
  Abstract – This paper contributes to the ongoing 
development of comprehensive execution semantics of 
IEC61499 by discussion and comparison of the semantics that 
could be achieved by alteration of postulates introduced in the 
Sequential Hypothesis, and by variation of different priority 
assignments during implementation. 

I. INTRODUCTION 

The current state of IEC61499 [1] allows for various 
execution semantics of distributed control applications. 
This was illustrated in a number of works, for example in 
[2],[3],[4]. This fact undermines the prospects of the 
standard’s industrial acceptance and motivates the quest for 
a formally defined and comprehensive semantic or 
semantics.  

Works [4]-[5] introduced an axiomatic definition of the 
IEC61499 semantic based on a set of 6 postulates.   

In this paper we show that different semantics can be 
achieved by a simple alteration of the predicates. Moreover, 
work [6] introduced implementation idea based on 
scheduling of function blocks determined by priorities of 
certain operations. It was proposed there that different 
scheduling policies can be achieved by simple re-
assignment of priorities. In this paper we will further 
illustrate this idea. 

So far there have been different semantic ideas tried in 
research implementations. The NPMTR model (“Non-
Preemptive Multi-Threaded Resource”) is implemented in 
FBDK/FBRT [7]. Sequential semantic was discussed in [2], 
[3], [4], and was implemented in run-time platforms μCrons 
and FUBER respectively. The model used in the 
Archimedes run-time environment (which is a part of the 
CORFU development framework [10]) is different from 
NPTMR in several features, for example, allowing 
independent event queues for each function block. 
Semantic based on PLC-like scan of inputs followed by 
subsequent re-evaluation of FB – network was developed in 
[15], [16], [18]. The essential difference of these 
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approaches is in the way how blocks in the network are 
activated which depends on the way of passing event 
signals between functional blocks. 

II. FUNCTION BLOCKS 

The IEC61499 architecture is based on the concept of 
function block. The concept is analogous to the ideas of 
component, such as software component from software 
engineering and IP capsule used in hardware design and 
embedded systems. IEC61499 is a high level architecture 
not relying on a particular programming language, 
operating systems, etc. The same time it is precise enough 
to capture the desired function unambiguously.  

The original desire of the IEC61499 developers was to 
encapsulate the behavior inside a function block with clear 
interfaces between the block and its environment. The idea 
is illustrated in Figure 1 (left side) on example of a function 
block type X2Y2_ST computing on request OUT=X2-Y2. 
Interface of the block consists of event input REQ, data 
inputs X and Y, event output CNF, and data output OUT.  

 

 
Figure 1. A basic function block type description: interface, 
ECC and algorithm REQ. 

 
Note the vertical lines, one connecting REQ with X and 

Y, and the other connecting CNF and OUT. These lines 
represent association of events and data. The meaning of 
the association is: only those data associated with a certain 
event will be updated when the event arrives.  

State machine is a simple visual yet mathematically 
rigorous way of capturing behavior. It is widely used in 
computer applications. In basic function blocks of 
IEC61499 a state machine (called Execution Control Chart, 
ECC for short) defines the reaction of the block on input 
events in a given state. The reaction can consist in 
execution of algorithms computing some values as 
functions of input and internal variable, followed by 
emitting of one or several output events. In Figure 1 the 
ECC and algorithm are shown in the right side. State REQ 
has one associated action that consists of an algorithm REQ 
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and emitting of output event CNF afterwards. The 
algorithm computes OUT := X2-Y2. 

Networks of function blocks are used in IEC61499 as the 
main enabler of distributed systems modeling.  An example 
is given in Figure 2. Here the same X2-Y2 function is 
implemented as a network of three function blocks, doing 
addition, subtraction and multiplication. This network can 
be encapsulated in a composite function block having the 
same interface as X2Y2_ST from Figure 1.  

 
Figure 2. Implementing X2-Y2 as a network of function 
blocks. 

The network could also be executed in a distributed way. 
The IEC61499 architecture implies two stage design 
process supported by the corresponding artifacts of the 
architecture: applications and system configurations. An 
application is a network of function block instances 
interconnected by event and data links. It completely 
captures the desired functionality but does not include any 
knowledge of the devices and their interconnections. 
Potentially, it can be mapped to many possible 
configurations of devices depending on their computational 
capability. A suitable automatic mechanism to find the best 
map between FBs and devices, in terms of memory 
consumption and application temporal performance, has 
been proposed by the European project TORERO [17]. The 
proposed allocation algorithm takes into account: devices 
memory and communication protocol, memory and time 
needed for a single FBs execution step, application real-
time constraints (inserted in event connections and FBs 
algorithm execution following the TORERO specification). 
As finalization of such a process, the TORERO 
development environment automatically generates the 
needed communication FBs.  A system configuration adds 
these fine details, representing the full picture of devices, 
connected by networks and with function blocks allocated 
to them.  

 

III. FACTS ABOUT SEMANTICS OF IEC 61499 FUNCTION 
BLOCKS 

The Standard defines the following execution of a 
function block as a sequence of eight (internal) events (with 
timestamps t1-t8) illustrated in Figure 3.  

 
Figure 3. Sequence of events at a function block invocation 
and essential time intervals [1], 4.5.3 

t1:  Relevant input variable values (i.e., those associated 
with the event input by the WITH qualifier) are made available. 
t2:  The event at the event input occurs. 
t3:  The execution control function notifies the resource 
scheduling function to schedule an algorithm for execution. 
t4:  Algorithm execution begins. 
t5:  The algorithm completes the establishment of values for 
the output variables associated with the event output by the WITH 
qualifier. 
t6:  The resource scheduling function is notified that 
algorithm execution has ended. 
t7:  The scheduling function invokes the execution control 
function. 
t8:  The execution control function signals an event at the 
event output. 

 
As shown in Figure 3, right side, the significant timing 

delays in this case which are of interest in application 
design are: 

Tsetup  = t2 - t1 
Tstart  = t4 - t2 (time from event at event input to 

beginning of algorithm execution) 
Talg  = t6 - t4 (algorithm execution time) 
Tfinish  = t8 - t6 (time from end of algorithm execution to 

event at event output) 
Annex A to the standard provides a number of pre-

defined event processing basic function blocks and their 
reference implementations, and states that the parameters 
Tsetup, Tstart and Tfinish are considered to be zero (0) for these 
implementations. The parameter Talg is considered to be 
equal to the parameter DT for E_DELAY type, and to be 
zero (0) for all other component function blocks in the 
reference implementation. 

The behaviour of a basic function block upon occurrence 
of an input event is described by the Table 1 in 5.2.2 whose 
(partial) copy is presented below in Figure 4.  



t2 t1

t4 t3

s0

s1

s2  

State  Operations 
s0  --- 
s1  Evaluate transitions  
s2  Perform actions 

Transition Condition Operations 
t1 Invoke ECC Sample inputs  
t2 No transition clears  
t3 A transition clears  
t4 Actions completed  

Figure 4. Table 1 from [1], 5.2.2, defining the ECC operation 
state machine. 

IV. AXIOMATIC DEFINITION OF THE SEMANTICS 

A few assertions regarding the execution of function blocks 
can form an axiomatic basis of its execution model. It 
would be wise to keep this set of postulates as small as 
possible. We assume that all other properties of an 
execution model can be derived from the postulates. 
Altering one or several postulates can give us completely 
different execution model. The following set of postulates, 
known as Sequential Hypothesis, was introduced in [4]: 

 
1. A function block can be in one of the states ‘active’, ‘idle’ 

or ‘pre-empted’. An activation (i.e. the transition from ‘idle’ 
to ‘active’) can occur only as a consequence of event at an 
event input of the block.   

2. A single run of a basic FB – an activity between transition t1 
and t2 of the state machine in Table 1 – cannot be pre-
empted by another function block. It can only be pre-empted 
by resource in order to process input events.  

3. A single run of a basic function block is instantaneous or 
“relatively short” 

4. Event input of a function block clears after single ECC 
transition, regardless of was this event used in the evaluation 
or not. 

5. Output events are issued immediately after the 
corresponding action is completed. 

6. If a function block emits several output events in one state 
of ECC, they are emitted sequentially. 

The 6th postulate defines the behaviour exemplified in 
Figure 5. We believe that the spirit of the 6th postulate 
implies the execution model which we further refer to as 
“Sequential hypothesis”. Removing the 6th postulate will 
imply a possibility of parallel function block execution 
within one resource. This model may also look quite 
feasible and is implementable. However, we believe that it 
does not accord well to the letter and the spirit of the 
standard. Argumentation in favour of the 6th postulate is as 
follows. 

From that one can conclude that even though output 
events can be emitted during a function block run, their 
recipient will not be started immediately, but will be just 
scheduled and started after this run is completed. 

V. EMITTING OUTPUT EVENTS FROM FUNCTION BLOCKS 

Let us consider example in Figure 5. FB0 is activated by 
event input EI and DI in that moment is TRUE. The run of 
FB0 will consist of STATE2 and STATE3. When the 

ALG1 is completed and EO1 is to be issued, the question is 
if the FB1 will be activated immediately or after the run of 
FB0 is completed? Then, in STATE3, the question is 
whether to issue EO2 right after ALG2 is completed or wait 
until ALG3 completes and issue EO2 and EO3 together? In 
the latter case, shall FB2 and FB3 be started 
simultaneously? Answers to these questions are determined 
by the postulates #2, #5 and #6. Since (according to #2) 
FB0 cannot be pre-empted by FB1, the EO1 needs to be 
stored.  

 

 
Figure 5.  Run of FB0 consists of passing through STATE2 and 
ending in STATE3, issuing EO1, EO2 and EO3. 

Although the Standard leaves unanswered the issue when 
the output events of a Basic FB are issued, three options are 
possible: 
- Output event is emitted immediately after the 

corresponding algorithm in the action is completed; 
- After all actions of a state are completed; 
- After the single run of the basic FB is completed.  

The interpretation 3) was explicitly present in the 
previous drafts of the standard but was discarded. 
According to that interpretation, events EO1, EO2 and EO3 
in our example should be emitted together at the end of the 
run.  

From that we conclude that the interpretation 3) is less 
attractive than 1) and 2). The interpretations 1) and 2) are 
not different in the order of generated events and can be 
only different in their timestamps.  

We adopted the interpretation 1) which forms the 
Postulate #5.  

As for the states with several actions, the Standard says 
explicitly that the actions associated with an ECC state are 
executed sequentially, one after another. Following the 
spirit of Postulate#5 it is quite logical to assume that in a 
single state output events shall be executed immediately 
after the corresponding algorithm completes, i.e. 
sequentially with respect to each other. This forms the 
Postulate #6. 

Both these postulates imply that there is no such thing as 
concurrent execution of function blocks within a single 
resource, or pre-emption of one block by another.   

Indeed, what happens after an output event is emitted, is 
defined by the clause 3 in 5.3.2 as follows:  

“If an event output of a component function block is 



connected to an event input of a second component 
function block, occurrence of an event at the event output 
of the first block shall cause the scheduling of an invocation 
of the execution control function of the second block, with 
an occurrence of an event at the associated event input of 
the second block.” 

VI. HOW TO IMPLEMENT THE SEQUENTIAL HYPOTHESIS  

Implementation of the sequential hypothesis requires 
further details as follows:  
1. Emitting an event by a function block means request to 

the scheduler of the resource to pass the event to the 
destination function block. The scheduler ensures that 
two or more event inputs of a basic FB or SIFB never 
occur simultaneously; 

2. A resource (FB scheduler) maintains the queue of 
external events and can be in one of two states (see the 
state machine in Figure 6): 

- Receptive to external events in SIFBs; 
- Not receptive to external event in SIFBs (when 

executing FB). When an event arises in such a state 
it is stored in a FIFO queue. The queue is processed 
in the next receptive state of the resource.  

 

 

 

State/ 
Transtion 

Description 

S1 Check if the queue of external events is 
not empty 
While the queue is not empty 
  For each event :  
Take (and remove) it from the queue; 
Activate the recipient SIFB and pass the 
events arising from its execution to  the 
FB scheduler of the resource; 

S2 FB Scheduler selects next FB from its 
queue and starts its execution 

t1 Queue of scheduled blocks is not empty 
t2 Scheduled block completed its 

execution 

Figure 6 State machine and algorithm of resource operation. 

Let us consider an example: a network of function blocks 
shown in Figure 7. The network is allocated to a device that 
has single resource. 

 
Figure 7. Function block network activated by an external 

event through block SIFB_S 

The device has one input channel which is polled by the 
function block SIFB_S. Arrival of an external event at this 
channel causes activation of the rest of the network. The 
execution process is illustrated in Figure 8.  

 

 
Figure 8. Timing diagram representing activity of blocks in the 
network. 

Scheduling of block activations and registration of 
arrived external events is implemented using two queues of 
First-In First-Out kind (FIFO): Scheduling FIFO, further 
referred to as Queue 1 and SIFBs FIFO, referred to as 
Queue 2. Queue 1 stores the events passed from a block to 
another block. Queue 2 stores occurrences of external 
events that occur while the resource is in the non receptive 
state S2. It is needed to ensure the processing of input 
events will follow the order of their occurrence. In our 
example, the network is activated by arrival of an external 
event to the input channel Ev. Arrival of an external event 
interrupts the execution of a function block which is 
preempted by execution of the resource, which places the 
corresponding request to the Queue 2. This can be seen in 
case of the execution of FB_C. Pre-emption of the FB_C 
execution by the Scheduler after the second occurrence of 
Ev does not contradict the 3rd postulate as no other FB is 
executed while the pre-emption occurred, so the integrity of 
the FB network evaluation is not affected. 

When resource returns to the receptive state it checks if 
the Queue 2 is not empty and adds the request of kind r → 
S to the Queue 1, clearing the Queue 2. Then it takes next 
request from the top of Queue 1 and executes the 
corresponding function block (that is target of the request, 
i.e. in case of request r → S the service interface block S is 
executed.) 

Remark: In a more general case the queues 1 and 2 may 
not necessarily be FIFO but just sets of requests where 
scheduler places the requests and from where it selects an 
event to activate next function block.  

VII. IS SEQUENTIAL SEMANTIC THE BEST FOR DEVELOPERS? 

Benefits of the Sequential Hypothesis for application 
developer are: 
- more predictable model of execution in terms of 



reaction time and invocation sequence; 
- requires less resources i.e. will lead to potentially 

more efficient implementations:  
- direct call invocation in NPMTR model requires stack 

space and context switching; 
- can be implemented in one thread; 
- allows customisation for handling real-time 

constraints, and other priority mechanisms; 
The question of “How good is this model for developers” 

can be answered only after certain trial period of using the 
tools and devices that comply with this semantic model. 
The most popular at the moment FBDK/FBRT follows 
different semantic (NPMTR), so the final comparison is yet 
to be made. However, there is a possibility of an alternative 
semantic which could allow for parallel execution of 
function blocks.  

As illustrated in Figure 9, splitting an event connection to 
two or more blocks (left side), is currently interpreted as 
implicit E_SPLIT block (right side), that leads to sequential 
scheduling of FB2 and FB3 under Sequential Hypothesis. 

  

 
Figure 9. Event fork can lead to parallel execution of function 
blocks.  

However, the event fork in Figure 9 can be interpreted by 
many developers as parallel invocation of FB2 and FB3, 
and this vision is quite intuitive. The main reason to think 
about sequential execution of function blocks is the 
sequential nature of modern computers. The function 
blocks are not necessarily to be implemented as sequential 
software code, they could be compiled into hardware form, 
where it is only natural to work in parallel.  

The parallel execution of function blocks within a 
resource can be achieved by modifying Postulates #5 and 
#6, for example as follows:  

 
Postulate #5’ Output events are issued immediately after 

the corresponding action is completed. The destination 
function block is invoked right after the event is issued. 

Postulate#6’ If a function block emits several output 
events in one state of ECC, they are emitted 
simultaneously.  

 
With this set of postulates our execution model becomes 

Parallel Hypothesis, whose discussion, however is beyond 
the scope of this paper. We acknowledge that there could be 
good reasons in favour of Parallel Hypothesis, such as: 

- better fit to the ‘not so short’ algorithms assumption; 
- more intuitive in ‘event-forking’ situations; 
- better fit to multi core hardware implementation; 

To find out more justification for appropriate function 
block scheduling strategies, we need to consider the origins 
of distributed system configurations in the design loop. 

VIII. APPLICATION IN THE IEC 61499 DESIGN LOOP 

An application is a network of function block instances. An 
example is shown in Figure 10. The application consists of 
four function blocks named A, B, C and D. For simplicity 
we connected the blocks with only event connectors, 
omitting data exchange. Note the connection from A is split 
on two: to B and to C. This is interpreted as two 
connections A→B and A→C, with event A→B emitted 
first and A→C the second. According to the standard, 
execution of each block takes a short time interval. 

 

 
Figure 10. An example of application and the execution order 
following the sequential scheduling idea 

 
Entire application can be deployed on a single device. If 

the device implements a sequential scheduling mechanism 
then the sequence of activations will be as shown in the 
Figure. (We denoted D1 and D2 invocations of the block D 
by event inputs EI1 and EI2 respectively).  

The application design is the first part of system 
development. The next step is its deployment that is a 
mapping of function blocks to devices. Same application 
can be mapped onto one device, or on two or more devices 
in arbitrary combinations as illustrated in Figure 10 and in 
Figure 11, a) and b) respectively.  

 

a) b) 

Figure 11. Two (out of many) possibilities to map an 
application on several distributed devices 

 



 
Figure 12 Sequence of function block execution in mapping to 
two devices (different sequences are due to asynchronity of 
devices and of communication between them). 

 
Figure 13. Sequence of function block execution in mapping 
to and to four devices (C). 

In distributed configurations some of the blocks can be 
executed concurrently. This can lead to different 
sequences of output events for the same input conditions if 
the devices are not synchronized. Properties of 
communication channels can also influence sequence of 
output events. This is illustrated in Figure 12, a) and b) for 
the two-device configuration from Figure 11 a).  The event 
connection A→C needs to be implemented as event passing 
through a communication channel between devices 1 and 2. 
If the communication protocol does not preserve sequence 
of events and the channel can introduce arbitrary delays, 
than the execution sequence can differ drastically (compare 
Figure 12, sequences a) and b)). The original application 
model interpreted according to the sequential hypothesis 
would eliminate these execution sequences. In case of the 
four-device distribution there would be even more variants, 
one of which is shown in Figure 12, c).  

From the above said, one can conclude that the two-stage 
design paradigm of the IEC 61499 implies that application 
must have execution semantics that would not change after 
mapping to any configuration of devices. In this case it can 
be used for simulation after the first stage of the design and 
formal analysis.  

A network of function blocks can adequately represent a 
(potentially) distributed system only if there was a 
mechanism of concurrent activation of blocks. This requires 
‘tweaking’ of two mechanisms: 1) simultaneous appearance 
of events at several outputs of a single function block; 2) 
event propagation enabling simultaneous delivery of events 
to inputs of several blocks. 

IX. CONCLUSIONS 

This paper presented an overview of motivations for the 
definition of formal execution semantics of IEC61499. 
Sequential and parallel execution models are discussed. The 
sequential model is expected to be immediately applicable, 
implemented in a number of software tools. The parallel 
model also has some benefits, especially for hybrid and 

pure hardware implementations. 
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