
Automatic Model Generation of IEC 61499 Function
Block Using Net Condition/Event Systems

Cheng Pang, Non-Member, Valeriy Vyatkin, Senior Member IEEE
The University of Auckland, New Zealand

cpan024@ec.auckland.ac.nz, v.vyatkin@auckland.ac.nz
Abstract-The IEC 61499 standard establishes a framework

specifically designed for the implementation of decentralized re-
configurable industrial automation systems. However, the process
of distributed system’s validation and verification is difficult and
error-prone. This paper discusses the needs of model generators
which are capable of automatically translating IEC 61499
function blocks into formal models following specific execution
semantics. In particular, this paper introduces the prototype Net
Condition/Event Systems model generator and aims to summarize
the generic techniques of model translation.

I. INTRODUCTION

With the increasing use of decentralization and the growing
complexity in industrial automation systems, a formal and
systematic verification of the system is essential for revealing
subtle design pitfalls and for avoiding system failures.
Traditionally, hardware systems are validated by the process of
simulation and testing. A system is first simulated and then
tested on a prototype. This approach is effective in the early
debugging stage, but it quickly becomes inefficient and
inadequate when the design complexity increases as the
growing potential of defects necessitates the use of ever more
testing scenarios. More importantly, the traditional approach is
a very time-consuming process requires sophisticated software
programs and it only guarantees the correct behaviours in the
tested scenarios. As Programmable Logic Controllers (PLC’s)
and IEC 61131-3 [1] are still the mainstream re-programmable
electronic devices and the corresponding programming
standard in industrial automation systems, the conventional
system verification process is relatively intuitive. However,
PLC programs’ centralized control model, cyclic execution
semantics, and lack of interoperability significantly restrict the
software’s reusability and the system’s re-configurability.

To overcome the shortcomings of PLC, the International
Electrotechnical Commission, IEC, developed the new
international standard IEC 61499 [2], which inherits the
function block concept from IEC 61131-3 and establishes an
open, modularized, and implementation-independent software
development framework to satisfy the current industrial needs
for agile development of interoperable, re-configurable, and
portable distributed automation systems. However, as IEC
61499-compliant applications can be highly decentralized and
of a large scale, the traditional validation approaches are
insufficient and inefficient to provide an adequate analysis of
system properties.

As an alternative to the simulation and testing approach,
formal verification [3] exhaustively explores all possible
behaviours of the target systems. By choosing a proper formal

method, it is able to automatically verify all the interested
system properties and hence identify potential design pitfalls.
Therefore, as discussed in several papers [4-7], verifying
function block’s formal model is an effective way to validate
the original design. However, the semantic ambiguities of IEC
61499 lead to different interpretations of the standard and
directly result in a variety of standard-compliant function block
implementations with contrary execution behaviours [8-11]. It
is then realized that formal modelling of function blocks needs
to be preceded by the definition of their complete execution
semantics [5]. Discussion of various execution models is not
within the scope of this paper; rather, this paper aims to present
a prototype model generator which translates function blocks
into Net Condition/Event Systems (NCES) [11] models
following the sequential execution model [9].

The paper is structured as follows. Section II briefly reviews
existing approaches of modelling IEC 61499 function block
and gives a short comparison. Section III outlines the overall
methodology of modelling function blocks using NCES and the
details of modelling IEC 61499 entities are elaborated in
Section IV. Then, Section V generally discusses the
verification framework and the properties need to be verified.
Finally, the paper concludes with outlook of future works.

II. MODELLING OF IEC 61499

In the past few years, numerous modelling approaches for
the IEC 61499 have been introduced. Besides the different
formalisms and verification techniques employed in these
approaches, they also differ in the level of model abstraction
and the emphasis in the model analysis. This section outlines
some different ways of modelling IEC 61499 and then gives a
brief comparison between the NCES modelling approach and
the others.

A. Interacting Finite Automata Modelling Approach
Čengić et al. developed a Java-based runtime environment,

called FUnction Block Execution Runtime (Fuber) [12], for the
execution of IEC 61499 applications. Fuber implements a
sequential scheduling function block execution model using a
First-In-First-Out (FIFO) queue. Each IEC 61499 application
in Fuber is translated into a set of interacting finite automata
by modelling the FIFO queue, the event execution semantics,
basic function blocks, service function blocks, composition
function blocks, and the connections between function block
instances within the application. The resultant model is verified
using the supervisory control theory [13].

B. Timed Automata Modelling Approach
In [7], Stanica et al. proposed a modular translation approach

for modelling IEC 61499 function block behaviour in timed
automata. In their work, the primary concern is the execution
control of function blocks, especially their external behaviours.
As a result, algorithms and data of basic function blocks are
not considered. Instead, algorithms are modelled by their
processing time and data are abstracted. Each basic function
block is modelled by a set of automata: an Execution Control
Chart (ECC) automaton, the corresponding event input
automata, and two additional synchronization automata.
Modelling of a function block network is accomplished by
direct composition of function block models scheduled by a
scheduling automaton. The scheduling automaton implements
a non-pre-emptive and non-prioritized scheduling policy. The
timed automata are verified by using the UPPAAL [14] tool.

C. UML Modelling Approach
Differing form other modelling approaches, Panjaitan et al.

[15] presented a way of using the Unified Modelling Language
(UML) to model not only IEC 61499 applications, but also the
entire development process of distributed control systems. In
this approach, every development step is depicted in UML and
then the actual system design is transformed into an IEC 61499
model according to the UML representation. The UML model,
however, does not follow any particular execution semantics.
The operation sequence of function block instances inside an
application, for example, is specified using a UML sequence
diagram. Therefore, the transformed function block’s execution
model is completely dependent on the sequence diagram.

D. Prolog Modelling Approach
Dubinin et al. introduced a new way of modelling IEC

61499 function block networks by using the logic
programming language Prolog [16] in [6], where closed-loop
function block systems with arbitrary data types are modelled
and verified. The Prolog model uses production rules [16] to
represent function block networks, which allow concurrent
execution of constituent function block instances. Each IEC
61499 entity is directly mapped to a Prolog term with the same
tag name and algorithms are represented in predicates. The
liveness and safety properties of the modelled systems are then
specified Prolog predicates and verified.

E. NCES Modelling Approach
NCES is a distributed state formalism developed for

modelling discrete-event systems. It inherits the graphical
notation and non-interleaving semantics of classic Petri-net
and supports the notion of modularization. The event-driven,
modular design and hierarchical structure of NCES closely
correspond to the design methodology of IEC 61499 and make
the modelling process intuitive.

NCES was first used to model the execution logic of a basic
function block in [4] by Vyatkin and Hanisch, and later [8]
studied the NCES model of a function block network following
a parallel execution semantics. In general, each IEC 61499 is
modelled by a separate NCES module. The individual modules

are then assembled or composed, in NCES’s terminology,
following the same topological structure of IEC 61499. The
operation of a basic function block, on the other hand, is
controlled by an NCES module implementing the Execution
Control Operation State Machine (ECOSM) defined in the
standard.

Compared to other methods, the NCES modelling approach
has the following advantages:
• Unlike automata based modelling approaches, NCES

modules directly model the actual operations of function
block systems. The hierarchical structure similar to that in
the standard can help identify not only in which states the
system fails, but also which function block fails.
Moreover, the existing NCES modules can be reused
which makes progressive modelling possible.

• Contrary to the Prolog approach, the model’s execution
semantics does not depend on the modelling formalism.
Although NCES per se is a concurrent formalism, by
sequentially queuing the event signals it is also able to
model sequential behaviours.

• NCES models can be verified by using the model
checking [3] technique, which supports unsupervised
automatic verification and identifies system failure via
counterexamples.

III. MODELLING METHODOLOGY OUTLINE

In IEC 61499, function blocks are the basic building units.
Composition of function block instances forms higher level
entities such as resources inside devices, which ultimately
constitute a system. This hierarchical design topology implies a
corresponding bottom-up modelling approach: simplest
functional components are modelled first and eventually model
the entire system by assembling and integrating the basic
models. The bottom-up modelling approach can ensure that
higher level components are always built on top of lower level
elements whose models have already been validated. Moreover,
optimization of the resultant model can be achieved by
optimizing the constituent models. In this NCES modelling
framework, basic function blocks are modelled first and then
gradually extend the framework to model the entire system.

The essential of modelling is to abstract the properties of the
subject system while preserving its nature and reflecting its
characteristics. In order to closely model the target function
block system and to establish a basis for decision-making
during the modelling process, the following principles are set:
• Strictly comply with the sequential execution model: the

NCES models must closely follow the postulates defined
in the sequential execution model. If exact modelling is
impossible or impractical, the model must therefore be
behaviourally equivalent to the system being modelled.

• Model as many details as possible: modelling the
operation details of IEC 61499 function blocks enables
verification tools to identify more concrete design pitfalls.

• Optimize and verify the model after creation: in order to
reduce the state space and to ensure the correctness of the
final model, each sub-model is optimized and verified.

On the other hand, as the sequential execution model
requires a FIFO queue to coordinate events in a function block
network, an extra NCES module implements an Event
Dispatcher must be designed to sequentially schedule, for
example, event forking and merging among function blocks.

IV. MODELLING IEC 61499 FUNCTION BLOCK

A. Modelling of Basic Function Block
Basic function block is the fundamental construction unit in

IEC 61499 architecture, which encapsulates the functionality
description in its ECC, and communicates with the external
environment through its input and output ports defined in its
interface. The internal operations of a basic function block are
coordinated by its ECOSM. Fig. 1 shows a simple basic
function block UpdateX whose sole purpose is to update the
Boolean output QO according to the value of Boolean input X.

Fig. 1. Simple Basic Function Block: (a) Interface, (b) ECC

Fig. 2. Translated NCES Model

Following the modelling methodology outlined in Section III,
each functional component is modelled by an NCES module.
As illustrated in Fig. 2, REQ and CNF modules model the
event ports, X and QO modules model the data ports, and
EC_SM module models the ECOSM. Moreover, the WITH
association between event and data port pairs are accomplished
via the Sample and Sampled signals between the corresponding
NCES modules. For example, when the event signal REQ_
signal arrives, the REQ.Sample signal will be issued to trigger
the sampling process of X module. When X updated the

Boolean value it represents, signal X.Sampled will be sent back
to REQ module. Modelling of event/data ports, ECOSM, and
simple algorithms has been studied in [5] and [4], which are
still applicable in this sequential modelling approach.
Therefore, the rest of this section will focus on the modelling
of ECC and briefly describe the translated model’s operations.

In general, the complete model of an ECC consists of three
parts: the model of the ECC control flow, the model of EC
transitions’ Boolean condition, and the model of EC actions,
interconnected via event and condition signals. As indicated in
Fig. 2, the UpdateX_ECC module models the control flow of
the ECC shown in Fig. 1 (b) and REQAction module models
the EC action associated with the EC state STATE1. Since the
EC transitions in this example only involve simple Boolean
conditions, the Boolean conditions are modelled directly within
the UpdateX_ECC module as illustrated below:

Fig. 3. UpdateX_ECC Module

Structurally, the model of the ECC control flow mimics the
original ECC. Each EC state is mapped to an NCES place and
each EC transition is transformed into an NCES transition.
Any trivial Boolean condition is modelled by a set of condition
signals connected to the target transition. In addition, the initial
state is modelled by the initial marking of the NCES model. As
shown in Fig. 3, the EC state START and STATE1 are
respectively mapped to the NCES place p1 and p2. Similarly,
the EC transition START STATE1 and STATE1→START are
modelled by the NCES transition t1 and t2 respectively. At last,
the token in p1 marks it as the initial state.

According to the types of succeeding EC transitions, the
number of EC actions an EC state has and whether the EC
action associated with algorithm and event output, there can be
24 different types of EC actions. Therefore, 24 NCES modules
are created to model all these different EC actions. Apart from
the different module content, the main purpose of these NCES
models is to supervise the execution of the associated
algorithm module and the issuance of the event output. The
REQAction module illustrated in Fig. 1 models a single EC
action associated with an algorithm and an event output and its
succeeding EC transition only contains a guard condition.
Although the standard defines that no EC action should
associate with the initial state, a helper module ISA is
connected to the initial state in the NCES model. The function
of ISA module is to clear the current registered event input in
the initial EC state to avoid deadlocking, which does not affect
the ECC’s control flow.

The internal operations of the translated NCES model are as
follows. Upon the arrival of the REQ_ signal, REQ module
triggers the sampling process of X module. Then, EC_SM
module starts evaluating the ECC control flow inside the
UpdateX_ECC module. When the REQAction module finishes
executing the associated algorithm module AssignBoolean, it
triggers the CNF module to update the data output. If the
external event dispatcher module is ready to receive next event,
the QReady signal will present and trigger the issuance of
_CNF signal to complete the execution of the NCES model.

B. Modelling of Event Dispatcher
The sequential execution model requires that at any instant

in time only one function block instance in a resource is active.
Event signals in a composition function block are scheduled by
an event dispatcher, whose primary task is to sequentially
register the occurrences of event signals inside the function
block network and then emit then orderly. The dispatcher must
also ensure that no event signal will be lost and event will be
emitted only if the previous event has been cleared. Thus, a
FIFO queue is employed inside the dispatcher to store the
event signals. Fig. 4 shows an event dispatcher model with
three event inputs and a queue size of two:

Fig. 4. Event Dispatcher

The event dispatcher can perform two interleaved operations:
event registration and event fetching. When the ready event
output is enabled, the event dispatcher is ready to register
events occurring at ei1, ei2, or ei3 once a time. The event
signal will be stored in the Queue module and the inserting
point is adjusted by the LevelIndicator module. On the other
hand, the event fetching process is triggered by the external
fetch signal. Firstly, the InsertControl module disables its
ready output signal to signify the unavailability of the event
dispatcher. Meanwhile, the OutControl module starts
evaluating its condition inputs sequentially and decides which
port to emit the first event stored in the Queue module. Then,

the LevelIndicator module will restore the previous event
inserting point. After the three modules, Event1, Event2, and
Event3 are reset and the ready output is re-enabled, the
OutControl module emits the corresponding event signal to
complete the fetching process. If no event is stored in the
queue, the nothingOut signal from the OutControl module will
be issued instead. The following figure illustrates the details of
the Queue module:

Fig. 5. FIFO Queue Model

The Queue module used in this example can queue two
event signals from the three inputs: event1, event2, and event3.
Initially the queue is empty. When the insert signal arrives, one
of the three event signals will be stored as a token at the level
indicated by fill1 or fill2 signals. During the fetching process,
tokens inside place p7, p8, and p9 will be cleared via transition
t13, t14, and t15 respectively and the corresponding ev output
signal will be enabled. Moreover, the number of level and
input can be increased by duplicating the respective structure
inside the dot-line and solid-line squares.

C. Modelling of Composite Function Block
Unlike basic function blocks, before assembling the

component models, the network inside the composite function
block must be first analyzed to determine the size of the event
dispatcher module and whether extra modules are inserted to
fork or merge the event signals.

As the number of events a function block will emit depends
on in which state the function block is and the sequence of
state transition is unpredictable before the actual execution of
the function block, currently it is assumed that the dispatcher’s
size is twice the total number of all function block instances’
event outputs inside the network. The event dispatcher bridges
the function block instances in the following way: all the
instances’ outputs are connected to the inputs of the dispatcher
whose outputs are then fed to the respective instances’ inputs.

Moreover, extra helper module, such as the standard defined
E_SPLIT and E_MERGE function block modules, must be
inserted accordingly to explicitly fork or merge the event
signals.

Due to the hierarchical modelling approach, the translated
NCES model is almost structurally identical to the original
composite function block. As demonstrates in Fig. 6, apart
from the event dispatcher module and the helper module
E_OR3, the NCES model’s layout and connections are
identical to the original composite function block.

Fig. 6. Translated Composite Function Block Module

V. PROPERTY VERIFICATION

This section presents a verification framework borrowed
from [19] for verifying NCES models and summaries general
properties that must be valid in order to ensure the model is
semantically and behaviourally correct. The function block to
be verified is created in FBDK [17] and the translated NCES
model can be opened in ViEd [18] and verified in ViVe [18].

In according to the sequential execution model, any IEC
61499 application should possess two broad properties:
• All events will be processed, and
• Only one function block instance is active at any instant

in time.
These two properties can be further refined according to the
actual type of function block being investigated.

A. Verification of Basic Function Block Properties
Following the sequential execution model, a basic function

block should have the properties listed below:
• Guaranteed response: the correct event output will

eventually be issued after the occurrence of the
corresponding event input.

• All event inputs will be cleared: any event input will be
cleared regardless of whether or not it has been used in
the ECC evaluation.

In order to verify a given function block model, an extra
event generator module is created to generate all possible
combinations of the input signals for the model being verified.
The following basic function block is used to demonstrate the
verification framework and to verify the properties listed above.

Fig. 7. ExampleFB6 Basic Function Block: (a) Interface, and (b) ECC

Fig. 8. EventGenerator1 Module

As indicated in Fig. 8, in order to generate all possible
combinations of the four input signals of the ExampleFB6
function block shown in Fig. 7, the EventGenerator1 module
heavily utilize conflicts in NCES. For example, in the above
diagram, after the firing of transition t1, the token inside places
p5 can flow to either p6 or p7. As a result, either QI1_True or
QI1_False will be enabled. Moreover, since the verification of
a single basic function block does not require an event
dispatcher, place p11 is used to simulate an empty queue.

Fig. 9. Framework for Verifying ExampleFB6 Function Block

Fig. 10. Event Dummy Modules: (a) InputDummy Module, and (b)

OutputDummy Module
Referring to Fig. 9, the verification framework consists of

the event generator module, the target function block model,
and the event dummy helper modules. The event dummy
modules are simply bi-stables as shown in Fig. 10. Their sole
purpose is to provide an indication of the event occurrence. For
instance, in Fig. 9, the emission of the EventGenerator.REQ1
event signal will move the token in REQ1Dummy.p1 to
REQDummy.p2, based on the token location, the occurrence of
the event input can be easily identified. Therefore, to verify the
event related properties, it is only necessary to check the
markings of the event dummy modules.

According to the ExampleFB6 function block’s ECC, the
CNF1 event output is issued after the REQ1 event input,
whereas the REQ2 event input is followed by the CNF2 event
output. Therefore, the following temporal logic statement is
used to verify this guaranteed response property:

AG((PREQ1→EFPCNF1) (PREQ2→EFPCNF2))

where, predicate PREQ1 denotes the place REQ1Dummy.p2,
predicate PREQ2 denotes the place REQ2Dummy.p2, predicate
PCNF1 denotes the place CNF1Dummy.p2, and predicate PCNF2
denotes the place CNF2Dummy.p2. This statement means that
in every state the occurrence of the event input REQ1 or REQ2
will eventually lead to the emission of the corresponding event
output CNF1 or CNF2. In ViVe, this property is proved to be
true.

On the other hand, to verify that all event input will be
cleared, the statement below is checked:

AG((PREQ1→AFPREQ1’) (PREQ2→AFPREQ2’))

where, PREQ1’ denotes the place REQ1Dummy.p1and
PREQ2’denotes REQ2Dummy.p1. An event input is cleared when
the tokens in the input dummy modules flow back to their
initial places. The above statement is also proved to be true.

B. Verification of Composite Function Block Properties
In addition to the properties of basic function blocks, a

composite function block must also ensure that no event signal
will be lost and at any time instant there will be only one active
function block instance. Since in our framework the event
scheduling mechanism is explicitly implemented in the even
dispatcher model, therefore the aforementioned properties are
automatically satisfied.

VI. CONCLUSIONS

This paper presents a prototype model generator which
intends to automatically translate IEC 61499 function blocks

into functionally and semantically equivalent NCES models
following the sequential execution model. The translated
formal models can then be systematically verified and analyzed
by model checking tools.

To further extend current modelling architecture, future
works would be applying the existing techniques to model
function blocks obeying other execution semantics, such as
scan-based or parallel execution model.

REFERENCES
[1] International Electrotechnical Commission, Programmable Controller -

Part 3: Programming Languages, IEC 61131-3 Standard. Geneva:
International Electrotechnical Commission, 1993.

[2] International Electrotechnical Commission, Function blocks for
industrial-process measurement and control systems - Part 1:
Architecture. Geneva: International Electrotechnical Commission, 2005.

[3] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking.
Cambridge: The MIT Press, 1999.

[4] V. Vyatkin and H. M. Hanisch, "A modeling approach for verification
of IEC1499 function blocks using net condition/event systems," in 7th
IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA '99), Barcelona, Spain, 1999, pp. 261-270 vol.1.

[5] C. Pang and V. Vyatkin, "Towards Formal Verification of IEC 61499:
Modelling of Data and Algorithms in NCES," in 5th IEEE Conference
on Industrial Informatics (INDIN 2007), Vienna, Austria, 2007.

[6] V. Dubinin, V. Vyatkin, and H.-M. Hanisch, "Modelling and
Verification of IEC 61499 Applications using Prolog," in 11th IEEE
Conference on Emerging Technologies and Factory Automation (ETFA
2006), Prague, Czechoslovakia 2006, pp. 774-781.

[7] M. Stanica and H. Guéguen, "Using Timed Automata for the
Verification of IEC 61499 Applications," in Workshop on Discrete
Event Systems 2004 (WODES'04), Reims, France, 2004, pp. 22-24.

[8] V. Vyatkin, "Execution Semantic of Function Blocks based on the
Model of Net Condition/Event Systems," in 4th IEEE International
Conference on Industrial Informatics (INDIN 2006), Singapore, 2006,
pp. 874-879.

[9] V. Vyatkin and V. Dubinin, "Sequential Axiomatic Model for Execution
of Basic Function Blocks in IEC61499," in 5th IEEE Conference on
Industrial Informatics (INDIN 2007), Vienna, Austria, 2007, pp. 1183-
1188.

[10] J. L. M. Lastra, L. Godinho, A. Lobov, and R. Tuokko, "An IEC 61499
Application Generator for Scan-Based Industrial Controllers," in 3rd
IEEE International Conference on Industrial Informatics (INDIN 2005),
Perth, Australia, 2005, pp. 80-85.

[11] V. Vyatkin, H.-M. Hanisch, and T. Pfeiffer, "Object-oriented modular
place/transition formalism for systematic modeling and validation of
industrial automation systems," in 1st IEEE Conference on Industrial
Informatics (INDIN 2003), Banff, Canada, 2003, pp. 224 - 232.

[12] G. Čengić, O. Ljungkrantz, and K. Åkesson, "Formal Modeling of
Function Block Applications Running in IEC 61499 Execution
Runtime," in 11th IEEE Conference on Emerging Technologies and
Factory Automation (ETFA 2006), Prague, Czechoslovakia 2006, pp.
1269-1276.

[13] K. Åkesson, "Methods and tools in supervisory control theory: Operator
aspects, computation efficiency and applications," in Signals and
Systems. vol. Ph.D. Göteborg, Sweden: Chalmers University of
Technology, 2002.

[14] K. G. Larsen, P. Pettersson, and W. Yi, "UPPAAL in a Nutshell,"
Journal of Software Tools for Technology Transfer, vol. 1, pp. 134-152,
September 1997.

[15] S. Panjaitan and G. Frey, "Combination of UML Modeling and the IEC
61499 Function Block Concept for the Development of Distributed
Automation Systems," in 11th IEEE Conference on Emerging
Technologies and Factory Automation (ETFA 2006), 2006, pp. 766-773.

[16] W. F. Clocksin and C. S. Mellish, Programming in Prolog, 5th ed. New
York: Springer-Verlag, 2003.

[17] Holobloc Inc., "Function Block Development Kit (FBDK)." (2008,
Feburary) [Online]. Available: http://www.holobloc.org.

[18] "Model-Checkers for Net Condition/Event System," (2008, Feburary).
[Online]. Available:
http://www.ece.auckland.ac.nz/~vyatkin/tools/modelchekers.html.

[19] V. Vyatkin and H.-M. Hanisch, "Modelling and Verification of
Execution Control of the Function Blocks following the standard IEC
61499 by means of Net Condition/Event Systems (NCES)," Uni-
Magdeburg, IFAT, Technical report March 2000.

