
 Abstract – This paper contributes to the ongoing
development of comprehensive execution semantics of
IEC61499 by discussion and comparison of the semantics that
could be achieved by alteration of postulates introduced in the
Sequential Hypothesis, and by variation of different priority
assignments during implementation.

I. INTRODUCTION

The current state of IEC61499 [1] allows for various
execution semantics of distributed control applications.
This was illustrated in a number of works, for example in
[2],[3],[4]. This fact undermines the prospects of the
standard’s industrial acceptance and motivates the quest for
a formally defined and comprehensive semantic or
semantics.

Works [4]-[5] introduced an axiomatic definition of the
IEC61499 semantic based on a set of 6 postulates.

In this paper we show that different semantics can be
achieved by a simple alteration of the predicates. Moreover,
work [6] introduced implementation idea based on
scheduling of function blocks determined by priorities of
certain operations. It was proposed there that different
scheduling policies can be achieved by simple re-
assignment of priorities. In this paper we will further
illustrate this idea.

So far there have been different semantic ideas tried in
research implementations. The NPMTR model (“Non-
Preemptive Multi-Threaded Resource”) is implemented in
FBDK/FBRT [7]. Sequential semantic was discussed in [2],
[3], [4], and was implemented in run-time platforms μCrons
and FUBER respectively. The model used in the
Archimedes run-time environment (which is a part of the
CORFU development framework [10]) is different from
NPTMR in several features, for example, allowing
independent event queues for each function block.
Semantic based on PLC-like scan of inputs followed by
subsequent re-evaluation of FB – network was developed in
[15], [16], [18]. The essential difference of these

 Manuscript received January 14, 2007. This work was supported in

part by the research grant 3607207/9273of the University of Auckland
Research Council.

Valeriy Vyatkin is with the ECE Dept, University of Auckland, New
Zealand, phone: +649-373-7599; fax: +649- 3737461; e-mail: v.vyatkin@
auckland.ac.nz).

Victor Dubinin is with the University of Penza, Russia, e-mail:
victor_n_dubinin@yahoo.com

Carlo Veber and Luca Ferrarini are with Politecnico di Milano, Italy,
P.za Leonardo da Vinci 32Milano, 20133, Italy, e-mail:
veber@elet.polimi.it and luca.ferrarini@polimi.it.

approaches is in the way how blocks in the network are
activated which depends on the way of passing event
signals between functional blocks.

II. FUNCTION BLOCKS

The IEC61499 architecture is based on the concept of
function block. The concept is analogous to the ideas of
component, such as software component from software
engineering and IP capsule used in hardware design and
embedded systems. IEC61499 is a high level architecture
not relying on a particular programming language,
operating systems, etc. The same time it is precise enough
to capture the desired function unambiguously.

The original desire of the IEC61499 developers was to
encapsulate the behavior inside a function block with clear
interfaces between the block and its environment. The idea
is illustrated in Figure 1 (left side) on example of a function
block type X2Y2_ST computing on request OUT=X2-Y2.
Interface of the block consists of event input REQ, data
inputs X and Y, event output CNF, and data output OUT.

Figure 1. A basic function block type description: interface,
ECC and algorithm REQ.

Note the vertical lines, one connecting REQ with X and

Y, and the other connecting CNF and OUT. These lines
represent association of events and data. The meaning of
the association is: only those data associated with a certain
event will be updated when the event arrives.

State machine is a simple visual yet mathematically
rigorous way of capturing behavior. It is widely used in
computer applications. In basic function blocks of
IEC61499 a state machine (called Execution Control Chart,
ECC for short) defines the reaction of the block on input
events in a given state. The reaction can consist in
execution of algorithms computing some values as
functions of input and internal variable, followed by
emitting of one or several output events. In Figure 1 the
ECC and algorithm are shown in the right side. State REQ
has one associated action that consists of an algorithm REQ

Alternatives for Execution Semantics of IEC6149

Valeriy Vyatkin, Senior Member, IEEE, Victor Dubinin, Non-member,
Carlo Veber, Member, IEEE, Luca Ferrarini Senior Member, IEEE

and emitting of output event CNF afterwards. The
algorithm computes OUT := X2-Y2.

Networks of function blocks are used in IEC61499 as the
main enabler of distributed systems modeling. An example
is given in Figure 2. Here the same X2-Y2 function is
implemented as a network of three function blocks, doing
addition, subtraction and multiplication. This network can
be encapsulated in a composite function block having the
same interface as X2Y2_ST from Figure 1.

Figure 2. Implementing X2-Y2 as a network of function
blocks.

The network could also be executed in a distributed way.
The IEC61499 architecture implies two stage design
process supported by the corresponding artifacts of the
architecture: applications and system configurations. An
application is a network of function block instances
interconnected by event and data links. It completely
captures the desired functionality but does not include any
knowledge of the devices and their interconnections.
Potentially, it can be mapped to many possible
configurations of devices depending on their computational
capability. A suitable automatic mechanism to find the best
map between FBs and devices, in terms of memory
consumption and application temporal performance, has
been proposed by the European project TORERO [17]. The
proposed allocation algorithm takes into account: devices
memory and communication protocol, memory and time
needed for a single FBs execution step, application real-
time constraints (inserted in event connections and FBs
algorithm execution following the TORERO specification).
As finalization of such a process, the TORERO
development environment automatically generates the
needed communication FBs. A system configuration adds
these fine details, representing the full picture of devices,
connected by networks and with function blocks allocated
to them.

III. FACTS ABOUT SEMANTICS OF IEC 61499 FUNCTION
BLOCKS

The Standard defines the following execution of a
function block as a sequence of eight (internal) events (with
timestamps t1-t8) illustrated in Figure 3.

Figure 3. Sequence of events at a function block invocation
and essential time intervals [1], 4.5.3

t1: Relevant input variable values (i.e., those associated
with the event input by the WITH qualifier) are made available.
t2: The event at the event input occurs.
t3: The execution control function notifies the resource
scheduling function to schedule an algorithm for execution.
t4: Algorithm execution begins.
t5: The algorithm completes the establishment of values for
the output variables associated with the event output by the WITH
qualifier.
t6: The resource scheduling function is notified that
algorithm execution has ended.
t7: The scheduling function invokes the execution control
function.
t8: The execution control function signals an event at the
event output.

As shown in Figure 3, right side, the significant timing

delays in this case which are of interest in application
design are:

Tsetup = t2 - t1
Tstart = t4 - t2 (time from event at event input to

beginning of algorithm execution)
Talg = t6 - t4 (algorithm execution time)
Tfinish = t8 - t6 (time from end of algorithm execution to

event at event output)
Annex A to the standard provides a number of pre-

defined event processing basic function blocks and their
reference implementations, and states that the parameters
Tsetup, Tstart and Tfinish are considered to be zero (0) for these
implementations. The parameter Talg is considered to be
equal to the parameter DT for E_DELAY type, and to be
zero (0) for all other component function blocks in the
reference implementation.

The behaviour of a basic function block upon occurrence
of an input event is described by the Table 1 in 5.2.2 whose
(partial) copy is presented below in Figure 4.

t2 t1

t4 t3

s0

s1

s2

State Operations
s0 ---
s1 Evaluate transitions
s2 Perform actions

Transition Condition Operations
t1 Invoke ECC Sample inputs
t2 No transition clears
t3 A transition clears
t4 Actions completed

Figure 4. Table 1 from [1], 5.2.2, defining the ECC operation
state machine.

IV. AXIOMATIC DEFINITION OF THE SEMANTICS

A few assertions regarding the execution of function blocks
can form an axiomatic basis of its execution model. It
would be wise to keep this set of postulates as small as
possible. We assume that all other properties of an
execution model can be derived from the postulates.
Altering one or several postulates can give us completely
different execution model. The following set of postulates,
known as Sequential Hypothesis, was introduced in [4]:

1. A function block can be in one of the states ‘active’, ‘idle’

or ‘pre-empted’. An activation (i.e. the transition from ‘idle’
to ‘active’) can occur only as a consequence of event at an
event input of the block.

2. A single run of a basic FB – an activity between transition t1
and t2 of the state machine in Table 1 – cannot be pre-
empted by another function block. It can only be pre-empted
by resource in order to process input events.

3. A single run of a basic function block is instantaneous or
“relatively short”

4. Event input of a function block clears after single ECC
transition, regardless of was this event used in the evaluation
or not.

5. Output events are issued immediately after the
corresponding action is completed.

6. If a function block emits several output events in one state
of ECC, they are emitted sequentially.

The 6th postulate defines the behaviour exemplified in
Figure 5. We believe that the spirit of the 6th postulate
implies the execution model which we further refer to as
“Sequential hypothesis”. Removing the 6th postulate will
imply a possibility of parallel function block execution
within one resource. This model may also look quite
feasible and is implementable. However, we believe that it
does not accord well to the letter and the spirit of the
standard. Argumentation in favour of the 6th postulate is as
follows.

From that one can conclude that even though output
events can be emitted during a function block run, their
recipient will not be started immediately, but will be just
scheduled and started after this run is completed.

V. EMITTING OUTPUT EVENTS FROM FUNCTION BLOCKS

Let us consider example in Figure 5. FB0 is activated by
event input EI and DI in that moment is TRUE. The run of
FB0 will consist of STATE2 and STATE3. When the

ALG1 is completed and EO1 is to be issued, the question is
if the FB1 will be activated immediately or after the run of
FB0 is completed? Then, in STATE3, the question is
whether to issue EO2 right after ALG2 is completed or wait
until ALG3 completes and issue EO2 and EO3 together? In
the latter case, shall FB2 and FB3 be started
simultaneously? Answers to these questions are determined
by the postulates #2, #5 and #6. Since (according to #2)
FB0 cannot be pre-empted by FB1, the EO1 needs to be
stored.

Figure 5. Run of FB0 consists of passing through STATE2 and
ending in STATE3, issuing EO1, EO2 and EO3.

Although the Standard leaves unanswered the issue when
the output events of a Basic FB are issued, three options are
possible:
- Output event is emitted immediately after the

corresponding algorithm in the action is completed;
- After all actions of a state are completed;
- After the single run of the basic FB is completed.

The interpretation 3) was explicitly present in the
previous drafts of the standard but was discarded.
According to that interpretation, events EO1, EO2 and EO3
in our example should be emitted together at the end of the
run.

From that we conclude that the interpretation 3) is less
attractive than 1) and 2). The interpretations 1) and 2) are
not different in the order of generated events and can be
only different in their timestamps.

We adopted the interpretation 1) which forms the
Postulate #5.

As for the states with several actions, the Standard says
explicitly that the actions associated with an ECC state are
executed sequentially, one after another. Following the
spirit of Postulate#5 it is quite logical to assume that in a
single state output events shall be executed immediately
after the corresponding algorithm completes, i.e.
sequentially with respect to each other. This forms the
Postulate #6.

Both these postulates imply that there is no such thing as
concurrent execution of function blocks within a single
resource, or pre-emption of one block by another.

Indeed, what happens after an output event is emitted, is
defined by the clause 3 in 5.3.2 as follows:

“If an event output of a component function block is

connected to an event input of a second component
function block, occurrence of an event at the event output
of the first block shall cause the scheduling of an invocation
of the execution control function of the second block, with
an occurrence of an event at the associated event input of
the second block.”

VI. HOW TO IMPLEMENT THE SEQUENTIAL HYPOTHESIS

Implementation of the sequential hypothesis requires
further details as follows:
1. Emitting an event by a function block means request to

the scheduler of the resource to pass the event to the
destination function block. The scheduler ensures that
two or more event inputs of a basic FB or SIFB never
occur simultaneously;

2. A resource (FB scheduler) maintains the queue of
external events and can be in one of two states (see the
state machine in Figure 6):

- Receptive to external events in SIFBs;
- Not receptive to external event in SIFBs (when

executing FB). When an event arises in such a state
it is stored in a FIFO queue. The queue is processed
in the next receptive state of the resource.

State/
Transtion

Description

S1 Check if the queue of external events is
not empty
While the queue is not empty
 For each event :
Take (and remove) it from the queue;
Activate the recipient SIFB and pass the
events arising from its execution to the
FB scheduler of the resource;

S2 FB Scheduler selects next FB from its
queue and starts its execution

t1 Queue of scheduled blocks is not empty
t2 Scheduled block completed its

execution

Figure 6 State machine and algorithm of resource operation.

Let us consider an example: a network of function blocks
shown in Figure 7. The network is allocated to a device that
has single resource.

Figure 7. Function block network activated by an external

event through block SIFB_S

The device has one input channel which is polled by the
function block SIFB_S. Arrival of an external event at this
channel causes activation of the rest of the network. The
execution process is illustrated in Figure 8.

Figure 8. Timing diagram representing activity of blocks in the
network.

Scheduling of block activations and registration of
arrived external events is implemented using two queues of
First-In First-Out kind (FIFO): Scheduling FIFO, further
referred to as Queue 1 and SIFBs FIFO, referred to as
Queue 2. Queue 1 stores the events passed from a block to
another block. Queue 2 stores occurrences of external
events that occur while the resource is in the non receptive
state S2. It is needed to ensure the processing of input
events will follow the order of their occurrence. In our
example, the network is activated by arrival of an external
event to the input channel Ev. Arrival of an external event
interrupts the execution of a function block which is
preempted by execution of the resource, which places the
corresponding request to the Queue 2. This can be seen in
case of the execution of FB_C. Pre-emption of the FB_C
execution by the Scheduler after the second occurrence of
Ev does not contradict the 3rd postulate as no other FB is
executed while the pre-emption occurred, so the integrity of
the FB network evaluation is not affected.

When resource returns to the receptive state it checks if
the Queue 2 is not empty and adds the request of kind r →
S to the Queue 1, clearing the Queue 2. Then it takes next
request from the top of Queue 1 and executes the
corresponding function block (that is target of the request,
i.e. in case of request r → S the service interface block S is
executed.)

Remark: In a more general case the queues 1 and 2 may
not necessarily be FIFO but just sets of requests where
scheduler places the requests and from where it selects an
event to activate next function block.

VII. IS SEQUENTIAL SEMANTIC THE BEST FOR DEVELOPERS?

Benefits of the Sequential Hypothesis for application
developer are:
- more predictable model of execution in terms of

reaction time and invocation sequence;
- requires less resources i.e. will lead to potentially

more efficient implementations:
- direct call invocation in NPMTR model requires stack

space and context switching;
- can be implemented in one thread;
- allows customisation for handling real-time

constraints, and other priority mechanisms;
The question of “How good is this model for developers”

can be answered only after certain trial period of using the
tools and devices that comply with this semantic model.
The most popular at the moment FBDK/FBRT follows
different semantic (NPMTR), so the final comparison is yet
to be made. However, there is a possibility of an alternative
semantic which could allow for parallel execution of
function blocks.

As illustrated in Figure 9, splitting an event connection to
two or more blocks (left side), is currently interpreted as
implicit E_SPLIT block (right side), that leads to sequential
scheduling of FB2 and FB3 under Sequential Hypothesis.

Figure 9. Event fork can lead to parallel execution of function
blocks.

However, the event fork in Figure 9 can be interpreted by
many developers as parallel invocation of FB2 and FB3,
and this vision is quite intuitive. The main reason to think
about sequential execution of function blocks is the
sequential nature of modern computers. The function
blocks are not necessarily to be implemented as sequential
software code, they could be compiled into hardware form,
where it is only natural to work in parallel.

The parallel execution of function blocks within a
resource can be achieved by modifying Postulates #5 and
#6, for example as follows:

Postulate #5’ Output events are issued immediately after

the corresponding action is completed. The destination
function block is invoked right after the event is issued.

Postulate#6’ If a function block emits several output
events in one state of ECC, they are emitted
simultaneously.

With this set of postulates our execution model becomes

Parallel Hypothesis, whose discussion, however is beyond
the scope of this paper. We acknowledge that there could be
good reasons in favour of Parallel Hypothesis, such as:

- better fit to the ‘not so short’ algorithms assumption;
- more intuitive in ‘event-forking’ situations;
- better fit to multi core hardware implementation;

To find out more justification for appropriate function
block scheduling strategies, we need to consider the origins
of distributed system configurations in the design loop.

VIII. APPLICATION IN THE IEC 61499 DESIGN LOOP

An application is a network of function block instances. An
example is shown in Figure 10. The application consists of
four function blocks named A, B, C and D. For simplicity
we connected the blocks with only event connectors,
omitting data exchange. Note the connection from A is split
on two: to B and to C. This is interpreted as two
connections A→B and A→C, with event A→B emitted
first and A→C the second. According to the standard,
execution of each block takes a short time interval.

Figure 10. An example of application and the execution order
following the sequential scheduling idea

Entire application can be deployed on a single device. If

the device implements a sequential scheduling mechanism
then the sequence of activations will be as shown in the
Figure. (We denoted D1 and D2 invocations of the block D
by event inputs EI1 and EI2 respectively).

The application design is the first part of system
development. The next step is its deployment that is a
mapping of function blocks to devices. Same application
can be mapped onto one device, or on two or more devices
in arbitrary combinations as illustrated in Figure 10 and in
Figure 11, a) and b) respectively.

a) b)

Figure 11. Two (out of many) possibilities to map an
application on several distributed devices

Figure 12 Sequence of function block execution in mapping to
two devices (different sequences are due to asynchronity of
devices and of communication between them).

Figure 13. Sequence of function block execution in mapping
to and to four devices (C).

In distributed configurations some of the blocks can be
executed concurrently. This can lead to different
sequences of output events for the same input conditions if
the devices are not synchronized. Properties of
communication channels can also influence sequence of
output events. This is illustrated in Figure 12, a) and b) for
the two-device configuration from Figure 11 a). The event
connection A→C needs to be implemented as event passing
through a communication channel between devices 1 and 2.
If the communication protocol does not preserve sequence
of events and the channel can introduce arbitrary delays,
than the execution sequence can differ drastically (compare
Figure 12, sequences a) and b)). The original application
model interpreted according to the sequential hypothesis
would eliminate these execution sequences. In case of the
four-device distribution there would be even more variants,
one of which is shown in Figure 12, c).

From the above said, one can conclude that the two-stage
design paradigm of the IEC 61499 implies that application
must have execution semantics that would not change after
mapping to any configuration of devices. In this case it can
be used for simulation after the first stage of the design and
formal analysis.

A network of function blocks can adequately represent a
(potentially) distributed system only if there was a
mechanism of concurrent activation of blocks. This requires
‘tweaking’ of two mechanisms: 1) simultaneous appearance
of events at several outputs of a single function block; 2)
event propagation enabling simultaneous delivery of events
to inputs of several blocks.

IX. CONCLUSIONS

This paper presented an overview of motivations for the
definition of formal execution semantics of IEC61499.
Sequential and parallel execution models are discussed. The
sequential model is expected to be immediately applicable,
implemented in a number of software tools. The parallel
model also has some benefits, especially for hybrid and

pure hardware implementations.

X. REFERENCES
[1] Function blocks for industrial-process measurement and control

systems - Part 1: Architecture, International Electrotechnical
Commission, Geneva, 2005

[2] Zoitl A., Grabmair G., Auinger F., and Sunder C. Executing real-
time constrained control applications modelled in IEC 61499 with
respect to dynamic reconfiguration, 3rd IEEE Conference on
Industrial Informatics, Proceedings, Perth, Australia, August 2005

[3] G. Čengić, O. Ljungkrantz, and K. Ǻkesson, “Formal Modeling of
Function Block Applications Running in IEC 61499 Execution
Runtime,” in 11th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), Prague, September
2006.

[4] V. Vyatkin, V. Dubinin, Execution Model of IEC61499 Function
Blocks based on Sequential Hypothesis, paper draft,
http://www.ece.auckland.ac.nz/~vyatkin/o3fb/vd_seqsem.pdf

[5] V. Vyatkin, V. Dubinin, Sequential Axiomatic Model for Execution
of Basic Function Blocks in IEC61499, INDIN, 2007

[6] V. Dubinin, V. Vyatkin, On Definition of a Formal Semantic Model
for IEC 61499 Function Blocks, Journal of Embedded Systems,
2007, submitted

[7] Function Block Development Kit (FBDK),
http://www.holobloc.com/doc/fbdk/index.htm

[8] OOONEIDA Workgroup on Execution Semantic of IEC61499:
http://www.oooneida.org/standards_development_Compliance_Profi
le.html

[9] C. Sünder, A. Zoitl, J. H. Christensen, V. Vyatkin, R. Brennan, A.
Valentini, L. Ferrarini, K. Thramboulidis, T. Strasser, J. L.Martinez-
Lastra, and F. Auinger: Usability and Interoperability of IEC 61499
based distributed automation systems, 4th IEEE Conference on
Industrial Informatics (INDIN 2006), Proceedings, Singapore, 2006

[10] Thramboulidis K.S. “Using UML in Control and Automation: A
Model Driven Approach”, 2 Pnd P international Conference on Industrial
Informatics INDIN’04, 24-26 June 2004, Berlin, Germany

[11] L. Ferrarini and C. Veber, Implementation approaches for the
execution model of IEC 61499 applications, 2nd IEEE Conference on
Industrial Informatics, Proceedings, Berlin, June 2004

[12] V. Dubinin, V. Vyatkin “Formalized definition and modelling of IEC
61499 function block systems”, Letters of Tertiary Education
Institutions, Volga region, Russia, Penza State University Publishers,
2005, N 5, pp.76-89

[13] V. Dubinin, V. Vyatkin, Towards a Formal Semantics of IEC 61499
Function Blocks, 4th IEEE Conference on Industrial Informatics
(INDIN’2006), Singapore, 2006

[14] V. Dubinin, V. Vyatkin, H.-M. Hanisch, “Using Prolog for
Modelling and Verification of IEC 61499 Function Blocks and
Applications”, 11th IEEE Conference on Emerging Technologies
and Factory Automation (ETFA 2006), Proceedings, Prague, 2006

[15] L. Ferrarini, M. Romanò, and C. Veber, Automatic Generation of
AWL Code from IEC 61499 Applications, 4th IEEE Conference on
Industrial Informatics (INDIN 2006), Proceedings, Singapore, 2006

[16] L. Ferrarini, C. Veber, F. Ferrari, G. Fogliazza, Applied Meta-
modelling to convert IEC61499 Applications into Step7
environment, ECC07, European Control Conference 2007, 2-5 luglio
2007, Kos, Greece, accepted.

[17] L. Ferrarini, C. Veber, Control function design and implementation
of distributed automation systems for manufacturing applications,
IJMR, International Journal of Manufacturing Research, Vol. 1, No.
4, Inderscience Enterprises Ltd, 2006, pp. 442-465

[18] J. LM Lastra, L. Godinho, A. Lobov, R. Tuokko, An IEC 61499
Application generator for Scan-Based Industrial Controllers, 3rd
IEEE Conference on Industrial Informatics, Proceedings, Perth,
Australia, August 2005

