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1 INTRODUCTION 
The field of automation technology is an engineering 
discipline that is highly interactive and covers subjects like 
manufacturing and process systems, electrical and computer 
engineering, and computer science. The major responsibility 
of an automation engineer is to design and implement a 
control system that interacts with the object of control in a 
closed loop and that ensures that the controlled object 
behaves safely and efficiently. Although automation 
technology is deeply influenced by information technology 
in that sense that the control system itself is an information 
processing system, automation technology is not identical 
with information technology. The major point of concern in 
automation technology is the object that is controlled, and 
the control system serves only as a means to reach the goals 
coming from the controlled object.  
Therefore, any keen and scientific methodology for design 
and verification of control systems must take the behavior of 
the controlled object, along with its distributed and 
hierarchical structure, into consideration. Having only a 
model of the controller is in general not sufficient to prove 
the correctness of the specifications. We therefore focus in 
this contribution on a methodology that includes models of 
the controller as well as models of the controlled object. 
This contribution will give an outline of an appropriate 
methodology for design and verification of distributed 
systems in control. It is organized as follows. 
Section 2 will focus on some basic problems that come from 
the particular context of automation engineering. Section 3 
will discuss the current transition from centralized to 
distributed control systems. As a result, we will present a 
verification methodology for distributed systems in Section 
4. Finally, we will draw some conclusions on what we have 
so far and will give an outlook to future work in this field. 

2 PROBLEMS IN CONTROL 
As mentioned in the introduction, the design of a control 
system is driven by goals that come from outside, namely 
from the object that is to be controlled. We call this object 
“plant”. A plant in the cases we are interested in is a 
manufacturing system or even a process system with some 
kind of hybrid (discrete and continuous) characteristics. 
Such systems are designed and operated by engineers who 
are not experts in automation technology. They, however, 
define the goals and the behavior of the plant that must be 
realized by means of control. Hence, the specifications of 
the desired or forbidden behavior of the plant are given in 
terms of the plant characteristics and not in terms of the 
control system. They are usually written down in textual 
form, and there is no guarantee at all that they are complete, 
exact and free of contradictions. 
Figure 1 shows as an example a part of a manufacturing 
system in laboratory scale. The purpose of the testing station 
is to determine the material characteristics of a workpiece, 
check the workpiece height and either reject a workpiece or 
make it available to a subsequent station. Main parts of the 
testing station are the detection, lifting, measuring, and slide 
module. 

The workpiece is transferred by a pneumatic handling 
device to the detection module. Materal/colour detection 
is effected with the help of 3 proximity sensors with 
digital output. The lifting module lifts the workpiece 
from the material detection module to the measuring 
module. A lifting cylinder and an ejecting cylinder are 
used as actuators. End position sensing is effected via 
magnetic or inductive proximity sensors. 
The slide module is used for transporting workpieces 
with correct characteristics to the next station. A 
pneumatic stopper is mounted at the upper slide. By 
means of this stopper the workpiece is stopped before it 
is transferred to the subsequent station. If a workpiece 
with incorrect characteristics is detected, it is moved back 
to the bottom and is ejected. 
One clearly sees that everything that has to be performed 
to run the system in the desired way is formulated in 
terms of the plant and its behavior an not in terms of a 
controller behavior. 
The task of the control engineer is to understand these 
specifications and to design a control system that controls 
the plant in such a way that the specifications are 
fulfilled. It is more than obvious that such an error-prone 
way of designing a system will by no means result in a 
predictable behavior of the plant. Hence, time- and cost-
intensive tests are usual.  
Things are getting even more 
complicated if distributed 
systems have to be designed. 
The transition from the 
sequential, time-driven 
execution model of today’s 
Programmable Logic 
Controllers towards the 
distributed, concurrent and 
event-driven execution 
marks a change of paradigms 
in the whole engineering 
process. Up to now, there is 
very little experience how to 
design systems in such a new 
way. All these particular 
aspects give rise to the need 
to have some formal 
methodology at hand that 
would support the 
engineering process of 
distributed control systems.  
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Lew01, Hlbl] is an attempt to overcome these limitations 
and to provide concepts for specification and 
implementation of distributed control systems. It is therefore 
based on encapsulation of control software and on event-
driven execution mechanisms. The basic software pattern is 
a so-called Function Block. 

 
Figure 2. Function block interface. 

Figure 2 shows the interface of a Function Block. The 
standard clearly distinguishes between events that trigger the 
execution of algorithms and associated data that are inputs 
or outputs of the algorithms. The algorithms themselves are 
encapsulated in the Function Block and hidden to its 
environment. Their execution is triggered by events coming 
from the environment of the Function Block. The Function 
Block notifies its environment about termination of the 
algorithm’s execution by sending events as well. By this 
mechanism, the environment is informed that the output data 
of the Function Blocks are valid and can be used for further 
processing. 
The standard also defines Composite Function Blocks, 
whose functionality, in contrast to Basic Function Blocks, is 
determined by a network of interconnected function blocks 
inside. Figure 3 shows the principle. 

 
Figure 3. Composite Function Block 

 
More precisely, members of the network are instances of 
function block types. These can be either Basic Function 
Blocks or other Composite Function Blocks. Therefore, 
hierarchical applications can be built. The functionality of 
Composite Function Blocks completely depends on the 
behavior of the constituent function blocks and their 
interconnections by events and data.  
An application following the IEC 61499 is a network of 
function block instances whose data inputs and outputs and 
event inputs and outputs are interconnected (see Figure 4).  

 
Figure 4.  An application. 

An application can be considered as an intermediate step 
in the system development. It already defines the desired 
functionality of the system completely, but it does not 
specify the system’s structure in terms of computational 
devices where the function blocks can be executed. The 
following step in the engineering process is to define a 
particular set of devices and to “cut” the application, 
assigning the blocks to the devices as illustrated in Figure 
5. 

 
Figure 5. The application distributed onto two devices. 

 
The way how the separated parts of the distributed 
applications communicate to each other has to be 
explicitly defined. This can be done by adding 
Communication Function Blocks in the places where the 
“cut” took place. A brief introduction to the concept 
together with an example can be found in [HaVy04]. 
Up to now, very few attempts have been made to 
formally model Function Blocks as they are defined in 
the standard [VyHa03, BoFa03, StaGu03,Wurmus00]. 
We will focus here only on the function blocks that form 
the application since we are interested in formally 
verifying its logical correctness. Verifying the correct 
runtime behavior of an application after mapping it to a 
particular system architecture will be also required, but 
this goes beyond the scope of this contribution. 

4 MODELING AND VERIFICATION 
METHODOLOGY 

4.1 Modular Models 
There are some specifics in the control area regarding the 
models that are used. 
Models should be graphical and executable. This is 
especially needed for validation and for gaining 
acceptance of the engineering staff. 



Models must be modular to clearly identify the parts of the 
original system they describe. 
Models must be compositional to support a way of 
engineering that constructs bigger systems from smaller 
subsystems. 
We use a modeling formalism that were called NCES or 
SNS in the past [HaLu99, HaLu00, Thi02]. 
They provide means for modular, graphical modeling in a 
way that is intuitively understandable by any engineer. The 
basic patterns are modules or blocks that encapsulate some 
kind of dynamic behavior model. Modules can be 
interconnected by signals. This reflects the standard 
paradigm in automatic control. 
In contrast to modeling of continuous systems where the 
variables take their values from a subset of the real numbers, 
our models describe systems with discrete states and discrete 
state transitions. This means that any executable modeling 
formalism for such systems may be used for modeling the 
internal dynamic behavior of a module. We use some 
graphical notation that was borrowed from the graphical 
appearance of Petri nets since they provide nice graphical 
means for clearly distinguishing between states and state 
transitions and for expressing conflicts as well as 
concurrency.  
The more interesting question is how the signals are defined 
that are used for interconnecting the modules. We use two 
types of signals, namely condition signals carrying state 
information and event signals carrying state transition 
information. Therefore, the signal concept is complete in 
that sense that anything what can happen inside a module 
(states as well as state transitions) can be expressed via 
appropriate signals. 
The interconnection of modules by means of signals forms 
the structure of the system. The structure is static, i.e. it is 
not changed during the dynamic execution of the system. 
It is obvious that the dynamic behavior of the system is 
determined by its modules as well as by its structure. The 
dynamic behavior can be studied by simulation (execution 
of the model) or even by analysis (mostly based on complete 
state space enumeration). Formalisms and tools for both 
purposes are available. 

Consider, as an example, 
the module shown in 
Figure 6. 
Input and output signals 
are attached to the module 
boundary. Condition 
inputs and outputs are 
represented by little 
square symbols, and event 
inputs and outputs are 
represented by diamond 
symbols. Condition 
signals themselves are 
represented by dotted arcs 
whereas event signals are 
represented by zigzag 
arcs. 
The internal dynamic 

behavioral model is drawn as usual in Petri nets with some 
extensions (see for example test arc (pB2B, tB3B) in Figure 6). 
The internal behavior of the module is (in general partially) 
controlled by input signals from the environment of the 
module and is observed (in general only partially as well) by 
the environment via the output signals of the module. 
In our example, transition tB1B can be enabled/disabled by 
condition input cB1PB

in
P if tB1B is enabled by marking, and 

transition tB7B can be forced to occur via event input eB1PB

in
P if tB7B 

is enabled by marking. On the other hand, the marking of 
places pB1B and pB7B can be observed via condition output 
signals cB1PB

out
P and cB2B P

out
P, and the occurrence of transitions 

tB4B and tB6B can be observed via the corresponding event 
output signals eB1PB

out
P and eB2PB

out
P. The rest of the behavior of 

the module cannot be observed.  
The behavior of the module is as follows:  
Transitions tB2B, tB3B and tB4B are enabled at the marking shown 
in the figure. Transitions tB3B and tB4B are mutually in 
conflict. Transitions tB2B and tB3B, however, are neither in a 
classical conflict nor can they fire concurrently due to the 
condition arc (pB2B, tB3B). This means that tB3B would be 
disabled if tB2B fires, but firing of tB3B would not disable tB2B. 
Anyway, the system would end up in the state where pB4B 
and pB7B are marked and condition output eB2PB

out
P is true, 

either issuing event output signal eB1PB

out
P and afterwards 

event output signal eB2PB

out
P or being “silent”. Although 

transition tB7B is enabled by marking, it can and must occur 
only in the case when event input eB1PB

in
P is true. This would 

lead to the state where the only token in the system is on 
place pB1B and therefore condition output cB1PB

out
P is true. 

Transition tB1B may fire in this case if cB1PB

in
P is true, but it is 

not forced to fire.  
The module in Figure 7 is completely controllable. 
Hence, it shows no autonomous behavior without 
condition and event signals from its environment.  
The computation of the state space for non-autonomous 
models requires an assignment of values to the input 

signals. This is called 
input status. Any 
combination of values of 
input signals needs to be 
taken into account since 
the behavior of the 
environment is not known. 
If we compute the state 
space for closed-loop 
models, as it is the case in 
our verification 
environment, the models 
are in almost all cases 
autonomous. Exceptions 
could be a small number 
of input signals that come 
Figure 7. Another module 
from a human operator. A method how to replace them 
by small models is provided in [HaLu00].  The fact that 
the models are autonomous makes verification much 
easier since the number of states that are reachable in 
closed-loop behavior is by magnitudes smaller than in the 
open-loop behavior of the components. This makes 
verification of realistic closed-loop systems feasible. 
The model modules are interconnected in the same way 
as the Function Blocks in the original system, namely by 
means of event and condition signals. Figure 8 provides 
an example of the interconnection of module 1 and 
module 2. This is done by composition arcs that 
interconnect inputs with outputs of the same type. 
The composition establishes a behavior of the composed 
Figure 6. A module 

system that differs from the behavior of the isolated 
modules. The interconnection of transitions in the 
composed system via event signal results in a one-sided 
synchronization among transitions. This means the 
following. If a transition fires that emits an event signal 
to another transition, the receiving transition is forced to 
fire together with the emitting transition if the receiving 
transition is enabled by marking. If this is not the case, 
the emitting transition fires alone. Hence, enabled 
transitions that are interconnected via event signals form 
steps. 



The modeling formalisms, composition and firing semantics 
are formally defined in [Thi02]. This would go beyond the 
scope of this contribution. We can see, however, how the 
composed model in Figure   would be executed. In our 
example steps {tB2B},{tB3B} and {tB4B,tB8B} are enabled. Firing {tB3B} 
would disable {tB4B,tB8B} whereas {tB2B} and {tB4B,tB8B} can fire 
concurrently (in any arbitrary order). Note that transition tB8B 
cannot fire without transition tB4B, but it must fire if it is 
enabled and tB4B fires. Firing {tB4B,tB8B} would remove the tokens 
from places pB3B , pB8B and pB9B and would put one token at pB6B 
and two tokens at pB10B. This would enable step {tB6B,tB9B}. If it 
would fire, it would remove a token from pB6B and pB10B and put 
one token to pB7B and to pB8B. Eventually, after firing {tB2B}, the 
system would end up in a state where places pB4B, pB7B, pB8B and 
pB10B carry one token. Hence, steps {tB7B} and {tB10B} are enabled. 
Note that {tB B} is not forced to fire but {tB B} must fire at the 

moment the input event eB1PB

in
P occurs. If 

input event eB1PB

in
P occurs before transition 

tB10B fires, the system would deadlock. In 
the other case, the system could 
eventually come back to its initial state. 
This and other properties can be checked 
by generating the state space of the 
system. Additionally, we are able to 
define the input/output language of the 
composed system as well. This provides 
means for state reduction, but this goes 
beyond the scope of this paper. 

4.2 Modeling of the Controller 
If we compare the modeling formalism 
with the IEC 61499 specification of 
Function Blocks, we see some strong 
similarities: 

- dynamic behavior is 
encapsulated in the blocks and 
hidden to their environment 

- blocks resp. modules have a signal interface 
that clearly distinguishes between data (resp. 
conditions) and events. 

The structure of the system is given by the 
interconnection of blocks by means of signals. 
The dynamic behavior of the system is given by the 
behavior of the modules and the structure, i.e. the 
interconnection of blocks or modules. 
It is therefore very natural to map Function Blocks to 
formal modules and to interconnect them exactly in the 
same way as the Function Blocks are interconnected in 
the application. Due to this strong similarities, a mapping 
of a Function Block application to a formal model with 
identical structure could be defined and implemented. 
That has been done and integrated in the tool (see 

Subsection 4.5). 
4.3 Modeling of the Plant 
Such a model is, however, only half of the truth 
since it reflects only the behavior of the 
controller. As we have seen in Section 2, we need 
a model of the plant behavior as the counterpart 
of the controller and a basis to define 
specifications of the desired or forbidden 
behavior of the plant.  
When modeling continuous plants, the basis for 
any model are conservation laws of physics, 
chemistry etc. Unfortunately, this is not the case 
when modeling discrete behavior of plants. Since 
we cannot solve the problem how to develop 
models for systems with discrete states and state 
transitions in such a concise and clean way as 
models for continuous systems are developed, we 
try at least to propagate a methodology that is not 
completely based on exact sciences (which is 
impossible at the moment), but reflects at least 
some of the common principles that are used in 
the engineering disciplines when models are 
designed. 
The model of the plant is engineered by 
predefined components that are stored in a 
repository of models. The modularity of the 
modeling approach is helpful for this. Therefore, 
the modeling process does not need to be started 
from scratch. Predefined and validated 
component models are encapsulated in modules 
and can be used over and over again without 
dealing with their internal details. 
10 7

Figure 9. An example of interconnected model. 
Figure 8. Composition of modules. 



4.4 Modeling the Closed-Loop Behavior 
Having both models, the model of the controller and the 
model of the plant, the model of the closed-loop system is 
formally constructed by interconnecting the input/output 
signals of the controller model with the input/output signals 
of the plant model in the same way as the real controller 
would interact with the real plant. 
As a result, we end up with a model of the closed-loop 
behavior that is as close as possible to reality. This is 
especially useful for finding and correcting design errors 
that are detected by formal verification. 
Figure 10 shows the closed-loop model for the plant 
described in Section 2. The two left colums of blocks 
represent the characteristics of the workpiece as well as the 
behavior of the plant equipment. The blocks at the right side 
represent the controllers. One clearly sees the feedback 
loops from the controllers to the plant equipment and from 
the equipment to the workpiece position. The internals of the 
blocks are built from submodules in a hierarchical way. 
Our experience gained within preceding applications 
[Hanisch et al 01, Lobov et al. 03, Lobov et al. 04] shows 
that it is highly desirable to use models that may constitute a 
one-to-one mapping of the structure of the manufacturing 
process onto the structure of the corresponding model. 
Coming up with large monolithic models is almost 
infeasible due to the size and complexity of the original 
system. 
4.5 Software Tools 
The validation of automation systems modeled by NCES 
can be performed by simulation and formal verification via 
model checking.  
Simulation usually follows a limited number of scenarios in 
the system’s behavior. In contrast, the model-checking 
studies multiple scenarios caused for example by some 
unpredictable factors, such as variable durations of some 
operations, communication delays, malfunctions, etc. 

The results of the model-checking, such as a reachability 
space (full, or generated until an 
example/counterexample is found) can be visualized as 
state/time diagrams of relevant values (e.g. represented as 
marking of certain places, or firing of certain transitions).  
The verification consists in proving specifications with 
respect to the dynamic behaviour of the model. The 
specifications can be given either in form of second order 
predicates, or in form of temporal logic expressions. 
Terms of the expressions can be formed by referencing 
inputs, outputs and internal variables of the controller or 
variables of the model of plant. The latter have to be 
eventually expressed via marking of places in the model.  
It is worth mentioning that the closed-loop approach to 
the modeling enables expression of the specifications 
directly in terms of the machine behavior (not only input 
and output signals of the controller). 
In particular, the following properties of automation 
systems could be scrutinized applying the formal 
validation techniques:  
- Robustness of the system in case of malfunctions of 

some sensors; 
- The control programs in some programming 

languages (e.g. Structured Text and Sequential 
Function Charts) have branching structure. Formal 
verification may help to prove that the response time 
is never exceeded in any feasible IO combination.   

- Quality assurance: sometimes it is important to 
ensure that the plant never occurs in undesirable 
situations, when, for example, inexact 
synchronization of processes in the plant occurs as a 
result of wrong synchronization of control programs;  

A framework of tools and methodologies has been 
developed in our lab to facilitate the NCES-based 
modeling and verification of automation systems by 
control engineers.  The framework is presented in the 
following Figure 10. 

 
Figu
re 10. Framework of tools and methods supporting the NCES-based formal modeling and verification of automation systems. 



Graphical editors providing full graphical authoring and 
editing of the models; The editor uses an open XML-based 
data format for basic and composite NCES models. The data 
format of composite model blocks intentionally was made 
identical with that of IEC61499 function blocks, supported 
by the tool FBDK [Hlbl].  
iMA – an integrated tool that contains a model builder 
(assembler), a translator to the flat format for subsequent 
model-checking, interfaces to several model-checkers, and 
the means for analysis of scenarios (e.g. their visualization 
in form of state/time diagrams), or even system simulation 
along the selected scenarios. (iMA) inputs the model type 
files given in XML and is capable of: 
Assembling a composite, hierarchically organized model 
from modules contained in different libraries. The 
component model types are instantiated into NCES modules.  
Translating the model into a “flat” NCES with the through 
numbering of places and transitions. The inter-module 
connections are converted into event and condition arcs 
between places and transitions. Thus the module boundaries 
are removed and the model-checking tools can be applied. In 
particular, the translator generates files in the input format of 
SESA model checker. 
The model checker SESA allows for efficient model-
checking of fairly complex systems (millions of discrete 
states); 
The application methodologies are represented as libraries of 
standard model elements and by the web-based 
documentation; 
The formalism is open – an XML based data format allows 
the development of add-ons to the existing tools, for 
example model-generators for particular programming 
languages representing control algorithms. 
More details on this framework can be found in [VHP03, 
VHB04] 

5 CONCLUSION AND FUTURE WORK 
What we have so far are a methodology and a prototype 
software tool for demonstration by means of first application 
examples. Future applications of the standard are in sight 
and give some hope that at least parts of the methodology 
may be applied in practice and not only in academia. 
Another major future issue that is closely related to the 
development of the standard as well as of the methodology 
presented in this contribution is the development of 
reconfigurable systems in manufacturing. The need to have 
such highly flexible systems with dynamic structure will 
surely give rise to broader application of modern methods of 
system design and validation. 
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