Formal Modeling and Verification in the Software Engineering Framework of
IEC61499: a Way to Self-verifying Systems

Valeriy Vyatkin, Hans-Michael Hanisch
Dept. of Engineering Science,
Martin Luther University Halle-Wittenberg,
D-06099 Halle, GERMANY
e-mail:Valeriy.Vyatkin@iw.uni-halle.de

Hans-Michael.Hanisch@iw.uni-halle.de

Abstract - This paper discusses the issues related to the
correctness of agile manufacturing systems with distributed
architectures. The corresponding development of software
engineering methods targets the goal of easy-re-configurable
software self-organized similar to that of the hardware.
However, the existing methods of software validation (manual
testing or computer-aided simulation) are too slow to keep up
with a pace of reconfigurations. In this paper we present an
approach and a software tools to incorporate the formal
verification to the practice of control engineering. The
software package “Verification Environment for Distributed
Applications” (VEDA) has been developed for model-based
simulation and verification united by a homogeneous
graphical user interface. Net Condition Event Systems
(NCES) are used for modeling, VEDA deals with distributed
controllers as defined in IEC61499 and automatically
generates the formal model of the controller given its source
code.

LINTRODUCTION

The state of the art in design of industrial automation
systems is characterized by massive substitution of
centralized control systems by distributed network-based
ones. Along with other benefits (such as cost-efficiency
and reliability), the latter provide means for real agility of
the production equipment, such as fast, easy and robust
reconfiguration. As it is shown in Figure 1, the distributed
control system can be easily upgraded by corresponding
components in case that the production line is appended by
anew device (measurement station). The bottleneck on the
way to real agility is software engineering which lags far
behind the abilities of the hardware. Definitely, using
currently existing methods of software design and testing,
the lion share of time is spent on development or
modification of the control software components for the re-
configured production equipment.

The corresponding development of software engineering
methods targets the goal of easy-re-configurable software,
which could be self-organized similar to that of the
hardware. The mottoes of those concepts are “Open
Architectures”, “Integration without Master Control”,
“Plug-and-Play software modules”, etc. One of the latest
efforts in this direction is the development of the new IEC
standard 61499 [1, 2] which provides a uniform vendor-
independent solution for programming of distributed
control systems by integration and extension of current
standards IEC 61131-3 (Programming languages for
Programmable Logic Controllers) and IEC 61804
(Function Blocks for Distributed Control Systems).
Representation of the systems according to the standard
helps to focus on the essential issues, regardless of the
variety of existing hardware and software solutions and

0-7803-7241-7/01/$10.00 (c)2001 IEEE

network protocols. In the framework of IEC61499 the
controller can be understood as its software code that can
be tested (at least partially) without knowledge of
implementation details.

The basic programming structure of IEC 61499 is a
function block with event and data inputs and outputs. The
block is conditionally divided onto "head" responsible for
the execution logic, and "body" which contains algorithms
of data processing. The result of this change of paradigm is
that there is no longer a strictly sequential execution of the
control program. Each function block has its own event-
driven execution control, and the complete execution
control of a system of composed function blocks is
physically as well as functionally distributed.

An application in the IEC61499 is a net of function blocks
interconnected via data and events. The blocks of the same
application may be distributed physically over different
devices. Thus, the control logic can be designed without
knowledge about particular architecture of the control
system where it is to be executed. The architecture can be
described later, or modified independently of the core
description of the application.

N
Mmeasurement

storage transfer processing

control hardware manufacturing equipment

control software

Figure 1. Reconfiguration of the production equipment is easier
with distributed control architectures and software engineering
concept of “Plug-and-Play function blocks™.

113

Figure 2. VEDA provides the source code - based verification and
simulation of IEC61499 control applications.

1I. FORMAL METHODS - SUCCESSES AND
SHORTAGES

Requirements to the software engineering concepts,
appropriate for application in agile manufacturing control
systems include as an important part adjustment and
improvement of the methods of testing. The existing
methods of testing (manual or even based on computer-
aided simulation) are too slow to keep up with the pace of
reconfigurations. Taking in account the complexity of the
systems under control, the provided level of assurance in
error-detection is also far from being satisfactory.The
successes in development of formal methods create new
opportunities for improvement of the testing routines.
Thus, formal verification of the control systems, proposed
and actively studied in academia, is getting closer to the
reality of control engineering.

Since more than two decades back, when the verification of
control systems was proposed in works [3, 4], its common
pattern is as follows. Both uncontrolled plant and controller
are modeled using a finite state or hybrid formalism. The
models are interconnected the same way as a controller is

Figure 3 Part of control application in [EC61499 MVC context.

interconnected with the plant, forrning thus a model of the
closed-loop systems. It is important to keep separated the
models of plant and controller in order to provide means of
independent controller or plant modification. Specifications
of desired or forbidden behavior are formalized, converted
to the terms of the model and finally checked with respect
to the model using a program tocl, called model-checker.

Despite of the theoretical elegance and clarity of this

framework, there are some reasons preventing wide

penetration of the verification to the practice. of control
engineering. The most essential are as follows:

e Formal modeling is not easy for engineers and is not
integrated in the current software engineering
practice. E.g. testing and simulation require models
different from the models used for verification.

e Modeling of interconnected plant/controller systems
requires formalisms equally good for both plant and
controller.

e Formulation and formalization of specifications are
tricky.

e The model-checking is computationally complex, and
is not always supported by a proper Human - Machine
Interface.

Overcoming these difficulties was the aim of developing

the Verification Environment for Distributed Applications

(VEDA) [5,6], that is a software package for model-based

simulation and verification united by a homogeneous

graphical user interface (Fig.2). VEDA deals with
distributed controllers as defined in IEC61499 and
automatically generates the formal model of the controller
given its source code. The formal modeling is performed
using Signal-Net Systems (SNS) [7,8]. VEDA includes
facilities to develop models of plants such as an editor for
SNS models. VEDA allows to build the closed-loop
models of plant and controller, and to prove formally
whether the overall behavior of the system satisfies the
properties of desired/undesired behavior. The analysis of
the verification results in VEDA is supported by simulation
and visualization of the process along selected trajectories
that helps to accelerate understanding the reasons of

114

failures and fix them.

The verification trials, conducted so far with VEDA
revealed, however, that despite of a lot of provided benefits
the verification still involves a big deal of overheads to the
normal routines of control engineering. These mostly refer
to the modeling of plant and especially to the visualization
of the process.

III. INTEGRATION INTO SOFTWARE ENGINEERING
FRAMEWORKS

One of the reasons preventing the formal approaches from
becoming a part of engineering practice is that modeling of
controlled and verified systems is either not a part of the
engineering process at all, or that models used in practice
for simulation and testing cannot be used for formal
procedures of verification or synthesis.

The situation is, however, changing. The necessity of
modeling is getting recognized in the industry, and the
modeling is better supported by means of IEC61499. The
IEC61499 provides abstractions for description of the
whole application, rather than merely a programming
language for PLC. It gives an opportunity to take into
account many implementation issues, such as components
distribution, communication, properties of the sensors,
actors, etc.

According to the software engineering concept of
IEC61499, as described in [9], a control application is
developed using Model, View, Control and Diagnostic
(MVCD) components. This framework originates in object-
oriented design, being adapted for use in the modeling,
simulation and testing of industrial process measurement
and control systems (IPMCSs) in the IEC 61499 context by
modifying some definitions as follows:

1. Model: A function block that represents the time-
dependent logical behavior of the system or device
being controlled.

2. View: A function block that represents the graphical
display associated with one or more Model types.

3. Controller: A function block that encapsulates the
control functions to be performed on one or more
instances of associated Medel types, and presents
appropriate event and data interfaces for integration
of its functions with those of other Controller blocks.

This basic MVC framework may be also equipped with
Human-Machine-Interface (HMTI), Diagnostic, and Adapter
components. Figure 3 shows an example representing
control system of a typical manufacturing component — a
processing (drilling) station with a carrier bringing
workpieces. The control system is built of two independent
components, one of which is responsible for control of the
drill, and the other controls the carrier. The controllers are
connected to the sensors and actors, as well as to each other
by a network. In terms of IEC61499 the controllers are
represented as two resources, each of which contains a sub-
application. The latter are nets of function blocks,
implementing Control, Model, Human-Machine Interface
and Communication functions.

Figure 4 shows the internal hierarchical structure of the
component related to the control of the carrier. The
TS.MVC block implements the closed-loop connection
between the controller and the Model/View (MV) part,
which, in turn, consists of the MV components of the
carrier itself and of the sensors. Finally, the figure shows
on the last level of the hierarchy the open-loop structure of
the MV of the carrier: it consists of the simulation model of
the carrier, which supplies the data to the corresponding
View block. Thus, the visualization of the whole process is

Resource containing an independent subapplication - Controller,

View and the mode! of carrier and rele

Visualisation of the Process

Dynamic Model
of the Carrier

Model/View of the Carmrier
and sensors

Figure 4. Hicrarchical structurc of the application in MVC - framework,

115

built by multitude of the components’ View blocks.

The goal of our work is not only to cope with the problems

caused by the versatile structure of the control applications

in the MVC framework (containing not only pure controt
logic), but even benefit from it.

The following steps constitute the integration process:

1. Substitute the “Model” components by the equivalent
abstractions in SNS. For this purpose a description of
the model in a hybrid modeling formalism is required.
We assume that it is given as a hybrid automata
following the syntax of Execution Control Charts of
IEC61499 Function Blocks. The hybrid model is
discretized and substituted by the corresponding
discrete model in SNS. In future, when the abilities of
hybrid model-checkers would allow immediate model-
checking of hybrid models of realistic designs, this step
could be omitted.

2. Substitute the “View” components by “dummy” SNS
primitives (under assumption that the View FBs
generate no outputs affecting the logic of execution).
The SNS models must have interfaces equivalent to the
original function blocks;

3. Convert automatically the “Control” component to the
corresponding SNS modules by means of VEDA’s
translator.

4. Interconnect the obtained SNS modules using the layout
of interconnections from the original application
(performed by VEDA automatically).

5. Perform the model-checking using the interconnected
SNS model. In case that the model-checking reveals
some states in the reachability space, where the
specification does not hold, generate trajectories to
these states and visualize the behavior of the model
along them.

6. Visualization in a particular state of the trajectory can
be performed given the values of parameters generated
during the model-checking and using the existing
Model/View components.

IV. TRANSFORMATION OF MODELS

In this section we illustrate the first step of the algorithm
given above. First, some essentials on the modeling
formalism of Signal/Net Systems are necessary. Net
Condition/Event Systems (NCES) [69] - a
Place/Transition net with modularity support - a finite state
formalism which preserves the graphical notation and the

Figure 5. Two NCES modules interconnected by condition and event
arcs.

non-interleaving semantics of Petri nets, and extends them

with a clear and concise notion of signal inputs and
outputs.

Given a Place/Transition net N = (P,T,F,m ;) with set of

places P, set of transitions 7, flow relation F, and initial
marking of places m,, the Net Condition/Event system is
defined as a tuple N = (N, 6,,\¥,, Gr} , where g, is an

internal structure of signal arcs, ¥, is an input/output
structure, and Gr < Tis a set of so called "obliged"
transitions. The structure W, consists of condition and
event inputs and outputs ci,ei,eo,co. The structure 6, is

formed from two types of signal arcs. Condition arcs lead
from places and condition inputs to transitions and
condition outputs, providing additional enableness
conditions of the recipient transitions. Event arcs from
transitions and event inputs to transitions and event outputs
provide one-sided synchronization of the recipient
transitions: firing of the source transition forces firing of
the recipient, if the latter is enabled by the marking and
conditions.

The NCES modules can be interconnected by condition
and event arcs, forming thus distributed and hierarchical

models. Figure 1 shows an example of NCES which
consists of two interconnected modules. NCES having no
inputs are called Signal/Net Systems (SNS) [8,12]. The
model in Figure 1 is a SNS. The SNS can be analyzed
without any additional information about its external
environment. Semantics of SNS covers both asynchronous
and synchronous behavior that is necessary when modeling
of interconnected plants/controller system is concerned.

A state of the NCES module is completely determined by
the current marking m: P — N of places and values of

inputs. A state transition is determined by the subset
< T of simultaneously fired transitions, called step.
The transitions having no incoming event arcs are called
spontaneous, otherwise forced. A step fully determines the
values of event outputs of the module. A step is formed by
selection of some of the enabled spontaneous transitions,
and all the enabled transitions forced by the transitions
already included in the step. Thus, both states and
transitions of NCES models are distributed, that allows
more efficient modeling of distributed systems.

In timed NCES arcs from places to transitions are marked
with time intervals, defining low and high limits of the
permeability of the corresponding arc. All places bear
clocks indicating the age of the marking. Then, a transition
is enabled not only when its pre-places are sufficiently
marked, but also when values of their clocks are within the
time intervals of the incoming arcs of the transition. Clocks
of marked places increase their values by discrete units
when there are no enabled transitions in the state, but some
of the transitions might become enabled after such an
increment of clocks. As a direct consequence, the states
have attribute “delay”, that specifies the time increment of
the clocks of this state with respect to the clocks of its
predecessors.

The NCES model of the carriage, built in hierarchic
modular way is given in Figure 6. The model represents the'

116

autonomous carriage and the workpiece including the logic
of its placing/removing. It substitutes the function block
“CAR.MV” in the original application since it has an
identical input/output interface (except for the output X —
the numerical value of the coordinate). Interconnections
between component blocks of the system are mapped to
condition and event arcs connecting modules of the model.
The model consists of modules modeling: a) locations and
states of the carriage; b) setting/removing of the workpiece;
¢) sensors load.pos, work.pos, loaded, and the event
generator, which issues an event in every condition change,
that is required for communication with the IEC61499
function blocks. The model explicitly defines conditional
and time dependencies related to co-existence of several
components of the plant's unit. For example, the condition
arc from the module "Carriage" to the module "Workpiece"
corresponds to the condition "Workpiece can be
set/removed to/from the carrier only at the load position of
the latter." Typically each elementary unit is modeled as a
state-machine, where the states are modeled by the marked
places. The power of place/transition nets allows, however,
not only to model concurrent interconnected state
machines, but also to represent various quantities, such as
material flows within the same consistent model. Time
properties of the object "Carriage" are expressed in the
model by means of time intervals associated with place-
transition arcs of the model.

We apply this approach using VEDA and the prototype
implementation of the IEC61499 known as Function Block
Development Kit (FBDK), which implements function
blocks translating them to Java. The Model and View
function blocks either should be written by user in Java, or
composed from library blocks also written in Java. The
whole application is translated eventually to the Java code
and executed using the Java virtual machine.

When VEDA points out the states in the reachability space,
where behavior of the system is of interest to analyze (say,
it is erroneous), the usual scenario is to follow the
trajectory leading to this state visualizing the process and

Figure:6.:Modular NCES model of the carriage with workpiece

trends of all relevant data along the trajectory. VEDA uses
the data available in the description of states in the
computed state space, and re-computes the other missing
data directly by means of the original model components.
Then the data are passed to the View components to build
the visualization screen in the desired state. Thus, the
animation can be provided without essential overheads.

V. INTEGRATION OF VERIFICATION TO HOLONIC
MANUFACTURING SYSTEMS

One of the applications potentially beneficial for [EC61499
are so called Holonic Manufacturing Systems (HMS) [10].
The HMS concept is based on the idea of kolons, that are
independent self-configuring machines negotiating with
other surrounding holons in order to fulfill the production
plan. HMS promise to meet the increasing demands for
robustness to disturbances, adaptability and flexibility to
rapid change on the factory floor of manufacturing
enterprises. Besides, the holonic organization helps to cope
effectively with failures of production equipment,
increasing its workload and output.

On the other hand, it is intuitively clear, that a system built
of self-configuring components cannot be completely
tested using common testing methods due to the large
number of possible combinations of different architectures.
Hence, testing of control software for HMS is a challenge
for control engineering. The qualitative improvement of
validation can be achieved by formal verification of the
control logic, along with justification of controller's
robustness with respect to possible malfunctions of some
system components, such as sensors, actuators, or other
equipment units.

Verification that requires high computation power can be
used as an external web-service for control engineers
developing and testing control systems. A description of
the latter in IEC61499 could be sent to the "Verification
agent" along with specifications of correct/incorrect

17

behavior. The server would perform model generation,
model-checking and return of results to the client.

Moreover, the verification can be seen as a means of self-
testing of holonic manufacturing systems. In a particular
configuration of the system (or even before it has been
formed), the supervising controller checks (by means of
verification), if co-existence of the current components

Provides services of

on-line and Predicts and T~

real-time validation resolves confiicts suPelemg

- - between holons, Agent
Verification validates
validates of HMS
A%entA N
runs'on a high forming structures
performance

Sotirces in IECS1499

intranet/internat

Uses verification to extend Engineering
testing of the being developed A t
control systems gen

Figure 7. Possible web-integration of the verification agent.

(with their scheduled tasks) may lead the system to a
number of known (or inferred) erroneous situations.

The supervising agent might validate them upon
appearance before allowing them to function. The
verification service can be requested from one of available
appropriate verification agents, provided the source codes
of control applications of the components (given in
1IEC61499 format), and descriptions of possible failures or
rules, how the latter can be inferred.

CONCLUSION

Application of VEDA allowed to reveal some potentially
incorrect internal definitions in the IEC61499. In particular,
it was shown that the normative algorithm of input event
processing in the basic function block may lead to missing
some events when they occur and arrive rapidly.

More progress could be expected after VEDA would be
applied to a real control application following IEC61499.
This work is currently under way.

ACKNOWLEDGEMENT

This work is supported by the Deutsche
Forschungsgemeinschaft under reference Ha 1886/10-1.

]

(2]

B3]

(4]

B

(6]

7

(8]

1]

[10]

118

REFERENCES:

IEC61499- Function Blocks for Industrial Process
Measurement and Control Systems, International
Electric Commission, Draft, Tech. Comm. 65,
Working group 6, Geneva

J.H.Christensen, Basic concepts of IEC 61499,

Conference "Verteile Automatisieriung”
(Distributed Automation), pages 55--62,
Magdeburg, Germany, 2000

E.Clarke, E.A. Emerson, and A.P. Sistla: Automatic
verification of finite state concurrent systems using
temporal logic., ACM Trans. on Programming
Languages and Systems, (8):pp.244--263,4986.

1.S. Ostroff. Temporal Logic for real-time systems,
Wiley, London, 1909.

V. Vyatkin, H.-M. Hanisch: Bringing the model-
based verification of distributed control systems into
the engineering practice, in Proc. of IFAC IMS
Workshop, Poznan, 2001.

V.Vyatkin, H.-M.Hanisch. VEDA - a prototype tool
for deep debugging of distributed applications.
Information leaflet, June 2000,
<http://at.iw.uni-
halle.de/~valeriy/refs/veda.pdf>

V. Vyatkin, H.-M. Hanisch: A Modeling Approach
for Verification of IEC1499 Function Blocks using
Net Condition/Event Systems, Proc. ETFA’99, pp.
261--270

V. Vyatkin, H.-M. Hanisch: Practice of modeling
and verification of distributed controllers using
Signal-Net Systems, in Proceedings of the
International Workshop on Concurrency,
Specification and Programming' 2000, pp.335—
349, Humboldt University, Berlin, 2000.

J.H.Christensen, Design patterns - for system
engineering with IEC 61499, Conference "Verteile
Automatisieriung”" (Distributed Automation), pages
55--62, Magdeburg, Germany, 2000

IMS (Intelligent Manufacturing Systems) project on
holonics, <http://hms.ifw.uni-
hannover.de /public/overview.html>

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

