
T-ASE-2008-185 1

Intelligent Component – based Automation

of Baggage Handling Systems with IEC 61499

Geoff Black Non-Member and Valeriy Vyatkin, Senior Member, IEEE

Abstract. Airport Baggage Handling is a field of automation

systems that is currently dependent on centralised control

systems and conventional automation programming

techniques. In this and other areas of manufacturing and

materials handling, these legacy automation technologies are

increasingly limiting for the growing demand for systems that

are reconfigurable, fault tolerant and easy to maintain. IEC

61499 Function Blocks is an emerging architectural framework

for the design of distributed industrial automation systems and

their reusable components. A number of architectures have

been suggested for multi-agent and holonic control systems

that incorporate function blocks. This paper presents a multi-

agent control approach for a baggage handling system using

IEC 61499 Function Blocks. In particular, it focuses on

demonstrating a decentralised control system that is scalable,

reconfigurable and fault tolerant. The design follows the

Automation Object approach, and produces a function block

component representing a single section of conveyor. In

accordance with holonic principles this component is

autonomous and collaborative, such that the structure and the

behaviour of a baggage handling system can be entirely defined

by the interconnection of these components within the function

block design environment. Simulation is used to demonstrate

the effectiveness of the agent-based control system and a utility

is presented for real-time viewing of these systems. Tests on a

physical conveyor test system demonstrated deployment to

embedded control hardware.

Index Terms— Material handling systems, Distributed

factory automation, IEC 61499, Holonic control

I. INTRODUCTION

ATERIAL handling is a field of automated systems that

deals with movement of materials rather than of

processing. Airport baggage handling systems (BHS) is a

representative example of such systems, known to

everybody. Many of the issues faced in BHS are relevant to

industrial automation in general and vice versa. In

particular, of high importance are the goals of serving

‘rapidly changing markets’ by ‘shorter time to market’ and

Manuscript received on March, 14, 2008 and revised on June 30, 2008.

This work was supported in part by the TechNZ and Glidepath Ltd. TIF
grant and by the University grant SRF 3607893.

G. Black was master student at the University of Auckland. He is now with
Wellington Drive Technologies, Auckland, New Zealand (e-mail:
Geoff.Black@wdtl.com).

V. Vyatkin is with the Department of Electrical and Computer Engineering,
University of Auckland, New Zealand (phone: +64-9-3737599 ext. 89437,

e-mail: v.vyatkin@auckland.ac.nz).

‘increased customisation’, which have been cited for years

in the industrial automation context.

From this perspective, conveyor based BHS are

considered desirable [1] partly because they are readily

modified or reused to allow reconfigurable applications. The

conveyor therefore seems a very good example of an

application where an easily reconfigurable, intelligent

mechatronic module might have considerable benefit.

Moreover, flexibility in this context may refer both to

physical reconfigurability or to the design process. The

former is important due to the fact (also noted in [1]) that

most airports exist in a permanent state of expansion and

upgrade. The design flexibility would allow re-use of

previously developed solutions which can help create new

BHS faster and with higher quality assurance.

Despite these widely agreed needs, there has been

arguably a poor level of achievement in reaching these

stated aims. Current controllers for Baggage Handling

Systems are based on conventional industrial control

hardware and programming techniques. This includes a

heavy reliance on Programmable Logic Controllers (PLC)

for the low level manipulation of actuators based on sensor

data. However, the PLC-based centralised approach to

control cannot be appropriately applied to all circumstances

with some applications being too dispersed physically or

demanding of processing to allow control from a single

execution point [2]. The software used in PLCs is generally

monolithic, increasing the difficulty of modification and

maintenance and reducing scalability. Although with

modern tools the PLC code may be quite modular, there is

still a considerable amount of effort required in order to

reconfigure PLC code for a new BHS.

IEC 61499 standard [3] provides an architectural

framework for the design of distributed and embedded

control systems. It aims to become a direct successor to the

current suite of programming languages for automation

systems, allowing the development of applications running

on multiple decentralised control platforms. IEC 61499 also

promises to accommodate better the intelligent automation

ideas emerging from many mature long-running projects.

Amongst the various efforts, the need for a more distributed

approach to control is generally accepted by [2], [4].

Three approaches to distributed control worth

mentioning. Early attempts at distributed control involved

splitting a large application in smaller components and

joining them together with communications to achieve the

overall required behaviour.

M

T-ASE-2008-185 2

Multi-agent control systems [5] take a different

approach. Instead of creating applications by gluing together

sub-programs with communications to form a static

distributed system, agents are designed to be autonomous

actors in an environment where they perform local actions

while actively collaborating with other agents to achieve

global goals [6].

A particular kind of agent-based systems are holonic

systems. Holonics is a concept derived from observations of

natural systems that consist of hierarchies of entities that

may each be considered complete systems [7]. A holonic

system is said to be made of ‘holons’ which may be

considered both as an entity in their own right, and as a

component of a larger hierarchy known as a ‘holoarchy’.

While multi-agent systems emerged largely from research in

distributed artificial intelligence [8], the field of holonics

was initially inspired by Arthur Koestler’s ‘The Ghost in the

Machine’, which utilises the concept in discussing

evolutionary psychology, including the invention of the

word ‘holon’.

In the field of automation and manufacturing systems,

holonics seems to be attractive because of the connotations

of resilience to disturbance and adaptation in response to

component failure that characterise many of the natural

systems from which the holonic principle originates.

Early studies on the use of multi-agent and holonic

approaches in automation have shown that the most critical

for their success are modularity and redundancy of the

machinery. Therefore, material handling systems such as

BHS can be considered as a perfect candidate for more

extended research efforts. However, current architectures of

programmable controllers’ software and hardware do not fit

to the idea of multi-agent control. The next step towards

practical application of multi-agent approaches needs to

address this issue by proposing and testing the

corresponding low level architectures for automation

systems. This paper presents such an attempt.

The paper is structured as follows. Section II identifies

main problems which need to be solved in order to address

the challenges of baggage handling systems automation by

applying multi-agent holonic control. Section III reviews

relevant developments in the area of intelligent automation,

such as: the IEC 61499 architecture, object-oriented

engineering and applications of multi-agent and holonic

systems. Section IV presents the developed framework for

intelligent BHS automation, which is based on the IEC

61499 standard. Section V focuses on the intelligent

controller functionality. Section VI further describes the

distributed baggage path planning implementation. Section

VII presents trial implementations and case studies. The

paper is concluded with the summary of results and an

overview of future developments in Section VIII, followed

by Acknowledgements and References.

II. PROBLEM STATEMENT AND GENERAL

APPROACH TO SOLUTION

Multi-agent approach to automation of baggage handling

systems seems to be a promising solution for improving

their flexibility of operation and efficiency of their design.

This hypothesis, however, needs to be confirmed in case

studies of realistic complexity. New hardware and software

architectures for the low level of automation systems are

required to use holonic control systematically in industry.

This paper proposes new architecture of an embedded

intelligent control implementation with IEC 61499. It aims

to show that many of the requirements for building holonic

agents are inherent in the IEC 61499 specification. The

proposed architecture aims at implementation of holonic

control directly on embedded devices. This represents a step

toward industrial application of intelligent automation

principles.

The central part of the proposed architecture is a

reusable intelligent software component for baggage

handling encapsulated in an IEC 61499 function block. This

enables easy deployment of the developed application on

arbitrary topologies of networking controllers.

The new degree of BHS flexibility is achieved on

account of collaborative behaviour of intelligent controllers.

The intelligence is achieved by applying distributed baggage

routing algorithms, combining simulation, real-time control

and predictive control. It is demonstrated that the proposed

architecture can support efficient reconfiguration of the

BHS, in terms of changing its physical layout, or by

changing the number and interconnections of embedded

controllers. Flexible visualiser is created for viewing state of

the BHS models in simulation or in real-time operation.

III. RELATED WORKS

A. Distributed, multi-agent and holonic approaches to

BHS automation

The modular nature of material handling systems has

inspired some researchers to try their distributed automation,

such as work [9], where each conveyor is controlled by an

embedded device with wireless communication capabilities.

Application of a multi-agent approach to baggage

handling was presented in [8], where a Java application was

implementing JADE based agents communicating via FIPA-

ACL agent communication language [10]. The authors

describe successful agent based implementation of a variety

of baggage handling control actions under simulation. They

also describe that the limiting factor for the performance of

the system was the messaging overhead of the agents’

communications.

Many current research projects into multi-agent control

systems e.g. [8], [11], [12], start with implementation of a

general purpose agent that is capable of executing arbitrary

behaviours. Most of such applications, however aim at off-

line application (simulation), or require a multi-layered

hardware architecture, where the low level control tasks are

still implemented in PLCs, while the agent behaviour is

running on a separate powerful computer. This, naturally,

restricts wide application of multi-agent control in the

automation practice.

B. IEC 61499 architecture as the next generation of PLC

technology

Addressing the limitations of the legacy PLC programming

languages and looking toward the realities of implementing

real-time multi-agent systems, the International

Electrotechnical Commission (IEC) initiated a project to

T-ASE-2008-185 3

encourage the development of new software architecture,

extending the IEC 61131-3 Function Blocks by adding event

driven execution. In 2005 this project culminated with the

approval of the IEC 61499 standard [3] that defines the new

function blocks architecture. Unlike previous

standardisation efforts, this is not a retrospective recognition

of practices, but an attempt to guide future developments

toward an open standard that allows genuine vendor

interoperability.

At one level, function blocks provide a direct advance

from, and viable replacement for, established automation

programming languages such as ladder logic, structured text

or their proprietary variants. However their application

extends past simple replacement of legacy systems because

of the inherent support for distributed applications and

ability to provide a platform for modelling and simulation

with well defined interfaces.

There is a small but growing toolset for function block

design. The Function Block Development Kit (FBDK) [13]

remains the most widely used, because it is the oldest and is

free for educational use. Commercial tool support is also

beginning to emerge. The new version of the ISaGRAF

industrial control design software with support for IEC

61499 Function Blocks is introduced in [5].

In order for function blocks to become executable on a

variety of hardware, hardware vendors must provide support

for the standard. The options remain limited, but are on the

increase.

There are currently several options for executing

function blocks. Firstly, any platform that can execute

standard Java byte code can run the FBRT [13]. This

includes desktop computers running any major operating

system. Embedded execution option includes the Elsist

Netmaster II, which runs a cut down version of Java

Standard Edition (J2SE). Tait Control Systems

MO’Intelligence units run Java Micro Edition (J2ME) and

are supplied with a port of the function block runtime and

vendor supplied Service Interface Function Blocks for

hardware access. These units are available in several formats

with support for DeviceNet and an integrated motor drive

option.

C. Efforts on improving engineering efficiency of

automation systems

There exist a multitude of attempts aiming at improved

efficiency of the engineering and re-engineering process of

automation systems. These are generally categorised along

the continuum of abstraction vs. implementation. That is, the

more abstract methods, such as Unified Modelling

Language (UML), are usually more able to describe a

broader range of systems, while the implementation focused

methods may be directly executable, but are too specific to

be of general use.

The IEC 61499 architecture seems to offer quite

optimal abstraction/implementation ratio. Function blocks

are one framework that promises the ability to break out of

the purely implementation phase, allowing a designer to

build applications whose structure mirrors that of the

physical systems with which it interacts, while still being

directly executable. A number of research projects both in

academia and in industry, e.g. [14], [15], [16], describe

architectures that aim to solve particular challenges in the

design and deployment of distributed control and each

specify function blocks to a greater or lesser extent. As it is

pointed out in the survey [17], the common factor across

most design methods is the attempt to use Object Oriented

(OO) techniques applied to function blocks.

One example of these is the concept of an ‘Automation

Object’ (AO), explored in [18, 19], and in particular in [20],

which defines it as ‘a collection of data and knowledge

elements belonging/relevant/describing physical building

blocks of automated manufacturing system‘. The AO

concept extends the modularity of software or hardware to

the modularity of the whole entity, which combines

mechanical, electrical and software components into

intelligent mechatronic devices.

In [19] it was concluded, that IEC 61499 is an

appropriate architecture to organize the IT (information

technology) side of Automation Objects. One such feature of

IEC 61499 is the definition of interfaces via adapter

interface function blocks, which makes it possible to design

function blocks that can be readily substituted for one

another, as demonstrated e.g. in [21]. This contributes to the

rapid reconfiguration of applications which is increasingly a

requirement for automation technologies and IEC 61499.

The architecture presented in this paper makes extensive use

of adapters to minimise the number of connections required,

and to allow reconfiguration at design time.

Currently there are several groups working on creating

Automation Object architectures incorporating function

blocks as a major part, for example [22]. In [23], the idea of

intelligent machines is extended using the example of

conveyor systems and provides additional reasons for the

use of the function block architecture.

The general approaches toward combining mechanical

systems with electronics and software to create complete

reusable mechatronic components, differ in their focus and

scope. On one point all discussions appear to agree: that a

key aspect of achieving multi-domain modularity is to allow

the logic of the control application to be organised in the

same way as the physical system being controlled. This

seems sensible – the encapsulation should be consistent

across the mechanical, functional and logical domains

allowing true modularity through the complete model.

D. Systems modelling and simulation

Another benefit of using IEC 61499 as a modelling language

is that it is directly executable, so it can readily be used for

simulation. This allows a modelled system and

accompanying control system to be tested before

deployment. This would constitute a serious advancement

compared to the state of the art, where simulation is used

Figure 1. Model-View-Control architecture in automation.

T-ASE-2008-185 4

only for general system prototyping at early stages of

development. In most cases, the behaviour tested via

simulation then needs to be implemented in the controller of

the BHS, and this is very resource-consuming and error

prone process. Once controller is developed, its verification

by simulation would also require extra development effort.

In [24] Christensen describes the application of the

model-view-control (MVC) design pattern to function block

system design, providing the foundation for the internal

structure of AOs capable of immediate simulation. The

diagram in Figure 1 illustrates the pattern, which is based on

the observation of similarity of the interfaces of the real

physical object (say, conveyor) and of its simulation model.

Thus these components (Model or Interface) can be used

interchangeably, being represented to the outer world by the

Object interface. The View component is “fed” by the

parameters generated by the Object and renders its current

state. Finally the Controller is connected in closed-loop with

the Object, receiving from it readings of sensors (either real

or simulated) and sending it control signals. The Human-

Machine Interface component supports manual control of

the Controller and rendering of its status. The corresponding

design methodology, exemplified in [20], suggest to start

controller development and testing by connecting it in

closed-loop with the Model and ensure its validity by

simulation. Then the Model component is to be seamlessly

substituted by the Interface to real sensors and actuators.

Various examples of the system design combining MVC

and IEC 61499 are accompanying the FBDK. Rockwell’s

MAST simulation platform [11], suggests the use of

function blocks for the low level control, working under the

direction of a supervisory software agent that manages

connections with other agents. However, it seems that no

practical experience towards this end was gained in that

work.

Furthermore if simulation is performed in function

blocks, these same blocks may be deployed into the final

system where predictive control behaviours are required.

Hirsch et al. in [25] describe the use of physical modelling

and simulation to assist in designing a control system. It also

suggests that the scheme could be extended to include

simulation in the control system itself to provide simulated

prediction of the system. This technique is a variant of

‘model predictive control’, a well established principle in

control systems where a mathematical model of the plant is

used to predict its behaviour into the near future.

E. IEC 61499 for holonic and multi-agent systems

Application of function blocks for building holonic systems

has long been envisaged. Thus, the Holonic Manufacturing

Systems project [4] suggested the use of function blocks

from early stage [26], the ideas were further specified, for

example, in [27, 28].

Numerous design methods, architectures, computing

platforms, networking technologies and programming

languages have already been proposed to help improve

automation systems using a multi-agent approach, some

incorporating the use of IEC 61499 Function Blocks [28],

[29]. In [21] the AO concept was used to create intelligent

mechatronic devices using IEC 61499 features coupled with

agent based control.

These works form the necessary critical mass for

proposing a solution combining holonics and IEC 61499 in

BHS.

Figure 2: A Fully Featured Conveyor Module.

Figure 3. Internal architecture of the conveyor component following extended MVC with illustrated interactions between models of two conveyors

(simulation configuration).

T-ASE-2008-185 5

IV. IEC 61499 – BASED ARCHITECTURE FOR

INTELLIGENT BHS

The approach taken in this work is object-oriented in the

sense that the structure of software mimics the structure of

the physical BHS and is centred around the conveyor

mechatronic component. A reusable software component

(function block) represents a single conveyor in the BHS

control system, which is composed of as many such function

blocks as conveyors in the physical system. This approach

stems from [21], where a bottom-up approach is taken to the

challenges of mechatronic modelling. It is applied in BHS

and extended by autonomous, agent-based behaviour

following [30].

A. The Conveyor Model

The approach taken in this model is that the primary

software component will represent one section of conveyor

including its various sensors, actuators, computing platform

and control software. This is a reasonable trade-off between

flexibility and maintaining simplicity in the design where

these blocks are to be deployed. The approach taken is a

little different to [11] where conveyors are modelled as

assemblies of services such as belts, diverters and scanners

at the same level.

We begin with the development of a generic conveyor

model by identifying typical functions and interactions of a

single conveyor. Conveyor-based BHS are constructed of a

set of ‘conveyor sections’ connected end to end, or in merge

or divert configurations. If we imagine a fully featured

conveyor component, able to perform any of these actions, it

would look like the general purpose conveyor section shown

in Figure 2. This contains the mechanical conveyor

components required for merge and divert, the sensors for

detecting bags and measuring belt speed, and a motor with

drive to make the belt move. It also includes an embedded

controller that makes control decisions based on sensor data

and from information exchanged with other conveyor

controllers connected by network.

The generalised conveyor section of Figure 2 is the

initial model for a reusable component that could describe a

section of conveyor at several levels from its logical

connection to other sections, to its dimensions and other

physical parameters. It was desired that a network of

conveyors could then be modelled by simply making

connections between appropriately parameterised conveyor

function blocks.

The design follows the extended MVC design pattern.

In this work an extension of this pattern, called Predictive

Object-View-Controller (POVC) has been developed and

tested. Instead of switching between model and real object

during design time, they both are combined in one

component. Figure 3 shows internal architecture of the

conveyor software component built according to the POVC

pattern, and exemplifies interactions between components

representing two conveyors. The Object composite

component includes both the model of dynamics (including

simulated sensors), and the interface to real sensors and

actuators. Depending on the mode of operation (on-line

control or off-line simulation) the Predictor module delivers

to the Controller values of actual or simulated sensors. The

simulation keeps running even in the on-line operation

mode, in this case if readings of real sensors are temporarily

not available, e.g. due to a malfunction, the Predictor will

use the simulated ones.

Models of adjacent conveyors exchange the bag model

information via BAGTRANS interface which will be

discussed further in Section IV,C. In this way a model of the

complete BHS can be created as interconnection of the

models of constituent conveyors, synchronized and

communicating via the BAGTRANS interface.

The View component sends the current state

information to the standalone visualisation application,

which renders the current state of the whole conveyor

system as discussed in Section IV,F.

The control part, along with the Controller, includes

communication function blocks enabling inter-controller

communication, required for implementation of such

distributed intelligence features as dynamic baggage routing.

Details of the intelligent control implementation are

presented in Sections V and VI.

Figure 4: CONVEYOR_SIMCTL interface and internal structure

T-ASE-2008-185 6

B. Complete Conveyor Component

The corresponding function block implementation has a

multi-level structure where the low level operations are

wrapped in composite blocks that hide details, provide

connectivity and present a clean interface for the designer to

create system models without detailed knowledge of low

level functionality.

The top level function block, CONVEYOR_SIMCTL,

shown in Figure 4 has all the functionality required to define

conveyor connections and layout, simulate the network and

demonstrate distributed control of the simulated network.

The following is a summary of the actions that can be

performed by a conveyor, although not all of these can be

executed by the same section. For instance, the model will

not allow a section to implement both merge and divert due

to possible complications with the path planning system.

� Transport: The ability to move objects from one end to

the other.

� Detect: Each conveyor is equipped with a cascade

photo eye (PE) at its end and a motor drive. Conveyors

that implement divert have an additional PE at the divert

point.

� Merge: Allow bags to merge into this conveyor from

others. The merge point can be positioned anywhere

within the length of the section

� Divert: The ability to eject bags from the stream of bags

into another conveyor. Like merge can be positioned

anywhere in the conveyor

� Scan: The scanner can read the details of a bag including

its globally unique ID and its required destination in the

BHS

� X-ray: The X-ray is responsible for determining the

security status of the bag, which may determine whether

the bag is eligible for delivery.

The CONVEYOR_SIMCTL function block packages a

significant amount of functionality. In order to give a

general sense for the hierarchy involved, Figure 4, shows a

simplified depiction of the important function blocks

required to perform simulation and control. Functionality of

some basic blocks is as follows:

CONVEYOR_MDL is the primary engine for simulation of

bag behaviour, implementing the functionality for inserting

and removing bags from a conveyor section model and

predicting bag positions through time.

BELT_MDL abstracts the lowest level physical behaviour

of the conveyor by simulating the dynamics of a conveyor

belt with inertia. It also simulates the behaviour of a rotary

encoder, producing an event each time the belt moves by a

preset distance. This encoder output is the signal seen by the

control system.

CONVEYOR_PR combines the simulation component

CONVEYOR_MDL with bag tracking logic to provide a

real time estimate of the location of bags within the

conveyor section.

The BAG_DETECT block encapsulates the task of detecting

and measuring bags as they pass the PE on the conveyor.

C. Modelling a Bag

The conveyors make up the fixed part of the system while

the bags are dynamic, being passed between conveyors.

Together the conveyor components plus the bags represent

almost the complete BHS system.

Being a distributed control system, the data

representation of a bag takes on rather great importance. The

physical (or simulated) bag must be accompanied in the

control system by a data representation containing all

information necessary for its correct processing. The bag-

related data were encapsulated in an IEC 61499 custom data

type. This is a simple data record containing an arbitrary

number of IEC 61499 primitive types, accessible by name.

When first detected the bag has only an auto-generated local

ID. The remaining information must be obtained as the

baggage handling process executes by the control system

making use of scan and X-ray facilities.

D. Connecting Conveyor Sections

The CONVEYOR_SIMCTL function block introduced

above represents a section of conveyor and its functionality.

For truly distributed execution, each conveyor must track

any bags within its length and make control decisions about

their management and delivery.

Whenever a bag moves from one conveyor to another,

there is a need to also communicate the data representing

that bag to the downstream conveyor, and to remove the

record of that bag from the upstream. This is simplified by

encapsulation of the bag data into a single custom data type,

as shown above, reducing the number of data signals

required. However, each conveyor must have the ability to

indicate readiness to receive so that upstream bags will only

be supplied when appropriate, while a further event and data

pair, IND_PATH and PATH, responsible for building

possible delivery paths must also be connected. As a result,

there are a number of events and signals to be connected to

allow bag transactions to occur. The need for manual

creation of many connections is time consuming, error-

prone and clearly at odds with the stated goal of achieving

an easy process of modelling within the FBDK environment.

To simplify the connection of conveyor sections,

CONVEYOR_SIMCTL, makes use of IEC 61499 adapters.

Figure 5: Adapter – based connection one- line between models of two

conveyors and the logic of bag transfer.

T-ASE-2008-185 7

Although adapters appear much like other function blocks,

they are simply an interface definition containing no

functionality. Adapters can assist in allowing reconfigurable

applications, in the engineering view by minimising the

visible connections and also at run-time by reducing the

number of management commands required to add, remove

or modify a relationship between blocks. More details on the

benefits of adapters in function block designs can be found

in [20], Chapter 16.

Figure 5 demonstrates the transaction of a bag B1,

exiting from Conveyor C1 on the left to Conveyor C2 on the

right. C1 and C2 are very simplified conveyor function

blocks showing only the required bag transfer logic. When a

bag reaches the end of C1, the EXITED event is triggered

and the BAG_ID output is set appropriately. This event is

directed through the BAGTRANS adapter to the ENTER

event input of C2. If C2 is able to accept a bag then it will

respond by triggering the ENTERED event which connects

through the adapter back to the REMOVE input of

Conveyor 1 indicating that the bag is to be removed from

C1. Note that this shows only the transfer of a bag model,

not the control sequence by which it is negotiated.

E. Modelling a Baggage Handling System

Having introduced the conveyor software component and

explained the mechanism for interconnection, we can now

look at how these components can be assembled to create a

model of a conveyor BHS.

Let us take the simple BHS fragment shown in Figure 6

(a) and examine how it can easily be modelled using a

derivative of the CONVEYOR_SIMCTL function block

with each block representing a single conveyor section. This

example contains four conveyor sections labelled C1 to C4.

There is a divert path that leads from C3 to C4, and C4

merges into C1.

To simplify the example, the CONVEYOR_SIMCTL

blocks are encapsulated into CONV_BASIC blocks that

hide much of the detail of the CONVEYOR_SIMCTL block

by assigning default values to most parameters. The

structure of the network is defined simply by the connection

of the ENTER, EXIT, MERGE and DIVERT ports. Figure

6(b) shows a part of application that models the chain from

(a), laid out similarly to the original example and with the

same conveyor labels. Note that the model as shown is

simplified and offers no way for bags to enter or exit the

system.

By creating the function block model of Figure 6 (b),

the designer achieves the following:

� Specified the physical dimensions and layout of the

conveyor sections (it is assumed that the

CONV_BASIC block predefines conveyor length);

� Created the basis for simulation of the system;

� Created a distributed control system for the system.

F. Visualisation of Conveyor Models

To provide intuitive information about a conveyor system as

represented by a function block network, it is very useful to

have some method of displaying the network in a way that

resembles the real conveyor system. The FBDK contains

building blocks for simple visualisation of common

industrial system components such as solenoids, linear

actuators and drills. The representation of the conveyor

network was seen as limited by the FBDK’s visualisation

components because while the conveyors are generally

static, the bags they carry are dynamic and will vary in

number per conveyor. To avoid these limitations a simple

OpenGL based visualiser was created that runs as a stand-

alone application outside the FBDK.

The visualiser directly parses the XML system

configuration, which allows rendering of the static layout of

conveyor sections without execution of the function block

system. Once activated, simple network datagram packets

are generated by the CONVEYOR_MDL blocks

representing the state of the conveyor section and the details

of any bags present. These packets are used to display the

conveyor sections and bags in real-time, including the state

of sensors and actuators.

Figure 6 (c) shows a sample visualisation of the

conveyor network modelled by the system configuration of

(a). In this example a bag is shown traversing Conveyor C1.

The triangles represent the Cascade PE sensors the end of

each section and the white arrows show that a given

conveyor is running and the direction of travel.

Figure 6. a) Example BHS fragment for modelling; b) Function block model of the conveyor chain; c) Sample visualisation of the conveyor system;

T-ASE-2008-185 8

V. INTELLIGENT COLLABORATIVE BAGGAGE

HANDLING CONTROLLER

A. Structure of the controller

In the proposed architecture control of the BHS is achieved

via collaborative effort of the controllers of single conveyor

sections without any central supervisor. As a result, the

control is adaptive to the layout and status of the BHS. For

example, it can dynamically change the routes of baggage

delivery in case if some conveyor section is out of operation.

There are two main parts to the control system. First is

simple reactive control, where a set of rules are applied

according to the position of bags, the state of sensors and the

state of flags from downstream conveyors. The second,

directing these simple reactive control actions is a path

planning controller that is responsible for actually guiding

bags to their destination. The latter will be discussed in

Section VI.

The collaborative ‘agent’ behaviour of the conveyor is

performed by the controller function block

CONVEYOR_CTL which executes the actual decision

making part of the baggage handling system. Its interface is

presented in Figure 4. The controller is implemented as a

basic function block which combines the reactive behaviour

programmed in ladder logic with higher level functions

programmed in Java.

B. Reactive behaviour and interfaces

As with all interactions between conveyors, signalling

between controllers occurs through the BAGTRANS

interface. Each conveyor produces ENTERRDY and

MERGERDY signals, which are received by upstream

conveyors into their EXITRDY or DIVERTRDY inputs

depending on conveyor layout.

Using these signals the controller is able to implement a

set of control actions for managing bag traffic. The major

limitation is that the controller only has direct information

about its own conveyor section and limited data from

adjoining sections, whereas a centralised controller may

freely use information from throughout the network. This

did not prove to be a problem for the control actions

implemented so far.

The simplest required behaviour is the ability to observe

and obey EXITRDY and DIVERTRDY signals as requested

to prevent exiting bags from colliding with others or getting

so close as to cause problems with tracking. This behaviour

requires only the flags from downstream conveyors and the

value of the Cascade or Divert PE to operate. To make this

behaviour useful, the ENTERRDY output signal (which

supplies the EXITRDY or DIVERTRDY inputs) must be

generated by the downstream conveyor. This is done simply

by searching the BAGS array input from the predictor to

determine is a sufficient gap exists for a new bag to be

received. The MERGERDY signal is generated in a similar

way, but the gap search is performed at the merge positions

indicated instead at the conveyor entrance.

C. Cascade Stop and Bag spacing

To prevent bags getting confused or misdirected, it is

important that a reasonable gap is maintained between each.

This can be achieved by an upstream conveyor stopping to

put extra gap between bags. This behaviour is achieved by

simple Boolean flag interactions between conveyor sections

as specified by the BAGTRANS interface. Each conveyor

determines whether it can receive additional bags by

searching its bag list for any bags near the conveyor start.

Figure 7 shows C2 is not ready to receive because bag B2 is

still in the ‘minimum gap’ region.

C1 can only run until B1 triggers the cascade PE and

then must wait. Although the EXITRDY input is generated

remotely and may be received via a network channel, this

behaviour can be expressed, for example, in a simple ladder

logic statement, which is a supported IEC 61499 algorithm

language. As long as the cascadeStop flag is true, then the

conveyor will not run. Other control behaviours are

implemented in a similar fashion. This also demonstrates

that legacy languages, well suited to the expression of

simple automation concepts, are easily applied within a

Function Block design without the disadvantages being

committed to these languages for the whole design.

D. Merge Control

When two streams of traffic merge, it is necessary for one

stream to wait for a gap in the other before delivering each

bag. This is one of the more important aspects of bag

management in a BHS as incorrect merging can easily result

in collisions or misordering of bags resulting in lost bags. In

the function block controller, it is implemented in a simple

manner using the MERGERDY signal to indicate readiness

for merge traffic. This is a very simple approach to the

problem and may need additional treatment in future

enhancements to the controller.

VI. DYNAMIC PATH PLANNING

In order for a BHS to be useful, each bag must be delivered

to the appropriate destination. The function vividly

demonstrating the distributed intelligence potential of the

proposed BHS architecture is decentralized planning of the

path for each piece of baggage. The path planning results in

the decision of bags’ divert so that they take the correct

path.

In conventional conveyor control systems this is done

Figure 7: Bag spacing control

T-ASE-2008-185 9

by a central routing controller that has a complete model of

the network layout and can perform a tree search of possible

paths between points using established path finding

algorithms. The method described here is demonstrates that

same or even better global behaviour can be achieved in the

distributed architecture with fully decentralized control

logic.

A. Dynamic Path Building

A series of connected conveyors can be modelled formally

as a weighted directed graph. That is a graph of nodes

connected by vertices with associated ‘costs’. The problem

of finding an optimal path is that of finding the sequence of

graph edges that incurs the least total cost. When applying a

centralised control system, algorithms for determining the

shortest path, such as Dijkstra's [31], can readily be applied

to the model to give a result.

In the case of distributed control, no individual part of

the system has a complete view so as to allow a global

analysis to be made. As a result, possible paths must be

determined in a cooperative manner by propagation of

messages along the same routes that are available to the

modelled bags. The algorithm used to determine least cost

path from a conveyor to the baggage destination is similar to

the distributed Bellman-Ford algorithm [32]. Unlike the

original algorithm, which calculates shortest paths to all

graph nodes by maintaining and updating vector of

distances, our algorithm generates path strings to all possible

destinations. This helps to add specific processing features

to the bag’s itinerary and avoid undesired loops.

The technique described uses the interconnections

between conveyor sections to construct valid paths from

each conveyor to each reachable exit using back

propagation. When requested, destination or ‘exit’ points in

the network emit PATH signals to their predecessors. These

append the path signal to their own identity and the

branching details (merge, divert, enter, exit) and send them

on in turn to the upstream nodes. This builds path strings for

each (reachable) network node that define all the possible

future choice combinations from that node. Working back

from the network exit points allows each node to only store

the minimum path information to reach each available exit.

When this propagation process reaches source or entry

points in the network then complete paths are defined. These

path strings can be regularly regenerated to recognise

changes in network topology, such as component failure or

even reconnection of conveyor sections.

To slightly complicate matters, simply finding a path

through the conveyors to a location is not sufficient. In most

cases, the bags will be initially unidentified and have no

security clearance. The path planner must route bags

through the BHS so that they are identified by a scanner and

X-rayed for security before finally determining a path for

their destination. The action of integrating additional

processing actions into the path planning system suggests

the idea that the scheme could be used for a far more general

class of materials handling and processing sequences.

The internal representation of these paths currently uses

strings to allow easy communication between conveyors. A

simple format is used to represent the possible actions of

each conveyor. The form of these strings is a concatenation

of conveyor IDs tagged with actions that have been

propagated back from a destination. These actions may be

any of those supported by the conveyor component. A

separate entry is required to enter a conveyor, perform any

internal actions and to exit the conveyor. To keep the length

of path strings manageable, actions are abbreviated as

shown in Table 1.
Action Path String

Abbreviation

Example

Exit x x(A) exits conveyor A

Merge m m(A) merge to conveyor A

Divert d d(A) divert from conveyor A

Enter e e(A) enter conveyor A

Scan i i(A) scan (identify) at conveyor A

X-ray s s(A) perform X-ray security test at

conveyor A

Table 1: Path String Abbreviations

By joining a sequence of these actions a complete

sequence can be described including both physical path and

processing actions.

B. Loop Detection

Most airport BHS contain loops. These are useful for

reprocessing mishandled bags, and may also be used to

change the order of bags in the system, for instance to

implement a rush bag feature. These operations are currently

not supported by the path planning system, but it is still

necessary to be able to detect the presence of loops in a

system under analysis.

The existence of loops presents a problem for the path

builder which would never terminate as it continues to

propagate around the loops. To prevent this, the path builder

must incorporate a loop detector. This applies the rule ‘if

taking option A led to a repeat in the formula, do not

reattempt option A’. The requirement for the loop detector

does add considerably to the processing load required for

continuously updated path analysis. However, it is not so

Path building triggered Path String

1. B notified can deliver bags to Y x(B) -> Y

2. A notified can deliver bags to Y via B x(A)e(B)x(B) -> Y

3. Start point X has valid path to

destination Y

X.e(A)x(A)e(B)x(B) -> Y

4. Alternate path: C can scan and

deliver bags to Y via A

i(C)x(C)m(A)x(A)e(B)x(B) -> iY

5. B can scan and deliver bags to Y by

diverting to C

d(B)i(C)x(C)m(A)x(A)e(B)x(B) -> iY

6. A can scan and deliver bags to Y via

B

d(B)i(C)x(C)m(A)x(A)e(B)x(B) -> iY

7. Start point X now has new path to Y

with scan

X.e(A)x(A)e(B)d(B)i(C)x(C)m(A)x(A

)e(B)x(B) -> iY

8. re-Propagation to C – Loop detected

path building stops

+ X.e(A)x(A)e(B)x(B) -> Y

Figure 8. Example of path building.

T-ASE-2008-185 10

burdensome if applied only at initialisation or if explicitly

requested for network reconfiguration or for component

failure.

A special case is that what appears to be a loop may not

in fact be so if it contains a processing action such as a

scanner or X-ray. This is because the first trip through a

loop containing a scanner leaves bags modified (i.e.

identified) after the completion of the loop meaning that

bag’s ‘position + status’ in the overall system is not the

same as before entering the loop. The example below

demonstrates this point.

C. Example of Path Building

Figure 8 shows a simple path building example including a

loop. X is the entry point and Y is the destination, A and B

are simple straight conveyors, while C is a loop section and

includes a scanning station. The numbers indicate the

sequence in which messages back-propagate from

destination to source and the process is summarised

including the step by step path string construction.

Note that at step 5 there appears to be a loop at B,

however because a scan has been encountered the loop

detect is not triggered. The loop is finally observed when the

path building re-propagates to C a second time at step 8,

completing the analysis.

Because the system contains a loop, the source receives

two possible paths. The first is direct through A and B

described by:

e(A)x(A)e(B)x(B) -> Y

The other looping through C which includes the scan is:

e(A)x(A)e(B)d(B)i(C)x(C)m(A)x(A)e(B)x(B)-> i(Y)

Note that the destination i(Y) indicates that this path

will reach the destination Y having scanned the bag.

D. Applying Path Strings and Directing Unidentified Bags

The result of this analysis from Figure 8 is that the path

planner knows that bags entering at X have one way of

getting to Y and one way of getting to i(Y). Once the

controller has received valid path strings from reachable

destinations, the task of routing become simply that of

identifying the immediate downstream conveyor in a valid

path that terminates with the required destination.

When bags enter a BHS they are unidentified and their

destination is unknown. There is also the possibility that

bags become misplaced during processing and separated

from their model in the tracking system. As a result the

controller has a default behaviour that any unidentified bags

will be routed to the nearest scanning station to allow them

to be properly directed.

VII. TRIAL IMPLEMENTATIONS

The trial implementation of the proposed function – block

architecture aimed at several goals, some of which are as

follows:

- Check feasibility and correctness of the proposed

decentralized algorithm for dynamic path planning;

- Test the performance of the underlying Java – based

implementation of function blocks for running off-line

simulation scenario;

- Test the performance of the FBRT running on embedded

control device and feasibility of distributed control of

BHS w.r.t. performance and reliability;

A. Tests on a simulated BHS Layout

These tests aim to demonstrate some of the more complex

features of the BHS controller that could not be performed

on the real system at this stage. A basic set of realistic tasks

is executed to determine if the controller is able to process

bags correctly. To improve the realism of the tests, some

trials are run where the simulation is modified to introduce

random perturbations in the system behaviour including bag

slippage and sensor and actuator failure.

The BHS to be simulated for these tests is shown in

Figure 9 (left). Its complexity corresponds to a typical small

airport. The process represents a simple but typical check-in

process for departing bags. The process begins at the check-

in counter where bags are weighed, assigned a temporary

unique ID number and tagged as belonging to the particular

passenger.

The bags then progress along a conveyor to the

induction point, where the baggage handling control system

Figure 9. Layout of a small airport BHS and Test “two closely packed bags” visualised on the rendering application.

T-ASE-2008-185 11

becomes aware of the physical bag and begins to track its

progress. Shortly after induction is a scanner. This reads the

tag affixed at check-in allowing the control system to link

the tracked bag with a unique bag identity. After scanning,

bags move to the X-ray stations. Following the X-ray

stations, a bag should have one of three states

� X-rayed and cleared: the bag can progress toward the

aircraft;

� X-rayed and flagged for further manual inspection;

� For some reason the bag did not pass through the X-

ray, or its state was not recorded.

In the second case, bags are flagged as requiring further

inspection (called Level 4 Inspection) in which case they are

diverted to the L4 station. The third situation where a bag

has not received a status from the X-ray station is handled

by simply sending the bag around the main loop for another

attempt. Finally, cleared bags enter a sorting system that

checks the bag identity once more, and delivers them to the

correct aircraft based on their tagged destination.

To produce a repeatable test for the simulated control

system, a method was required to generate a predetermined

input test sequence. This consists of a series of bags being

fed into the check-in system with particular spacing and

attributes so as to test the various aspects of the system,

along with an accompanying trigger of specific failure

modes within the simulation. A composite block was created

to trigger the parameterised bag production and produce the

failure trigger events. The exit nodes at the destination gates

record which bags are received, allowing a review of

delivery success.

At this stage results from tests are difficult to quantify

because they cannot yet be compared to a real BHS,

however the ability to conduct reproducible tests provides a

starting point for validating general functionality of the

simulator and control system. Furthermore, these tests can

form a basis for evaluation of any subsequent improvements

to the design.

The automated test function block was used to supply

preset sequences of bags to the system to measure its

response. The following tests were conducted: (i) alternating

destinations; (ii) recognition of closely packed bags; (iii)

conveyor failure; (iv) scanner failure.

For example, in the test (ii) “Closely packed bags”,

three bags are supplied that are too closely spaced for proper

tracking. The system must separate them and deliver

correctly.

Figure 9 (right) presents a visualisation snapshot of the

BHS during the test. All bags are eventually delivered

correctly. This is partly due to the fact that the simulation

only diverts one bag per divert trigger, making it fairly

inevitable that the bags become separated. Once apart, the

tracking system can readily detect and identify the

individual bags. The first two bags are processed normally,

but the third fails to divert for X-ray and is recycled around

C12 to rescan and perform X-ray before sorting.

B. Tests on a laboratory testbed

The current test setup is based on the Festo MPS500

conveyor belt loop consisting of four straight sections,

designed to transport work pieces or pallets. The loop has

six ‘stations’ at which point there are sensors to detect the

presence of work pieces. Each of the four sections is driven

by a geared three-phase motor.

The originally PLC-based control hardware of the

MPS-500 was completely substituted by the IEC 61499

compliant controllers MO’intelligence (the make of TCS-

NZ). To control each conveyor section independently, it has

been equipped by such a controller, a motor drive and

sufficient number of I/O interfaces, as illustrated in Figure

10. For testing reconfiguration capabilities an extension

divert loop was built, that consists of two independently

controlled L-shaped sections, each including two conveyors.

The left section is also equipped with a built-in diverter.

The very same CONVEYOR_SIMCTL function block

type was used to control each of the sections. The conducted

tests were focusing on: (i) accuracy of baggage tracking; (ii)

physical re-configuration “on the fly”.

In the first test a model of the conveyor loop was

parameterised with the actual lengths and conveyor speeds

as determined by measurement. Economy stop was disabled

so that conveyors would continue to run without work

pieces present. The system was configured and executed

without any work pieces causing the conveyors to run. Work

pieces were placed and removed to observe the response of

the tracking system. The system models the actual position

of the PE sensors, however, the visualiser still renders them

at the end of the section.

Figure 11 shows the simple case of detecting a bag as it

passes through the PE. Despite the simple nature of the test,

the ability of the tracking system to accurately predict the

behaviour of the physical system over quite long time

periods, and without position feedback is very pleasing. The

bag tracker is an important part of the overall system

because it uses the same underlying model that powers the

purely simulated system as in the previous section. It is good

to have some validation that the general approach will work

on a real system.

In the second test, the L-shaped sections were

added/removed from the system during the operation. The

sections are equipped with infrared sensors which detect

their docking to the main loop and to each other.

The experiments have completely proven the scalability

of the developed holonic control. The rendering solution and

the MVC design pattern ensured that the correct state of the

Figure 10. Testbed for decentralized BHS control built using FESTO

MPS – 500 loop and two L-shaped movable conveyor sections, with

embedded controller of a conveyor section.

T-ASE-2008-185 12

systems has been displayed immediately after the physical

reconfiguration without any downtime and modification of

the software.

C. Distribution and reconfiguration of control application

The function-block control application for the laboratory

BHS testbed was tested in different hardware

configurations. These experiments have proven high

reconfiguration potential of the function block technology.

As illustrated in Figure 12, the BHS control application,

whose core is 6 interconnected instances of the function

block CONVEYOR_SIMCTL was distributed across 3

control devices connected via Ethernet (Configuration I,

upper part). In particular, a substantial subapplication,

taking care of 4 sections in the loop was executed on the

Netmaster control unit with 16 discrete inputs and 8 discrete

outputs. Conveyor motors were driven by the PowerFlex

motor drive devices, connected to the Netmaster via logic

control signals. Two L-shaped conveyor sections were

equipped with their own control devices (MO) as described

in the previous section.

One reconfiguration requirement was caused by

malfunctions of the Netmaster unit, which required

reallocation of the conveyor loop subapplication to some

other control device. The easiest remedy was to remove

Netmaster from the system and connect all motor drives,

sensors and actuators of the loop via DeviceNet to the

MO’intelligence controller of one of the L-shaped conveyor

sections (Configuration II). The function blocks, previously

residing in the Netmaster were simply moved to the MO.

The whole reconfiguration has taken several minutes, after

which the system was started and worked correctly. Such

ease of reconfiguration would be unthinkable with the

state-of-the-art PLC control.

VIII. CONCLUSION

The results, presented in this paper have advanced toward

the goal of an easily reconfigurable Baggage Handling

System constructed of autonomous conveyor sections,

each with an independent embedded control system, but

collaborating to perform a traditionally centralised

control application. Thus, this work paves the way to the

next generation of BHS control, where each conveyor

will have an embedded intelligent control device, and the

whole BHS system will be able to start working

immediately after assembly without extra programming.

The proposed function block-based architecture

enables systematic use of the intelligent agent-based

control in baggage and material handling applications. It

allows benefit also from such strong features of the IEC

61499 as the ease of deployment to arbitrary topologies

of hardware

The developed system demonstrates such features of

holonic control as:

- Its controller is a “sum” of identical collaborative

controllers of components;

- The system easily adapts to the changing environment,

including changing layout, intensity of baggage flow,

hardware topology and faults;

The self-configuration is not achieved at this stage,

but the pathway to that within the developed architecture is

quite straightforward.

The use of simulation components embedded inside a

controller to achieve predictive behaviour is a new use of

function blocks. The bag tracking system has been

demonstrated to work effectively in both simulation and on

the real conveyor test system. The experimental results with

the tracking system confirm the feasibility of implementing

a bag tracking system using predictive simulation, not just in

isolation, but in a distributed execution context. The use of

the same simulation model function block for the system

simulation and for the predictor demonstrates the strong

encapsulation and reuse capabilities of the function block

platform.

The test results demonstrate the ability of the controller

to perform a variety of basic BHS tasks without centralised

direction or assistance, using only those signals available on

a typical conveyor.

The ability to plan bag paths using only distributed

execution is mostly presented as proof of concept, but also

shows possibility of being useful in reconfigurable

distributed applications. The path planning system currently

does not use the available metrics of conveyor and belt

speed, but simply uses the first valid path discovered.

While the function block platform proved to be well

suited to this project, the internal implementation of the

current design relies on a significant amount of Java with

the function block as a container. Importantly however, this

reliance on Java is limited to only within each block – all

communication between conveyors uses IEC 61499

standard communication blocks. The algorithms, currently

implemented in Java, can be easily re-implemented in other

Figure 11: Detecting a bag on the MPS 500.

Figure 12. The BHS application mapped on two different topologies of

hardware.

T-ASE-2008-185 13

high-level languages and encapsulated to separate function

blocks, providing services to the rest of the application.

The goals of future work will be to demonstrate that it

is possible for a distributed control system to dynamically

self configure and achieve a basic path finding capability.

More extensive case studies need to be conducted in terms

of the system’s scale and real-time execution and

communication requirements. Adaptability of the developed

control will need to be further investigated. The distributed

controllers need to be integrated with the resource planning

and baggage database applications.

IX. REFERENCES

[1] K. Vickers and R. W. Chinn, "Passenger terminal baggage handling
systems," Systems Engineering of Aerospace Projects (Digest No.

1998/249), IEE Colloquium on, pp. 6/1-6/7, 1998.

[2] K. H. Hall, R. J. Staron, and A. Zoitl, "Challenges to Industry
Adoption of the IEC 61499 Standard on Event-based Function
Blocks," 5th IEEE International Conference on Industrial

Informatics (INDIN), 2007.
[3] "IEC 61499-1: Function Blocks - Part 1 Architecture," First ed:

International Electrotechnical Commission, 2005.
[4] E. H. van Leeuwen and D. Norrie, "Holons and holarchies

[intelligent manufacturing systems]," Manufacturing Engineer, vol.

76, pp. 86-88, 1997.
[5] J. Chouinard and R. Brennan, "Software for Next Generation

Automation and Control," Industrial Informatics, 2006 IEEE

International Conference on, pp. 886-891.
[6] S. Bussman, N. R. Jennings, and M. Wooldridge, Multiagent Systems

for Manufacturing Control. Heidelberg: Springer-Verlag, 2004.
[7] R. W. Brennan, "Holonic and multi-agent systems in industry," The

Knowledge Engineering Review, vol. Vol. 16, pp. 375-381, 2001.
[8] K. Hallenborg and Y. Demazeau, "Dynamical Control in Large-

Scale Material Handling Systems through Agent Technology,"

Intelligent Agent Technology, 2006. IAT '06. IEEE/WIC/ACM

International Conference on, pp. 637-645.

[9] N. Hayslip, S. Sastry, and J. Gerhardt, "Networked embedded
automation," Assembly Automation, vol. 26, pp. 235–241, 2006.

[10] FlPA, "Agent Communication Language,

http://www.fipa.org/specs/fipa00003/," accessed June 2007.
[11] P. Vrba, "MAST: manufacturing agent simulation tool," Emerging

Technologies and Factory Automation, 2003. Proceedings. ETFA

'03. IEEE Conference, vol. 1, pp. 282-287 vol.1.
[12] V. Marik, P. Vrba, K. Hall, H. , and F. Maturana, P., "Rockwell

automation agents for manufacturing," in Proceedings of the fourth

international joint conference on Autonomous agents and multiagent

systems. The Netherlands: ACM Press, 2005.
[13] HOLOBLOC, "Function Block Development Kit," 2008.
[14] C. Sünder, A. Zoitl, M. Rainbauer, and B. Favre-Bulle, "Hierarchical

Control Modelling Architecture for Modular Distributed Automation
Systems," Industrial Informatics, 2006 IEEE International

Conference on, pp. 12-17, 2006.
[15] C. Schwab, M. Tangermann, and L. Ferrarini, "Web based

methodology for engineering and maintenance of distributed control

systems: the TORERO approach," Industrial Informatics, 2005.

INDIN '05. 2005 3rd IEEE International Conference on, pp. 32-37.

[16] K. Thramboulidis, "Model- integrated mechatronics - toward a new
paradigm in the development of manufacturing systems," Industrial

Informatics, IEEE Transactions on, vol. 1, pp. 54-61, 2005.

[17] G. Frey and T. Hussain, "Modeling techniques for distributed control
systems based on the IEC 61499 standard - current approaches and

open problems," Discrete Event Systems, 2006 8th International

Workshop on, pp. 176-181, 2006.
[18] "Special Issue on Automation Objects," Int. J. Manufacturing

Research, vol. Vol. 1, 2007.
[19] V. V. Vyatkin, H. M. Hanisch, S. Karras, T. Pfeiffer, and V.

Dubinin, "Rapid Engineering and Re-Configuration of Automation
Objects Using Formal Verification," International Journal of

Manufacturing Research, vol. 1, pp. 382–404, 2006.

[20] V. Vyatkin, IEC 61499 Function Blocks for Embedded Control

Systems Design: Instrumentation Society of America, 2007.

[21] V. Vyatkin, "Intelligent mechatronic components: control system
engineering using an open distributed architecture," Emerging

Technologies and Factory Automation, 2003. Proceedings. ETFA

'03. IEEE Conference, vol. 2, pp. 277-284 vol.2, 2003.

[22] C. Sünder, A. Zoitl, T. Strasser, and B. Favre-Bulle, "Intuitive
control engineering for mechatronic components in distributed
automation systems based on the reference model of IEC 61499,"

Industrial Informatics, 2005. INDIN '05. 2005 3rd IEEE

International Conference on, pp. 50-55.

[23] V. Vyatkin, Z. Salcic, P. Roop, and J. Fitzgerald, "Information
Infrastructure of Intelligent Machines based on IEC 61499
Architecture," IEEE Industrial Electronics Magazine (accepted for

publication 2007), 2007.
[24] J. H. Christensen, "IEC 61499 architecture, engineering

methodologies and software tools," 5th IFIP International

Conference on Information Technology for BALANCED

AUTOMATION SYSTEMS In Manufacturing and Services,

Proceedings, vol. Cancun, Mexico, 2002.
[25] M. Hirsch, V. Vyatkin, and H. M. Hanisch, "IEC 61499 Function

Blocks for Distributed Networked Embedded Applications,"
Industrial Informatics, 2006 IEEE International Conference on, pp.
670-675, 2006.

[26] J.H. Christensen, "Holonic Manufacturing Systems: Initial
Architecture and Standards Directions," Proc 1st Euro Wkshp on

Holonic Manufacturing Systems, HMS Consortium, Hannover,

Germany, December, 1994.
[27] M. Fletcher, "Building holonic control systems with function

blocks," Autonomous Decentralized Systems, 2001. Proceedings. 5th

International Symposium on, pp. 247-250.

[28] M. Fletcher, E. Garcia-Herreros, J. H. Christensen, S. M. Deen, and
R. Mittmann, "An open architecture for holonic cooperation and
autonomy," Database and Expert Systems Applications, 2000.

Proceedings. 11th International Workshop on, pp. 224-230.
[29] L. Ferrarini and C. Veber, "Design and implementation of distributed

hierarchical automation and control systems with IEC 61499,"
Industrial Informatics, 2005. INDIN '05. 2005 3rd IEEE

International Conference on, pp. 74-79, 2005.

[30] G. Black and V. Vyatkin, "On Practical Implementation of Holonic
Control Principles in Baggage Handling Systems using IEC 61499,"

in Holonic and Multi-Agent Systems for Manufacturing, vol. 4659,
Lecture Notes in Computer Science, 2007, pp. 314-325.

[31] T. H. Cormen, "Introduction to algorithms," Second Edition ed: MIT

Press, Cambridge, 2001, pp. pp.595–601.
[32] D. G. Bertsekas, Robert, Data Networks: Prentice-Hall, Inc.,

Englewood Cliffs, NJ,, 1987.

Geoff Black attained a Bachelor of Engineering
(Electrical and Electronic) in 1998 followed by a

Master of Engineering (Computer Systems) completed
in 2008, both at the University of Auckland, New

Zealand.
He has experience in embedded software for industrial
and process control, specialising in fluid control using

electronic actuation. He is now employed by
Wellington Drive Technologies Limited in New Zealand, developing high

efficiency motor drives for electronically commutated motors.

Valeriy Vyatkin is graduated with a Diploma Degree
in Applied Mathematics from Taganrog State
University of Radio Engineering (TSURE), Taganrog,

Russia in 1988. He holds Dr. Sci. degree (1998) and
Ph.D. (1992) earned at the same University, and Dr.

Eng. (1999) degree earned at Nagoya Institute of
Technology, Nagoya, Japan, in 1999.

 Currently he is Senior Lecturer with the

Department of Electrical and Computer Engineering at
the University of Auckland, New Zealand. His previous faculty positions

were with Martin Luther University of Halle-Wittenberg in Germany
(Assistant Professor, 1999- 2004), and with TSURE (Senior Lecturer,
Professor, 1991-2002). He has been IEEE Senior Member since 2004.

Dr. Vyatkin is the head of the infoMechatronics and IndusTRial
Automation lab (MITRA). Research interests of Dr. Vyatkin are in the area

of industrial informatics, including software engineering for industrial
automation systems, distributed software architectures, methods of formal
validation of industrial automation systems and theoretical algorithms for

improving their performance. The specific expertise area of Dr. Vyatkin is
in distributed automation and the IEC 61499 standard.

