
V. Dubinin, V. Vyatkin, “Semantics-robust Design Patterns for IEC 61499”, IEEE Transactions on Industrial
Informatics, 2012, 8(2), pp.279-290

Abstract - The international standard IEC 61499 for the design of

distributed industrial control systems defines an abstract model of

function blocks (FB) which allows many different semantic

interpretations. As a consequence, in addition, so-called execution models

were proposed to specify the execution order of FBs. The variety of

models leads to the incompatibility of tools and hinders the portability of

automation software. To achieve a degree of execution model

independence, in this paper design patterns are suggested that make FB

systems-robust to changes of execution semantics. A semantic-robust

pattern is defined for a particular source execution model. The patterns

themselves are implemented by means of the FB apparatus and therefore

are fairly universal. The patterns can be defined and implemented using

the FB transformations expressed in terms of Attributed Graph

Grammars.

Index terms – IEC 61499, software engineering, semantics, design

patterns, refactoring, portability, robustness.

I. INTRODUCTION

The main trend in the development of industrial automation

systems is the shift from centralized systems to distributed

intelligent systems. This trend was reflected in the development

of a new international standard IEC 61499 [1], [2]. The

standard supports the design paradigm based on function

blocks (FB). Despite the undeniable advantages of this

concept, it was discovered that the standard has some semantic

ambiguities [3]. This may lead to an unacceptable situation

when the same FB system will have different behaviour when

executed on different platforms. This hinders the portability of

automation software developed following the IEC 61499

standard.
To resolve the semantic ambiguities of the standard, several

models of FB execution were proposed and implemented.

These include: the "non-preemptive multithreaded resource"

(NPMTR-model) [4], the "interrupted multithreaded resource"

(PMTR-model), the model based on the sequential hypothesis
[5], the cyclic model [6, 7], the synchronous model [8], Petri

net based models [9] as well as models implemented in

runtimes Crons [10], FUBER [11], and CEC [12]. In

addition, there are models proposed for the implementation of

some elements of the standard, namely: for composite FBs [13]

and basic FBs [5]. A few efforts have been undertaken to

categorize FB execution models on the basis of various criteria.

For example, in [3], two criteria to identify so-called

“implementation approaches” have been chosen: 1) FB Scan

1V. Dubinin is with the Department of Computer Science, University of Penza,

Penza, Russia (e-mail: victor_n_dubinin@yahoo.com)
2V. Vyatkin is with the Department of Electrical and Computer Engineering,

University of Auckland, Auckland 1142, New Zealand (e-mail:

v.vyatkin@auckland.ac.nz)

Order and 2) Multitasking Implementation. However, as

practice has shown, for the complete specification of FB

execution models much more criteria are required [24]. For

specification of different FB execution models a special

graphical notation XNet, has been even proposed [36].
After the semantic problems have been pinpointed in a

number of research publications (e.g. [3], [4]), the o3neida

community formed a taskforce to resolve them. As a result, the

compliance profile [14] has been developed. Based on the

recognition of existing practices, that document narrows the

variety of semantic interpretations down to three models of FB

implementation: sequential, parallel and cyclical. An overview

of these models can be found in [16]. However, the portability

between these models still remains a problem.
While elimination of the semantic ambiguities in IEC 61499

can be seen as the ultimate solution, in practice it is hard to

expect or can take long time to achieve. There are already

several tools on the market compliant with the standard, but

following different execution models. The method, proposed in

this paper can immediately help in migrating applications from

one tool to another, for example, from ISaGRAF [17],

implementing the cyclic execution model, to NxtControl [18],

implementing the sequential model, or to the synchronous

compiler [8].

To solve the portability problem, this paper proposes

semantics-robust design patterns (SRDP). As illustrated in

Figure 1, an SRDP is applied to a function block application

(FBA) originally designed to be executed in some source

model (the original FBA), and results in a functionally

equivalent application (the resulting FBA) that exhibits the

same behaviour in one, some, or even an arbitrary target

execution model.

Conceptually, the application of the SRDPs consists in three

steps: 1) adding some new (service) function blocks, 2)

changing some function blocks in the original application and

3) changing some of their interconnections.

The function blocks of the original FBA and their

counterparts in the resulting FBA will be referred to as working

FBs, as opposed to the added service FBs (not to be confused

with Service Interface FBs of IEC 61499). The working FB set

is coloured in grey in Figure 1, and the service FBs are

coloured in white.

In general, SRDP can be regarded as specific software

design patterns for implementation of projects based on the

IEC 61499 standard. It should be noted that currently there are

some design patterns for the automation software based on the

IEC 61499 standard proposed in [21], in particular:

"Distributed application", "Proxy" and "Model-View-

Semantics-Robust Design Patterns for IEC 61499

Victor Dubinin, non-member1 and Valeriy Vyatkin, Senior Member, IEEE2

mailto:victor_n_dubinin@yahoo.com
mailto:v.vyatkin@auckland.ac.nz

V. Dubinin, V. Vyatkin, “Semantics-robust Design Patterns for IEC 61499”, IEEE Transactions on Industrial
Informatics, 2012, 8(2), pp.279-290

Controller". In contrast to these patterns SRDP is not intended

for manual design.

SRDP could be represented as a set of principles, rules,

procedures, and partial design solutions. The proposed patterns

are implemented by means of the FB apparatus, and therefore

are quite universal. The use of the FB apparatus to define the

semantics of FB execution models is in some respects similar

to defining the semantics of the UML by means of a limited

subset of UML itself [22]. Here also one could draw an analogy

with development of an upper ontology belonging to

foundational ontologies in the area of conceptual modelling, for

example, Unified Software Modelling Ontology [23]. In this

case a minimal set of concepts and relationships which are

necessary for building more specific domain ontologies, are

picked out.

Application of SRDP can be greatly facilitated by automatic

translators. The automatic transformation of the original FBA

to the target FBA application can be defined and implemented

in many ways, in particular, using the transformations

technique based on the use of Attributed Graph Grammars,

proposed by the authors in [20] for refactoring of FB

applications.

In the following Section II the IEC 61499 architecture will

be briefly introduced including the main ambiguities of event

processing in basic function blocks, whose handling is

essential for the proposed patterns. The outline of the proposed

solution is presented in Section III. There the structure of the

rest of the paper is discussed.

II. FUNCTION BLOCKS REFERENCE ARCHITECTURE

A. Overview

The artefacts of the IEC 61499 function block architecture

relevant to this paper are [1]:

• Function Block (FB) – is a module with interface that

consists of event and data inputs and outputs. The events

also will be further referred to as signals, especially when

their processing and transfer are concerned. A function

block can be invoked only by an input event.

• The functionality of a Basic Function Block is defined as a

state machine called Execution Control Chart (ECC). The

semantics of ECC is similar to Moore finite automata with

actions assigned to states. An action consists of an

algorithm and an output event issuance (either can be

omitted). The states in ECC are referred to as EC-states,

and the transitions as EC-transitions. An EC-transition has

a condition “clocked” by no more than one event input and

having a guard condition that is a predicate over data

inputs and internal variables (but no events). More

precisely, the functioning of a basic FB could be defined by

two interacting automata – the control one (that is called

Operating State Machine – OSM [1]), and the operational

one (ECC).

• A Composite Function Block is specified by interface and

functionality, defined as a network of function block

instances interconnected via event and data connections.

• A Function Block Application (FBA) is also a network of

function block instances, but it has no interface. An FBA is

the structure at the highest level in the hierarchy of IEC

61499 artefacts considered in this paper.

• A service interface function block (SIFB) for the purposes

of this paper can be understood as a “black box” whose

internal structure is not specified.

Examples of the introduced artefacts will be encountered by

the reader further in the paper. The full list of IEC 61499

artefacts can be found in [1].

B. Ambiguities in Basic FB execution

Processing of input events (in a basic FB) is one of the most

ambiguous aspects of the FB execution model. This is due

primarily to the fact that the standard does not determine the

full lifetime of input events, in particular, it does not define

when the events are to be cleared.

Processing of input events by a basic function block is

defined in Table 1 of the standard by the operation state

machine (OSM) (Figure 2). According to this definition, arrival

of an input event signal triggers the transition t1 in OSM. In

other words, the interpreter calls the ECC which evaluates the

EC transitions. Finding no enabled transitions, the OSM

returns to its initial state s0. The standard does not say what

happens with the input event signal. However, one can assume

that if the input event signal is not reset, then the ECC

interpreter would be called continuously, which is

counterproductive. Thus, one can assume that the

"insignificant" input signal is discarded.

As follows from the OSM, once activated by an input event,

a function block can “jump” through several ECC states before

going again to the idle state (s0). This activity period of an FB

(while OSM is in states s1 or s2) is referred to as a single run.

Figure 1. General pattern of the Semantic Robust Design Patterns

application.

V. Dubinin, V. Vyatkin, “Semantics-robust Design Patterns for IEC 61499”, IEEE Transactions on Industrial
Informatics, 2012, 8(2), pp.279-290

State Operations

s0 ---

s1 Evaluate transitions

s2 Perform actions

Transition Condition Operations

t1 Invoke ECC Sample inputs

t2 No transition clears

t3 A transition clears

t4 Actions completed

Figure 2. ECC operating state machine (OSM) [1].

In the following typical situations arising at the event inputs of

a basic FB, and the ways to address these issues are

considered. The "good" situation, unambiguously interpreted by

the standard and not causing any problems in FB execution

models, is shown in Figure 3. This is the case when one of the

event inputs receives a signal and there is one enabled

transition in the Execution Control Chart “clocked” by this

event.

ei1

ei2

...

F1

F2

F3

State=idle

There is an

enabled EC-

transition

Figure 3. Unambiguous situation with input events.

Alternatively, in the most general case of parallel

asynchronous operation of FBs, there can be other situations

which may be interpreted ambiguously. Let us call these

situations problematic. Schematically all possible problematic

situations are shown in Figure 4. In this illustration, the state of

the OSM of the resource executing this FB network is

designated as State. The value idle corresponds to the OSM

state s0, and the value busy corresponds to the states s1 and s2.

In parallel operation, it is possible that event inputs of an FB

receive several signals simultaneously, as illustrated in Figure

4(a). Another possible situation, when a signal arrives in the

busy state of the FB, is shown in Figure 4 (b). This situation is

more likely to occur the longer is the execution duration of

algorithms in the ECC. The third possible scenario is shown in

Figure 4(c). Here the event is “not expected” in the current

ECC state, i.e. no EC-transitions from this state are “clocked”

with this event input variable. Simultaneous arrival of several

events in the problematic situations (b) and (c) would not bring

any essential differences, so one can omit them. It should be

noted, however, that not all execution models allow the

existence of these situations. For example, in those sequential

models where execution of an FB is atomic, the situation (b) is

impossible. Situation (a) is impossible in the NPMTR model

[3] of FBRT and in the execution model based on the

sequential hypothesis [5] but is common for the synchronous

and cyclic execution models.

ei1

ei2
...

1

F3

1

State=idle

a)

ei1

ei2...

1

F1

F2

F3

1

State=busy

b)

ei1

ei2
...

1

F1

F2

1

State=idle

No ECC

transitions

enabled

(include

ei1)

c)

Figure 4. Problematic situations with input events: a) Simultaneous arrival of

signals to the inputs of FB; b) Arrival of the signal at a busy FB; c) Arrival of

the signal at idle FB, when its processing is not envisaged in the ECC.

To ensure the determinism of FB application behaviour, an

execution model must unambiguously resolve the problematic

situations. There are following options for handling input

events in the situation (a):

1) Using some rule (e.g. a priority, pre-defined or based on

the time of arrival), select one input event signal for processing,

and discard the others. This interpretation is more consistent

with hardware implementation of function blocks (e.g. [15]),

when the signal is understood as a pulse and there is no explicit

buffering of signals. The drawback of this approach is a

possible loss of the event signal which can be carrying

important information;
2) Process all input events, but one by one. The order of

processing again can be based on a priority mechanism. The

phase of FB activity includes the processing of all input signals

sequentially, one after another;
3) One input event is processed, chosen by a certain rule,

and the others are remembered for future processing. After

processing of this event, one of the other "ready" FBs can be

activated. If there are no such FBs, then the next input event

signal in the FB is selected and processed. The phase of FB

activity includes the processing of one signal.

There are two options to resolve the scenario (b):

1) discard the input event signal; or 2) remember the input

event signal and process it later when the function block

becomes idle. One can assume that the standard is more

inclined towards option 1, since its early draft was using the

(discarded) option 2 which used signal queues of length 1 (so-

called EI-variables) (see [26]).
The same two options exist for the scenario (c): the signal at

the event input can be discarded or not. The standard proposes

the first option by an implicit rule: "If in some EC-state an

input event signal arrives that is not included in any transition

from this EC-state, then the input event signal is discarded."

The following assumptions concerning the processing of

input event signals are made when discussing the

implementation patterns:
1) Scenario (a) is resolved by using buffers;
2) Scenario (b) is excluded from the consideration since the

source execution model assumes FB execution to be atomic;
3) Situation (c) is resolved following the first option (event

signal is discarded).
It is also assumed that in all execution models the syntax of

basic function blocks, in particular of ECC, prescribes EC

transition to be clocked with one or zero input events, and does

not allow using event names in guard conditions of transitions.

V. Dubinin, V. Vyatkin, “Semantics-robust Design Patterns for IEC 61499”, IEEE Transactions on Industrial
Informatics, 2012, 8(2), pp.279-290

III. OVERVIEW OF THE PROPOSED METHOD

A function block application AS designed for a known

execution model S (source) will be transformed to an

application AU = SRDP (AS, S) that will have equivalent

behaviour in any2 other (unknown prior to the transformation)

execution model (The U in the index stands for “universal”).

The transformation consists of modifications of the function

block types used in AS, along with adding, in some cases, a

global scheduler function block. The transformations of FB

types are as follows:

- For basic FB types a generic

transformation method is

proposed (i.e. independent

from the source execution

model S) which enables

determining the FB execution

termination at any input

events arrived in each state at

any input data variable’s

values;

- For composite FB types, the

transformation method is

specific to a particular source

model. Dependent on that, the transformation may include

insertion of the following service FBs:

o Buffers of event signals for each working FB ensuring

delivery of all intended event signals as well as the desired

order of input event signals’ processing;

o Counters of events indicating the reception of input events

by the buffers. These are needed to determine correctly

termination of the buffer’s work in the signal recording

synchronization system ;

o Event transmission controllers responsible for moving

events between the buffers;

o Local schedulers, ensuring that component function blocks

with this composite FB are invoked in the same order as in

the source model;

Altogether, these transformations aim at ensuring the

equivalence of resulting behaviour to the original one in the

source model.

It should be noted that if the target model of execution T is

known, then it is possible to develop a particular pattern

SRDP’(AS, S, T) that will create a more efficient AT equivalent

to AS but only when executed on the target platform T. Note the

difference of arguments between SRDP’ and SRDP.

The rest of this paper is structured as follows. Section IV

introduces the transformation rules to be applied to basic FBs

in order to achieve their event input order robustness. Section V

presents buffering of signals that is another key enabling

mechanism of SRDP. Section VI considers SRDPs application

to composite FBs on example of cyclic and synchronous

execution models. Section VII presents a comprehensive

example of SRDP application. The paper is concluded with

Conclusion and References.

2 of course, within the defined set of execution models.

IV. TRANSFORMATIONS OF BASIC FUNCTION BLOCKS

A. Interface transformation

The goal of the proposed basic FB transformations is to make

them signalling the termination of ECC execution by emission

of an (added) event output ee, the same time outputting the

number of events emitted by the FB during this single run

using an added output data variable nOut. This is needed to

determine the end of the signals’ transmission from the

working FB to the appropriate buffer. It should be noted that if

the target execution model uses the single-stage transmission of

signals between FBs (e.g. synchronous or cyclic execution

models), then there is no need for the variable nOut and the

completion of the signals’ writing to the buffer has to be

determined by the buffer itself (without using variable nOut).

The modification of the FB interface is illustrated in Figure 5.

B. ECC transformation

ECC of the FB needs to be modified accordingly in order to

achieve this interface behaviour.
The termination signal (ee) must be emitted even in case of

the so-called insignificant input event signal, i.e. when the

input event triggers no transitions in the ECC. Indeed, ee

should signal the OSM’s transition to the state s0 (transition t2

in Figure 2). The issuance of the ee signal is accompanied by

an update of the output variable nOut. If no output event is

issued, then its value is zero.

The ECC transformation rules will be presented using the

notation of Attributed Graph Grammars. The left side of the

rule is a graph structure that is to be substituted by the graph in

the right side. The notation of [20] will be followed, which

terms an arc with only a guard condition as C-arc, EC-

transition having event input name in the condition as E-arc,

and a transition with a constant guard condition equal to true

as T-arc.

The ECC transformation will be done in four steps. First, an

equivalent transformation (refactoring) will be applied to

eliminate the states where both C and E arcs originate. As a

result, the set of EC states will be divided onto two sets:

terminal states, where only E arcs originate, and transitional

states, where only C arcs originate. This is possible as shown

in [20]. Second, the ee signal emission will be added to all

terminal states. The third transformation is applied to the

terminal states to ensure that ee signal will be emitted for all

input events signals and at any data variables’ values. The

fourth transformation’s aim is to count the number of output

signals issued by the FB. For deeper understanding of rules

semantics one could present their left and right hand sides in

the form of XNet [36]. However, in the given case ECC

execution model to be considered is constant (and, it is in

general use, see [20]), therefore the rules stated below are quite

obvious from the logical point of view, without additional

semantic expositions.

 1) Separation of terminal and transitional states

An EC-state is called terminal if it has only outgoing E-arcs.

When transitioned to a terminal EC-state, the FB completes its

ee

nOut

...

...
eik

...

...

...
eix

eiz

eo1

eoq

...ei1

Figure 5. Changes in the working

basic FB interface for the use in

SRDP.

V. Dubinin, V. Vyatkin, “Semantics-robust Design Patterns for IEC 61499”, IEEE Transactions on Industrial
Informatics, 2012, 8(2), pp.279-290

execution and waits for receipt of new events. Thus, signal ee

needs to be issued only in terminal EC-states.

The transformation rule in Figure 6, which complements the

rule set from [20], eliminates EC-states si where both E-arcs

and C-arcs originate. For that, one introduces an additional

state sa and the arc (si, sa) which has the guard condition

~ck&…&~cn defining an explicit transition from EC-state si

when all the guard conditions on the outgoing C-arcs evaluate

to FALSE. The generated sa state is terminal.

 2) Add ee emission to terminal states

Then the emission of output signal ee is assigned to all

terminal states. Now, the ee signal will be emitted at the end of

each run. Figure 6 shows the combined application of both

transformations (1) and (2).

~ck&…&~cn?x

ck

ai

si sj

cn

?x

ck

ai

si sa

cn

sj

ee

Figure 6. Rule for determination of the terminal EC-state in the case of outgoing

both E- and C-arcs.

 3) Emit ee signal for all input events and all input data

However, the transformed ECC would not emit the ee signals if

the function block receives an insignificant event input not

causing any state transition (this may be because this event is

not a part of any transition condition originating in the current

state, or if no guard conditions of such a transition evaluate to

true). The proposed transformation solves this problem by

modifying the outgoing arcs of terminal EC- states such that an

EC transition occurs even at an insignificant event arrival. The

generalized transformation rule is shown in Figure 7. The

following notation is used here: symbols ei, eo, a with indices

stand for event inputs, event outputs and algorithms,

respectively. The guard conditions associated with event input

eik are denoted as ck1, ck2, ..., ckn..
The state si is supplemented by the “loops” implementing

the si state preservation. The number of such “loops” is equal to

the number of event inputs in the FB.

Each loop consists of a transition to an auxiliary state

(marked as filled circles) and transition back to si (the latter is

with true condition). There are two kinds of conditions on the

arcs of the loops:
(1) for all event input signals (1,)gei g k that clock the

outgoing arcs of si, the condition on the corresponding arc is

formed as a conjunction of negated guard conditions of all the

outgoing arcs of si that include eig. The number of cycles of this

kind is the number of different input signals, marking the

outgoing arcs of si (ei1, …, eik).

si

ei1&c11

ei1&c
1n

ei
k&

c
k1

...

...

...ei
k &

c
km

si

ei1&c11

ei1&c1n
ei

k&
c
k1

...

...

...
ei

k&
c
km

ei 1
&

~c 11
&

…
&

~c 1n

eik &
~

c
k

1 &
…

&
~

c
k
n

...

...

eix eiz

1

1
ee

1

1

...

...

Figure 7. Rule for enforcing transitions from terminal EC-states.

 (2) for all other event inputs of the FB, the conditions are

formed just from the corresponding event input signals (eix,…,

eiz in Figure 7, right part).

 4) Count the number of output signals issued by FB

At first glance, this task is trivially solved by complementing

each algorithm of an EC-action in which an output signal is

issued, by a statement incrementing the counter nOut. It can be

achieved by introducing a new special EC-action AI doing this

function. However, the situation is complicated by the possible

emergence of loops in terminal EC-states that arise from

application of the rule (3). The rule in Figure 8 solves this

problem by moving the EC-actions from an “inconvenient”

terminal EC-state sj to an intermediate state sa and extending

the EC-actions by incrementing nOut. It is necessary because

events on the loops in state sj could invoke the same actions,

but would cause incorrect behaviour.

?x
si sj

1
si sa sj

ee

aI│eo1

...
aq│eoq

?x

ee

aI+AI│eo1

...
aq+AI│eoq

Figure 8. Rule for moving EC-actions from inconvenient EC-state and adding

incrementing nOut.

The reset of the nOut counter could be done in the first

statement of an algorithm of the first EC-action attached to the

target EC-state of an E-arc outgoing from the terminal EC-

state. It can also be achieved by introducing a new special EC-

action A0 doing this function. The rule adding A0 to an EC-

action for resetting the counter nOut is shown in Figure 9.

?x
si sj si sj

ee

?x

eeai A0+ai

Figure 9. Rule for bringing in EC-action A0 for resetting the counter nOut.

The rules should be applied to an ECC in the suggested

order: from the rule in Figure 6 to the one in Figure 9.

The presented ECC transformation preserves the original

behaviour but adds the emission of ee signal and returns the

number of emitted events in nOut. The equivalence can be

rigorously proven, but the proof is omitted due to the space

constraints and the intuitive clearness of the transformations

properties.

V. Dubinin, V. Vyatkin, “Semantics-robust Design Patterns for IEC 61499”, IEEE Transactions on Industrial
Informatics, 2012, 8(2), pp.279-290

C. Implementation example

The proposed transformation is an evolution of the ECC

refactoring technique proposed in [20]. For each of the rules in

Figures 6-9 in the general case a few rules of graph

transformation system AGG [28] have been developed, which

were added to the set of rules of the existing ECC refactoring

system. The resulting rule base has been tested in AGG on

several examples.

In this paper, the transformation of CruiseController basic

FB is considered. This FB is the main part of the cruise control

system presented in [8]. For better readability of the figures, a

brief notation for elements of ECC presented in [8] is

introduced. Signals e0, e1, and e2 will represent the signals

INIT, SpeedChange, and DesiredSpeedChange, respectively.

The names of event outputs (same as of the EC-actions) INITO,

ThrottleOff, ThrottleUp, and ThrottleDown are abbreviated to

а0, а1, а2, and а3, respectively. Also, the following notation for

guard conditions is used:

с1 CurrentSpeed=DesiredSpeed;

с2 CurrentSpeed<DesiredSpeed;

с3 CurrentSpeed>DesiredSpeed;

с4 DesiredSpeed=-1; с5 DesiredSpeed>-1.
The interface transformation is presented in Figure 10 (a),

the original ECC in Figure 10(b), the refactored ЕСС in

accordance with [20] in Figure 10(c) and the resulting ECC in

Figure 10(d).
In the processing of such a transformation some EC-state

can be deleted (for example, EC-state s2 has been deleted

during the refactoring) and some new EC-state can be created

(these EC-states have been named using identifiers p and q

with indexes). In Figure 10(d), Aee denotes an EC-action

issuing the ee signal.

V. BUFFERING EVENT SIGNALS

Buffering of event signals is required in the implementation of

several execution models, for example in sequential model

implemented in FORTE runtime, as discussed by Zoitl in [19].

Therefore, along with the introduced basic FB modification,

buffering of event signals is another important implementation

mechanism of SRDP. The controlled buffer determines the

rules of transferring, buffering, and processing input event

signals. The choice and the implementation of such a buffer are

determined by the source FB execution model, namely by

properties of buffering which need to be preserved after

transferring an application to the target execution model. It

should be noted that some execution semantics originally may

not require buffers, but maintaining the same event scheduling

mechanism on the target platforms will require it. An example

can be reproducing synchronous model rules in the sequential

semantics.

It is possible to implement buffers supporting various

disciplines of buffering (e.g., FIFO, LIFO, priority-based one)

as well as memorization of multiple signals for the organization

of queues of events at event inputs of FB. However, in the

following the FIFO-buffer with preservation of only one event

for one event input will be used, because it is most consistent

with the standard IEC 61499, and most FB execution models

as well.

The interface of the Buffer FB is shown in Figure 11(left

hand side). The inputs ei1, ..., ein correspond to input event

lines, through which the signals arrive to be placed in the

buffer. The event output lines eo1, ..., eon are used to output the

corresponding signals from the buffer. Recording of the event

input event signal eik to the buffer is confirmed by the

corresponding output event signal ackk. Exactly one signal is

output when the buffer receives the putOut input event signal.
If the buffer is empty, then the empty output event signal is

emitted.

The ring buffer can be efficiently implemented (as a SIFB)

using three simple and fast operations: increment of the index,

direct writing (reading) the identifier of event input to (from)

the buffer, and comparison with the upper bound of the array.

The time-sequence diagrams describing the work of the buffer

are shown in Figure 11 (right hand side).

To estimate the complexity added by the use of buffers, one

can assume that the durations of these operations are the same

and equal to t1. Because each signal is first written and then

read from the buffer, the delay in the transmission of each

signal between a pair of FB (provided that only one buffer is

between them) is 6 t1 while the transfer of n signals needs

6 n t1.

INITO

CurrentSpeed

CruiseController

DesiredSpeed

SpeedChange

INIT

DesiredSpeedChange

ThrottleDown

ThrottleOff

ee

nOut

ThrottleUP

added

c1

s1

e 2
&

c 5

a2

s0

s2

s3

s4

s5
s6

1

1

1
1

e2&
c5

e
2&c

4

c2

c3

e0

e1

a1a3

a0

s1

a2

s0

q1

q2

s4

s5

s6 1
1

1
1 e0

a1

a3

q3

e
1&c

3

e
2&

c
5&

c
2

e
2&c

5&c
3

e2&
c5&

c3

e2&c5&c1

e1&c1

1

1

e1&
c2

e2&
c5&

c2

e
2 &

c
4

e
2 &

c
5 &

c
1

a0

s1

q1

q2

s5
s6

1

1

1

1
e0

q3

e
1&

c
3

e
2&

c
5&

c
2

e
2 &

c
5 &

c
3

e 2
&

c 5
&

c 3

e2&c5&c1

e1&c1

1

1

e 1
&

c 2

e 2
&

c 5
&

c 2

e 2
&

c 4

e
2 &

c
5 &

c
1

A0+a0+AI

s0

s4

p1

p3p2

p4

p5 p6 p7

p8e2&~c1&~c2 &~c3

e2&~c1&~c2 &
~c3

e 2
&

~c
5e1&~c1&~c2 &~c3

e 2
&
~

c 5

e1

e0

1

11

1

1

1

1 1
A0

A0

A0 A0

A0

A0+a2+AI

A0+a1+AI

A0+a3+AI

A0 A0 A0

A0

Aee

Aee

 (a) (b) (c) (d)

Figure 10. Transformed interface of the CruiseController FB (a), original ECC (b), refactored (c) and transformed ECC (d).

V. Dubinin, V. Vyatkin, “Semantics-robust Design Patterns for IEC 61499”, IEEE Transactions on Industrial
Informatics, 2012, 8(2), pp.279-290

ein

putOut

eon

...

ack1

empty

...

Buffer

ackn

...

ei1
eo1

Buffer RESOURCE

eij

ackj

Buffer RESOURCE

putOut

eok

write_signal_in_buffer read_signal_from_buffer

Figure 11. Buffer FB interface (left side) and time-sequence diagrams

describing the work of the buffer (right side).

As it will be seen in the following sections, there are two

typical structures of buffer interconnections arise when SRDPs

are applied to FB networks. These are referred to as inb and

outb, as conceptually illustrated in Figure 12. For example, in

the inb structure all events from the input buffer bufi are

sequentially processed by the block fbi and written to the output

buffers bufj, ..., bufk.

fbi

bufi

...
bufk

start

bufj
inb

done

bufj

bufk

bufx

start done

outb

Figure 12. inb and outb - structures of the events flow.

VI. TRANSFORMATION OF COMPOSITE FUNCTION BLOCKS

In this Section some concepts of SRDP application in

composite FBs will be discussed using as examples the cyclic

and the synchronous models of execution.

A. Cyclic execution model
There are several models of composite function blocks

execution, namely: as a single entity [13], and as a container

[26]. In this paper the second model is assumed. As it was

shown in [26], a hierarchical FBA built from composite and

basic FBs, can be reduced to a flat FBA containing only basic

FBs and SIFBs. The process of “flattening” includes the

insertion of data valves - the intermediate storage elements

implementing the interface logic. The data valves could be

efficiently implemented using SIFBs.

The cyclic execution model implies that the order of FB

execution in a system is explicitly assigned. The global

execution order can be unambiguously determined from the

local orders within each composite FB. This is illustrated in

Figure (a) on example of some abstract hierarchical FB

application, where A, B, D, and E are composite FB types, and

C, F, G, H, I and J are basic FB types. The local execution

order within a composite FB is defined by the numbers

assigned to the blocks. The global order of execution can be

defined as follows: G, H, D1", D2", E’, I, J, E", F, B", C. Here,

the symbol with a prime denotes the activity of input interface

logic of the composite FB, a symbol with a double prime - the

activity of output interface logic. Function block D has two

event outputs, therefore two separate output data valves D1"

and D2" are distinguished.

Since the activity of a composite FB is composed mainly of

the activities of its component basic FBs, one has to focus upon

basic FBs. In accordance with the given local order, the global

execution order of basic FBs in the flattened systems will be:

G, H, I, J, C.

Figure (b) shows the one-level (flat) representation of the

same FBA. The appeared data valves are denoted as dv1-dv6.

The numbers under the FBs and the data valves denote the

global order of their execution. As seen from this figure, the

data valves are scheduled uniformly with the rest of the FBs in

the application. This flat structure can be used to achieve the

behaviour equivalent to the cyclic in any execution model since

it preserves the execution order of the original application.

Another approach to SRDP of composite FB in the cyclic

source model is to use "native" interface logic of the composite

FB without flattening the entire application, but it will not be

presented due to space limitations. It has many similarities

with the synchronous model implementation considered in the

next subsection.

B. Synchronous execution model

The synchronous execution model [8] belongs to the class of

parallel execution models. This means that several FBs can be

active simultaneously. There are several varieties of

synchronous execution model depending on the adopted

granularity [16], e.g. based on single ECC transition, or single

FB run.

However, the corresponding target application will be

executed in a sequential way. Therefore, the pattern discussed

in this section shall emulate the synchrony and parallelism of

the original application.

Synchronous models can be classified onto single-stage and

two-stage models. The two-stage FB implementation scheme

with intermediate buffering of output signals [35] is used to

avoid the dependency of the execution result on the order of

a)

CI JH
(D1") (E") (F’)

1 2 3 4 5 6 8

b)

G

(E’)(D2") (B")

7 9 10 11

dv1 dv2 dv3 dv4 dv5 dv6

Figure 13. Hierarchical FB structure with local orders of execution (a) and

its flattened representation with global order assigned to FBs and data

valves (b).

V. Dubinin, V. Vyatkin, “Semantics-robust Design Patterns for IEC 61499”, IEEE Transactions on Industrial
Informatics, 2012, 8(2), pp.279-290

invocations of the FBs belonging to the set of to-be activated

blocks. At the first stage, all the FBs which are ready to run are

invoked, but the transmission of output event signals from the

FB-producers to the FB-consumers is delayed. One can think

that these signals are "frozen" for a moment, being stored in

some intermediate buffer. At the second stage the delayed

signals are delivered simultaneously to the consumer FBs.

Execution of all active FBs is synchronized with a single pulse

(tick).

The main problem in implementation of composite function

blocks within the "synchronous execution model" pattern is to

implement the second phase, consisting of the transmission of

signals from the output buffers to the input buffers when the

source- and receiver-buffers are in different ambient FBs

belonging to different levels (or different branches) of the

system’s hierarchy. In the first phase this problem does not

occur because all its participants (the input buffer, the FB and

the output buffer) are localized within the same ambient

composite FB.

The aforementioned problem is illustrated in Figure 14 for

the application composed of three function blocks fb1, fb2, and

fb3. Here one observes the outb structure of buffers from Figure

12 for the case where all buffers belong to sibling FBs in the

system’s hierarchy. For simplicity, in this figure the exact event

flow links between the buffers is omitted by showing the

directions of event flow by wide arrows. In addition to the

actual buffers, the structure includes the signal transmission

controller dx of type dispOutMoving that implements moving of

event signals between output buffers bufj and bufk of FBs fba

and fbc, respectively, and input buffer bufx of FB fbx. As seen

from Figure 14, as a result of the outb "decentralization",

several event links are broken at the FB borders. To connect

them, new event inputs/outputs are added to the interface of the

corresponding FB.

putOutj

putOutk

start

done

emptyj

emptyk

... ...

reset

ack

dx: dispOutMoving

putOut

...

empty

bufj: Buffer

...

fba

...

ei1k

eiqk

putOut

eo1k

eoqk

...

empty

bufk: Buffer

...

fbc

ack1k

ackqk

...

bufx: Buffer

putOut

...

ack1r

empty

...

fbx

ackrx

...

fb1

fb2

fb3

ei1j

eipj

eo1j

eopj

ack1j

ackpj

ei1x

eirx

eo1x

eorx

Figure 14. Detailed structure of decentralized outb, when all the buffers are

located in different ambient FBs.

The transformation of the composite FB’s contents will

depend on whether the component FB is basic or composite. In

the following the rules governing the implementation of

composite function blocks within the synchronous execution

model are presented:

1) For a basic component FBs, one input and output buffer of

signals are created, as well as a counter of the

acknowledgements from the output buffers;
2) For a composite component FB, no additional

(infrastructural) block is created;
3) The controller of signals’ transfer of type dispOutMoving

is placed (if necessary) in the composite FB which hosts the

receiving input buffer;
4) The composite FBs of intermediate level are appended by

a pair of FBs of types gather1 and gather2, whose function is

to gather acknowledgements from the sub-systems of types inb

and outb about the completion of their execution and the

formation of the output signals indicating the completion of the

first and second synchronous execution phases in this

composite FB. The FB types gather1 and gather2 can be

regarded as schedulers, whose function is reduced to managing

a single execution of one phase in the local area;
5) Similarly to the cyclic model case, the main scheduler is

added only once at the resource level (i.e. to the FBA of the top

hierarchy level).
The working of each phase (first and second) in the whole

system consists of the working on the FB implementation

conducted in local areas (i.e. in composite FBs). The

hierarchically interconnected system of blocks gather1 (rsp.

gather2) forms a system for determining the termination of the

sub-systems inb (outb) on a global scale.

Figure 15 shows conceptually an example of converting an

intermediate level composite FB containing composite (D and

F) and basic (F) component FBs. The group corresponding to

the basic FB (F) is surrounded by a dashed line. For simplicity,

it was assumed that the basic FB F has only one basic FB as its

event “predecessor” so the controller of signals’ transfer is not

required.

Although the resulting FB is obviously more complex than

the original one, the complexity added by the service FBs

intuitively is of the same order of magnitude as the original

application.

D

E

F

D'

inbuf F'

E'

outbuf

cAck

gather1

gather2

startPhase1

startPhase2

endPhase1

endPhase2

Figure 15. An example of converting an intermediate level composite FB

containing composite and basic component FBs, in the synchronous execution

model.

VII. EXAMPLE APPLICATION

In this section the use of the SRDP is illustrated on example of

a composite function block implementing a simple cruise

V. Dubinin, V. Vyatkin, “Semantics-robust Design Patterns for IEC 61499”, IEEE Transactions on Industrial
Informatics, 2012, 8(2), pp.279-290

control in a car, slightly modified from the one presented in [8].

As seen in Figure 16, it consists of four function blocks, each

modelling a component of the system.

The

cruise

control

system

is

activat

ed by a

lever,

consist

ing of

the

Accel

and

Off

buttons

.

Whene

ver the

Accel

button is held down, a sequence of AccelHold events will be

generated to incrementally accelerate the car. When the button

is released, the AccelRelease event will be generated and the

speed at that instant is memorized. This desired speed will be

forwarded to the cruise controller, which in turn will attempt to

maintain this speed by appropriately adjusting the throttle

position. A separate subsystem calculates the current speed at

every Clock tick and updates the cruise controller. This cruising

mode will be deactivated when the Off button on the lever is

pressed. For the sake of brevity, the ECCs are not presented,

the interested reader is referred to [8].

The CruiseControl composite function block was designed

in the cyclic execution semantics. Applying the implementation

pattern one can create an equivalent composite FB which will

run correctly in any other runtime environment, originally not

supporting the cyclic semantics.

The result of applying the “Cyclic” SRDP is presented in

Figure 17. The resulting FB is rather complex due to the fact

that the complete pattern has been applied to ensure equivalent

behaviour of the transformation result in any execution model,

including those where the “single run” concept won’t hold (like

in hardware implementation of FBs or NPMTR, e.g. FBDK).

This is achieved by using the CountAck function blocks to

determine termination of the buffers’ execution. For most

other execution models these FBs can be omitted (the ee

output of the working FB will signal correctly its

termination and activate the buffer) thus substantially

simplifying the resulting design.

The following signals have been added during the

transformation:

startScan – begin the scan of FBs in the order defined in

exList.

scanDone – the scan is completed.

ackii – acknowledgement of writing to an external buffer

situated outside of this FB network;

ackoj – output signal acknowledging writing to a local buffer

sent to external CountAck.

 To implement correctly the signal “forking” from event

output SpeedChange of SpeedoCalc FB, an explicit E_SPLIT

function block is needed. This FB type also needed to be

transformed according to the SRDP. The result, called

E_SPLIT2 is used in the resulting FB diagram.

Let us consider, how this function block network will be

executed, say, in FBDK, which implements event passing

through the direct method call, i.e. sequence of FB invocations

can be described by the depth first algorithm of graph traversal.

The depth-first event propagation will be stopped in the first

buffer causing the FB interpreter to backtrack to the FB- origin

of the event and let it emit the next event. Thus, sequentially,

one by one, all the signals issued by the working FB, will be

written to the buffer until the basic FB transitions to a terminal

EC-state. Thus, the depth-first traversal will be converted to the

breadth-first one which fits to the known FB execution

semantics.

CCOff

INIT

AccelHold

AccelRelease

Resume

Clock

Distance

SpeedChange

CurrentSpeed

ThrottleChange

ThrottleValue

INITO

CurrentSpeed

CruiseController

DesiredSpeed

SpeedChange

ThrottleUP

INIT

DesiredSpeedChange

ThrottleDown

ThrottleOff

CruiseController

ee

nOut

Buffer

ei3

ei4

ei5

eo3

eo4

eo5

ack3

ack4

ack5

empty

putOut

buf1

ei2

ei1 eo1

eo2

ack2

ack1

acko1

acko2

acko3

acko4

acko5

INIT

scan

exList

endedFB

CyclScheduler

startFB1

startFB2

startFB3

startFB4

startFB5

done

INITO

schd

Buffer

ei3

ei4

ei5

eo3

eo4

eo5

ack3

ack4

ack5

empty

putOut

buf2

ei2

ei1 eo1

eo2

ack2

ack1

Buffer

ei3

ei4

ei5

eo3

eo4

eo5

ack3

ack4

ack5

empty

putOut

buf3

ei2

ei1 eo1

eo2

ack2

ack1

Buffer

ei3

ei4

ei5

eo3

eo4

eo5

ack3

ack4

ack5

empty

putOut

buf4

ei2

ei1 eo1

eo2

ack2

ack1

Buffer

ei3

ei4

ei5

eo3

eo4

eo5

ack3

ack4

ack5

empty

putOut

buf5

ei2

ei1 eo1

eo2

ack2

ack1

SpeedChange

Distance

SpeedMeasure

CurrentSpeed

Clock

INIT

SpeedoCalc

INITO

ee

nOut

INITO

CurrentSpeed

CruiseControlLever

DesiredSpeed

AccelHold SetDesiredSpeed

INIT

AccelRelease

Off

Resume

REQ

Lever

ee

nOut

INITO

Throttle

ThrottleValue

ThrottleUP ThrottleChange

INIT

ThrottleDOWN

ThrottleUP

Throttle

ee

nOut

acki2

acki1

INITO

scanDone

scanStart

exList

setN

ack1

allFixed

N

CountAck

cnt1

ack2

ack3

ack4

ack5

setN

ack1

allFixed

N

CountAck

cnt2

ack2

ack3

ack4

ack5

EI
EO2
EO1

E_SPLIT2

split

nOut

ee
setN

ack1

allFixed

N

CountAck

cnt3

ack2

ack3

ack4

ack5

setN

ack1

allFixed

N

CountAck

cnt4

ack2

ack3

ack4

ack5

setN

ack1

allFixed

N

CountAck

cnt5

ack2

ack3

ack4

ack5

Figure 17. The function block “CruiseController” constructed in accordance with the "cyclic execution model" pattern.

INITO

CurrentSpeed

CruiseControlLever

DesiredSpeed

AccelHold
SetDesiredSpeed

INIT

AccelRelease

Off

Resume

REQ

SpeedChange

Distance

SpeedMeasure

CurrentSpeed

Clock

INIT

INITO

CurrentSpeed

CruiseController

DesiredSpeed

SpeedChange

ThrottleUP

INIT

DesiredSpeedChange

ThrottleDown

ThrottleOff

ThrottleChange

CCOff

INIT

AccelHold INITO

Throttle

ThrottleValue

ThrottleUP ThrottleChange

INIT

ThrottleDOWN

ThrottleUP

AccelRelease

Resume

Clock

Distance

Lever CruiseController Throttle

SpeedChange

CurrentSpeed

INITO

INITOSpeedoCalc

ThrottleValue

Figure 16. Composite function block CruiseControl designed to be executed in

cyclic execution model.

V. Dubinin, V. Vyatkin, “Semantics-robust Design Patterns for IEC 61499”, IEEE Transactions on Industrial
Informatics, 2012, 8(2), pp.279-290

VIII. COMPLEXITY ESTIMATIONS

The complexity of the FB system resulting from SRDP

application essentially depends on the particular execution

model, as well as on the number of system’s hierarchy levels

and FB network topology.

The degree of complexity of SRDP application can be

represented by the formula:

K = Nres / Nsrc = (Nsrc + Nadd) / Nsrc = 1 + N add / Nsrc (1)

where: Nsrc – the number of FBs in the original (source) FB

system; Nres – the number of function blocks in the resulting

(target) system; Nadd – the number of additional FBs appeared

in the target system as a result of SRDP application.

A. Evaluation of complexity overhead for cyclic SRDP

The complexity overhead of SRDP shows itself in the

increased complexity of basic FB ECCs (which is quadratic to

the number of inputs and outputs in worst case) and in the

number of added service FBs to composite FB networks, which

is linear to the number of FBs in the original network.

Here the complexity of the target FB system for the cyclic

design pattern will be estimated under the following

restrictions: considered is a flat one-tier connected network of

FBs without external inputs-outputs. Let M denote the number

of generalized event connections between the FBs: it is said

that there is a generalized event-connection between

FBs fbi and fbj, if there is at least one event connection between

these FBs. The number of additional FBs in the system

resulting from SRDP can be defined as Nadd= Nbuf + Nack, where

Nbuf = Nsrc – the number of FB’s input buffers, Nack= M - the

number of acknowledgements counters.

It should be noted that if a generalized event-link consist of

only one ordinary event connection, it can be excluded from

consideration because it does not require the use of an

acknowledgement counter.

The overhead ratio for cyclic SRDP can be found as follows:

Kcyc= 1+Nadd/Nsrc = 1+(Nsrc+M)/Nsrc= 2 +M/Nsrc; (2)

As can be seen from (2), the resulting system contains at

least twice as many FBs as the original system.

In the worst case - when the FB network topology is a

complete graph M= Nsrc (Nsrc-1), the ratio is:

K’cyc = 1+Nadd/Nsrc = 1+ (Nsrc+M)/Nsrc = 1 + Nsrc ≈ Nsrc (3)

In this case, the complexity increases proportionally to the

number of function blocks in the original system. However, it

should be noted that in practice the complete graph topology is

unlikely to see in practice.

B. Overheads of synchronous SRDP

The complexity overhead of the synchronous SRDP will be

evaluated under the same restrictions as in the previous case.

Let L denote the number of FBs with more than one generalized

incoming event connections. Then

Nadd= N’buf + N”buf +Nack + Nmov,

where: N’buf = Nsrc – the number of input buffer FBs,

Nbuf = M – the number of output buffer FBs,

Nack =M – the number of acknowledgement counters,

Nmov =L – the number of control units to moving signals from

the output buffers to the input ones.

The overhead ratio is:

Ksync=1+Nadd/Nsrc=1+(Nsrc+2M +L)/Nsrc=2+(2M+L)/Nsrc (4)

As can be seen from (4), the resulting system again contains

at least twice as many FBs as the original system.

Let us consider the ratio of the complexity factors for

synchronous and cyclic models:

k21= Ksync / Kcyc = (2+(2M+L)/Nsrc)/(2 +M/Nsrc) ≈ (2M+L)/M =

2+L/M, when M/Nsrc >>2. (5)

As follows from (5), the complexity of synchronous SRDP is

at least double of cyclic SRDP (Note: this is true if the number

of generalized event connections in the original system greatly

exceeds the number of FBs).

A more comprehensive estimation of the SRDP impact on

the performance will be the subject of future work. For that,

new analysis techniques, such as static timing analysis [31] can

be applied. Intuitively, the execution complexity added by

SRDP is the greater the more different are the source and target

execution models. Such overheads are always observed when

one system is emulated by means of another.

IX. CONCLUSIONS AND OUTLOOK

This paper proposed semantic robust design patterns of

function blocks for three execution models. The goal of the

implementation patterns is to increase portability of software

built according to the IEC 61499 standard.

There are no fundamental restrictions of SRDP, since the

expressive power of SRDP mainly depends on the set of service

FBs used. However, the ones developed so far and presented in

the paper do have a number of restrictions.

First, the considered SRDP are focused on such source

execution models that are based on the “Single Run” principle,

that is, the execution granule is a function block. Second, the

order of signals’ transmission between FBs as well as the order

of input event signals processing are largely determined by the

buffer types, so when using FIFO-buffer, the priority order of

signals transmission between FB of the source execution model

cannot be kept in the target execution model which do not

support prioritized transmissions. Third, the chronological

order of output signals issuance (such as in the execution

model based on sequential hypothesis) by using ordinary

buffering proposed in the paper cannot be preserved in the

target execution model. Therefore it requires different

approaches to the construction of the system that were

considered in the paper as well. Fourth, an execution model

which is not based on the Single Run principle (for example,

NPMTR) cannot be used as a source execution model.

A possible downside of the proposed approach is a more

complicated resulting code having potentially worse execution

performance. However, the performance overhead doesn’t seem

to be substantial though. The reaction time of each basic

function block would not change considerably after the

transformation described in Section V is applied. Indeed, the

V. Dubinin, V. Vyatkin, “Semantics-robust Design Patterns for IEC 61499”, IEEE Transactions on Industrial
Informatics, 2012, 8(2), pp.279-290

added transition arcs to the terminal states can be made of

lower priority than the original ones, therefore for significant

events nothing would change. To optimize event scheduling in

the cyclic model, the hot-potato principle [30] can be used to

transfer generated signals across the interfaces as soon as they

are emitted.

The power of SRDP is also restricted by the computational

power of the FB model of computation. In the standard IEC

61499 the FB model is implicitly defined as a parallel and

asynchronous (that caused multiple interpretations). To the best

of the authors’ knowledge, no specific research was dedicated

to define the computational power of the FB model, but on the

basis of existing publications [11, 9, 32], one can assume that

the computational power of the FB model (even without the use

of complex algorithms) is not less than that of the Safe Free-

Choice Petri Net (subclass of Petri nets [33]). Using

algorithms in basic FB and, moreover, various services in SIFB

makes the FB model (w.r.t. to the computational power)

equivalent to the universal algorithmic systems. Therefore,

there are should not be any theoretical restrictions on the use of

SRDP.

To prove rigorously the equivalence of FB systems’

behaviour on source and target platform, one needs to specify

what the equivalent behaviour is, which may include the

preservation of several orders: the FB execution order, the order

of the output signals issuance to the environment, the order of

signals’ transmission between the FBs, etc. Then one needs to

develop formal models of FB systems behavior and compare

the corresponding prefix languages generated by both models.

The mathematical apparatus developed in [26] can be used for

that. Another approach can be based on the use of model

checking, in which the properties of FB system are formulated

based on temporal logic. This approach focuses on equivalence

of states rather than languages. However, the proof of the

equivalence of formal FB models is a standalone research topic

deserving a separate investigation.

Another direction for further work is software

implementation of the converters, transforming the original FB

application to a semantically equivalent FBA in a selected tool,

for example, run-time environments FORTE [10], ISaGRAF

[17] and Synchronous Compiler [8]) and in the modified IEC

61499 execution semantics as per the second edition of the

standard). The authors have already implemented a prototype

converter using the Attributed Graph Grammars for ECC and

in C++ for composite FBs. The ECC transformation in section

IV has been done using the AGG tool. Furthermore, it has been

shown in [34] on example of transformation of IEC 61499

applications to Net/Condition Event Systems (an extension of

Petri nets) that there are no fundamental obstacles to apply

graph transformation to the entire IEC 61499 projects.

ACKNOWLEDGEMENTS

This work is supported, in part, by the FRFD grant

3625072/9573 of the University of Auckland.

X. REFERENCES

1. Function Blocks for Industrial-Process Measurement and Control Systems -

Part 1: Architecture, International Electrotechnical Commission, Geneva,

2005

2. V. Vyatkin, “IEC 61499 as Enabler of Distributed and Intelligent

Automation: State of the Art Review”, IEEE Transactions on Industrial

Informatics, 7(4), November, 2011

3. L. Ferrarini and C. Veber, “Implementation approaches for the execution

model of IEC 61499 applications,” in Proc. 2nd IEEE Intl. Conf. Industrial

Informatics INDIN’04, Berlin, Germany, 2004.

4. C. Sünder et al, “Usability and Interoperability of IEC 61499 based

distributed automation systems”, 4th IEEE Conference on Industrial

Informatics (INDIN ‘06), Proceedings, Singapore, 2006

5. Vyatkin, V., Dubinin, V. Sequential Axiomatic Model for Execution of

Basic Function Blocks in IEC61499, Proc. 5th IEEE Intl Conference on

Industrial Informatics (INDIN’07), July 23-26, 2007. – Vienna, Austria,

2007. - pp. 1137-1142.

6. J. LM Lastra et al , “An IEC 61499 Application Generator for Scan-Based

Industrial Controllers”, in Proc. of the 3rd IEEE Conference on Industrial

Informatics, Proceedings, Perth, Australia, August 2005.

7. P. Tata, V. Vyatkin, “Proposing a novel IEC61499 Runtime Framework

implementing the Cyclic Execution Semantics”, 7th IEEE Intl Conference

on Industrial Informatics (INDIN’09), Cardiff, Wales, June, 2009

8. L.H. Yoong et al, “A Synchronous Approach for IEC 61499 Function

Block Implementation,” IEEE Trans Computers, Vol. 58, Issue 12, 2009

9. Hagge, N.; Wagner, B.;"A new function block modeling language based on

Petri nets for automatic code generation," Industrial Informatics, IEEE

Transactions on , vol.1, no.4, pp. 226- 237, Nov. 2005

10. PROFACTOR Produktionsforschungs GmbH, “4DIAC-RTE (FORTE):

IEC 61499 Compliant Runtime Environment,” 30/10/2007 2007;

http://www.fordiac.org.

11. Cengic, G.; Akesson, K., "On Formal Analysis of IEC 61499 Applications,

Part B: Execution Semantics," Industrial Informatics, IEEE Transactions

on, vol.6, no.2, pp.145-154, May 2010

12. Colla, M. et al. “CEC Designer: Domain Specific Modelling for the

Industrial Automation Based on the IEC 61499 Standard”, 2008 IEEE Intl

Conference on Emerging Technologies and Factory Automation

(ETFA’08), Hamburg, September, 2008

13. C. Sünder et al, “Execution Models for the IEC 61499 elements Composite

Function Block and Subapplication”, 5th IEEE Int. Conference on

Industrial Informatics (INDIN'07). - Vienna, Austria, 2007. – P.1169-

1175.

14. o3neida. IEC 61499 Compliance Profile: Execution Models of IEC 61499

Function Block Applications, [Online] –
http://www.oooneida.org/standards_development_Compliance_Profile.html.

15. D. O'Sullivan and D. Heffernan, "VHDL architecture for IEC 61499

function blocks," Computers & Digital Techniques, IET, vol. 4, pp. 515-

524, 2010

16. Vyatkin, V., “The IEC 61499 Standard and its Semantics” – IEEE

Industrial Electronics Magazine, 3(4), 2009.

17. ICS Triplex ISaGRAF Workbench for IEC 61499/61131, v.5.1, Online:

http://www.icstriplex.com

18. nxtControl. (2010, 10/05). nxtStudio. Available: www.nxtcontrol.com

19. A. Zoitl, Real-Time Execution for IEC 61499: ISA, 2009

20. V. Vyatkin, V. Dubinin, “Refactoring of Execution Control Charts in Basic

Function Blocks of the IEC 61499 Standard”, IEEE Transactions on

Industrial Informatics, 2009, doi: 10.1109/TII.2009.2033051

21. Christensen, J.H., „Design patterns for systems engineering with IEC

61499“, Fachtagung “Verteilte Automatisierung - Modelle und Methoden

für Entwurf, Verifikation, Engineering und Instrumentierung”. –

Magdeburg, Germany: Otto-von-Guericke-Universität, 2000.

22. G. Booch, I. Jacobson, and J. Rumbaugh. “OMG Unified Modeling

Language Specification”, Version 1.3 First Edition: March 2000.

23. Bräuer, M., Lochmann, H.: An Ontology for Software Models and Its

Practical Implications for Semantic Web Reasoning. In: The Semantic

Web: Research and Applications. LNCS, vol. 5021, pp. 34--48. Springer,

(2008)

24. G. Cengic, K. Åkesson, “On Formal Analysis of IEC 61499 Applications,,

Part A: Modeling”, IEEE Transactions on Industrial Informatics, vol. 6,

No. 2, May 2010, pp. 136-144

25. Function Block Development Kit [Online] –

http://www.holobloc.com/doc/fbdk/index.htm.

http://www.icstriplex.com/

V. Dubinin, V. Vyatkin, “Semantics-robust Design Patterns for IEC 61499”, IEEE Transactions on Industrial
Informatics, 2012, 8(2), pp.279-290

26. Dubinin V., Vyatkin V. "On Definition of a Formal Semantic Model for

IEC 61499 Function Blocks", EURASIP Journal on Embedded Systems,

Vol. 2008, Article ID 426713. - 10 p.

27. Vyatkin V., Chouinard J., “On comparison of the ISaGRAF

implementation of IEC 61499 with FBDK and others implementations”,

6th IEEE Int. Conf on Industrial Informatics (INDIN'08), 2008. – p.1169-

1175

28. H. Ehrig et al, Fundamentals of Algebraic Graph Transformation, Springer,

2006, XIV, 388 p.

29. AGG Web-site, http: //tfs.cs.tu-berlin.de/agg

30. U. Feige, P. Raghavan. Exact analysis of hot-potato routing, 33rd Annual

Symposium on Foundations of Computer Science, 1992, Pittsburgh, 1992,

P. 553 – 562.

31. M. M. Y. Kuo, et al., "Determining the worst-case reaction time of IEC

61499 function blocks," in 8th IEEE International Conference on

Industrial Informatics (INDIN'10), 2010, pp. 1104-1109.

32. Vyatkin, V., Hanisch, H.M. 'Verification of Distributed Control Systems

in Intelligent Manufacturing', Int. Journal of Intelligent Manufacturing,

Springer, 14, (1), p. 123-136, 2003

33. K. A. Petri, “Kommunication mit Automaten”, Schriften des Rheinish,

Westfalischen Institutes fur Instrumentelle Mathematik und der Universitat

Bonn., 1962

34. V. Dubinin, V. Vyatkin. "Graph transformation - based approach to IEC

61499 function block’s formal models synthesis", Bulletin of Higher

Education Institutions, Volga region, Technical Sciences, Penza State

University Publishers, 2008, N 4, P.16-26.

35. V. Dubinin, V. Vyatkin, “Models of Sequential Function Block Execution

implemented by dynamically allocated Priorities”, Bulletin of Higher

Educational Institutions. Volga Region, ISSN 1728-628X, Penza, 2007,

pp.13-22 [in Russian]

36. N. Hagge, B. Wagner, "Modeling and Clarifying the Execution of IEC

61499 Function Blocks Using XNet," in: Proceedings of the 5th IEEE

International Conference on Industrial Informatics (INDIN 2007), Vienna,

Austria, 2007

V. Dubinin, V. Vyatkin, “Semantics-robust Design Patterns for IEC 61499”, IEEE Transactions on Industrial
Informatics, 2012, 8(2), pp.279-290

Victor N. Dubinin received the

Diploma in computer science and the

Ph.D. degree from the University of Penza,

Russia, in 1981 and 1989, respectively.

From 1981 to 1989 he was a researcher

and from 1989 to 1995 he was a senior

lecturer at the same University. Since 1995

he is an associate professor in the

Department of Computer Science at the

same University. In 2003, 2006 and 2010

he has been awarded DAAD-grants to work as a guest scientist

at Martin-Luther-University Halle-Wittenberg, Germany, and

in 2011 he held the Visiting Researcher position at the

University of Auckland, New Zealand. His research interests

include formal methods for specification, verification, synthesis

and implementation of distributed and discrete event systems.

Valeriy Vyatkin (SM’04) is Associate

Professor and Director of the

InfoMechatronics and Industrial

Automation lab (MITRA) at the

Department of Electrical and Computer

Engineering, The University of Auckland,

New Zealand. He graduated with the

Engineer degree in applied mathematics in

1988 from Taganrog State University of Radio Engineering

(TSURE), Taganrog, Russia. Later he received the Ph.D.

(1992) and Dr Sci degree (1998) from the same university, and

the Dr Eng. Degree from the Nagoya Institute of Technology,

Nagoya, Japan, in 1999. His previous faculty positions were

with Martin Luther University of Halle-Wittenberg in Germany

(Senior researcher and lecturer, 1999–2004), and with TSURE

(Associate Professor, Professor, 1991–2002).

His research interests are in the area of dependable

distributed automation and industrial informatics, including

software engineering for industrial automation systems,

distributed architectures and multi-agent systems applied in

various industry sectors: SmartGrid, material handling,

building management systems, reconfigurable manufacturing,

etc. Dr Vyatkin is also active in research on dependability

provisions for industrial automation systems, such as methods

of formal verification and validation, and theoretical algorithms

for improving their performance.

	I. Introduction
	II. Function Blocks Reference Architecture
	A. Overview
	B. Ambiguities in Basic FB execution

	III. Overview of the Proposed Method
	IV. Transformations of Basic Function Blocks
	A. Interface transformation
	B. ECC transformation
	1) Separation of terminal and transitional states
	2) Add ee emission to terminal states
	3) Emit ee signal for all input events and all input data
	4) Count the number of output signals issued by FB

	C. Implementation example

	V. Buffering Event Signals
	VI. Transformation of Composite Function Blocks
	A. Cyclic execution model
	B. Synchronous execution model

	VII. Example Application
	VIII. Complexity estimations
	A. Evaluation of complexity overhead for cyclic SRDP
	B. Overheads of synchronous SRDP

	IX. Conclusions and Outlook
	X. References

