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Abstract. Airport Baggage Handling is a field of automation 

systems that is currently dependent on centralised control 

systems and conventional automation programming 

techniques. In this and other areas of manufacturing and 

materials handling, these legacy automation technologies are 

increasingly limiting for the growing demand for systems that 

are reconfigurable, fault tolerant and easy to maintain. IEC 

61499 Function Blocks is an emerging architectural framework 

for the design of distributed industrial automation systems and 

their reusable components. A number of architectures have 

been suggested for multi-agent and holonic control systems 

that incorporate function blocks. This paper presents a multi-

agent control approach for a baggage handling system using 

IEC 61499 Function Blocks. In particular, it focuses on 

demonstrating a decentralised control system that is scalable, 

reconfigurable and fault tolerant. The design follows the 

Automation Object approach, and produces a function block 

component representing a single section of conveyor. In 

accordance with holonic principles this component is 

autonomous and collaborative, such that the structure and the 

behaviour of a baggage handling system can be entirely defined 

by the interconnection of these components within the function 

block design environment. Simulation is used to demonstrate 

the effectiveness of the agent-based control system and a utility 

is presented for real-time viewing of these systems. Tests on a 

physical conveyor test system demonstrated deployment to 

embedded control hardware. 

 

Index Terms— Material handling systems, Distributed 

factory automation, IEC 61499, Holonic control  

I. INTRODUCTION 

ATERIAL handling is a field of automated systems that 

deals with movement of materials rather than of 

processing. Airport baggage handling systems (BHS) is a 

representative example of such systems, known to 

everybody. Many of the issues faced in BHS are relevant to 

industrial automation in general and vice versa. In 

particular, of high importance are the goals of serving 

‘rapidly changing markets’ by ‘shorter time to market’ and 

                                                           
 
Manuscript received on March, 14, 2008 and revised on June 30, 2008.  

This work was supported in part by the TechNZ and Glidepath Ltd. TIF 
grant and by the University grant SRF 3607893.  

G. Black was master student at the University of Auckland. He is now with 
Wellington Drive Technologies, Auckland, New Zealand (e-mail: 
Geoff.Black@wdtl.com ).  

V. Vyatkin is with the Department of Electrical and Computer Engineering, 
University of Auckland, New Zealand (phone: +64-9-3737599 ext. 89437, 

e-mail: v.vyatkin@auckland.ac.nz). 

‘increased customisation’, which have been cited for years 

in the industrial automation context. 

From this perspective, conveyor based BHS are 

considered desirable [1] partly because they are readily 

modified or reused to allow reconfigurable applications. The 

conveyor therefore seems a very good example of an 

application where an easily reconfigurable, intelligent 

mechatronic module might have considerable benefit. 

Moreover, flexibility in this context may refer both to 

physical reconfigurability or to the design process. The 

former is important due to the fact (also noted in [1]) that 

most airports exist in a permanent state of expansion and 

upgrade. The design flexibility would allow re-use of 

previously developed solutions which can help create new 

BHS faster and with higher quality assurance.  

Despite these widely agreed needs, there has been 

arguably a poor level of achievement in reaching these 

stated aims. Current controllers for Baggage Handling 

Systems are based on conventional industrial control 

hardware and programming techniques. This includes a 

heavy reliance on Programmable Logic Controllers (PLC) 

for the low level manipulation of actuators based on sensor 

data. However, the PLC-based centralised approach to 

control cannot be appropriately applied to all circumstances 

with some applications being too dispersed physically or 

demanding of processing to allow control from a single 

execution point [2]. The software used in PLCs is generally 

monolithic, increasing the difficulty of modification and 

maintenance and reducing scalability. Although with 

modern tools the PLC code may be quite modular, there is 

still a considerable amount of effort required in order to 

reconfigure PLC code for a new BHS.  

IEC 61499 standard [3] provides an architectural 

framework for the design of distributed and embedded 

control systems. It aims to become a direct successor to the 

current suite of programming languages for automation 

systems, allowing the development of applications running 

on multiple decentralised control platforms. IEC 61499 also 

promises to accommodate better the intelligent automation 

ideas emerging from many mature long-running projects. 

Amongst the various efforts, the need for a more distributed 

approach to control is generally accepted by [2], [4].  

Three approaches to distributed control worth 

mentioning. Early attempts at distributed control involved 

splitting a large application in smaller components and 

joining them together with communications to achieve the 

overall required behaviour.  

M
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Multi-agent control systems [5] take a different 

approach. Instead of creating applications by gluing together 

sub-programs with communications to form a static 

distributed system, agents are designed to be autonomous 

actors in an environment where they perform local actions 

while actively collaborating with other agents to achieve 

global goals [6].  

A particular kind of agent-based systems are holonic 

systems. Holonics is a concept derived from observations of 

natural systems that consist of hierarchies of entities that 

may each be considered complete systems [7]. A holonic 

system is said to be made of ‘holons’ which may be 

considered both as an entity in their own right, and as a 

component of a larger hierarchy known as a ‘holoarchy’. 

While multi-agent systems emerged largely from research in 

distributed artificial intelligence [8], the field of holonics 

was initially inspired by Arthur Koestler’s ‘The Ghost in the 

Machine’, which utilises the concept in discussing 

evolutionary psychology, including the invention of the 

word ‘holon’.  

In the field of automation and manufacturing systems, 

holonics seems to be attractive because of the connotations 

of resilience to disturbance and adaptation in response to 

component failure that characterise many of the natural 

systems from which the holonic principle originates.  

Early studies on the use of multi-agent and holonic 

approaches in automation have shown that the most critical 

for their success are modularity and redundancy of the 

machinery. Therefore, material handling systems such as 

BHS can be considered as a perfect candidate for more 

extended research efforts. However, current architectures of 

programmable controllers’ software and hardware do not fit 

to the idea of multi-agent control. The next step towards 

practical application of multi-agent approaches needs to 

address this issue by proposing and testing the 

corresponding low level architectures for automation 

systems. This paper presents such an attempt. 

The paper is structured as follows. Section II identifies 

main problems which need to be solved in order to address 

the challenges of baggage handling systems automation by 

applying multi-agent holonic control. Section III reviews 

relevant developments in the area of intelligent automation, 

such as: the IEC 61499 architecture, object-oriented 

engineering and applications of multi-agent and holonic 

systems. Section IV presents the developed framework for 

intelligent BHS automation, which is based on the IEC 

61499 standard. Section V focuses on the intelligent 

controller functionality. Section VI further describes the 

distributed baggage path planning implementation. Section 

VII presents trial implementations and case studies. The 

paper is concluded with the summary of results and an 

overview of future developments in Section VIII, followed 

by Acknowledgements and References.  

II. PROBLEM STATEMENT AND GENERAL 

APPROACH TO SOLUTION 

Multi-agent approach to automation of baggage handling 

systems seems to be a promising solution for improving 

their flexibility of operation and efficiency of their design. 

This hypothesis, however, needs to be confirmed in case 

studies of realistic complexity. New hardware and software 

architectures for the low level of automation systems are 

required to use holonic control systematically in industry. 

This paper proposes new architecture of an embedded 

intelligent control implementation with IEC 61499. It aims 

to show that many of the requirements for building holonic 

agents are inherent in the IEC 61499 specification. The 

proposed architecture aims at implementation of holonic 

control directly on embedded devices. This represents a step 

toward industrial application of intelligent automation 

principles.  

The central part of the proposed architecture is a 

reusable intelligent software component for baggage 

handling encapsulated in an IEC 61499 function block. This 

enables easy deployment of the developed application on 

arbitrary topologies of networking controllers.  

The new degree of BHS flexibility is achieved on 

account of collaborative behaviour of intelligent controllers. 

The intelligence is achieved by applying distributed baggage 

routing algorithms, combining simulation, real-time control 

and predictive control. It is demonstrated that the proposed 

architecture can support efficient reconfiguration of the 

BHS, in terms of changing its physical layout, or by 

changing the number and interconnections of embedded 

controllers. Flexible visualiser is created for viewing state of 

the BHS models in simulation or in real-time operation. 

III. RELATED WORKS 

A. Distributed, multi-agent and holonic approaches to 

BHS automation 

The modular nature of material handling systems has 

inspired some researchers to try their distributed automation, 

such as work [9], where each conveyor is controlled by an 

embedded device with wireless communication capabilities.  

Application of a multi-agent approach to baggage 

handling was presented in [8], where a Java application was 

implementing JADE based agents communicating via FIPA-

ACL agent communication language [10]. The authors 

describe successful agent based implementation of a variety 

of baggage handling control actions under simulation. They 

also describe that the limiting factor for the performance of 

the system was the messaging overhead of the agents’ 

communications.  

Many current research projects into multi-agent control 

systems e.g. [8], [11], [12], start with implementation of a 

general purpose agent that is capable of executing arbitrary 

behaviours. Most of such applications, however aim at off-

line application (simulation), or require a multi-layered 

hardware architecture, where the low level control tasks are 

still implemented in PLCs, while the agent behaviour is 

running on a separate powerful computer. This, naturally, 

restricts wide application of multi-agent control in the 

automation practice.  

B. IEC 61499 architecture as the next generation of PLC 

technology 

Addressing the limitations of the legacy PLC programming 

languages and looking toward the realities of implementing 

real-time multi-agent systems, the International 

Electrotechnical Commission (IEC) initiated a project to 



T-ASE-2008-185 3

encourage the development of new software architecture, 

extending the IEC 61131-3 Function Blocks by adding event 

driven execution. In 2005 this project culminated with the 

approval of the IEC 61499 standard [3] that defines the new 

function blocks architecture. Unlike previous 

standardisation efforts, this is not a retrospective recognition 

of practices, but an attempt to guide future developments 

toward an open standard that allows genuine vendor 

interoperability. 

At one level, function blocks provide a direct advance 

from, and viable replacement for, established automation 

programming languages such as ladder logic, structured text 

or their proprietary variants. However their application 

extends past simple replacement of legacy systems because 

of the inherent support for distributed applications and 

ability to provide a platform for modelling and simulation 

with well defined interfaces.  

There is a small but growing toolset for function block 

design. The Function Block Development Kit (FBDK) [13] 

remains the most widely used, because it is the oldest and is 

free for educational use. Commercial tool support is also 

beginning to emerge. The new version of the ISaGRAF 

industrial control design software with support for IEC 

61499 Function Blocks is introduced in [5].  

In order for function blocks to become executable on a 

variety of hardware, hardware vendors must provide support 

for the standard. The options remain limited, but are on the 

increase.  

There are currently several options for executing 

function blocks. Firstly, any platform that can execute 

standard Java byte code can run the FBRT [13]. This 

includes desktop computers running any major operating 

system. Embedded execution option includes the Elsist 

Netmaster II, which runs a cut down version of Java 

Standard Edition (J2SE). Tait Control Systems 

MO’Intelligence units run Java Micro Edition (J2ME) and 

are supplied with a port of the function block runtime and 

vendor supplied Service Interface Function Blocks for 

hardware access. These units are available in several formats 

with support for DeviceNet and an integrated motor drive 

option. 

C. Efforts on improving engineering efficiency of 

automation systems 

There exist a multitude of attempts aiming at improved 

efficiency of the engineering and re-engineering process of 

automation systems. These are generally categorised along 

the continuum of abstraction vs. implementation. That is, the 

more abstract methods, such as Unified Modelling 

Language (UML), are usually more able to describe a 

broader range of systems, while the implementation focused 

methods may be directly executable, but are too specific to 

be of general use. 

The IEC 61499 architecture seems to offer quite 

optimal abstraction/implementation ratio. Function blocks 

are one framework that promises the ability to break out of 

the purely implementation phase, allowing a designer to 

build applications whose structure mirrors that of the 

physical systems with which it interacts, while still being 

directly executable. A number of research projects both in 

academia and in industry, e.g. [14], [15], [16], describe 

architectures that aim to solve particular challenges in the 

design and deployment of distributed control and each 

specify function blocks to a greater or lesser extent. As it is 

pointed out in the survey [17], the common factor across 

most design methods is the attempt to use Object Oriented 

(OO) techniques applied to function blocks.  

One example of these is the concept of an ‘Automation 

Object’ (AO), explored in [18, 19], and in particular in [20], 

which defines it as ‘a collection of data and knowledge 

elements belonging/relevant/describing physical building 

blocks of automated manufacturing system‘. The AO 

concept extends the modularity of software or hardware to 

the modularity of the whole entity, which combines 

mechanical, electrical and software components into 

intelligent mechatronic devices.  

In [19] it was concluded, that IEC 61499 is an 

appropriate architecture to organize the IT (information 

technology) side of Automation Objects. One such feature of 

IEC 61499 is the definition of interfaces via adapter 

interface function blocks, which makes it possible to design 

function blocks that can be readily substituted for one 

another, as demonstrated e.g. in [21]. This contributes to the 

rapid reconfiguration of applications which is increasingly a 

requirement for automation technologies and IEC 61499. 

The architecture presented in this paper makes extensive use 

of adapters to minimise the number of connections required, 

and to allow reconfiguration at design time. 

Currently there are several groups working on creating 

Automation Object architectures incorporating function 

blocks as a major part, for example [22]. In [23], the idea of 

intelligent machines is extended using the example of 

conveyor systems and provides additional reasons for the 

use of the function block architecture.  

The general approaches toward combining mechanical 

systems with electronics and software to create complete 

reusable mechatronic components, differ in their focus and 

scope. On one point all discussions appear to agree: that a 

key aspect of achieving multi-domain modularity is to allow 

the logic of the control application to be organised in the 

same way as the physical system being controlled. This 

seems sensible – the encapsulation should be consistent 

across the mechanical, functional and logical domains 

allowing true modularity through the complete model.  

D. Systems modelling and simulation 

Another benefit of using IEC 61499 as a modelling language 

is that it is directly executable, so it can readily be used for 

simulation. This allows a modelled system and 

accompanying control system to be tested before 

deployment. This would constitute a serious advancement 

compared to the state of the art, where simulation is used 

 

Figure 1. Model-View-Control architecture in automation. 
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only for general system prototyping at early stages of 

development. In most cases, the behaviour tested via 

simulation then needs to be implemented in the controller of 

the BHS, and this is very resource-consuming and error 

prone process. Once controller is developed, its verification 

by simulation would also require extra development effort. 

In [24] Christensen describes the application of the 

model-view-control (MVC) design pattern to function block 

system design, providing the foundation for the internal 

structure of AOs capable of immediate simulation. The 

diagram in Figure 1 illustrates the pattern, which is based on 

the observation of similarity of the interfaces of the real 

physical object (say, conveyor) and of its simulation model. 

Thus these components (Model or Interface) can be used 

interchangeably, being represented to the outer world by the 

Object interface. The View component is “fed” by the 

parameters generated by the Object and renders its current 

state. Finally the Controller is connected in closed-loop with 

the Object, receiving from it readings of sensors (either real 

or simulated) and sending it control signals. The Human-

Machine Interface component supports manual control of 

the Controller and rendering of its status. The corresponding 

design methodology, exemplified in [20], suggest to start 

controller development and testing by connecting it in 

closed-loop with the Model and ensure its validity by 

simulation. Then the Model component is to be seamlessly 

substituted by the Interface to real sensors and actuators. 

Various examples of the system design combining MVC 

and IEC 61499 are accompanying the FBDK. Rockwell’s 

MAST simulation platform [11], suggests the use of 

function blocks for the low level control, working under the 

direction of a supervisory software agent that manages 

connections with other agents. However, it seems that no 

practical experience towards this end was gained in that 

work. 

Furthermore if simulation is performed in function 

blocks, these same blocks may be deployed into the final 

system where predictive control behaviours are required. 

Hirsch et al. in [25] describe the use of physical modelling 

and simulation to assist in designing a control system. It also 

suggests that the scheme could be extended to include 

simulation in the control system itself to provide simulated 

prediction of the system. This technique is a variant of 

‘model predictive control’, a well established principle in 

control systems where a mathematical model of the plant is 

used to predict its behaviour into the near future. 

E. IEC 61499 for holonic and multi-agent systems 

Application of function blocks for building holonic systems 

has long been envisaged. Thus, the Holonic Manufacturing 

Systems project [4] suggested the use of function blocks 

from early stage [26], the ideas were further specified, for 

example, in [27, 28].  

Numerous design methods, architectures, computing 

platforms, networking technologies and programming 

languages have already been proposed to help improve 

automation systems using a multi-agent approach, some 

incorporating the use of IEC 61499 Function Blocks [28], 

[29]. In [21] the AO concept was used to create intelligent 

mechatronic devices using IEC 61499 features coupled with 

agent based control.  

These works form the necessary critical mass for 

proposing a solution combining holonics and IEC 61499 in 

BHS. 

 

Figure 2:  A Fully Featured Conveyor Module. 

 

Figure 3. Internal architecture of the conveyor component following extended MVC with illustrated interactions between models of two conveyors 

(simulation configuration). 
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IV. IEC 61499 – BASED ARCHITECTURE FOR 

INTELLIGENT BHS  

The approach taken in this work is object-oriented in the 

sense that the structure of software mimics the structure of 

the physical BHS and is centred around the conveyor 

mechatronic component. A reusable software component 

(function block) represents a single conveyor in the BHS 

control system, which is composed of as many such function 

blocks as conveyors in the physical system. This approach 

stems from [21], where a bottom-up approach is taken to the 

challenges of mechatronic modelling. It is applied in BHS 

and extended by autonomous, agent-based behaviour 

following [30]. 

A. The Conveyor Model 

The approach taken in this model is that the primary 

software component will represent one section of conveyor 

including its various sensors, actuators, computing platform 

and control software. This is a reasonable trade-off between 

flexibility and maintaining simplicity in the design where 

these blocks are to be deployed. The approach taken is a 

little different to [11] where conveyors are modelled as 

assemblies of services such as belts, diverters and scanners 

at the same level. 

We begin with the development of a generic conveyor 

model by identifying typical functions and interactions of a 

single conveyor. Conveyor-based BHS are constructed of a 

set of ‘conveyor sections’ connected end to end, or in merge 

or divert configurations. If we imagine a fully featured 

conveyor component, able to perform any of these actions, it 

would look like the general purpose conveyor section shown 

in Figure 2. This contains the mechanical conveyor 

components required for merge and divert, the sensors for 

detecting bags and measuring belt speed, and a motor with 

drive to make the belt move. It also includes an embedded 

controller that makes control decisions based on sensor data 

and from information exchanged with other conveyor 

controllers connected by network. 

The generalised conveyor section of Figure 2 is the 

initial model for a reusable component that could describe a 

section of conveyor at several levels from its logical 

connection to other sections, to its dimensions and other 

physical parameters. It was desired that a network of 

conveyors could then be modelled by simply making 

connections between appropriately parameterised conveyor 

function blocks. 

The design follows the extended MVC design pattern. 

In this work an extension of this pattern, called Predictive 

Object-View-Controller (POVC) has been developed and 

tested. Instead of switching between model and real object 

during design time, they both are combined in one 

component. Figure 3 shows internal architecture of the 

conveyor software component built according to the POVC 

pattern, and exemplifies interactions between components 

representing two conveyors. The Object composite 

component includes both the model of dynamics (including 

simulated sensors), and the interface to real sensors and 

actuators. Depending on the mode of operation (on-line 

control or off-line simulation) the Predictor module delivers 

to the Controller values of actual or simulated sensors. The 

simulation keeps running even in the on-line operation 

mode, in this case if readings of real sensors are temporarily 

not available, e.g. due to a malfunction, the Predictor will 

use the simulated ones.  

Models of adjacent conveyors exchange the bag model 

information via BAGTRANS interface which will be 

discussed further in Section IV,C. In this way a model of the 

complete BHS can be created as interconnection of the 

models of constituent conveyors, synchronized and 

communicating via the BAGTRANS interface.  

The View component sends the current state 

information to the standalone visualisation application, 

which renders the current state of the whole conveyor 

system as discussed in Section IV,F.  

The control part, along with the Controller, includes 

communication function blocks enabling inter-controller 

communication, required for implementation of such 

distributed intelligence features as dynamic baggage routing. 

Details of the intelligent control implementation are 

presented in Sections V and VI. 

 

Figure 4: CONVEYOR_SIMCTL interface and internal structure 
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B. Complete Conveyor Component  

The corresponding function block implementation has a 

multi-level structure where the low level operations are 

wrapped in composite blocks that hide details, provide 

connectivity and present a clean interface for the designer to 

create system models without detailed knowledge of low 

level functionality.  

The top level function block, CONVEYOR_SIMCTL, 

shown in Figure 4 has all the functionality required to define 

conveyor connections and layout, simulate the network and 

demonstrate distributed control of the simulated network.  

The following is a summary of the actions that can be 

performed by a conveyor, although not all of these can be 

executed by the same section. For instance, the model will 

not allow a section to implement both merge and divert due 

to possible complications with the path planning system. 

� Transport:  The ability to move objects from one end to 

the other. 

� Detect:  Each conveyor is equipped with a cascade 

photo eye (PE) at its end and a motor drive. Conveyors 

that implement divert have an additional PE at the divert 

point. 

� Merge:  Allow bags to merge into this conveyor from 

others. The merge point can be positioned anywhere 

within the length of the section 

� Divert:  The ability to eject bags from the stream of bags 

into another conveyor. Like merge can be positioned 

anywhere in the conveyor 

� Scan: The scanner can read the details of a bag including 

its globally unique ID and its required destination in the 

BHS 

� X-ray: The X-ray is responsible for determining the 

security status of the bag, which may determine whether 

the bag is eligible for delivery.  

The CONVEYOR_SIMCTL function block packages a 

significant amount of functionality. In order to give a 

general sense for the hierarchy involved, Figure 4, shows a 

simplified depiction of the important function blocks 

required to perform simulation and control. Functionality of 

some basic blocks is as follows:  

CONVEYOR_MDL is the primary engine for simulation of 

bag behaviour, implementing the functionality for inserting 

and removing bags from a conveyor section model and 

predicting bag positions through time. 

BELT_MDL abstracts the lowest level physical behaviour 

of the conveyor by simulating the dynamics of a conveyor 

belt with inertia. It also simulates the behaviour of a rotary 

encoder, producing an event each time the belt moves by a 

preset distance. This encoder output is the signal seen by the 

control system. 

CONVEYOR_PR combines the simulation component 

CONVEYOR_MDL with bag tracking logic to provide a 

real time estimate of the location of bags within the 

conveyor section. 

The BAG_DETECT block encapsulates the task of detecting 

and measuring bags as they pass the PE on the conveyor. 

C. Modelling a Bag 

The conveyors make up the fixed part of the system while 

the bags are dynamic, being passed between conveyors. 

Together the conveyor components plus the bags represent 

almost the complete BHS system. 

Being a distributed control system, the data 

representation of a bag takes on rather great importance. The 

physical (or simulated) bag must be accompanied in the 

control system by a data representation containing all 

information necessary for its correct processing. The bag-

related data were encapsulated in an IEC 61499 custom data 

type. This is a simple data record containing an arbitrary 

number of IEC 61499 primitive types, accessible by name. 

When first detected the bag has only an auto-generated local 

ID. The remaining information must be obtained as the 

baggage handling process executes by the control system 

making use of scan and X-ray facilities. 

D. Connecting Conveyor Sections 

The CONVEYOR_SIMCTL function block introduced 

above represents a section of conveyor and its functionality. 

For truly distributed execution, each conveyor must track 

any bags within its length and make control decisions about 

their management and delivery.  

Whenever a bag moves from one conveyor to another, 

there is a need to also communicate the data representing 

that bag to the downstream conveyor, and to remove the 

record of that bag from the upstream. This is simplified by 

encapsulation of the bag data into a single custom data type, 

as shown above, reducing the number of data signals 

required. However, each conveyor must have the ability to 

indicate readiness to receive so that upstream bags will only 

be supplied when appropriate, while a further event and data 

pair, IND_PATH and PATH, responsible for building 

possible delivery paths must also be connected. As a result, 

there are a number of events and signals to be connected to 

allow bag transactions to occur. The need for manual 

creation of many connections is time consuming, error-

prone and clearly at odds with the stated goal of achieving 

an easy process of modelling within the FBDK environment.  

To simplify the connection of conveyor sections, 

CONVEYOR_SIMCTL, makes use of IEC 61499 adapters. 

Figure 5: Adapter – based connection one- line between models of two 

conveyors and the logic of bag transfer. 
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Although adapters appear much like other function blocks, 

they are simply an interface definition containing no 

functionality. Adapters can assist in allowing reconfigurable 

applications, in the engineering view by minimising the 

visible connections and also at run-time by reducing the 

number of management commands required to add, remove 

or modify a relationship between blocks. More details on the 

benefits of adapters in function block designs can be found 

in [20], Chapter 16. 

Figure 5 demonstrates the transaction of a bag B1, 

exiting from Conveyor C1 on the left to Conveyor C2 on the 

right. C1 and C2 are very simplified conveyor function 

blocks showing only the required bag transfer logic. When a 

bag reaches the end of C1, the EXITED event is triggered 

and the BAG_ID output is set appropriately. This event is 

directed through the BAGTRANS adapter to the ENTER 

event input of C2. If C2 is able to accept a bag then it will 

respond by triggering the ENTERED event which connects 

through the adapter back to the REMOVE input of 

Conveyor 1 indicating that the bag is to be removed from 

C1. Note that this shows only the transfer of a bag model, 

not the control sequence by which it is negotiated. 

E. Modelling a Baggage Handling System 

Having introduced the conveyor software component and 

explained the mechanism for interconnection, we can now 

look at how these components can be assembled to create a 

model of a conveyor BHS.  

Let us take the simple BHS fragment shown in Figure 6 

(a) and examine how it can easily be modelled using a 

derivative of the CONVEYOR_SIMCTL function block 

with each block representing a single conveyor section. This 

example contains four conveyor sections labelled C1 to C4. 

There is a divert path that leads from C3 to C4, and C4 

merges into C1. 

To simplify the example, the CONVEYOR_SIMCTL 

blocks are encapsulated into CONV_BASIC blocks that 

hide much of the detail of the CONVEYOR_SIMCTL block 

by assigning default values to most parameters. The 

structure of the network is defined simply by the connection 

of the ENTER, EXIT, MERGE and DIVERT ports. Figure 

6(b) shows a part of application that models the chain from 

(a), laid out similarly to the original example and with the 

same conveyor labels. Note that the model as shown is 

simplified and offers no way for bags to enter or exit the 

system. 

By creating the function block model of Figure 6 (b), 

the designer achieves the following: 

� Specified the physical dimensions and layout of the 

conveyor sections (it is assumed that the 

CONV_BASIC block predefines conveyor length); 

� Created the basis for simulation of the system; 

� Created a distributed control system for the system. 

F. Visualisation of Conveyor Models 

To provide intuitive information about a conveyor system as 

represented by a function block network, it is very useful to 

have some method of displaying the network in a way that 

resembles the real conveyor system. The FBDK contains 

building blocks for simple visualisation of common 

industrial system components such as solenoids, linear 

actuators and drills. The representation of the conveyor 

network was seen as limited by the FBDK’s visualisation 

components because while the conveyors are generally 

static, the bags they carry are dynamic and will vary in 

number per conveyor. To avoid these limitations a simple 

OpenGL based visualiser was created that runs as a stand-

alone application outside the FBDK. 

The visualiser directly parses the XML system 

configuration, which allows rendering of the static layout of 

conveyor sections without execution of the function block 

system. Once activated, simple network datagram packets 

are generated by the CONVEYOR_MDL blocks 

representing the state of the conveyor section and the details 

of any bags present. These packets are used to display the 

conveyor sections and bags in real-time, including the state 

of sensors and actuators. 

Figure 6 (c) shows a sample visualisation of the 

conveyor network modelled by the system configuration of 

(a). In this example a bag is shown traversing Conveyor C1. 

The triangles represent the Cascade PE sensors the end of 

each section and the white arrows show that a given 

conveyor is running and the direction of travel. 

 

 

Figure 6. a) Example BHS fragment for modelling; b) Function block model of the conveyor chain; c) Sample visualisation of the conveyor system; 
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V. INTELLIGENT COLLABORATIVE BAGGAGE 

HANDLING CONTROLLER 

A. Structure of the controller 

In the proposed architecture control of the BHS is achieved 

via collaborative effort of the controllers of single conveyor 

sections without any central supervisor. As a result, the 

control is adaptive to the layout and status of the BHS. For 

example, it can dynamically change the routes of baggage 

delivery in case if some conveyor section is out of operation. 

There are two main parts to the control system. First is 

simple reactive control, where a set of rules are applied 

according to the position of bags, the state of sensors and the 

state of flags from downstream conveyors. The second, 

directing these simple reactive control actions is a path 

planning controller that is responsible for actually guiding 

bags to their destination. The latter will be discussed in 

Section VI. 

The collaborative ‘agent’ behaviour of the conveyor is 

performed by the controller function block 

CONVEYOR_CTL which executes the actual decision 

making part of the baggage handling system. Its interface is 

presented in Figure 4. The controller is implemented as a 

basic function block which combines the reactive behaviour 

programmed in ladder logic with higher level functions 

programmed in Java. 

B. Reactive behaviour and interfaces  

As with all interactions between conveyors, signalling 

between controllers occurs through the BAGTRANS 

interface. Each conveyor produces ENTERRDY and 

MERGERDY signals, which are received by upstream 

conveyors into their EXITRDY or DIVERTRDY inputs 

depending on conveyor layout.  

Using these signals the controller is able to implement a 

set of control actions for managing bag traffic. The major 

limitation is that the controller only has direct information 

about its own conveyor section and limited data from 

adjoining sections, whereas a centralised controller may 

freely use information from throughout the network. This 

did not prove to be a problem for the control actions 

implemented so far.  

The simplest required behaviour is the ability to observe 

and obey EXITRDY and DIVERTRDY signals as requested 

to prevent exiting bags from colliding with others or getting 

so close as to cause problems with tracking. This behaviour 

requires only the flags from downstream conveyors and the 

value of the Cascade or Divert PE to operate. To make this 

behaviour useful, the ENTERRDY output signal (which 

supplies the EXITRDY or DIVERTRDY inputs) must be 

generated by the downstream conveyor. This is done simply 

by searching the BAGS array input from the predictor to 

determine is a sufficient gap exists for a new bag to be 

received. The MERGERDY signal is generated in a similar 

way, but the gap search is performed at the merge positions 

indicated instead at the conveyor entrance.  

C. Cascade Stop and Bag spacing 

To prevent bags getting confused or misdirected, it is 

important that a reasonable gap is maintained between each. 

This can be achieved by an upstream conveyor stopping to 

put extra gap between bags. This behaviour is achieved by 

simple Boolean flag interactions between conveyor sections 

as specified by the BAGTRANS interface. Each conveyor 

determines whether it can receive additional bags by 

searching its bag list for any bags near the conveyor start. 

Figure 7 shows C2 is not ready to receive because bag B2 is 

still in the ‘minimum gap’ region.  

C1 can only run until B1 triggers the cascade PE and 

then must wait. Although the EXITRDY input is generated 

remotely and may be received via a network channel, this 

behaviour can be expressed, for example, in a simple ladder 

logic statement, which is a supported IEC 61499 algorithm 

language. As long as the cascadeStop flag is true, then the 

conveyor will not run. Other control behaviours are 

implemented in a similar fashion. This also demonstrates 

that legacy languages, well suited to the expression of 

simple automation concepts, are easily applied within a 

Function Block design without the disadvantages being 

committed to these languages for the whole design.  

D. Merge Control 

When two streams of traffic merge, it is necessary for one 

stream to wait for a gap in the other before delivering each 

bag. This is one of the more important aspects of bag 

management in a BHS as incorrect merging can easily result 

in collisions or misordering of bags resulting in lost bags. In 

the function block controller, it is implemented in a simple 

manner using the MERGERDY signal to indicate readiness 

for merge traffic. This is a very simple approach to the 

problem and may need additional treatment in future 

enhancements to the controller. 

VI. DYNAMIC PATH PLANNING  

In order for a BHS to be useful, each bag must be delivered 

to the appropriate destination. The function vividly 

demonstrating the distributed intelligence potential of the 

proposed BHS architecture is decentralized planning of the 

path for each piece of baggage. The path planning results in 

the decision of bags’ divert so that they take the correct 

path.  

In conventional conveyor control systems this is done 

 

Figure 7:  Bag spacing control 
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by a central routing controller that has a complete model of 

the network layout and can perform a tree search of possible 

paths between points using established path finding 

algorithms. The method described here is demonstrates that 

same or even better global behaviour can be achieved in the 

distributed architecture with fully decentralized control 

logic. 

A. Dynamic Path Building 

A series of connected conveyors can be modelled formally 

as a weighted directed graph. That is a graph of nodes 

connected by vertices with associated ‘costs’. The problem 

of finding an optimal path is that of finding the sequence of 

graph edges that incurs the least total cost. When applying a 

centralised control system, algorithms for determining the 

shortest path, such as Dijkstra's [31], can readily be applied 

to the model to give a result.  

In the case of distributed control, no individual part of 

the system has a complete view so as to allow a global 

analysis to be made. As a result, possible paths must be 

determined in a cooperative manner by propagation of 

messages along the same routes that are available to the 

modelled bags. The algorithm used to determine least cost 

path from a conveyor to the baggage destination is similar to 

the distributed Bellman-Ford algorithm [32]. Unlike the 

original algorithm, which calculates shortest paths to all 

graph nodes by maintaining and updating vector of 

distances, our algorithm generates path strings to all possible 

destinations. This helps to add specific processing features 

to the bag’s itinerary and avoid undesired loops.  

The technique described uses the interconnections 

between conveyor sections to construct valid paths from 

each conveyor to each reachable exit using back 

propagation. When requested, destination or ‘exit’ points in 

the network emit PATH signals to their predecessors. These 

append the path signal to their own identity and the 

branching details (merge, divert, enter, exit) and send them 

on in turn to the upstream nodes. This builds path strings for 

each (reachable) network node that define all the possible 

future choice combinations from that node. Working back 

from the network exit points allows each node to only store 

the minimum path information to reach each available exit. 

When this propagation process reaches source or entry 

points in the network then complete paths are defined. These 

path strings can be regularly regenerated to recognise 

changes in network topology, such as component failure or 

even reconnection of conveyor sections. 

To slightly complicate matters, simply finding a path 

through the conveyors to a location is not sufficient. In most 

cases, the bags will be initially unidentified and have no 

security clearance. The path planner must route bags 

through the BHS so that they are identified by a scanner and 

X-rayed for security before finally determining a path for 

their destination. The action of integrating additional 

processing actions into the path planning system suggests 

the idea that the scheme could be used for a far more general 

class of materials handling and processing sequences. 

The internal representation of these paths currently uses 

strings to allow easy communication between conveyors. A 

simple format is used to represent the possible actions of 

each conveyor. The form of these strings is a concatenation 

of conveyor IDs tagged with actions that have been 

propagated back from a destination. These actions may be 

any of those supported by the conveyor component. A 

separate entry is required to enter a conveyor, perform any 

internal actions and to exit the conveyor. To keep the length 

of path strings manageable, actions are abbreviated as 

shown in Table 1. 
Action Path String 

Abbreviation 

Example 

Exit x x(A) exits conveyor A 

Merge m m(A) merge to conveyor A 

Divert d d(A) divert from conveyor A 

Enter e e(A) enter conveyor A 

Scan i i(A) scan (identify) at conveyor A 

X-ray s s(A) perform X-ray security test at 

conveyor A 

Table 1: Path String Abbreviations 

 

By joining a sequence of these actions a complete 

sequence can be described including both physical path and 

processing actions. 

B. Loop Detection 

Most airport BHS contain loops. These are useful for 

reprocessing mishandled bags, and may also be used to 

change the order of bags in the system, for instance to 

implement a rush bag feature. These operations are currently 

not supported by the path planning system, but it is still 

necessary to be able to detect the presence of loops in a 

system under analysis.  

The existence of loops presents a problem for the path 

builder which would never terminate as it continues to 

propagate around the loops. To prevent this, the path builder 

must incorporate a loop detector. This applies the rule ‘if 

taking option A led to a repeat in the formula, do not 

reattempt option A’. The requirement for the loop detector 

does add considerably to the processing load required for 

continuously updated path analysis. However, it is not so 

 
Path building triggered Path String 

1. B notified can deliver bags to Y  x(B) -> Y 

2. A notified can deliver bags to Y via B x(A)e(B)x(B) -> Y 

3. Start point X has valid path to 

destination Y 

X.e(A)x(A)e(B)x(B) -> Y 

4. Alternate path: C can scan and 

deliver bags to Y via A 

i(C)x(C)m(A)x(A)e(B)x(B) -> iY 

5. B can scan and deliver bags to Y by 

diverting to C 

d(B)i(C)x(C)m(A)x(A)e(B)x(B) -> iY 

6. A can scan and deliver bags to Y via 

B 

d(B)i(C)x(C)m(A)x(A)e(B)x(B) -> iY 

7. Start point X now has new path to Y 

with scan 

X.e(A)x(A)e(B)d(B)i(C)x(C)m(A)x(A

)e(B)x(B) -> iY 

8. re-Propagation to C – Loop detected 

path building stops 

+  X.e(A)x(A)e(B)x(B) -> Y 

 

Figure 8. Example of path building. 
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burdensome if applied only at initialisation or if explicitly 

requested for network reconfiguration or for component 

failure. 

A special case is that what appears to be a loop may not 

in fact be so if it contains a processing action such as a 

scanner or X-ray. This is because the first trip through a 

loop containing a scanner leaves bags modified (i.e. 

identified) after the completion of the loop meaning that 

bag’s ‘position + status’ in the overall system is not the 

same as before entering the loop. The example below 

demonstrates this point. 

C. Example of Path Building 

Figure 8 shows a simple path building example including a 

loop. X is the entry point and Y is the destination, A and B 

are simple straight conveyors, while C is a loop section and 

includes a scanning station. The numbers indicate the 

sequence in which messages back-propagate from 

destination to source and the process is summarised 

including the step by step path string construction. 

Note that at step 5 there appears to be a loop at B, 

however because a scan has been encountered the loop 

detect is not triggered. The loop is finally observed when the 

path building re-propagates to C a second time at step 8, 

completing the analysis. 

Because the system contains a loop, the source receives 

two possible paths. The first is direct through A and B 

described by: 

e(A)x(A)e(B)x(B) -> Y 

The other looping through C which includes the scan is: 

e(A)x(A)e(B)d(B)i(C)x(C)m(A)x(A)e(B)x(B)-> i(Y) 

Note that the destination i(Y) indicates that this path 

will reach the destination Y having scanned the bag. 

 

D. Applying Path Strings and Directing Unidentified Bags 

The result of this analysis from Figure 8 is that the path 

planner knows that bags entering at X have one way of 

getting to Y and one way of getting to i(Y). Once the 

controller has received valid path strings from reachable 

destinations, the task of routing become simply that of 

identifying the immediate downstream conveyor in a valid 

path that terminates with the required destination.  

When bags enter a BHS they are unidentified and their 

destination is unknown. There is also the possibility that 

bags become misplaced during processing and separated 

from their model in the tracking system. As a result the 

controller has a default behaviour that any unidentified bags 

will be routed to the nearest scanning station to allow them 

to be properly directed. 

VII. TRIAL IMPLEMENTATIONS 

The trial implementation of the proposed function – block 

architecture aimed at several goals, some of which are as 

follows:  

- Check feasibility and correctness of the proposed 

decentralized algorithm for dynamic path planning;  

- Test the performance of the underlying Java – based 

implementation of function blocks for running off-line 

simulation scenario; 

- Test the performance of the FBRT running on embedded 

control device and feasibility of distributed control of 

BHS w.r.t. performance and reliability; 

A. Tests on a simulated BHS Layout 

These tests aim to demonstrate some of the more complex 

features of the BHS controller that could not be performed 

on the real system at this stage. A basic set of realistic tasks 

is executed to determine if the controller is able to process 

bags correctly. To improve the realism of the tests, some 

trials are run where the simulation is modified to introduce 

random perturbations in the system behaviour including bag 

slippage and sensor and actuator failure. 

The BHS to be simulated for these tests is shown in 

Figure 9 (left). Its complexity corresponds to a typical small 

airport. The process represents a simple but typical check-in 

process for departing bags. The process begins at the check-

in counter where bags are weighed, assigned a temporary 

unique ID number and tagged as belonging to the particular 

passenger.  

The bags then progress along a conveyor to the 

induction point, where the baggage handling control system 

      

Figure 9. Layout of a small airport BHS and Test “two closely packed bags” visualised on the rendering application. 
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becomes aware of the physical bag and begins to track its 

progress. Shortly after induction is a scanner. This reads the 

tag affixed at check-in allowing the control system to link 

the tracked bag with a unique bag identity. After scanning, 

bags move to the X-ray stations. Following the X-ray 

stations, a bag should have one of three states 

� X-rayed and cleared: the bag can progress toward the 

aircraft; 

� X-rayed and flagged for further manual inspection; 

� For some reason the bag did not pass through the X-

ray, or its state was not recorded. 

In the second case, bags are flagged as requiring further 

inspection (called Level 4 Inspection) in which case they are 

diverted to the L4 station. The third situation where a bag 

has not received a status from the X-ray station is handled 

by simply sending the bag around the main loop for another 

attempt. Finally, cleared bags enter a sorting system that 

checks the bag identity once more, and delivers them to the 

correct aircraft based on their tagged destination. 

To produce a repeatable test for the simulated control 

system, a method was required to generate a predetermined 

input test sequence. This consists of a series of bags being 

fed into the check-in system with particular spacing and 

attributes so as to test the various aspects of the system, 

along with an accompanying trigger of specific failure 

modes within the simulation. A composite block was created 

to trigger the parameterised bag production and produce the 

failure trigger events. The exit nodes at the destination gates 

record which bags are received, allowing a review of 

delivery success. 

At this stage results from tests are difficult to quantify 

because they cannot yet be compared to a real BHS, 

however the ability to conduct reproducible tests provides a 

starting point for validating general functionality of the 

simulator and control system. Furthermore, these tests can 

form a basis for evaluation of any subsequent improvements 

to the design. 

The automated test function block was used to supply 

preset sequences of bags to the system to measure its 

response. The following tests were conducted: (i) alternating 

destinations; (ii) recognition of closely packed bags; (iii) 

conveyor failure; (iv) scanner failure. 

For example, in the test (ii) “Closely packed bags”, 

three bags are supplied that are too closely spaced for proper 

tracking. The system must separate them and deliver 

correctly. 

Figure 9 (right) presents a visualisation snapshot of the 

BHS during the test. All bags are eventually delivered 

correctly. This is partly due to the fact that the simulation 

only diverts one bag per divert trigger, making it fairly 

inevitable that the bags become separated. Once apart, the 

tracking system can readily detect and identify the 

individual bags. The first two bags are processed normally, 

but the third fails to divert for X-ray and is recycled around 

C12 to rescan and perform X-ray before sorting. 

B. Tests on a laboratory testbed  

The current test setup is based on the Festo MPS500 

conveyor belt loop consisting of four straight sections, 

designed to transport work pieces or pallets. The loop has 

six ‘stations’ at which point there are sensors to detect the 

presence of work pieces. Each of the four sections is driven 

by a geared three-phase motor.  

The originally PLC-based control hardware of the 

MPS-500 was completely substituted by the IEC 61499 

compliant controllers MO’intelligence (the make of TCS-

NZ). To control each conveyor section independently, it has 

been equipped by such a controller, a motor drive and 

sufficient number of I/O interfaces, as illustrated in Figure 

10. For testing reconfiguration capabilities an extension 

divert loop was built, that consists of two independently 

controlled L-shaped sections, each including two conveyors. 

The left section is also equipped with a built-in diverter.  

The very same CONVEYOR_SIMCTL function block 

type was used to control each of the sections. The conducted 

tests were focusing on: (i) accuracy of baggage tracking; (ii) 

physical re-configuration “on the fly”. 

In the first test a model of the conveyor loop was 

parameterised with the actual lengths and conveyor speeds 

as determined by measurement. Economy stop was disabled 

so that conveyors would continue to run without work 

pieces present. The system was configured and executed 

without any work pieces causing the conveyors to run. Work 

pieces were placed and removed to observe the response of 

the tracking system. The system models the actual position 

of the PE sensors, however, the visualiser still renders them 

at the end of the section. 

Figure 11 shows the simple case of detecting a bag as it 

passes through the PE. Despite the simple nature of the test, 

the ability of the tracking system to accurately predict the 

behaviour of the physical system over quite long time 

periods, and without position feedback is very pleasing. The 

bag tracker is an important part of the overall system 

because it uses the same underlying model that powers the 

purely simulated system as in the previous section. It is good 

to have some validation that the general approach will work 

on a real system. 

In the second test, the L-shaped sections were 

added/removed from the system during the operation. The 

sections are equipped with infrared sensors which detect 

their docking to the main loop and to each other.  

The experiments have completely proven the scalability 

of the developed holonic control. The rendering solution and 

the MVC design pattern ensured that the correct state of the 

Figure 10. Testbed for decentralized BHS control built using FESTO 

MPS – 500 loop and two L-shaped movable conveyor sections, with 

embedded controller of a conveyor section.  
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systems has been displayed immediately after the physical 

reconfiguration without any downtime and modification of 

the software.  

C. Distribution and reconfiguration of control application 

The function-block control application for the laboratory 

BHS testbed was tested in different hardware 

configurations. These experiments have proven high 

reconfiguration potential of the function block technology. 

As illustrated in Figure 12, the BHS control application, 

whose core is 6 interconnected instances of the function 

block CONVEYOR_SIMCTL was distributed across 3 

control devices connected via Ethernet (Configuration I, 

upper part). In particular, a substantial subapplication, 

taking care of 4 sections in the loop was executed on the 

Netmaster control unit with 16 discrete inputs and 8 discrete 

outputs. Conveyor motors were driven by the PowerFlex 

motor drive devices, connected to the Netmaster via logic 

control signals. Two L-shaped conveyor sections were 

equipped with their own control devices (MO) as described 

in the previous section.   

One reconfiguration requirement was caused by 

malfunctions of the Netmaster unit, which required 

reallocation of the conveyor loop subapplication to some 

other control device. The easiest remedy was to remove 

Netmaster from the system and connect all motor drives, 

sensors and actuators of the loop via DeviceNet to the 

MO’intelligence controller of one of the L-shaped conveyor 

sections (Configuration II). The function blocks, previously 

residing in the Netmaster were simply moved to the MO. 

The whole reconfiguration has taken several minutes, after 

which the system was started and worked correctly. Such 

ease of reconfiguration would be unthinkable with the 

state-of-the-art PLC control. 

VIII. CONCLUSION 

The results, presented in this paper have advanced toward 

the goal of an easily reconfigurable Baggage Handling 

System constructed of autonomous conveyor sections, 

each with an independent embedded control system, but 

collaborating to perform a traditionally centralised 

control application. Thus, this work paves the way to the 

next generation of BHS control, where each conveyor 

will have an embedded intelligent control device, and the 

whole BHS system will be able to start working 

immediately after assembly without extra programming.  

The proposed function block-based architecture 

enables systematic use of the intelligent agent-based 

control in baggage and material handling applications. It 

allows benefit also from such strong features of the IEC 

61499 as the ease of deployment to arbitrary topologies 

of hardware 

The developed system demonstrates such features of 

holonic control as: 

- Its controller is a “sum” of identical collaborative 

controllers of components; 

- The system easily adapts to the changing environment, 

including changing layout, intensity of baggage flow, 

hardware topology and faults; 

The self-configuration is not achieved at this stage, 

but the pathway to that within the developed architecture is 

quite straightforward.  

The use of simulation components embedded inside a 

controller to achieve predictive behaviour is a new use of 

function blocks. The bag tracking system has been 

demonstrated to work effectively in both simulation and on 

the real conveyor test system. The experimental results with 

the tracking system confirm the feasibility of implementing 

a bag tracking system using predictive simulation, not just in 

isolation, but in a distributed execution context. The use of 

the same simulation model function block for the system 

simulation and for the predictor demonstrates the strong 

encapsulation and reuse capabilities of the function block 

platform. 

The test results demonstrate the ability of the controller 

to perform a variety of basic BHS tasks without centralised 

direction or assistance, using only those signals available on 

a typical conveyor.  

The ability to plan bag paths using only distributed 

execution is mostly presented as proof of concept, but also 

shows possibility of being useful in reconfigurable 

distributed applications. The path planning system currently 

does not use the available metrics of conveyor and belt 

speed, but simply uses the first valid path discovered.  

While the function block platform proved to be well 

suited to this project, the internal implementation of the 

current design relies on a significant amount of Java with 

the function block as a container. Importantly however, this 

reliance on Java is limited to only within each block – all 

communication between conveyors uses IEC 61499 

standard communication blocks. The algorithms, currently 

implemented in Java, can be easily re-implemented in other 

 

Figure 11:  Detecting a bag on the MPS 500. 

 

Figure 12. The BHS application mapped on two different topologies of 

hardware. 
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high-level languages and encapsulated to separate function 

blocks, providing services to the rest of the application.  

The goals of future work will be to demonstrate that it 

is possible for a distributed control system to dynamically 

self configure and achieve a basic path finding capability. 

More extensive case studies need to be conducted in terms 

of the system’s scale and real-time execution and 

communication requirements. Adaptability of the developed 

control will need to be further investigated. The distributed 

controllers need to be integrated with the resource planning 

and baggage database applications. 
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