
Development of Distributed Industrial Automation Systems and Debugging
Functionality Based on the Open Source OOONEIDA Workbench

Wenbin Dai

The University of Auckland

wenbin_dai@hotmail.com

Arthur Chuan Kang Shih

The University of Auckland

arthur.shih@gmail.com

Valeriy Vyatikin

The University of Auckland

v.vyatkin@auckland.ac.nz

Abstract
The IEC 61499 function block architecture is a
new standard proposed to replace the current
PLC technologies. Currently the available
function block development tools have major
shortcoming, specifically the lack of a debug
function. The OOONEIDA workbench is an
open source function block development tool
designed for open development. Our aim is to
make the Workbench a fully functioning
development tool with emphasis on developing a
debug function.

1 Introduction

1.1 Function Blocks and the IEC 61499
New system architecture for distributed automation
systems known as IEC 61499 [IEC 2001] is based on the
concept of function blocks. A function block is a capsule
(e.g. software, but more generally, intellectual property
(IP)) that consists of input/output variables, internal
variables, and an internal behavior description (Figure 1).

The standard is defined by International
Electrotechnical Commission that is an international
standard and conformity assessment body for
Electrotechnical matters.

In the standard, event drive n function blocks are used
as basic blocks for building applications. These function
blocks are stored in an XML-based format. This allows
for better interoperability between platforms as well as for
greater re-usability. There are two types of function
blocks, basic function blocks and composite function
blocks. Composite function blocks may contain one or
more other composite function blocks or basic function
blocks. Basic function blocks contains algorithms to
control output variables and events, and an Execution
Control Chart (ECC) (see Figure 2) to decide which
algorithms are called depending on input events.
An application is defined as a network of function blocks.

Figure 1: A function block interface [Vyatkin, 2006].

There are two types of function blocks, basic function
blocks and composite function blocks. Composite
function blocks may contain one or more other composite
function blocks or basic function blocks. Basic function
blocks contains algorithms to control output variables and
events, and an Execution Control Chart (ECC) (see Figure
2) to decide which algorithms are called depending on
input events.

An application is defined as a network of function
blocks.

Figure 2: Basic function block [Vyatkin, 2006]

Compiled function blocks can then be combined to
form System Configurations that combine the application

logic with device topology, abstract definition of
communication networks and exact mapping of function
blocks to devices.

1.2 Current Function Block Tools
The current industry leader for IEC 61499 function block
development is Function Block Development Kit (FBDK)
initially released by Rockwell Automation, and now
maintained by Holobloc, Inc. It consists of a development
tool (FBDK) and a Runtime (FBRT).

Students taking the Distributed Systems and Computer
Networks course at the University of Auckland used
FBDK for a major part of their course, and a resulting
random survey showed that 90% of the surveyed students
wanted a debugging function and 75% wanted a simple
way to package function block System Configurations.
Further discussion with engineers from Tait Control
Systems [TCS, 2006] confirmed the shortcomings of
FBDK.

Other function block tools include the CORFU
project which includes an UML generator that can
generate UML diagrams from function block descriptions,
and ISaGraph version 5.0, which is a proprietary
commercial product.

2 Workbench Project Scope

2.1 OOONEIDA Workbench
The OOONEIDA Workbench is an open source project
started by OOONEIDA and initially developed by Dr.
James H. Christensen. It is released under the General
Public License.

The main purpose of the Workbench project is to create
an open source tool for the development of function block
applications in compliance with the IEC 61499 standard.
The ultimate goal is to provide an open development
platform for all developers similar to what is achieved by
the Eclipse™ development environment.
This admittedly can spark the creativity of the researchers
using IEC 61499 and help them to capture their
experience in form of a versatile and powerful software
toolset.

2.2 First Technical Goals of the Workbench
Project

The main aim at this stage was to create a debugger for
the Workbench. Key functions include displaying the
current state of the ECC and input output variables and
events. However, in order to do this, workbench must first
be able to create, edit, compile and run function blocks.
Initially the Workbench was only able to open and view
the XML representations of function blocks.

3 Workbench Implementation

3.1 Workbench Compiler
The major existing function block execution

environments now are FBRT (Function Block Run-Time
by Rockwell Automation) which is embedded in the
FBDK (Function Block Development Kit [FBDK, 2006]
by Rockwell Automation) and open source project
FUBER [FUBER, 2006]. Both of the run-times are
implemented in Java and use the Java Virtual Machine to
launch the function blocks. FBRT is selected as the
run-time for Workbench because it completely supports
the IEC-61499 standard, is the mostly wide used and
because it is suitable for various environments. For
instance, the J2ME version of FBRT is able to run
function blocks on embedded devices. The first target for
Workbench is to make it compatible with FBRT, however,
other runtimes are also envisaged.

FBDK translates the XML representation of function
blocks into JAVA source code. The general JAVA compiler
is then utilized to compile the JAVA source code to JAVA
classes which can be launched by the JAVA Virtual
Machine. The following diagram illustrates the normal
implementation process of FBDK.

Figure 3. FBRT Compiler Model.

The inconvenience of this method is that after a function
block is compiled each time, the user is required to restart
FBDK/FBRT to reload the class before it can be used. In
the Workbench this problem is solved as follows. Rather
than using JAVA code emitter class, Workbench uses
eXtensible Stylesheet Language (XSL) and eXtensible
Stylesheet Language Transformations (XSLT) to translate
XML source code to JAVA source code which can also be
compiled by the general JAVA Compiler. XSL is able to
translate files stored in XML to a different document type,
such as JAVA, by applying an XSLT translation table.

Figure 4. Workbench Compiler Model.

To facilitate the XSL transformation, the XML document
converted to a further data format which can be utilized
by the XSL translation engine. The JAVA Document
extension libraries (DOM) defined by W3C is introduced
for building JAVA source code. The DOM library inputs
XML files and parses the keywords in the XML to form a
tree structure.

The XML translation table is applied then to the new
tree structured object. Various templates are built in the
translation table. The keywords selected from the DOM
Parser will be matched to the template keywords and the
corresponding JAVA source code will be generated.

In order to be compatible with the existing run-time, the
JAVA source code created by Workbench must appear
identical to the code generated by FBRT. The Table
shown in figure 5 shows all fundamental templates in the

translation table.

Figure 5. Translation Table Example of XSLT.

The XSL translation is done in three levels as can be
seen in Figure 5. The scan process will initially match the
keywords in the XML source code of the top level
templates. The common type for IEC-61499 objects are
function block (including basic, composite and service
interface type), Device/Resource/Adapter type and
System configuration. When the transformation is
processing, the XSLT transfer engine will invoke the
internal level templates when the keywords from those
levels are found. On the fundamental level, a number of
practical functions are implemented in order to be
compatible with the FBRT runtime. The translation table
will provide identical functionalities as FBDK. A problem
rose upon this feature - how to automatically implement
sequence of numbers or perform nested loops of JAVA
codes in order and check validity of these generated JAVA
codes. The semantics of templates and parameters of XSL
are applied to this situation as follows: when the variables
for counting numbers and increment in sequence or nested
loops are required, the translation table will call a sub
template internally which passes the variables as
parameters (constants here). After the execution is
completed, the parameter will be modified and the sub
template will be invoked again to perform looping.
As described before, algorithms in the function blocks can
be represented in a variety of languages and logics.
However, the current version of the Workbench can only
support algorithms in JAVA.

3.2 Workbench Launcher and Remote Debugger
The Workbench Launcher is essentially based on the
FBRT runtime. The basic execution semantic of FBRT is
the call-and-wakeup method. The function block object
class will invoke the internal function to call the
connected function block which is implements the event
generation. When an event is passed to a function block,
that function block will be activated and start executing its
internal algorithms. These execution processes are
controlled and scheduled by the System Manager class in
the FBRT package. System Manager supports executing
function blocks or system configuration by passing XML
source as the input arguments. In addition, several classes
in the FBDK tools package are compulsory inserted into
the FBRT to facilitate FBRT when parsing the XML to
Java source code.

However the new customized FBRT runtime is still not
capable for remote debugging functionalities. The

structure of new Debug Manager can be seen in Figure 6.

Figure 6. Debug Manager Design.

Workbench will start launching the function block or
System Configuration by sending the stored XML files to
the FBRT System Manager. The new functions in the new
FBRT will start executing the function blocks/system
configuration and send the data or ECC state generated by
those running instances. When the Debug Server receives
these data, the data will be saved into its corresponding
position in the database folder in the XML form. Finally,
Workbench will reload the data from the debug database
for a fixed period and display it to the users.

In FBRT, all function blocks or device types are
implemented as class inherited from FBInstance
(Function Block basic instance – abstract class). The new
debug client class is added into the FBRT in order to
create a new TCP connection for sending data. The related
sending functions will be integrated into FBInstance class
for updating the ECC state, input and output events or
data. In the Workbench Compiler, these functions are
inserted into the function blocks algorithms which will
send data back when any ECC state has changed or
Event/Data variables are updated. As the aim of
debugging is real-time and remote type devices, the sent
data must be in management commands format in XML
consistent to the IEC-61499 standard. Management
commands are used in establishing connection between
remote devices in the function block which enables the
systems running distributed over networks. However the
IEC-61499, standard does not support any debug
keywords in management commands. Figure 7 is an
example of the standard format of management
commands:

Figure 7. Standard management commands [Vyatkin,
2006].

The added management commands will maintain an

identical format to the IEC-61499 standard with newly
introduced Action keywords. The new keyword
“DEBUG” is used for action type and three special
command keywords are defined for updating ECCState
(ECC state), DEvent (Events) and Data (Data types). (see
Figure 8)

Figure. 8. Format of Debug Management Commands

The Parameters are Name, Type and Value which are all
compulsory fields. Further details can be viewed in
Appendix A: Extension of management commands for
remote debugging.
The Debug Server is designed as a multi-thread TCP
Server which will listen to the port 61501 (randomly
pre-defined). The Debug Server needs to be setup and run
externally before launching the function blocks/system
configuration. The debug server will return the
corresponding response and save data into the debug
database in XML form.
The database file is designed to have two sections. The
first section is the normal graphical representation of
function blocks which is the equivalent to the function
block XML representation. The second section will save
all the debug management commands received from the
embedded devices and keep in database file (fbname.db).
Simultaneously another file (fbname.trace) will be
updated in a similar manner to the database file, but only
the debug management commands of the last received
ECC state will be stored. This trace file is designed for
graphical view in the Workbench.
The Workbench Debugger will load the trace file of
selected function blocks and display it in various views.
The debugger currently supports basic function block,
device type/composite function block and system
configuration debugging. A graphical view of the ECC
and interface of input/output events and data will be
displayed. For basic function blocks the current state and
current updated events/data will be highlighted as well.
Function block networks will be illustrated and the last
updated events and data will be highlighted for composite
function blocks, device type and system configurations. In
all cases, the actual value of data variables will be shown
in a tabbed panel. There are two updating modes for
Workbench Debugger: Manually or Automatic. The
manually updating mode will only refresh the graphical
representation when the user presses the update button.
The automatic mode will refresh itself in a defined period
of time.
Place illustrations (figures, drawings, tables, and
photographs) throughout the paper at the places where

they are first discussed, rather than at the end of the paper.
If placed at the bottom or top of a page, illustrations may
run across both columns. Securely attach them to the
master form with glue stick, spray adhesive, rubber
cement, or white tape. Do not use transparent tape as the
printing process blurs copy under transparent tape.
 Number illustrations sequentially. Use references
of the following form: Figure 1, Table 2, etc. Place
illustration numbers and captions under illustrations.
Leave a margin of 1/4-inch around the area covered by the
illustration and caption. Use 9-point type for captions,
labels, and other text in illustrations.
 Do not use line-printer printouts or screen-dumps
for figures---they will be illegible when printed. Avoid
screens or pattern fills as they tend to reproduce poorly.

3.3 Workbench Editor
In order for the Workbench to be a fully functional tool
for developing Function Blocks, an edit function was
required to create and store function blocks. Both
graphical and text editor are required.

FBDK uses standard JAVA File Input/Output libraries to
edit the XML function block representation files.
However, Workbench uses W3C Document Object Model
(DOM) objects when manipulating the XML files.
DOM gives more flexibility when manipulating files.
When inserting a node using DOM, a simple insert_node
command is required. Using standard Java Input/Output
however requires the whole text document to be read,
then the position of the node to be found using string
compare commands, then the actual node must then be
written to the file before the task is completed. The DOM
is a more efficient way of manipulating XML files.

All XML Function Block representations available in
the source directories are loaded as DOM objects into a
library of DOM objects upon startup of the Workbench.
Specific JAVA classes are then used to translate a DOM
object into a graphical representation of a function block.

Graphical representations are drawn onto a
JLayeredPane. Three separate panes are used, the bottom
pane used for drawing the function block shape, including
input and outputs; the middle pane used for drawing the
interconnections between function blocks; and the top
pane is used to highlight selected objects.

A graphical library was written to draw each
corresponding element within the IEC 61499 specified
XML document. When workbench displays a graphical
representation of a function block, the DOM object of that
function block is used to read each element of the XML
file, and the graphical library is used to draw each element
on the JLayeredPane. Figure 9 shows this process.

Figure 9. Graphical Representation of Function Blocks in
workbench

The text editor implemented in Workbench allows the
user to directly change the XML representation of the
function block or system configuration being edited.
When the file is edited, the document is then parsed back
into a DOM object.

In the Workbench text editor, if the XML file is correct,
then the object is updated in the original DOM library,
while also updating the graphical representation of the
function block. If the resulting XML does not satisfy the
Document Type Definition (DTD) of the IEEC 61499
specification, then the user will be notified, and the error
will also be displayed for the user to fix.

The graphical editor implemented in workbench also
changes the original DOM objects and updates the DOM
objects library. A mouse listener is implemented in the
JLayeredPane that displays a list of editing options, such
as “insert new event input” for basic function blocks or
“insert new function block” for composite function blocks.
When an option is chosen, the parameters required for the
option is then required, and once that has been filled in by
the user, the information is parsed back into the DOM
object, and the DOM objects library is updated.

Workbench also supports editing the internal Execution
Control Charts and Algorithms of the function blocks.
This can be done in a textual format as well as graphically
in the same way as described above. Currently,
workbench only supports algorithms writing in JAVA,
however with the implementation of an XSLT compiler as
explained in section 3.1, there is the possibility of
extending this function to support any other language, for
example ladder logic or other standard PLC-languages as
well as C++ and .NET languages.

3.4 Function Blocks Project Environment
A major concern with FBDK, and other Function Block
editors such as CORFU [CORFU, 2006] and ISaGraph v
5.0 [IsaGraph, 2006] is that there is no easy way to move
easily System Configurations from one computer to
another.

Function Block system configuration consists of
networks of function blocks that have already been
compiled and can be run automatically. Each System
Configuration contains an XML representation of the
Function blocks that have been previously compiled.
When launched the Runtime will find the location of these
compiled classes and run these files as required.

Currently, for a user to move system configurations
from one place to another, they have to manually search
for each XML representation of the function block, as
well as the compiled JAVA classes of the function blocks
and package them manually. The user then has to place
the packaged file into identical directories on the new
computer in order for it to run correctly. This is a very
time consuming process, and is very susceptible to errors,
such as accidently packaging the wrong file, or forgetting
a file which may cause major problems when running
automation objects.

The main function of the Function Blocks Project
Environment (FBPE) is a simple System Configuration
Import Export tool. The FBPE allows the user to choose
through all the system configurations located on computer
and select which one to export. Figure 10 shows a
screenshot of the tool.

When a system configuration is chosen to be exported,
it automatically searches through the source folders for
the required XML descriptions as well as the compiled
JAVA Classes and combines it into a JAR file. A project
file is also created detailing where each file is supposed to
be kept so that identical directories can be created on the
target computer when importing projects.

Figure 10. Screenshot of Function Block Project
Environment

When choosing to import a project, the FBPE just looks
through the project file and replaces each component
where it is required, and the system configuration is then
successfully ported onto a new computer.
Furthermore, the FBPE also has the added functionality of
being a launcher for the Workbench. On the right hand
panel there is a scroll panel showing a tree of all the XML
Function Block files, and if the user double clicks on one,
it will open that function block in the Workbench. This
allows for editing of system configurations or function
blocks before they are exported into a project file for
portability.
The project environment is also designed to be able to
check if System Configurations can be used on particular
remote devices. The Project Environment will check if the
remote devices have the necessary compiled Java classes
to run the System Configuration. If not, it will simply
upload the missing or updated classes onto the remote
device.

4 Further Development of Workbench
The most critical part of Workbench that requires further
development is a new execution environment. Currently,
Workbench uses a slightly modified Function Block Run
Time used by FBDK. Further development of this project
must include developing a new execution environment so
that Workbench may run independently of FBRT and
become a stand alone development tool. Furthermore we
propose the use of FUBER, an open source IEC 61499

execution environment, in the development process.
Another important function to be developed would be

support for other languages when writing function block
algorithms. Currently support is only available for JAVA
algorithms. However, developers may want to implement
algorithms in different languages other. The use of an
XSLT compiler makes this a reasonably straight forward
task. Only new translation tables for different languages
would be required.

Other developments required include a ladder logic
and SQL database interaction. This would allow users to
make the transition from PLCs to function blocks easier,
and would make function blocks compatible with current
industry standards. It will also allow developers to
integrate function block applications with their database.

5 Conclusions
From our work, we can conclude that:

 Workbench is now a full functioning, albeit
bug-ridden function block development tool with
edit, save, compile, and run functions

 Edit function now includes an error checker to
check the new XML file conforms with IEC 61499
standard.

 A new debug manager has been successfully
created.

 A Function Block Project Environment has been
created as a tool for transporting System
Configurations from computer to computer, and as a
launcher for workbench.

Future work on the project includes:

 Development of an execution environment;
 ECC algorithms in different languages;
 Ladder logic descriptor for function blocks;
 SQL database compatibility.

References
[IEC 2001] Function blocks for industrial-process

measurement and control systems - Part 1:
Architecture, International Electrotechnical
Commission, Geneva, 2005

[Vyatkin, 2006] IEC 61499 Function Blocks for
Embedded and Distributed Control Systems Design,
2006, 271 pp., O3NEIDA - ISA

[FBDK, 2006] Holobloc FBDK website:
http://www.holobloc.com/doc/fbdk/

[TCS, 2006] TCS website :
http://www.rockwellautomation.com.br/applications/g
s/ap/gsnz.nsf/pages/Tait_Control_Systems_Limited

[CORFU, 2006] CORFU website :
http://seg.ece.upatras.gr/Corfu/

[IsaGraph, 2006] ISaGraph Website:
http://www.arcom.com/products/pcp/pcp16.htm

[o3neida, 2006] OOONEIDA: http://www.oooneida.info
[FUBER, 2006] FUBER:

http://sourceforge.net/projects/fuber

Appendix A
Extension of Management Commands for Remote
Debugging

A.1 Debug Management Command for ECC
State:

<ECCState /> is indicated for ECC state changes.

Example:

Parameter Meaning
ID Integer Number which indicates sequence

number
Action “DEBUG” for remote debugging
Name Current Function Block Name
Type Hierarchy Function Block Type Name

Priority:
System Configuration >
Device Type >
Composite Function Block >
Basic Function Block

For Example:
Move_delay_6s.emit_complete
Move_delay_6s = composite function block type
name
emit_complete = basic function block type name

Value Value for ECC State, In sequence of Integers
from 1. Each Integer Number represent a state

A.2 Debug Management Command for Events:

<DEvent /> is indicated for a new event rose.

Example:

Parameter Meaning
ID Same as stated in ECC Section
Action Same as stated in ECC Section
Name Current Input/Output Event Name
Type Same as stated in ECC Section
Value Event defined as Boolean type, true equals the

event is risen, otherwise equals false

A.3 Debug Management Command for Data
Types:

<Data /> is indicated for a data type variable changed its
value.

Example:

Parameter Meaning
ID Same as stated in ECC Section
Action Same as stated in ECC Section
Name Current Input/Output Data type variable Name
Type Same as stated in ECC Section
Value Data Value, String type which represent all types

including String, Integer, Boolean

A.4 Debug Management Command Response
from Debug Server

Example:
<Response ID=”1” reason=”” />

ID refers to the request ID and reason field only occurs
ERROR when the data is not correctly stored in the
database.

Appendix B: Student Survey Results

Twenty-three students out of approximately sixty students
that were enrolled in the Computer Systems 405:
Computer Networks were posed with two questions. The
first one was “What is your main complaint with FBDK?”.
The results are shown in table one:

Answer no. of responses

No Debug Function 20

Can't Zoom in on ECC 2

Too many bugs 1

Table 1: Results for Question 1.

The second question posed was “What would be the two
things you would add to FBDK?” The results are shown
in table 2 below:

Answer no. of responses

Debug Function 21

ECC Zoom 4

Project Porting System 17

Other 4

Table 2: Results for Question 2

As can be seen by these results, the two most important
things that the students wanted were a Proeject porting
system and some sort of debug function.

