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Abstract-The IEC 61499 standard establishes a framework 

specifically designed for the implementation of decentralized re-
configurable industrial automation systems. However, the process 
of distributed system’s validation and verification is difficult and 
error-prone. This paper discusses the needs of model generators 
which are capable of automatically translating IEC 61499 
function blocks into formal models following specific execution 
semantics. In particular, this paper introduces the prototype Net 
Condition/Event Systems model generator and aims to summarize 
the generic techniques of model translation. 

I. INTRODUCTION 

With the increasing use of decentralization and the growing 
complexity in industrial automation systems, a formal and 
systematic verification of the system is essential for revealing 
subtle design pitfalls and for avoiding system failures. 
Traditionally, hardware systems are validated by the process of 
simulation and testing. A system is first simulated and then 
tested on a prototype. This approach is effective in the early 
debugging stage, but it quickly becomes inefficient and 
inadequate when the design complexity increases as the 
growing potential of defects necessitates the use of ever more 
testing scenarios. More importantly, the traditional approach is 
a very time-consuming process requires sophisticated software 
programs and it only guarantees the correct behaviours in the 
tested scenarios. As Programmable Logic Controllers (PLC’s) 
and IEC 61131-3 [1] are still the mainstream re-programmable 
electronic devices and the corresponding programming 
standard in industrial automation systems, the conventional 
system verification process is relatively intuitive. However, 
PLC programs’ centralized control model, cyclic execution 
semantics, and lack of interoperability significantly restrict the 
software’s reusability and the system’s re-configurability. 

To overcome the shortcomings of PLC, the International 
Electrotechnical Commission, IEC, developed the new 
international standard IEC 61499 [2], which inherits the 
function block concept from IEC 61131-3 and establishes an 
open, modularized, and implementation-independent software 
development framework to satisfy the current industrial needs 
for agile development of interoperable, re-configurable, and 
portable distributed automation systems. However, as IEC 
61499-compliant applications can be highly decentralized and 
of a large scale, the traditional validation approaches are 
insufficient and inefficient to provide an adequate analysis of 
system properties.  

As an alternative to the simulation and testing approach, 
formal verification [3] exhaustively explores all possible 
behaviours of the target systems. By choosing a proper formal 

method, it is able to automatically verify all the interested 
system properties and hence identify potential design pitfalls. 
Therefore, as discussed in several papers [4-7], verifying 
function block’s formal model is an effective way to validate 
the original design. However, the semantic ambiguities of IEC 
61499 lead to different interpretations of the standard and 
directly result in a variety of standard-compliant function block 
implementations with contrary execution behaviours [8-11]. It 
is then realized that formal modelling of function blocks needs 
to be preceded by the definition of their complete execution 
semantics [5]. Discussion of various execution models is not 
within the scope of this paper; rather, this paper aims to present 
a prototype model generator which translates function blocks 
into Net Condition/Event Systems (NCES) [11] models 
following the sequential execution model [9]. 

The paper is structured as follows. Section II briefly reviews 
existing approaches of modelling IEC 61499 function block 
and gives a short comparison. Section III outlines the overall 
methodology of modelling function blocks using NCES and the 
details of modelling IEC 61499 entities are elaborated in 
Section IV. Then, Section V generally discusses the 
verification framework and the properties need to be verified. 
Finally, the paper concludes with outlook of future works. 

II. MODELLING OF IEC 61499 

In the past few years, numerous modelling approaches for 
the IEC 61499 have been introduced. Besides the different 
formalisms and verification techniques employed in these 
approaches, they also differ in the level of model abstraction 
and the emphasis in the model analysis. This section outlines 
some different ways of modelling IEC 61499 and then gives a 
brief comparison between the NCES modelling approach and 
the others. 

A. Interacting Finite Automata Modelling Approach 
Čengić et al. developed a Java-based runtime environment, 

called FUnction Block Execution Runtime (Fuber) [12], for the 
execution of IEC 61499 applications. Fuber implements a 
sequential scheduling function block execution model using a 
First-In-First-Out (FIFO) queue. Each IEC 61499 application 
in Fuber is translated into a set of interacting finite automata 
by modelling the FIFO queue, the event execution semantics, 
basic function blocks, service function blocks, composition 
function blocks, and the connections between function block 
instances within the application. The resultant model is verified 
using the supervisory control theory [13]. 



B. Timed Automata Modelling Approach 
In [7], Stanica et al. proposed a modular translation approach 

for modelling IEC 61499 function block behaviour in timed 
automata. In their work, the primary concern is the execution 
control of function blocks, especially their external behaviours. 
As a result, algorithms and data of basic function blocks are 
not considered. Instead, algorithms are modelled by their 
processing time and data are abstracted. Each basic function 
block is modelled by a set of automata: an Execution Control 
Chart (ECC) automaton, the corresponding event input 
automata, and two additional synchronization automata. 
Modelling of a function block network is accomplished by 
direct composition of function block models scheduled by a 
scheduling automaton. The scheduling automaton implements 
a non-pre-emptive and non-prioritized scheduling policy. The 
timed automata are verified by using the UPPAAL [14] tool. 

C. UML Modelling Approach 
Differing form other modelling approaches, Panjaitan et al. 

[15] presented a way of using the Unified Modelling Language 
(UML) to model not only IEC 61499 applications, but also the 
entire development process of distributed control systems. In 
this approach, every development step is depicted in UML and 
then the actual system design is transformed into an IEC 61499 
model according to the UML representation. The UML model, 
however, does not follow any particular execution semantics. 
The operation sequence of function block instances inside an 
application, for example, is specified using a UML sequence 
diagram. Therefore, the transformed function block’s execution 
model is completely dependent on the sequence diagram. 

D. Prolog Modelling Approach 
Dubinin et al. introduced a new way of modelling IEC 

61499 function block networks by using the logic 
programming language Prolog [16] in [6], where closed-loop 
function block systems with arbitrary data types are modelled 
and verified. The Prolog model uses production rules [16] to 
represent function block networks, which allow concurrent 
execution of constituent function block instances. Each IEC 
61499 entity is directly mapped to a Prolog term with the same 
tag name and algorithms are represented in predicates. The 
liveness and safety properties of the modelled systems are then 
specified Prolog predicates and verified.  

E. NCES Modelling Approach 
NCES is a distributed state formalism developed for 

modelling discrete-event systems. It inherits the graphical 
notation and non-interleaving semantics of classic Petri-net 
and supports the notion of modularization. The event-driven, 
modular design and hierarchical structure of NCES closely 
correspond to the design methodology of IEC 61499 and make 
the modelling process intuitive. 

NCES was first used to model the execution logic of a basic 
function block in [4] by Vyatkin and Hanisch,  and later [8] 
studied the NCES model of a function block network following 
a parallel execution semantics. In general, each IEC 61499 is 
modelled by a separate NCES module. The individual modules 

are then assembled or composed, in NCES’s terminology, 
following the same topological structure of IEC 61499. The 
operation of a basic function block, on the other hand, is 
controlled by an NCES module implementing the Execution 
Control Operation State Machine (ECOSM) defined in the 
standard. 

Compared to other methods, the NCES modelling approach 
has the following advantages: 
• Unlike automata based modelling approaches, NCES 

modules directly model the actual operations of function 
block systems. The hierarchical structure similar to that in 
the standard can help identify not only in which states the 
system fails, but also which function block fails. 
Moreover, the existing NCES modules can be reused 
which makes progressive modelling possible. 

• Contrary to the Prolog approach, the model’s execution 
semantics does not depend on the modelling formalism. 
Although NCES per se is a concurrent formalism, by 
sequentially queuing the event signals it is also able to 
model sequential behaviours. 

• NCES models can be verified by using the model 
checking [3] technique, which supports unsupervised 
automatic verification and identifies system failure via 
counterexamples. 

III. MODELLING METHODOLOGY OUTLINE 

In IEC 61499, function blocks are the basic building units. 
Composition of function block instances forms higher level 
entities such as resources inside devices, which ultimately 
constitute a system. This hierarchical design topology implies a 
corresponding bottom-up modelling approach: simplest 
functional components are modelled first and eventually model 
the entire system by assembling and integrating the basic 
models. The bottom-up modelling approach can ensure that 
higher level components are always built on top of lower level 
elements whose models have already been validated. Moreover, 
optimization of the resultant model can be achieved by 
optimizing the constituent models. In this NCES modelling 
framework, basic function blocks are modelled first and then 
gradually extend the framework to model the entire system.  

The essential of modelling is to abstract the properties of the 
subject system while preserving its nature and reflecting its 
characteristics. In order to closely model the target function 
block system and to establish a basis for decision-making 
during the modelling process, the following principles are set: 
• Strictly comply with the sequential execution model: the 

NCES models must closely follow the postulates defined 
in the sequential execution model. If exact modelling is 
impossible or impractical, the model must therefore be 
behaviourally equivalent to the system being modelled. 

• Model as many details as possible: modelling the 
operation details of IEC 61499 function blocks enables 
verification tools to identify more concrete design pitfalls. 



• Optimize and verify the model after creation: in order to 
reduce the state space and to ensure the correctness of the 
final model, each sub-model is optimized and verified. 

On the other hand, as the sequential execution model 
requires a FIFO queue to coordinate events in a function block 
network, an extra NCES module implements an Event 
Dispatcher must be designed to sequentially schedule, for 
example, event forking and merging among function blocks. 

IV. MODELLING IEC 61499 FUNCTION BLOCK 

A. Modelling of Basic Function Block 
Basic function block is the fundamental construction unit in 

IEC 61499 architecture, which encapsulates the functionality 
description in its ECC, and communicates with the external 
environment through its input and output ports defined in its 
interface. The internal operations of a basic function block are 
coordinated by its ECOSM. Fig. 1 shows a simple basic 
function block UpdateX whose sole purpose is to update the 
Boolean output QO according to the value of Boolean input X. 

 
Fig. 1. Simple Basic Function Block: (a) Interface, (b) ECC 

 
Fig. 2. Translated NCES Model 

Following the modelling methodology outlined in Section III, 
each functional component is modelled by an NCES module. 
As illustrated in Fig. 2, REQ and CNF modules model the 
event ports, X and QO modules model the data ports, and 
EC_SM module models the ECOSM. Moreover, the WITH 
association between event and data port pairs are accomplished 
via the Sample and Sampled signals between the corresponding 
NCES modules. For example, when the event signal REQ_ 
signal arrives, the REQ.Sample signal will be issued to trigger 
the sampling process of X module. When X updated the 

Boolean value it represents, signal X.Sampled will be sent back 
to REQ module. Modelling of event/data ports, ECOSM, and 
simple algorithms has been studied in [5] and [4], which are 
still applicable in this sequential modelling approach. 
Therefore, the rest of this section will focus on the modelling 
of ECC and briefly describe the translated model’s operations.  

In general, the complete model of an ECC consists of three 
parts: the model of the ECC control flow, the model of EC 
transitions’ Boolean condition, and the model of EC actions, 
interconnected via event and condition signals. As indicated in 
Fig. 2, the UpdateX_ECC module models the control flow of 
the ECC shown in Fig. 1 (b) and REQAction module models 
the EC action associated with the EC state STATE1. Since the 
EC transitions in this example only involve simple Boolean 
conditions, the Boolean conditions are modelled directly within 
the UpdateX_ECC module as illustrated below: 

 
Fig. 3. UpdateX_ECC Module 

Structurally, the model of the ECC control flow mimics the 
original ECC. Each EC state is mapped to an NCES place and 
each EC transition is transformed into an NCES transition. 
Any trivial Boolean condition is modelled by a set of condition 
signals connected to the target transition. In addition, the initial 
state is modelled by the initial marking of the NCES model. As 
shown in Fig. 3, the EC state START and STATE1 are 
respectively mapped to the NCES place p1 and p2. Similarly, 
the EC transition START STATE1 and STATE1→START are 
modelled by the NCES transition t1 and t2 respectively. At last, 
the token in p1 marks it as the initial state.  

According to the types of succeeding EC transitions, the 
number of EC actions an EC state has and whether the EC 
action associated with algorithm and event output, there can be 
24 different types of EC actions. Therefore, 24 NCES modules 
are created to model all these different EC actions. Apart from 
the different module content, the main purpose of these NCES 
models is to supervise the execution of the associated 
algorithm module and the issuance of the event output. The 
REQAction module illustrated in Fig. 1 models a single EC 
action associated with an algorithm and an event output and its 
succeeding EC transition only contains a guard condition. 
Although the standard defines that no EC action should 
associate with the initial state, a helper module ISA is 
connected to the initial state in the NCES model. The function 
of ISA module is to clear the current registered event input in 
the initial EC state to avoid deadlocking, which does not affect 
the ECC’s control flow.  



The internal operations of the translated NCES model are as 
follows. Upon the arrival of the REQ_ signal, REQ module 
triggers the sampling process of X module. Then, EC_SM 
module starts evaluating the ECC control flow inside the 
UpdateX_ECC module. When the REQAction module finishes 
executing the associated algorithm module AssignBoolean, it 
triggers the CNF module to update the data output. If the 
external event dispatcher module is ready to receive next event, 
the QReady signal will present and trigger the issuance of 
_CNF signal to complete the execution of the NCES model. 

B. Modelling of Event Dispatcher 
The sequential execution model requires that at any instant 

in time only one function block instance in a resource is active. 
Event signals in a composition function block are scheduled by 
an event dispatcher, whose primary task is to sequentially 
register the occurrences of event signals inside the function 
block network and then emit then orderly. The dispatcher must 
also ensure that no event signal will be lost and event will be 
emitted only if the previous event has been cleared. Thus, a 
FIFO queue is employed inside the dispatcher to store the 
event signals. Fig. 4 shows an event dispatcher model with 
three event inputs and a queue size of two: 

 
Fig. 4. Event Dispatcher 

The event dispatcher can perform two interleaved operations: 
event registration and event fetching. When the ready event 
output is enabled, the event dispatcher is ready to register 
events occurring at ei1, ei2, or ei3 once a time. The event 
signal will be stored in the Queue module and the inserting 
point is adjusted by the LevelIndicator module. On the other 
hand, the event fetching process is triggered by the external 
fetch signal. Firstly, the InsertControl module disables its 
ready output signal to signify the unavailability of the event 
dispatcher. Meanwhile, the OutControl module starts 
evaluating its condition inputs sequentially and decides which 
port to emit the first event stored in the Queue module. Then, 

the LevelIndicator module will restore the previous event 
inserting point. After the three modules, Event1, Event2, and 
Event3 are reset and the ready output is re-enabled, the 
OutControl module emits the corresponding event signal to 
complete the fetching process. If no event is stored in the 
queue, the nothingOut signal from the OutControl module will 
be issued instead. The following figure illustrates the details of 
the Queue module: 

 
Fig. 5. FIFO Queue Model 

The Queue module used in this example can queue two 
event signals from the three inputs: event1, event2, and event3. 
Initially the queue is empty. When the insert signal arrives, one 
of the three event signals will be stored as a token at the level 
indicated by fill1 or fill2 signals. During the fetching process, 
tokens inside place p7, p8, and p9 will be cleared via transition 
t13, t14, and t15 respectively and the corresponding ev output 
signal will be enabled. Moreover, the number of level and 
input can be increased by duplicating the respective structure 
inside the dot-line and solid-line squares. 

C. Modelling of Composite Function Block 
Unlike basic function blocks, before assembling the 

component models, the network inside the composite function 
block must be first analyzed to determine the size of the event 
dispatcher module and whether extra modules are inserted to 
fork or merge the event signals.  

As the number of events a function block will emit depends 
on in which state the function block is and the sequence of 
state transition is unpredictable before the actual execution of 
the function block, currently it is assumed that the dispatcher’s 
size is twice the total number of all function block instances’ 
event outputs inside the network. The event dispatcher bridges 
the function block instances in the following way: all the 
instances’ outputs are connected to the inputs of the dispatcher 
whose outputs are then fed to the respective instances’ inputs. 



Moreover, extra helper module, such as the standard defined 
E_SPLIT and E_MERGE function block modules, must be 
inserted accordingly to explicitly fork or merge the event 
signals.  

Due to the hierarchical modelling approach, the translated 
NCES model is almost structurally identical to the original 
composite function block. As demonstrates in Fig. 6, apart 
from the event dispatcher module and the helper module 
E_OR3, the NCES model’s layout and connections are 
identical to the original composite function block. 

 
Fig. 6. Translated Composite Function Block Module 

V. PROPERTY VERIFICATION 

This section presents a verification framework borrowed 
from [19] for verifying NCES models and summaries general 
properties that must be valid in order to ensure the model is 
semantically and behaviourally correct. The function block to 
be verified is created in FBDK [17] and the translated NCES 
model can be opened in ViEd [18] and verified in ViVe [18]. 

In according to the sequential execution model, any IEC 
61499 application should possess two broad properties: 
• All events will be processed, and 
• Only one function block instance is active at any instant 

in time. 
These two properties can be further refined according to the 
actual type of function block being investigated. 

A. Verification of Basic Function Block Properties 
Following the sequential execution model, a basic function 

block should have the properties listed below: 
• Guaranteed response: the correct event output will 

eventually be issued after the occurrence of the 
corresponding event input. 

• All event inputs will be cleared: any event input will be 
cleared regardless of whether or not it has been used in 
the ECC evaluation. 

In order to verify a given function block model, an extra 
event generator module is created to generate all possible 
combinations of the input signals for the model being verified. 
The following basic function block is used to demonstrate the 
verification framework and to verify the properties listed above. 

 
Fig. 7. ExampleFB6 Basic Function Block: (a) Interface, and (b) ECC 

 
Fig. 8. EventGenerator1 Module 

As indicated in Fig. 8, in order to generate all possible 
combinations of the four input signals of the ExampleFB6 
function block shown in Fig. 7, the EventGenerator1 module 
heavily utilize conflicts in NCES. For example, in the above 
diagram, after the firing of transition t1, the token inside places 
p5 can flow to either p6 or p7. As a result, either QI1_True or 
QI1_False will be enabled. Moreover, since the verification of 
a single basic function block does not require an event 
dispatcher, place p11 is used to simulate an empty queue. 

 
Fig. 9. Framework for Verifying ExampleFB6 Function Block 



 
Fig. 10. Event Dummy Modules: (a) InputDummy Module, and (b) 

OutputDummy Module 
Referring to Fig. 9, the verification framework consists of 

the event generator module, the target function block model, 
and the event dummy helper modules. The event dummy 
modules are simply bi-stables as shown in Fig. 10. Their sole 
purpose is to provide an indication of the event occurrence. For 
instance, in Fig. 9, the emission of the EventGenerator.REQ1 
event signal will move the token in REQ1Dummy.p1 to 
REQDummy.p2, based on the token location, the occurrence of 
the event input can be easily identified. Therefore, to verify the 
event related properties, it is only necessary to check the 
markings of the event dummy modules. 

According to the ExampleFB6 function block’s ECC, the 
CNF1 event output is issued after the REQ1 event input, 
whereas the REQ2 event input is followed by the CNF2 event 
output. Therefore, the following temporal logic statement is 
used to verify this guaranteed response property: 

AG((PREQ1→EFPCNF1)  (PREQ2→EFPCNF2)) 

where, predicate PREQ1 denotes the place REQ1Dummy.p2, 
predicate PREQ2 denotes the place REQ2Dummy.p2, predicate 
PCNF1 denotes the place CNF1Dummy.p2, and predicate PCNF2 
denotes the place CNF2Dummy.p2. This statement means that 
in every state the occurrence of the event input REQ1 or REQ2 
will eventually lead to the emission of the corresponding event 
output CNF1 or CNF2. In ViVe, this property is proved to be 
true.  

On the other hand, to verify that all event input will be 
cleared, the statement below is checked: 

AG((PREQ1→AFPREQ1’)  (PREQ2→AFPREQ2’)) 

where, PREQ1’ denotes the place REQ1Dummy.p1and 
PREQ2’denotes REQ2Dummy.p1. An event input is cleared when 
the tokens in the input dummy modules flow back to their 
initial places. The above statement is also proved to be true. 

B. Verification of Composite Function Block Properties 
In addition to the properties of basic function blocks, a 

composite function block must also ensure that no event signal 
will be lost and at any time instant there will be only one active 
function block instance. Since in our framework the event 
scheduling mechanism is explicitly implemented in the even 
dispatcher model, therefore the aforementioned properties are 
automatically satisfied. 

VI. CONCLUSIONS 

This paper presents a prototype model generator which 
intends to automatically translate IEC 61499 function blocks 

into functionally and semantically equivalent NCES models 
following the sequential execution model. The translated 
formal models can then be systematically verified and analyzed 
by model checking tools.  

To further extend current modelling architecture, future 
works would be applying the existing techniques to model 
function blocks obeying other execution semantics, such as 
scan-based or parallel execution model. 
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