifications for

the check of this property may be:

 ―The execution of the calculations within the control

application has to be finished before a new trigger

occurs.‖ This property would have been a part of the

global and local consistency properties if a real-time

constrained execution had been modeled with the event

source ‗TAKT.EO‘. This property is formulated as

depicted in Table 1 (row 4).
 ―The execution of the RECONF sequence within the

ECA has to happen within a given time frame.‖ This

property is formulated as given in Table 1 (row 5).

For this example, the model-checking has confirmed the

validity of all properties listed above.

VIII. CONCLUSION

This paper presents a new methodology for the evaluation

of dynamic systems evolution. It was illustrated using a

simple but practical example. The evaluation is the key

 10

element for the practical use of DSE, because the top-priority

goal of DSE is to keep the system running. The application of

dynamic reconfiguration can be useless if its correctness

cannot be proved before starting the execution of DSE.

Further research work should be focused on support during

the engineering process: standardized description of devices

and the used parameters or automatic establishment of formal

models for the overall control device are required. Otherwise

the ACS user will expend too much effort for the evaluation,

what would be the main disadvantage of this approach.

Automatic ECA creation can be based on this approach, too.

A possible next step for enhancing the theory for DSE would

be the provision of metrics for special application classes in

order to provide a means to measure property coverage for a

given evolution step.

REFERENCES

[1] T. Baier, J. Fritsche, G. Keintzel, D. Loy, R. Schranz, H. Steininger, T.

Strasser and C. Sünder, ―Future scenarios for application of

downtimeless reconfiguration in industrial practice‖, IEEE Int. Conf. on

Industrial Informatics (INDIN’07), Vienna, Austria, July, 2007, pp.
1129-1134

[2] M. N. Rooker, C. Sünder, T. Strasser, A. Zoitl, O. Hummer, G.

Ebenhofer, ―Zero Downtime Reconfiguration of Distributed Automation
Systems: The εCEDAC Approach‖, in Proc. 3rd Int. Conf. on Industrial

Applications of Holonic and Multi-Agent Systems, Regensburg

(Germany), Sept. 2007, Springer Verlag Berlin Heidelberg (LNCS
4659), pp. 326-337

[3] IEC 61499-1 Function blocks—Part 1: Architecture, Int. Standard,

International Electrotechnical Commission (IEC), 2005
[4] M. M. Lehmann and J. F. Ramil, ―Software evolution in the age of

component-based software engineering‖, IEEE Proceedings Software,

vol. 147, nb. 6, Dec. 2000, ISSN 1462-5970
[5] T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer, R. Hirschfeld, M.

Jazayeri, ―Challenges in Software Evolution‖, in Proc. 8th IEEE Int.

Workshop on Principles of Software Evolution, Lisbon (Portugal), Sept.
2005, pp. 13-22

[6] J. Kramer, J. Magee, ―Dynamic Configuration for Distributed Systems‖,

IEEE Trans. Software Engineering, vol. SE-11, nb. 4, April 1985, pp.
424-436

[7] J. D. Walsh, F. Bordeleau, B. Selic, ―Domain analysis of dynamic

system reconfiguration‖, Software and Systems Modeling, vol. 6, no. 4,
Springer Verlag, 2007, pp. 355-380, ISSN 1619-1366

[8] ICS Triplex. ISaGRAF Workbench for IEC 61499/ 61131, v.5.1

[Online]. Available: http://www.icstriplex.com/
[9] nxtControl GmbH, nxtControl - Next generation software for next

generation customers [Online, 2009, June]. Available:

http://www.nxtcontrol.com/
[10] R. W. Brennan, X. Zhang, Y. Xu, D. H. Norrie, ―A reconfigurable

concurrent function block model and its implementation in real-time
Java‖, Integrated Computer-Aided Engineering, IOS Press, vol. 9, nb. 3,

2002, pp.263-279, ISSN 1069-2509

[11] A. Tešanović, S. Nadjm-Tehrani, J. Hansson, ―Modular Verification of

Reconfigurable Components‖, in Component-Based Software
Development for Embedded Systems, LNCS 3778, C. Atkinson et al.

(Eds.), Springer Verlag Berlin Heidelberg, 2005, pp. 59-81, ISBN 978-

3-540-30644-3
[12] D. Kalita, P. P. Khargonekar, ―Formal Verification for Analysis and

Design of Logic Controllers for Reconfigurable Manufacturing

Systems‖, IEEE Trans. Robotics and Automation, 2002, 18(4), pp. 463-
474

[13] J. Li, X. Dai, Z. Meng, ―Dynamic Reconfiguration of Petri Net Logic

Controllers Based on Modified Net Rewriting Systems‖, in: Proc. IEEE
Int. Conf. on Mechatronics and Automation, Niagara Falls (Canada),

July 2005, pp. 592-567

[14] M. Alcaraz-Mejía, E. López-Mellado, ―Petri Net Model Reconfiguration
of Discrete Manufacturing Systems‖, in: Proc. 12th IFAC Symp. on

Information Control Problems in Manufacturing, vol. 1, Saint-Etienne

(France), May 2006, pp. 547-552
[15] E. Park, D. M. Tilbury, P. P. Khargonekar, ―A Modeling and Analysis

Methodology for Modular Logic Controllers of Machining Systems

Using Petri Net Formalism‖, IEEE Trans. Systems, Man, and
Cybernetics—Part C: Applications and Reviews, 2001, vol. 31, nb. 2,

pp. 168-188

[16] A. Zoitl, Real-time execution for IEC 61499, ISA and O3neida, USA,
2009, ISBN 978-1-934394-27-4

[17] M. Guler, S. Clements, L. M. Wills, B. S. Heck, G. J. Vachtsevanos,

―Transition Management for Reconfigurable Hybrid Control Systems‖,
IEEE Control Systems Magazine, vol. 23, nb. 1, Feb. 2003, pp. 36-49,

ISSN 0272-1708
[18] C. Sünder, ―Evaluation of Downtimeless System Evolution in

Automation and Control Systems‖, Ph.D. dissertation, Automation and

Control Institute, Vienna University of Technology, Vienna (Austria),
2008 (online available via http://aleph.ub.tuwien.ac.at/ALEPH)

[19] M. Rausch, H.-M. Hanisch, ―Net Condition/Event Systems with

Multiple Condition Outputs‖, in: Proc. INRA/IEEE Symp. on Emerging
Technologies and Factory Automation, vol. 1, Magdeburg , 1995, pp.

592-600

[20] V. Vyatkin, G. Bouzon, ―Using Visual Specifications in Verification of
Industrial Automation Controllers,‖ EURASIP Journal on Embedded

Systems, vol. 2008, Article ID 251957, 2008, 9 p.

[21] H.-M. Hanisch, A. Lobov, J.L. Martinez Lastra, R. Tuokko, V. Vyatkin,
‖Formal Validation of Intelligent Automated Production Systems

towards Industrial Applications‖, Int. Journal of Manufacturing

Technology and Management, vol. 8, nb. 1/2/3, 2006, pp.75-106
[22] V. Vyatkin, H.-M. Hanisch, ―Verification of Distributed Control

Systems in Intelligent Manufacturing‖, Journal of International

Manufacturing, vol. 14, nb. 1, 2003, pp. 123-136
[23] C. Sünder, V. Vyatkin, ―Functional and temporal formal modeling of

embedded controllers for intelligent mechatronic systems‖, Intl. J.

Mechatronics and Manufacturing Systems, Vol. 2, Nb. 1/2, 2009,
pp.215-235

[24] 4DIAC IDE, Online, http://www.fordiac.org/

[25] C. Pang ,V. Vyatkin, ―Formal modelling of IEC61499 systems
following the Sequential Hypothesis‖, 5th IEEE Int. Conf. on Industrial

Informatics (INDIN’07), Vienna, Austria, July 2007, pp.879-884

[26] V. Vyatkin, Visual Verification Framework, Version 0.35a, Online:
http://www.ece.auckland.ac.nz/~vyatkin/vive/ViVe.zip , June 2009

[27] T. Kovácsházy, G. Péceli, G. Simon, ―Transients in Reconfigurable

Signal Processing Channels‖, IEEE Transactions on Instrumentation
and Measurements, vol. 50, nb. 4, pp. 936-940

http://www.fordiac.org/
http://www.ece.auckland.ac.nz/~vyatkin/vive/ViVe.zip

