
On Migration from PLCs to IEC 61499:

Addressing the Data Handling Issues

Wenbin(William) Dai, Member IEEE, Valeriy Vyatkin, Senior Member IEEE

The University of Auckland, New Zealand

wdai005@aucklanduni.ac.nz, v.vyatkin@auckland.ac.nz

Abstract – The IEC 61499 Function Block architecture is
considered as the next generation of programmable control
technology. However, during migration from IEC 61131-3

centralized PLC to IEC 61499 distributed control, the data
handling efficiency issue has arisen. This paper uses baggage
handling system as case study to propose two different approaches

for providing efficient data handling model. The comparison
between the object-oriented and service-oriented models is
provided as well as the limitations.

I. INTRODUCTION

 Programmable logical controllers (PLC) are widely used in

automation of various industries. PLC program execution is

cyclic. In a scan cycle, PLCs read all inputs at the beginning

of execution scan cycle, then go through every active function

and update all outputs at the end of each scan.

 IEC 61131-3[1] is the widely adopted international

standard for PLC programming. Five standard programming

languages are defined in IEC 61131-3: Ladder Diagram (LD),

Structure Text (ST), Instruction List (IL), Sequential Function

Chart (SFC) and Function Block Diagram (FBD). Each

language has its own advantage, for instance, ladder diagram

is similar to electric circuitry drawings and is easy for the

maintenance electricians to understand the logics. The syntax

of Structure Text is similar to high-level programming

languages like C. Most software developers can get used to

the language syntax within minimal time.

 The PLC program execution performance is commonly

measured in the scan time. The execution time of each scan is

the sum of all instructions’ execution times which have been

executed in this scan, plus the time required to read from

input modules and update from output modules [3]. For many

real-time applications, the scan time of the PLC determines

whether the control system goal is achieved or not.

 The IEC 61499 standard [2] was published in 2005 with

the purpose to address specific requirements of distributed

systems and to complement the IEC 61131-3 standard. IEC

61499 aims at the improvement flexibility, reconfigurability

and interoperability of the current PLC standard. In IEC

61499, the programming overhead for inter-device message

exchange is minimal. Messages are easily passed around by

using for example publish/subscribe function blocks. The

basic element of IEC 61499 applications is a function block.

Function blocks can encapsulate code in different PLC

languages and be executed when an input event is triggered.

Obviously there is no concept of scan cycle in IEC 61499.

The time consumption for running a particular sequence of

algorithms is not limited to scan time. The IEC 61499

application will execute the algorithms continuously by

driving the downstream function blocks until no further

downstream function block is detected in the chain. The total

execution time of a program is variable, depending on the

particular length of the function block chain sparked by an

input event. The comparison of the program execution times

between PLCs and Function Blocks will be a critical factor

for measuring system performance. This paper will continue

from [1] investigating a more efficient approach for migration

base on comparing the system performance.

 The paper is structured as follows. In section II, data

handling mechanisms of both IEC 61131-3 PLC and IEC

61499 are reviewed. Then in section III, the background of

baggage handling system (BHS) is provided with an overview

of an existing PLC solution. Section IV presents the BHS IEC

61499 model based on object-oriented design and discusses

the limitations of this approach. Section V presents another

approach of service-oriented model for BHS also discussing

the limitations.

II. DATA HANDLING IN IEC 61131-3 PLC AND IEC

61499 FUNCTION BLOCKS

A. Data handing in IEC 61131-3 PLC Program

 There are several data types defined in IEC 61131-3: Bit

Strings, Integer, Real, Time, Date and Time of day, String,

Arrays, Sub Ranges, Derived and Generic [1]. Users also can

create customized data type based on the combination of

predefined data types or other user defined data types.

Variables must be declared in the symbol list before using

those data types. There are five different attributes for

variables: Global, Local, I/O Mapping, External and

Temporary [1]. The global scope variables are accessible in

all PLC tasks, while local variables are only accessible in the

task where they are declared. I/O mappings are a special type

of variables linked to actual inputs and outputs modules in the

PLC rack. Global variables are commonly used for constants,

databases and variables that must be utilized in variable PLC

tasks. Although it is convenient for PLC developers to

declare all variables as global, to prevent data being updated

accidentally by other tasks in the same PLC program, local

variables are still quite popular in industrial practices.

 During execution of PLC programs, instruction execution

time is controllable by the developers. Time elapsed for

running a PLC instruction depends on the operands of this

instruction – if the parameters are in the form of large data

block, it will take longer to process those data.

B. Data handing in IEC 61499 Function Blocks

 Designed as the next generation automation programming

paradigm, the IEC 61499 standard also complies with all data

types which were defined in IEC 61131-3. Adapter type as

another form of user defined data type is also supported in

IEC 61499.

 However, unlike IEC 61131-3 standard, there is no concept

of global memory or global variables in IEC 61499 standard.

All data variables in IEC 61499 function blocks must be

encapsulated in a function block. In PLC function block

diagram implementation of IEC 61131-3, a data variable can

be declared as input/output or address reference which allows

the developer passing variables as pointer into function block

diagram, updating values in the function block diagram and

returning the value of those variables. In IEC 61499, there is

no pointer type, so the corresponding variable shall be

declared as separate input variable and output variable. In

IEC 61499 function blocks network, each function block is

holding its own internal variables. When a specific data

variable is requested by an event emitted by another function

block, this block shall hand over the value of this variable to

the destination function block with an update event signal. If

the value is modified by another function block, the new

value must be passed back to the owner function block.

Otherwise, the Supervisory control and data acquisition

(SCADA) system or high level control system cannot trace all

data in the system as the owner of the data is changing during

runtime.

III. HEAVY DATA PROCESSING CASE STUDY AND

EXISTING ISSUES - BAGGAGE HANDLING

SYSTEMS

 The airport baggage handling system (BHS) is an

excellent example illustrating the complex data handling

process. In a typical airport BHS, massive information has to

be processed in a short period to ensure that all bags are safe

and delivered to the destination flight on time.

The diagram in Figure 1 illustrates a simple BHS layout

with all devices. When the passengers check their bags in at

the check-in counters, bag tags will be attached. The flight,

passenger and bag information shall be recorded in BHS for

further reference. Security currently becomes the most

concern issue of the aviation industry. All bags travelling

internationally must be screened before loading onto

the aircrafts. During the incline screening process, all bags

must be screened and tracked during the entire process. In

this case, bags positions, screening results and related

information must also be kept in the PLC memory. The PLC

database is designed as array of thousands bag records. Each

bag record is consists of multiple double integers which

contains all related information. To achieve tracking of bags,

each bag’s position in the BHS shall be updated during the

operation. This on-belt tracking process requires large

memory and powerful PLC processors capable of handling

those tasks in milliseconds. All bags passed screening test

would be sorted to their designed flights. Bags are also

required to be tracked during this sortation process to ensure

they are delivered to the correct flight. The sortation system

requires a number of powerful PLCs with large memory

to process bags in time. In a large airport baggage handling

system, commonly the BHS system is divided into several

subsystems that each subsystem controlled by a separate PLC.

Nodes are communicating with each other via sending

messages to other nodes. Bag information is spread around

other PLCs through those messages. This communication

overhead time is also critical for the BHS performance. The

messages must be stored into memory before executing the

algorithms to ensure the data are synchronized.

Existing PLCs’ performance does not always meet the

requirements of the baggage handling system. In a complex

system, single PLC may not be powerful enough to handle a

particular subsystem efficiently. In order to solve the issues,

more PLCs are required and each subsystem is divided into

more subsystems. On the other hand, PLCs are

communicating with each other for exchanging data during

operation. More PLCs means the communication overhead

will also be increased. When the number of PLCs reaches a

certain level, adding more PLCs will

actually decrease the performance due to the communication

overhead. According to the site experiences, this is not

the best solution to solve this issue. Also adding more PLCs

are not practical for cost-efficiency reasons due to their

high price.

Fig. 1. Baggage Handling System Diagram [10]

Fig. 2. Basic Function Block of a Standard Conveyor.

Fig. 3 FBCall_Conveyor Composite Function Block.

IV. IEC 61499 FUNCTION BLOCK MODEL BASED ON

OBJECT-ORIENTED DESIGN FOR BHS

 In this and the following section, we will investigate how

to improve the performance of a current PLC based baggage

handling system by migrating to IEC 61499 function blocks.

We will compare two design approaches. The code is

structured in a modular or object-oriented way similar to the

physical structure of BHS, but the internal logic is similar to

PLC code for a single conveyor [1]. We will refer to this

approach as object-oriented design, where the main object –

orientation feature is strong encapsulation of data. In the other,

the structure is optimized to minimize data exchange between

the modules. This approach will be referred to as class

oriented design.

A. IEC 61499 BHS Model Resulting from Straightforward

Migration from PLC

 To migrate from centralized PLC based control of the

baggage handling system from Figure 1 to IEC 61499

distributed function block control, a series of steps shall be

taken. One possible methodology, extended from [1] is akin

to the object-oriented concept similar to that of high-level

programming languages. In this approach, for all physical

devices in the system the corresponding function blocks will

be generated according to their physical layout, for instance,

conveyors, sortation machines or control panels.

For the first step, controllers of all such devices have to be

represented by basic function blocks. Figure 2 illustrates the

interface and internal algorithms of a basic function block of

a standard conveyor. As the function block in IEC 61499

must be triggered by events, REQ input event is

used to update all data inputs associated to this block.

This event is also the trigger of execution control chart (ECC)

inside the basic function block, that is an internal state

machine [3] defining the behavior of the block. Once the EC

transition condition is true, the ECC will jump to the next

state, execute the algorithm for this state, and then turn on

the related output events and update all associated data

outputs. In this case, a conveyor normally has several states:

off, stop, run, economy, and fault. Depending on the signals

from data inputs, conveyor will switch between states

automatically.

 Timers are used widely in all PLC applications. For

example, a standard conveyor will turn into economy mode

when it has kept running for a period of time and no bag was

detected. This mechanism is only activated when a timer is

set to the predefined time and no bag is seen from all

photoelectrical sensors installed on this conveyor. In IEC

61499 format, all delay timers are implemented in a separate

service interface function block – E_DELAY.

 In order to run the standard conveyor properly, several

timers need to be inserted into a composite function block

FBCall_Conveyor together with the basic conveyor control

function block FB_Conveyor. Figure 3 demonstrates the

interface of FBCall_conveyor and internal function block

networks. An additional timer is added when the EC

transition condition requires. Those FB_Conveyor blocks

raise the output event when this particular conveyor instance

is in the state to trigger the timer function block. The timer

done bit is set and trigger the ECC inside FB_Conveyor to

jump states when the predefined value is count up.

 To build the entire conveyor control system, all

FBCall_Conveyor function blocks shall be connected in the

same direction as the bags flow. This ensures each conveyor

understands the status of the upstream and downstream

conveyor to provide correct system behavior.

 As discussed in the previous section, bags are required to

be tracked through the entire BHS. In order to record all

information, a baggage database function block FBBag_DB

Fig. 4. Baggage Handling System OO Example in IEC 61499.

Fig. 5. Inefficient Data Handling in IEC 61499.

is essential. Each bag in the system has a unique ID and all

details of this bag are recorded in the database including the

time entering/exiting the system, IATA tag, screening status,

current bag position, destination and etc. This function block

provides both a read and write interface and keeps database in

the internal memory.

 When a bag enters the system, a new unique ID will be

assigned and this bag record will be stored into the first

conveyor tracking model. When this conveyor is running, the

tracking model will calibrate the latest bag position and

update it into the bag record. A FIFO (First-in First-Out) type

stack memory is built in the FB_Track.

 When the photoelectrical sensor is triggered at the most

downstream position of the conveyor, the first bag record in

the stack will be handed over to the downstream conveyor

when it is leaving the conveyor. All other bags that are still in

this tracking model will shift one position up in the stack.

Those tracking function block models are connecting with

each other in the same order of conveyor control function

blocks. Also after the bag details are updated during the

operation, this bag record must be synchronized with the

database. The major reason for updating bag record in real

time with database is that the baggage handling system

requires communication with high level control systems and

all data must be stored in the high level control system

database. Except those major control function blocks, HMI

functions and Inputs/Outputs updating functions in the PLC

program are also converted to individual function blocks. The

entire solution overview can be seen from Figure 4.

B. Limitations of the object-oriented design approach

 The most concern about the object-oriented approach is

data handling efficiency. As mentioned in the previous

section, there is no global memory concept in IEC 61499.

Instead, all data variables are encapsulated within basic

function blocks.

 In high level object-oriented programming languages (e.g.

C++ or Java), class members are defined in the proper scope

(in a specific class), and those local members are accessible

from public methods (functions) [5]. In IEC 61499 terms,

data variables are encapsulated inside a basic function block,

and those variables will be read or written via internal

algorithms, having access to data inputs/outputs. The object-

oriented design is proved to be suitable for PCs. The strong

CPUs and large memory of computers are capable to handle

complex data processing. Also the execution time is not so

critical for a PC program. Users can wait an extra couple of

seconds until the program finishes the execution. But for PLC,

execution speed is the most significant factor of the real-time

system. Baggage handling system is one of those typical real-

time high performance systems requiring huge data

processing in a short time. The most important feature of

PLC is reliability. Most PLCs are running under much lower

frequency than PCs but will never fail even under extra

weather conditions. The memory structures of existing PLCs

are mostly linear structures. For two or more dimensional

arrays or indirect addressing in PLC application, the

execution time is significantly longer than the flat code

structure. The processor must decode the indirect address first

before start processing the data. Under the object-oriented

design, the nested structures are applied through the entire

IEC 61499 applications. The execution performance might be

affected seriously.

 Beyond the processing speed issue, all data are stored

locally in the object-oriented approach. When another

function block requires a bit of data, this data has to be

requested out of the original function block. Refer to Figure 5,

when FB_Track_T101, FB_Track_T102 or FB_Track_T103

requires a single bag record from FB_Database, the bag

records must be handed over to those function blocks

individually. This is extremely inefficient in practice. If this

bag record is required by every function block in the system,

a data connection with an update event must be linked to

every function block in the system.

 In some worse cases, if all function blocks may update this

value and return the new value back to the original function

block, a pair of input event and data must be added to the

original function block. According to the example in Figure 7,

after the bag record has been updated, this record must be

handed over back to FB_Database. This doubles the

connections and increases the processing time. Those inputs

cannot be combined as the data merging is not allowed -

“Each data input of a component function block can be

connected to no more than one data output of exactly one

other component function block, or to no more than one data

input of the composite function block” and “Each data output

of the composite function block shall be connected from

Fig. 6. Proposed extension of IEC 61499: Data Arcs Merging.

Fig. 7. Data Out of Sync Example in IEC 61499.

Fig. 8. Class-Oriented FB_Conveyor and ECC.

exactly one data output of exactly one component function

block, or from exactly one data input of the composite

function block“ [3].

 In our view, the restriction on data arc merge can be

“loosened”, allowing the merge if sources of all merging arcs

have the same data type. A stronger condition can require

also an event arc from each of the source FBs, but it is not

necessary, since an input event sent to the destination FB can

ensure sampling of the data input. Thus, the merge of data

arcs can look like in Figure 6. The same idea can be

implemented using adapter connections that can combine

both event and data arcs. Then the merge of adapter arcs

needs to be allowed.

 However, copying data around function blocks in any case

will slow down the execution speed of the application. The

slow execution time shall cause the baggage handling system

failing. For example, the bag positions cannot be tracked,

communication messages cannot be processed in time or

sortation system cannot sort any bags as not enough time is

given. Except the data handling efficiency, data

synchronization is another critical issue which must be

considered in object-oriented design. Referring to Figure 7, if

a bag record is passed from the database to two function

blocks, one is for updating the bag tracking position and the

other is for updating bag screening status. After the bag

record is duplicated and updated in both tracking update and

screening update block, both values will be returned back to

the database function block. In this case, the first bag record

returned to the database will be overwritten by the second bag

record. This shall cause this particular bag record out of sync.

Depending on the occurrence of updating event, either the

new bag position or the new bag screening status will be lost.

Although this depends on the execution semantics which is

not in this research scope, this situation can be totally avoided

already at the design stage. For function block semantics and

execution model, please refer to [6] and [7].

 Overall, the object-oriented approach seems to bring heavy

performance overheads for migration of PLC programs to

IEC 61499 FBs.

V. NEW APPROACH – IEC 61499 FUNCTION BLOCK

MODEL BASED ON CLASS-ORIENTED DESIGN

 Due to the issues discovered in the previous section,

another type of high level programming concept – service-

oriented design will be introduced in this section. Service-

oriented architecture comprises unassociated, loosely coupled

units of functionality that have no calls to each other

embedded in them – in other words, grouping reusable,

composable and interoperable in the same service [9]. This is

majorly used in the web services approach [11]. In the IEC

61499 term of the Class-oriented design, all reusable and

interoperable functions should be grouped in a single function

block. For instance, all conveyors shall be included in a

single function block and all data related to conveyor control

shall be local to each other.

 Our sample conveyor system from Fig.1 will be redesigned

under principals of class-oriented design as follows.

 First, all FBCall_conveyor function blocks are grouped

together into a single function block – FB_Conveyor. The

interface and internal algorithm are given in Figure 8. The

physical Inputs status would be updated in a fixed period, for

example, 50ms. In every update cycle, an update event would

activate the FB_Conveyor to refresh the Input status and

update those values inside FB_Conveyor. Once the update is

completed, the algorithm will be executed which would go

through individual conveyors one by one in the system. An

internal memory stack is designed to store all conveyor status.

The update state algorithm will pick up each conveyor data

from internal memory, go through the conveyor control logics

and generate output status. Those outputs module status

finally shall be passed back to actual physical output modules.

Following the conveyor control function blocks, all tracking

function blocks shall be formed into a single function block.

Similar to conveyor control function blocks, in every update

cycle, an event is raised for reading encoder counts and all

photoelectrical sensor status into the FB_Track. Inside

FB_Track block, an internal memory stack is used to keep all

bag tracking records same as of conveyor function blocks.

When the ECC jumps from the idle to the update state, all

bag positions shall be updated one by one in the internal

memory. After all bag records are refreshed, all

photoelectrical sensor status shall be checked. If any bags

arrive at the end of a tracking model, the bag record will be

virtually handed over to next tracking model by modifying

the status in the memory. No extra handover process is

required in this case.

 All other parts including HMI function blocks and control

panels shall follow the identical guiding principle to be

converted into a single function block. A time stamp function

block is attached to the each end of function block chain in

object-oriented model and service oriented model to compare

the execution time. Table 1 below listed the execution in

milliseconds for both models. The result demonstrates the

service oriented model executes faster under 3 conveyors

system with 3 tracking zones. When the number of conveyors

and tracking zones goes up, the time difference will be much

more significant.

TABLE I
EXECUTION TIME COMPARISON BETWEEN CLASS-ORIENTED AND

OBJECT-ORIENTED MODEL

Model Average Execution

Time(ms)

Max Execution Time (ms)

Object-Oriented 15ms 16ms

Class-Oriented 10ms 12ms
aThe test is based on 3 conveyor and tracking models simulating in

FBRT(Java) running on a PC(2.4Ghz CPU, Dual Core)., 1ms is the minimum
time Java can catch on a computer.

 Comparing to the object-oriented model, class-oriented

model is more efficient in data handling. No actual data

handover process has taken place during the execution. For

limited power PLCs, this will significantly reduce scan time

and speed up the entire program execution. All data are still

local attached to the function blocks that no global variable is

required. This is compliance with the current release of IEC

61499 standard. As all services are actually happening in the

basic function block algorithms for the service-oriented

model, the overall structure of function blocks network is

much cleaner and tidier compared to the object-oriented

model. It is beneficial for developers to have better

understanding of the design in short time and easily deploy to

other projects without any major work.

 However, this concept cannot be directly applied to

composite function blocks now. As no internal memory is

available in composite function blocks, data variables still

have to be passed around function blocks inside the

composite function blocks. This will also affect the execution

efficiency of the entire program. To apply class-oriented

design in IEC 61499 efficiently, the basic function block

should be considered as the fundamental design unit. The data

variables which will be exchanged between basic function

blocks inside composite function block must be optimized.

The minimum number of data variables passing around the

function block network shall provide maximum efficiency for

data handling process.

 There are some other options for solving data handling

issues on implementation level. For example, a service

interface function block can be used to access the real time

database. Then all function blocks can read from/write to

database via that SIFB. Alternatively, the distributed data

processing can be applied to speed up the process. Those

possibilities will be investigated further in the future.

VI. CONCLUSION

 This paper discussed a key issue during migration from

IEC 61131-3 PLC centralized control to IEC 61499 function

block distributed control – data handling efficiency. The

object-oriented design of IEC 61499 does not best suits the

real-time complex data handling systems. Instead, a class-

oriented design is given and proven to better suit this system.

Class-oriented approach provides an efficient use of system

resources and easier understanding and better performance

compared to object-oriented approach especially for real-time

high performance systems. Finally, to apply the class-oriented

approach to all generic cases, the data handling in composite

function block must be further investigated to fit the service-

oriented model better.

VII. REFERENCES

[1] W. Dai, V. Vyatkin, “A Case Study on Migration from IEC 61131 PLC

to IEC 61499 Function Block Control”, 7th International IEEE

Conference on Industrial Informatics, (INDIN’09), Cardiff, June 2009
[2] IEC 61131-3, Programmable controllers - Part 3: Programming

languages, International Standard, Second Edition, 2003

[3] IEC 61499, Function Blocks, International Standard, First Edition,
2005

[4] G.Michel, Programmable Logic Controllers – Architecture and
Applications, John Willey & Sons, London, 1992.

[5] J.W. Webb and R.A. Reis, Programmable Logic Controllers: Principles

and Applications, Prentice-Hall, Engelwood Cliffs, NJ, 1999.
[6] P. Benjamin, Types and Programming Languages, MIT Press. ISBN 0-

262-16209-1, section 18.1 “What is Object-Oriented Programming?”

[7] C. Sunder, A. Zoitl, J.H. Christensen, M. Colla, T. Strasser, “Execution

Models for the IEC 61499 elements Composite Function Blocks and

Subapplication”, 2007 5th IEEE International Conference on Industrial

Informatics, Volume 2, 23-27 June 2007 Page(s):1169-1175.
[8] V. Vyatkin, V. Dubinin, “Sequential Axiomatic Model for Execution of

Basic Function Blocks in IEC 61499”, 2007 5th IEEE International

Conference on Industrial Informatics, Volume 2, 23-27 June 2007
Page(s):1183-1188.

[9] H. Channabasavaiah, H. Tuggle, “Migrating to a service-oriented

architecture” IBM Developer Works, 16 Dec 2003.
[10] Baggage Handling System Sample Graph, Retrieved from

http://www.robson.co.uk/Airport_conveyor_solutions/Baggage_handlin

g_conveyors.htm, 14th Dec 2009.
[11] D.K. Barry, “Web Services and Service-Oriented Architectures, Part 1

Service-oriented architecture overview”, Published by Morgan
Kaufmann Publishers, ISBN 1-55860-906-7.

http://www.robson.co.uk/Airport_conveyor_solutions/Baggage_handling_conveyors.htm
http://www.robson.co.uk/Airport_conveyor_solutions/Baggage_handling_conveyors.htm

