

 Int. J. Manufacturing Technology and Management, Vol. 8, Nos. 1/2/3, 2006 75

 Copyright © 2006 Inderscience Enterprises Ltd.

Formal validation of intelligent-automated
production systems: towards industrial
applications

Hans-Michael Hanisch
Department of Engineering Science,
Martin Luther University Halle-Wittenberg,
Halle 06099, Germany
E-mail: Hans-Michael.Hanisch@iw.uni-halle.de

Andrei Lobov, Jose L. Martinez Lastra and
Reijo Tuokko
Institute of Production Engineering,
Tampere University of Technology,
P.O. Box 589, Tampere, Finland
E-mail: Andrei.Lobov@tut.fi E-mail: Jose.Lastra@tut.fi
E-mail: Reijo.Tuokko@tut.fi

Valeriy Vyatkin*
Department of Electrical and Computer Engineering,
The University of Auckland,
Auckland, New Zealand
E-mail: v.vyatkin@auckland.ac.nz
*Corresponding author

Abstract: This paper introduces a framework for formal modelling and
validation of automation systems destined to be used directly by control
engineers. The framework is based on a modelling formalism of Net
Condition/Event Systems (NCES), which is graphical, modular and typed. This
allows for the modelling of realistic hierarchically organised automation
systems in a closed plant-controller loop. The framework consists of
methodologies and tools, which enable formal analysis of automation systems.
The framework is to be used for the improvement of safety characteristics,
reliability and robustness of such systems by means of prediction of potential
faults and deadlocks.

Keywords: formal verification; industrial automation; flexible manufacturing;
Programmable Logic Controller (PLC); Net Condition/Event Systems (NCES);
ladder logic; flow charts.

Reference to this paper should be made as follows: Hanisch, H-M., Lobov, A.,
Lastra, J.L.M., Tuokko, R. and Vyatkin, V. (2006) ‘Formal validation of
intelligent-automated production systems: towards industrial applications’,
Int. J. Manufacturing Technology and Management, Vol. 8, Nos. 1/2/3,
pp.75–106.

 76 H-M. Hanisch et al.

Biographical notes: H-M. Hanisch has obtained Diploma in Chemical
Engineering (1982) and the PhD (1987) from the Polytechnical Institute of
Merseburg in 1982 and 1987, respectively. He has gained the Habilitation and
the Venia Legendi for Automation Technology in 1995 from the Department
of Chemical Engineering, University of Dortmund. From 1994 to 1999, he has
been an Associate Professor at the Department of Electrical Engineering,
University of Magdeburg before he become a Full Professor in Automation
Technology in the Department of Engineering Sciences, Martin-Luther
University, Halle-Wittenberg, in 2000. His research interests are discrete event
and hybrid systems, modelling, analysis and distributed systems. He has been
the IEEE Senior Member since 2001.

Andrei Lobov is a research scientist and a doctoral student at the Tampere
University of Technology, Institute of Production Engineering working
towards Dr. Tech. degree in the field of formal methods in factory automation.
He was born in Tallinn, Estonia. He received his Bachelor of Science Degree
in Computer and System Engineering from the Tallinn University of
Technology in 2001. He continued his education at the Tampere University of
Technology and obtained a Master of Science degree in Automation
Engineering in 2004. His interests include the development of tools for model-
based verification of automation systems, as well as object-oriented software
engineering and run-time platforms of automation systems.

Jose L. Martinez Lastra is working in the Institute of Production Engineering at
the Tampere University of Technology and also serving as Director for
the Factory Automation Division. He earned his advanced degrees (MS ‘with
distinction’ and Dr. Tech. ‘with commendation’) in Automation Engineering
from the Tampere University of Technology. His undergraduate degree
(Ingeniero Técnico Industrial in Electrical Engineering) is from
the Universidad of Cantabria (ETS de Ingenieros Industriales y de
Telecomunicación, Spain). Previous to his current position, he has been at
the Institute of Production Engineering. He carried out research in the
Departamento de Ingeniería Eléctrica y Energética (Santander, Spain),
the Mathematics Department (Tampere, Finland), the Hydraulics and
Automation Institute (Tampere, Finland) and the Mechatronics Research
Laboratory of the Massachusetts Institute of Technology (Cambridge, MA).

Reijo Tuokko is the Head of the Robotics and Automation Laboratory and
Deputy Head of the Institute of Production Engineering at the Tampere
University of Technology. He has been a Professor of Automation Technology
at the Tampere University of Technology since 1990. Before his full
professorship he has worked 12 years in responsible positions in industry and
four years as an acting Associate Professor in machine automation in
Lappeenranta and Tampere. He has been the Programme Manager of the
national ‘Light Assembly Industry Technology Program LASSI’ 1996–1999
and is currently working as the programme manager of a new national
Technology Programme ‘SISU 2010 – Innovative Manufacture’ 2005–2009.

Valeriy V. Vyatkin is a Senior Lecturer at the University of Auckland,
New Zealand. He has obtained his graduation degree in 1988 from the
Taganrog State University of Radio Engineering (TSURE), Taganrog, Russia,
with excellence in the major of applied mathematics. He received the PhD and
the Dr. Sci. degrees from TSURE in 1992 and 1998, respectively, and the Dr.
Eng. degree from the Nagoya Institute of Technology, Nagoya, Japan, in 1999.
His previous faculty positions were with the University of Halle in Germany
(Assistant Professor, 1999–2004), and with TSURE (Research Assistant,
Assistant Professor in 1989–1994 and Full Professor in 1999–2002). He also

 Formal validation of intelligent-automated production systems 77

was a co-founder and deputy director of small R&D companies Micros
and ICS in Russia that developed visual programming tools for logic
controllers. In 1994–1999 he was with the Nagoya Institute of Technology for
post-doctoral research. His research interests are in the area of industrial
informatics, including software engineering for industrial automation systems,
distributed software architectures, methods of formal validation of industrial
automation systems and theoretical algorithms improving their performance.

1 Introduction

The modern production systems need to be more flexible and re-configurable. For this
reason they are built from standardised processing modules as shown in Figure 1.
The current trend is to implement control of such systems in a decentralised way, by
means of software components that run on distributed programmable control devices.

Figure 1 A flexible production cell with an ‘intelligent’ automation system illustrating a
machine Plug and Play scenario

When new configurations of production systems are formed from the modular
components, the testing becomes a bottleneck for quick commissioning. Formal
validation can reduce the time-consuming testing and commissioning phases of system’s
development and deployment. As the functionality of such systems is determined by
cooperation of entities of heterogeneous domains, for example, mechanical, electric,
automation hardware and software, the validation has to take into account the relevant
properties from all these domains.

The formal modelling and verification techniques, originally created in computer
science, were adopted to the area of industrial automation and extensively developed in
the past one-two decades. The landmark works, for example, Alur et al. (1990), Clarke
et al. (1986) and Sreenivas and Krogh (1991) have set up the general framework and its
customisation paths were outlined in a number of subsequent works such as Aygalinc and
Denat (1993), De Loor et al. (1997), Hanisch et al. (1997) and Heiner and Menzel
(1998). Numerous approaches developed since then differ according to several main
criteria, such as, source code-based modelling versus prototyping and code generation,
particular programming languages used to describe controllers, particular formalisms
used for modelling, closed-loop system representation versus input/output behaviour of
the controller. A good survey on the use of formal methods in industrial automation is
provided by Bani Younis and Frey (2003).

 78 H-M. Hanisch et al.

Thus, a number of test cases have proved that formal modelling can be very helpful
for the validation of automation systems by simulation and/or by formal verification of
static and dynamic properties. However, despite the activity in the academic community,
and even some pioneering attempts of industrial test cases and commercial product
development (e.g. ControlBuild Validation of TNI Software), the formal methods have
not become a routine tool of control engineers yet. Some of the reasons of that are
addressed in this work.

The reason to conduct yet another study reported in this paper was the belief that the
approach developed by the authors (for more than one decade starting with Rausch and
Hanisch (1995)) has a number of features whose combination may make essential
difference in applicability for real industrial cases.

The cornerstone of this approach is the idea that the models need to be built having in
mind that in automation systems the software represents a variable part, while the models
of equipment can be reused through the engineering cycle over and over again.
Once developed, say by a machine vendor, the models may follow the equipment,
enabling the machine users (e.g. system integrators) to validate new configurations of the
machines reusing the models of their components.

Implementation of this vision, however, requires a more systematic approach to the
modelling than that can be seen now, with more emphasis paid on the modelling of plant.

Models in most of the formalisms, such as Petri nets or finite automata, lack
integrating capabilities: while they may cope well with the modelling of a particular
process, building the overall model of a system comprising several processes is difficult.

The approach presented in this paper attempts to overcome the weakness of the
modelling techniques using the formalisms of Net Condition/Event Systems (NCES),
first introduced by Rausch and Hanisch (1995) that added an option of modular thinking
to the expressive and analytic power of Petri nets. The modular capabilities have
encouraged further development of a systematic approach to the modelling of industrial
systems. Supported by the model-checking tools SESA (SESA, 2004), MOSAIC and
later iMATCh, the formalism of NCES was used in a number of studies on formal
validation of automation systems in process industries and in advanced manufacturing,
for example as reported by Hanisch et al. (2000). In the work (Vyatkin 1999), the NCES
formalism was used for formal modelling of the new concept for distributed automation
function block programming, that later became the IEC61499 standard (IEC61499,
2005). A more comprehensive report on that activity is given by Vyatkin
and Hanisch (2003).

Along with proving the benefits of NCES, these works have revealed certain
limitations, for example, they raised questions of creating nested modular models.
The encapsulation of a network of modules inside a module was not carefully worked out
so far, although partially the challenges related to the hierarchical modularity concept
were faced by Thieme (2002).

This paper reports on the comprehensive work started with the development of the
‘extended’ NCES concept by Vyatkin et al. (2003) and forged in course of collaboration
in project MOVIDA. The extended NCES was applied for modelling of a number of
systems, and a number of new supporting tools have been developed. Together these
tools form a new, integrated modelling and verification environment that is supposed to
be used directly by engineers that develop control software of automation systems.
The results of this work were partially reported by Lobov et al. (2003, 2004) and Vyatkin
et al. (2003, 2004).

 Formal validation of intelligent-automated production systems 79

The paper is organised as follows. Section 2 recalls the closed-loop modelling of
automation systems. In Section 3, the NCES formalism is introduced and some of its
extensions are discussed. Section 4 deals with the systematic modelling of machines and
their parts, while Section 5 provides general ideas on the modelling of controllers, which
are specified for two programming languages – Flow Charts and Ladder Logic. Section 6
describes the framework of supporting tools and Section 7 illustrates some scenarios of
validation by verification using practical industrial-scale examples. The paper is
concluded with a discussion of future research plans, acknowledgements and references.

2 Formal methods in automation: application scenarios

2.1 Closed-loop modelling

An industrial automation system can be seen as built from two conceptually different
parts: controller and plant. The controller is a hardware device driven by software code
that performs data processing, communication and decision making, the plant contains
the material-handling part of equipment. Figure 2 shows an example of such a control
system for a very simple process – filling of the tank with some liquid. The tank has an
input valve that controls the liquid supply. Once the tank is filled the valve should be
closed. A level sensor (L) indicates the level where the filling should terminate.

Figure 2 Example of automated system

Correspondingly, modelling of automation systems can be done in either open-loop or
closed-loop way. The open-loop modelling usually is a more economical solution, which
bases on the partial model of controller inputs which help to generate the outputs and
then verify their correctness.

In the closed-loop approach the model of system is composed of two independent
components: a model of the object (also known as plant) and a model of the controller,
connected in a closed loop by control signals and process data. Both parts are modelled
using a common formalism. This approach allows specification of desired/prohibited
behaviour of the automation system in terms of the events/statements related to the object
rather than in terms of input/output variables. The closed-loop approach is also beneficial
in terms of complexity as a feasible model of plant restricts the controller’s input
combinations. The model of plant not only generates the inputs of the controller but also
receives the outputs and correspondingly modifies its internal state.

Certainly the latter approach is more complex as the modelling of uncontrolled
reactive behaviour of objects is required. However, its benefits overweight the extra work
needed. Both parts of the system (plant and controller) are modelled by NCES modules

 80 H-M. Hanisch et al.

with condition signal inputs and outputs. The connection between controller and plant is
implemented via logic level signals, which are modelled using condition arcs. Event
signals are used in both models of plant and controller but not between them. In the
model of plant the events may be used, for example, to model the causal behaviour of
sensors influenced from the observed processes. In controllers the event signals model
the actions explicitly defined as event-driven (say, event-connected function blocks in
IEC1499), as well as a lot of other internal operations: procedure calls, setting/resetting
variables, etc. (Figure 3).

Figure 3 Closed-loop NCES model of the automated tank filling system

It is worth mentioning that the closed-loop approach to the modelling enables expression
of the specifications directly in terms of the machine behaviour (not only I/Os of the
controller). The approach allows for a number of application scenarios that can be
derived from the diagram in Figure 4. The scenarios include source-code-based
modelling of the controller or controller prototyping by a model, as well as formal
synthesis of the controller. In all cases, the model of controller is combined with a
manually created model of plant.

Figure 4 The framework for formal methods use in automation

The prototyping scenario can be less resource-consuming during the validation if
compared to the source-code-based model generation as the model of controller may
cover only essential issues without implementation details.

 Formal validation of intelligent-automated production systems 81

3 Net condition/event systems

3.1 Basics

The formalism of NCES was introduced by Rausch and Hanisch (1995) and further
developed through the last decade, in particular by Hanisch and Lüder (1999) according
to which a NCES is a place-transition net formally represented by a tuple:

in in out out
0NCES (, , , , , , , , , , , , ,)c e s tP T F CN EN C E C E B B C D m=

where P is a non-empty finite set of places, T is a non-empty finite set of transitions,
disjoint with P, F is a subset of () ()P T T P× ×∪ – the set of flow arcs. CN is the set of
condition arcs ()CN P T⊆ × . EN is the set of event arcs ().EN T T⊆ × Cin is the set of
condition inputs. Ein are the event inputs set, Cout and Eout are conditions and events
outputs. Bc is the set of NCES module condition inputs arcs in(),cB C T⊆ × Be is the set

of event input arcs in().eB E T⊆ × Cs is the set of condition output arcs out()sC P E⊆ × , Dt

is the set of event output arcs out()tD T E⊆ × and m0: {0,1}P → is the initial marking.

Figure 5 illustrates the graphical notation of an NCES module. Each module has
inputs and outputs of two types:

• condition inputs/outputs carrying state information and

• event inputs/outputs carrying state transition information.

Figure 5 A module of NCES

Condition input signals as well as event input signals are connected with transitions
inside the module. Thus, firing of a transition depends not only on the current marking
(as it is the case in Petri nets) but also on the incoming condition and event signals.
Incoming condition signals enable/disable a transition by their values in addition to the
current marking. Incoming event signals force transitions to fire if they are enabled by
marking and by condition signals.

 82 H-M. Hanisch et al.

Hence, we get a modelling concept that can represent enabling/disabling of
transitions by signals as well as enforcing transitions by signals. More than this, the
concept provides a basis for a compositional approach to build larger models from
smaller components. ‘Composition’ is performed by ‘gluing’ inputs of one module with
outputs of another module as depicted in Figure 6.

Figure 6 An example of a modular composition

Result of the composition of two NCES N1 and N2 is an NCES Nc obtained as a union of
the components and which can be represented as a new module. Inputs and outputs of the
‘composition’ are unions of the components’ inputs and outputs, except for those which
are interconnected to each other, and hereby ‘glued’, that is, substituted by the
corresponding condition and event arcs.

NCES having no inputs are called Signal/Net Systems (SNS). The model in Figure 6
having modules boundaries removed would be called a SNS. The SNS can be analysed
without any additional information about their external environment. The semantics of
SNS is defined by the firing rules of transitions. There are several conditions to be
fulfilled to enable a transition to fire. First, as it is in ordinary Petri nets, an enabled
transition has to have a token concession. That means that all pre-places have to be
marked with at least one token.

In addition to the flow arcs from places, a transition in SNS may have incoming
condition arcs from places and event arcs from other transitions. A transition is enabled
by condition signals if all source places of the condition signals are marked by at least
one token. The other type of influence on the firing can be described by event signals
which come to the transition from some other transitions in the net. Transitions having no
incoming event arcs are called spontaneous, otherwise forced. By default presence of at
least one non-zero event signal is required to enable transitions by event signals. A forced
transition is enabled if it has token concession and it is enabled by condition and event
signals.

For more rigorous NCES definitions and properties we refer the reader to Starke and
Hanisch (1997), Starke et al. (2004) and Vyatkin et al. (2000).

3.2 NCES features for modelling automation systems

Thus, the formalism of NCES has the following features:

• it is modular, that is, it provides encapsulation of place/transition models into
modules, connected to each other by condition and event arcs

• it is graphical, that simplifies understanding of the model’s semantic and
facilitates application by engineers

 Formal validation of intelligent-automated production systems 83

• it is a distributed state formalism, that helps to cope with the complexity of
model-checking, especially when decentralised systems are modelled

• it is a discrete time formalism, that allows to add new, time dimension to the
discrete modelling.

In the last decade the automation has been becoming a field of numerous distributed
architectures (e.g. IDA, 2002; IEC61499, 2005; PROFInet, 2004), to mention a few.
Common in all these is the representation of automation systems as networks of function
blocks. Evident similarities between the NCES modelling concept and the advanced
trends in distributed control architectures have motivated further development of the
NCES formalism that, in particular, was concerned with the definition of model types to
simplify encapsulation and reuse of the models.

Modelling experiences with NCES so far dealt with control systems of medium
complexity. In addition, the modelling was done rather manually. Systematic application
of the modelling approach to more complex systems raises many questions on feasibility
of some constraints initially introduced in NCES. For example, less restricted rules for
interconnections of modules (e.g. allowing for multiple input and output links to a single
input element) were considered by Thieme (2002).

3.3 Model type definition in NCES

In the presented version of NCES a model has to be encapsulated in a module. A module
is defined by its interface and content. The interface contains a model name and names of
event and condition inputs and outputs. The content can be either a place-transition
model, that is, consist of places, transitions and arcs as described in the previous section
(such model types are called basic), or be a network of modules interconnected via event
and condition arcs (such models are called complex).

Once defined and placed in the library, a module defines a model type. The module
name serves as the type identifier. Type instances can be used over and over again in the
complex models (strictly speaking, the modules forming the complex models have to
be instances of other modules).

The extension above makes the NCES ‘compatible’ with other kinds of
object-oriented modelling, for example, using Unified Modelling Language (UML).
Several works appeared recently on application of object-oriented modelling to machines
and production systems (e.g. Bonfè and Fantuzzi, 2003; Thramboulidis, 2001). The UML
class diagrams are used in these works to represent the structure of production objects as
composed from more elementary ones. That also paves the way to hierarchical models.
However, application of UML for formal analysis is difficult as it lacks formality. Thus,
the approach presented in this paper bridges the gap between the expression power of
UML and the formal semantics of NCES.

As a consequence of the above definition a model can have a hierarchical structure as
the one presented in Figure 7. The hierarchical structure can be transformed into a plain
SNS by instantiation of a model types.

Dynamic models of complex objects usually consist of models of their constituent
components interconnected by event and condition signals. They may also include an
additional model that integrates and coordinates them. Such a ‘master supervisor model’
can also take care about input–output behaviour of the complex model.

 84 H-M. Hanisch et al.

Figure 7 A hierarchical NCES model

4 Modelling of automated plants

4.1 Introduction

In this section, we will show how the modelling of plant may benefit from the
hierarchical model organisation and the reuse opportunities provided by the extended
NCES. Thus, common modelling components may be reused in the same model and
across different models.

Models of the plant and model of the controller are interconnected into the
closed loop providing the representation of entire system that consist of the controlled
equipment and control device. The combined model is subject for making a judgement
about modelled system properties by means of model-checking.

4.2 Systematic methodology

Depending on the required accuracy of modelling, the model of plant may include
components for each drive, motor, valve, electric relay, sensor, actuator and other
elementary pieces of equipment. These component models may be integrated to the
complex models of equipment units, such as machine tools, other material processing and
storage units and the transportation means. The approach presented in this section
extends the ideas of plant modelling of Hanisch and Lüder (2000) and Hanisch
et al. (1998).

Benefits of the typed modelling are better visible in the following example of object
modelling. The automated lifter (product of Flexlink Automation Oy., Finland) as shown
in Figure 8 is used in production of electronic components as the system in Figure 1. The
lifter can be controlled by two different controllers: an OMRON PLC programmed in
ladder logic and Nematron SoftPLC (Lastra, 2000; Nematron Corp., 2001) programmed
in Visual Flow Chart language. Though both controllers achieve similar control goals,

 Formal validation of intelligent-automated production systems 85

the internal logic of control algorithms and even the logic of program execution are
completely different (cyclically scanned versus sequential). However, both controllers
eventually deal with the same object.

Figure 8 The lifter, its structure and operation sequence

When the closed-loop plant-controller systems are validated, the model of the lifter can
be reused over and over again in connection with models of controllers of different types.

The lifter consists of three transporters, one of which is mounted on a vertically
moving platform driven by a step motor as schematically represented in Figure 8.
The figure also shows sensors (B/S) and actuators (M) of the lifter described as follows.

The lifter is composed of three conveyor elements. The pallet is received from the
previous module at the lifter’s lower terminal, which is driven by motor M3 and is
equipped with B1 sensor that may detect the presence of the pallet. The pallet may be
conveyed from the lower terminal to the sledge conveyor that can move vertically
between lower and upper terminal (or otherwise it is restricted with the two safety
switches S7 and S8). The sledge has B3 sensor that detects a pallet and its belt is driven
by motor M1. The upper terminal sensor is B2 and the motor denoted by M2. Besides the
conveyors and their sensors and actuators, there is also an operator interface with
switches (S1–S5), B5 sensor, which is a safety sensor to detect an obstacle between
sledge and terminals. The step motor and the rotary encoder that is used for vertically
position the sledge are omitted in Figure 8. The figure does also not show the interface
signals (SMEMA) that are used between the lifter and the previous/next module.

Each sensor and actuator has a unique name in mechanical/electrical blueprints and
software code. The mechanical and electrical drawings with the general description of
functionality form the logical point to start plant modelling.

The structure of the model type ‘Lifter’ can be represented by means of UML class
diagrams as shown in Figure 9.

The definition literally says that the object ‘Lifter’ consists of four elements. The
loading and unloading one-directional conveyors are identical but turned in opposite
directions. The corresponding models are of type Conveyor. The vertically moving
platform (an object of type StepMotor) has a moving belt that moves pallets in both
directions (modelled as an object of type Conveyor2D).

Note that the model in Figure 9 does not define an interface of the lifter, nor
dependencies between its constituent parts. These dependencies can be reflected in
modular models by event and condition connections between the corresponding modules
as exemplified in Figure 10.

 86 H-M. Hanisch et al.

Figure 9 Definition of the model type (class) ‘Lifter’ by means of UML class diagrams

Figure 10 A model of Lifter represented as a network of NCES modules

Let us consider the model of a conveyor. In our example, two different types of
conveyors are used – capable to move only in one direction, and those moving in both
directions. The model of the more complex conveyor can be created based on the simple
model using the mechanism of inheritance.

The interface of the model type ‘Conveyor’ can be seen in Figure 10. The model
itself can be conceptually divided into three elements: Status, Position and Sensor as
shown in the class diagram in Figure 11 (left). The Status element of type MovingStatus
models the behaviour of the motor that drives the conveyor and converts the logic control
signals into one of the states ‘Moving’ or ‘Standing still’ (that corresponds to the
one-directional conveyor). Input ‘PRESENT’ indicates if a pallet is present, and input
‘FORCED’ is used to indicate the influence of a neighbour belt on the movement of the
pallet. The output condition FW_ST is used by the model of belt position.

The structure of the model of the bi-directional conveyor is identical to that of the
unidirectional one. The difference is in the module Status that has type MovingStatus2D
that inherits the interface properties of the one-directional MovingStatus and extends
them with one more input and output for the retracted movement. This is shown in
Figure 11(right). All transporters are equipped with a single position sensor indicating the
presence of the pallet (fully loaded on the conveyor).

 Formal validation of intelligent-automated production systems 87

Figure 11 Model type definition of the conveyor and inheritance of the MovingStatus
model types

The condition and event flow connections between the submodels constituting the model
of the conveyor are represented in Figure 12.

Figure 12 Modular view of the model of conveyor

The basic models can be described further in form of NCES modules. Figure 13(a) shows
an implementation of the MovingStatus in NCES. The model receives the control signal
FWD and transforms it into the state of the belt: place p2 corresponds to the state ‘belt
stands still’, place p1 – belt moves and p3 to the state indicating a failure. The belt moves
when the control signal FWD is ON, and stops when the signal goes OFF (in the model
the negation of the signal FWD goes on).

An occurrence of a failure is indicated by an external event that may come from the
corresponding model. For example, that can be a non-deterministic model of failures.
Note that the model is sensitive to failures only when the belt moves, that is, when the
place p1 is marked. It is assumed that the failure can be fixed by an external interaction
indicated by the event input RESUME.

The model MovingStatus2D for the bi-directional moving belt is shown in
Figure 13(b). It models an additional state of backwards moving, and correspondingly
has more transitions between the possible states.

 88 H-M. Hanisch et al.

Figure 13 Models of the moving status for (a) unidirectional and (b) bidirectional belts

The position of the pallet on the belt can be modelled with different precision.
A qualitative model in Figure 14 distinguishes only 3 states of a pallet on the belt:
no pallet, pallet on the belt with its front edge between the belt’s ends and pallet’s front
edge is beyond the right end of the belt.

Figure 14 A qualitative non-timed model of the pallet’s position

A more precise modelling of the position can be done using the timed version of NCES.
Let us assume that the belt is 3 units long and the pallet is 2 units long as shown in Figure
15. The speed of the belt is one unit of the length per second. Then it will take three
seconds for a pallet to reach the right end of the belt and 2 more seconds to leave the belt
completely.

Place p1 corresponds to the state ‘No pallet’. When a pallet appears (input condition
‘Present’) and the state of the moving belt is ‘Moving forward’ (indicated by the input
condition FWD) then the transition t1 occurs and the token goes to place p2.

 Formal validation of intelligent-automated production systems 89

This place indicates the state ‘Front edge of the pallet is in the interval 1 of the
conveyor’. Another reason to transfer to this state is the presence of the input condition
‘Forced’. This condition indicates that the pallet is pushed onto the belt by some external
force that maybe another moving belt positioned backwards to this one. This option is
modelled by transition t12. In general, moving in this case is slower than if driven by the
own motor of the belt. The presented model, however, does not cover with enough
precision the case when both forces are present simultaneously. Note that the transition
from p1 to p2 (either via t1 or t12) is a qualitative one and does not take time (more
precisely has zero delay).

Figure 15 Model of the position of the pallet on the conveyor discretised on three intervals

The places p2–p4 correspond to the location of the pallet (again the front edge) in the
intervals 1–3, respectively. A transition from interval i to interval i +1 occurs in either
case ‘FWD’ and ‘Present’ or ‘Forced’ and ‘Present’.

The latter, however, works only till less than the half of the pallet is on the
belt – beyond this point the friction force would not let the pallet move driven only by
the external force. The moving to the next interval takes 1000 ms if driven by the own
motor of the belt or twice as long under the external force. The backward moving from
interval I + 1 to interval i occurs if the combination of input conditions ‘RETR’
and ‘Present’ are true. It also takes 1000 ms under assumption that the speed of the
moving belt in both directions is the same.

Arriving of the pallet to the third interval is indicated by the sensor. This is modelled
by two event outputs ‘Sens_ON’ and ‘Sens_OFF’ associated with firing of transitions t8
and t9 or t11, respectively. The sensor goes off when either the front edge of the pallet
moves backward to the second interval, or when the back edge of the pallet leaves the
belt in forward direction (and the pallet completely disappears from the belt).

 90 H-M. Hanisch et al.

This model can represent the state of the pallet on the belt with better precision.
However, it has other limitations. In particular, let us consider how the alternative kinds
of movement are modelled. A place indicating a position (e.g. p3 indicating interval 2)
has several outgoing arcs (p3–t4, p3–t5 and p3–t14) marked with non-zero time delays
([1000, ∞], [1000, ∞], [2000, ∞]). Transitions that are targets of these arcs have condition
input signals that represent alternative control signals (RETR, FWD, Forced). Any of the
transitions will fire when it is enabled by marking, conditions and time. It is important
that all these conditions are mutually orthogonal (alternative) and they never change
values within the minimum delay of the place (1000 time units in our case), otherwise the
model will not work as intended.

5 Source code based modelling of controllers

5.1 General considerations

A model of the controller can be built based on the source code of the control program.
Relevant properties of system routines also have to be taken into consideration. The
source code based validation gives an additional assurance in the correct behaviour of the
system after commissioning.

The basics of the modelling of discrete controllers using place-transition formalisms
were developed by Hanisch et al. (1997). In general the modelling of controllers can be
split into the following sub problems:

• modelling of system routines such as scan cycle

• modelling of PLC execution is related to the performance of PLC hardware
represented by times, instructions execution times, etc.

• modelling of basic Boolean data and operations

• modelling of non-Boolean functions.

The use of NCES simplifies the assembling of the model from the components. Besides,
such NCES features as event/condition connections closely correspond to the latest
trends in controller design methodology presented in new international standard
IEC61499.

5.2 Languages for PLC programming

5.2.1 Overview

Special industrial programming languages are applied for implementation of the control
algorithms. The most of the known programming languages in the field were
standardised in IEC 61131-3 in 1993 (IEC 61131, 1993). The standard includes four
programming languages: Instruction List (IL), Function Block Diagrams (FBD), Ladder
Diagrams (LD) and Structured Text (ST) and a common element Sequential Function
Chart (SFC) that serves for program organisation into logical steps and expressing the
transitions between the steps.

Despite the successful standardisation of PLC programming, there is a number of
vendor specific programming approaches that have not been included in IEC61131-3,

 Formal validation of intelligent-automated production systems 91

although they are quite popular in certain application areas. In this paper we exemplify
our approach on two specimens: ladder logic language that is an Omron
implementation and flowchart language that of Nematron Corp. (2001).

5.2.2 Ladder logic

LD is a widely used industrial programming language. It resembles relay diagrams from
the times when the control system were built as hardware circuits from relays. Nowadays
LD programs may contain complex mathematical functions executed on PLC hardware.

A single-rack LD program is shown on the left in Figure 16. IX_Tank_Full variable
represents a PLC input signal coming from the level sensor of the tank L. QX_Valve_In is
PLC output that controls the input valve of the tank. A representation of both
input/output variables in NCES is defined in Figure 23.

Figure 16 Tank control program

The program is written for Omron CPM1A PLC. The Omron control software
development tool (CX-Programmer) is made to support a set of dozens of Omron
PLCs. The same environment and the same programming language is used for each
controller, the difference may be in the amount of supported functions. One of the
features of CX-Programmer software is an ability to save project’s data in a text file. The
file would contain all possible data related to the project and controller.

5.2.3 Flowcharts

The flowcharting was used years ago for the programmers for prototyping and
documenting of programs. Herman H. Goldstine and John von Neumann developed
flowcharting in 1947 as a means of representing a computer algorithm at a level higher
than that of machine language.

Flowcharting as a means of programming in industrial automation has emerged about
a decade ago. There are several implementations known, mainly for PC-based control
devices called SoftPLCs. One of such SoftPLC products namely OpenControl (OC) of
Nematron Corporation uses Visual Flowchart Language (VFL) as a high-level
programming language (Nematron Corp., 2001).

A flowchart-programmed automation project may contain one or more flowcharts.
A flowchart (as exemplified in Figure 17) may consist of a set of the blocks, which
represent the program behaviour.

 92 H-M. Hanisch et al.

Figure 17 Flowchart and its basic components

VFL has two basic types of elements. These are decision blocks and process blocks.
The process blocks represent operations on data. They may contain several commands
that can perform calculations, data modification and communication operations in the
PLC program. Program branching and cycling is mainly organised by decision blocks
(If-Then-Else, While Do and Repeat Until). The Boolean expressions of the blocks are
evaluated in order to define the program execution path. Branches of the decision blocks
may contain any other blocks. The control of program execution path can be done by the
pairs of the Goto and Goto Label blocks.

An essential program organisation unit of the Visual Flowchart Language is
a subchart. A subchart can be seen as a procedure, which can be called or addressed by a
Subchart Call block. Subcharts can be described by the same blocks as a flowchart.

Each flowchart can be considered as a separate task. During the flowchart evaluation
phase of the scan cycle, each flowchart gets its execution time. The flowchart runs till it
solves all logic from the first block till the last block in the flowchart or till it meets the
situation where the execution has to be yielded to the next task.

5.3 Modelling of system routines in PLCs

Precise modelling of automation systems requires to take in account quite low level
details of the control program execution in a PLC. The PLC programs are executed in a
cyclic way. One cycle consists of the following phases: first the inputs are read, then the
program logic is executed and then the outputs are written. Figure 18 depicts a NCES
skeleton for a PLC model. Place p1 holds a token representing the initial state of the PLC
execution, if the PLC program is enabled (condition input to the t1 transition) the cycle is
started by the update of outputs and acquisition of input values. The firing of t1 transition
generates these events. When a token is placed to p2, it resides there until a signal
notifying about the change in the system enables transition t2. The monitoring of the
changes in the systems is needed in order to not start a new PLC cycle unless something
has changed in the system.

 Formal validation of intelligent-automated production systems 93

Figure 18 PLC model skeleton

The state of the NCES model is distributed and is defined by the marking of all places.
Additionally to the marking, the state is characterised by the time stamp, for example, the
time the certain state (marking) is valid. Thus the two states representing the same
marking but holding different times are different states.

A special module that monitors the change in the system has to be added to the model
(Figure 19). The module has two event inputs for retrieving information about any
change of the PLC program variables during the scan cycle. It does not make sense to run
the model over the new scan-cycles if the markings in the model remain unchanged, that
is, when nothing would change during the next scan. The marking may change in
the model of the plant or if the time dependent transition fires in a timer NCES module
in the model of controller.

Figure 19 Change monitoring NCES module

5.4 Modelling of system routines in SoftPLCs

Following the traditions of common PLCs, the SoftPLCs implement the scan based
approach of program execution. The PLC execution cycle has three main phases: at the
first phase the inputs are read then the logic is evaluated, and at the third phase of the
cycle the outputs are updated. The cycle is executed over and over again.

In SoftPLCs this cycle is placed into HyperKernel (HK) execution, which is
interleaved with the execution of other OS tasks. The HK itself can be considered as a
small OS responsible for time scheduling between the control tasks.

 94 H-M. Hanisch et al.

Figure 20 illustrates the execution cycles of the SoftPLC. Steps numbered from one
to four correspond to the traditional PLC cycle phases. These phases are enabled within
the time frame allocated to the HK execution. In our case time is shared between HK and
Windows NT in equal slots – both are getting 250 ms (this value is adjustable) of
execution time. If the cycle 1-2-3-4 has been already started when the HK time has
expired the HK yields the execution control to Windows. After the OS execution is over,
the PLC scan cycle is resumed from the place where the HK yielded the control.

The switch between HK and OS can be represented by the NCES shown in Figure 21.

Figure 20 SoftPLC scan cycle

Figure 21 NT/HK switch NCES module

Place p1 can be considered as the representation of the state of HK execution time. The
condition arc coming out of the place to condition output ‘ENABLED’ is the enabling
signal for PLC program execution. Transition t1 is forced to fire after 250 ms have
expired. In the figure, this behaviour is expressed by the time interval attached to the

 Formal validation of intelligent-automated production systems 95

flow arc (p1, t1). When place p2 holds a token the ‘NOT_ENABLED’ condition output is
activated. And again, transition t2 is forced to fire after 250 ms.

Figure 22 shows the NCES module of the scan-cycle model which models the time
sharing process between several flowchart tasks.

Figure 22 Model of the flowcharts’ scheduler

The places {p1, p3, …, pN} denote the situations when the particular flowchart is being
evaluated. Each place has condition output arc that is intend to be interconnected with the
corresponding flowchart.

The condition inputs labelled ‘ENABLED’ and ‘NOT ENABLED’ are coming from
NT/HK switch module described previously (Figure 21). Some of the places denoted
as {p11, p21, …, pN1} hold the token during the OS execution time. The token is
considered to be moved to the place of {p11, p21, … , pN1} from the corresponding place
of {p1, p2, …, pN} in the situation when the ‘NOT ENABLED’ signal is coming from the
NT/HK Switch module.

Two event outputs labelled as ‘writeO’ and ‘readI’ are provided for activating
input/output sampling phases of the scan cycle.

When of the places {p1, p2, …, pN} holds a token the corresponding flowchart gets its
execution time. The enabling signal is sent to the flowchart by the condition output arc.
The condition outputs are labelled {‘ENABLED1’, ‘ENABLED2’, … , ‘ENABLEDN’}.
The event inputs labelled {‘YIELD1’, ‘YIELD2’, … , ‘YIELDN’} are coming from the
NCES modules representing flowcharts, through these the scan cycle is notified that
the next flowchart has to get its execution time or, if the flowchart is the last on the
list, YIELDN notifies that the values of output variables can be written now to the
peripheral hardware. The NCES modules representing the flowcharts are in a closed-loop
connection with the scan cycle representing NCES module through the
ENABLEDX – YIELDX input–output pair, where the flowchart is coming in between.

Combining two blocks given in Figures 21 and 22 would give a framework for the
SoftPLC scan-based cycle behaviour. What is missing so far is the PLC data and program
models that are introduced in the following sections.

5.5 Modelling of data

PLC programs deal mainly with Boolean data. We model Boolean input and output
variables in the way similar to the one suggested by Hanisch et al. (1997) and
Hanisch and Lüder (2002). In addition to the representation of a Boolean variable
defined in that paper an extra change event output is added to the corresponding NCES
module (Figure 23).

 96 H-M. Hanisch et al.

Figure 23 Boolean input, Boolean output and Boolean output module with the
temporal value (Lobov, 2004)

The event input of the input’s NCES module is provided by the NCES scan cycle module
(Figure 20) labelled as ‘readI’. The condition output arcs coming out of p1 (VarON) and
p2 (VarOFF) places provide the recipient parts of the flowchart model with the
appropriate values of the input variable.

The Output model using NCES has a difference as compared to the input module.
There is no triggering even input ‘update’. Instead, the output model has two event
inputs, which allow the flowchart model NCES to set or reset the variable used by it.
The condition output arcs of p1 (VarON) and p2 (VarOFF) places provide signals to
plant model.

Non-Boolean (e.g. integer) values still can be efficiently handled by utilisation of
discrete thresholds.

6 Tool framework

6.1 Framework overview

To facilitate the use of NCES by engineers, the formalism is supported by tools and
methodologies as follows:

• graphical editors provide full graphical authoring and editing of the models

• iMATCh – an integrated tool that contains a model builder (assembler), a
translator to the flat format for subsequent model-checking, interfaces to
several model-checkers, and the means for analysis of scenarios (e.g. their
visualisation in the form of state/time diagrams) or even system simulation along
the selected scenarios

 Formal validation of intelligent-automated production systems 97

• the model checker SESA allows for efficient model-checking of fairly
complex systems (millions of discrete states)

• the application methodologies are represented as libraries of standard model
elements and by the web-based documentation.

6.2 Model creation and editing

Formalisms having a graphical notation have clear advantages compared to purely
analytic ones. To enjoy the benefits in full scale the model authoring and maintenance
have to be supported in a visual intuitive way.

Currently the NCES modelling is supported by the editor developed at Martin Luther
University of Halle-Wittenberg (Figure 24).

Figure 24 Screen-shots of the NCES editor

The editor provides full graphical authoring and editing of the models.
The need to reuse models has pushed the development of an open XML-based data

format for basic and composite NCES models. The editor uses the XML-based format
for storing basic and composite NCES models. The data format of composite model
blocks was intentionally made identical with that of IEC61499 function blocks. Thanks
to the commonality the library of models can be accessed also by the function block tool
FBDK (2005).

 98 H-M. Hanisch et al.

The user fills the library of model types by creating the types from basic or complex
NCES modules.

The ‘typed’ approach facilitates the reuse of previously developed model
components. The editor allows manual assembly of NCES modules into more complex
composite models.

The model of a controller can be generated by the MOVIDA NCES Generator
(Figure 25). The generator inputs a controller represented as a textual file of Omron
Ladder Diagram project, converts it to NCES and saves the data in XML-based format.
This illustrates how the openness and self-explanatory XML representation simplifies the
development of the tools that may work with NCES.

Figure 25 Screen shot of the MOVIDA NCES generator

6.3 Integrated tools for model assembly and analysis

The integrated environment for Model Assembly (iMATCh) inputs the model type files
given in XML and is capable of:

• Assembling of a composite, hierarchically organised model from modules
contained in different libraries of model types. The component model
types are instantiated into NCES modules.

• Translating the model into a ‘flat’ NCES with the through numbering of places
and transitions. The inter-module connections are converted into event and
condition arcs between places and transitions. Thus the module boundaries
are removed and the model-checking tools can be applied. In particular, the
translator generates files in the input format of SESA model checker.

 Formal validation of intelligent-automated production systems 99

• iMATCh can prove specifications in the form of first order predicates or can
pass the temporal logic formulae to SESA model checker. The internal model
checker of iMATCh generates the reachability graph for the model, either
completely or dynamically while it checks the formula. It can also import
a reachability graph generated by SESA and visualise it.

• Once a state with particular properties is found in the reachability space,
iMATCh can visualise a path from initial (or any other state) to the found one.
The visualisation is done in form of state-time diagram for a selected set
of system variables (both from plant and controller). A user can select between
different views and see the model in each state. The visualisation options
proved to be very useful in practical verification.

The iMATCh tool is still under development and its trial version can be requested from
v.vyatkin@auckland.ac.nz. (Figure 26).

Figure 26 iMATCh tool visualising a reachability graph and a path in that graph
by state-time diagrams

7 Validation

The validation of automation systems modelled by NCES can be performed by
simulation and formal verification via model checking.

The simulation usually can follow a limited number of scenarios in the system’s
behaviour while the potential flaws can be in those paths left out unvisited. The multiple
scenarios may result from the influence of some unpredictable factors, such as variable

 100 H-M. Hanisch et al.

durations of some operations, communication delays, malfunctions, etc. In contrast, the
model-checking explores all the existing scenarios.

The verification consists in proving specifications with respect to the dynamic
behaviour of the model. The specifications can be given either in form of second order
predicates, or in form of temporal logic expressions, for example in Computational
Tree Logic (CTL). The basic terms of these expressions in most cases are the ‘values’ of
inputs and outputs (either of plant or controller) or, literally, the marking of the
corresponding NCES modules modelling the data variables. As the hierarchical NCES
model is converted into a flat SNS model this provides the through place/transition
numbering, and these numbers are used as references to the values.

In case of the lifter the following groups of specifications were of the primary
interest:

• Avoidance of potentially dangerous situations that may lead to a breakdown
of the lifter or to damage of the product being transferred by the lifter.
Example: when used in manufacturing of precise electronic components,
such as hard drives, the lifter must never allow the situations when the pallet
leans or jumps. Such problem can be caused by inexact synchronisation of
conveyors’ levels, which, in turn, may be a result of wrong synchronisation
of control programs.

• Robustness of the system in case of malfunctions of some sensors.

• The control programs in VFL are branching. Formal verification helps to
prove that the response time is never exceeded in any feasible I/O
combination in any branch.

• Avoidance of deadlocks or ‘dynamic traps’ that may result from wrong
synchronisation of operations.

• Presence of certain ‘checkpoints’ in any possible scenario of behaviour that
guarantees all necessary operations have been applied to the product in any
circumstances.

Table 1 provides some examples of the formalisation of specification of system
requirements. The first column in the table gives a logical proposition formula
and expresses the mapping of the local labels in the NCES modules to the global SNS
label (given in parenthesis). The second column provides a description of formula
arguments given in the first column. The last column contains the case description
in a natural language. The long names of’ arguments in the formulae are due to the
hierarchy of the modules and the places coming at the lowest level. For instance,
‘Controller._M1DIVIDECW.p4’ is interpreted as place p4 at M1DIVIDECW module
(represents the motor of the sledge run clockwise) in the controller module.

The requirements specifications given in Table 1 were simplified from the real ones
for illustrative purposes, more extensive formulae can be found by Lobov (2004).

Once the requirements are defined, the model-checking can take place in the
reachability space of the system’s model which for the model of the lifter encountered
59,479 states.

 Formal validation of intelligent-automated production systems 101

Table 1 List of specifications

 102 H-M. Hanisch et al.

Let us consider verification of each formula in more details:

1 ‘p213 AND p249’ when evaluated in iMATCH fulfils in no states. That means
the controller never turns the motor of the sledge to run into both directions,
which could have lead to the physical damage of the motor.

2 Checking of the second formula ‘p472 AND (p213 OR p249)’ gives a set
of states for which it is true. Thus, there are states where the lifter is in the
middle of its vertical move and the sledge motor is running in either
one direction or another. The next step in analysis is to identify the reason.
The first step is to define in what direction the motor is running (loading –
p213, unloading – p249) or both. This is can be identified by two separate
formulae: ‘p472 AND p213’ and ‘p472 AND p249’. Checking both
formulae has given the result that only ‘p472 AND p213’ is TRUE and has
a number of states in the reachability graph. Furthermore, the direction of
motion may be defined by ‘p205 AND p472 AND p213’, where p205
represents upward motion. The formula is false if there is p221 (downward
motion) instead of p205. The direction of the vertical and conveyor belt
motion is therefore identified. Now, we know that the motor of the sledge
runs at the lower terminal level to retrieve the pallet from the terminal.
The next step is to find out where the pallet is located. There are
several possibilities:

a Plant.Sledge_Conv.Sensor.p2 (p515) – on the sledge

b Plant.Sledge_Conv.Position.p10 (p529) – the pallet is not on the sledge

c Plant.Low_Conv.Sensor.p2 (p503) – the pallet is at the lower terminal

We checked the formula ‘p472 AND p213 AND p205 AND p515’ and it is fulfilled
in no states. This means that the sensor does not detect the pallet. Checking the
‘p205 AND p472 AND p213 AND p529’ formula finds the same states in the
reachability graph as the initial formula ‘p205 AND p472 AND p213’, which
means there is no pallet on the sledge at all. Formula ‘p205 AND p472 AND
p213 AND p529 AND p503’ again fulfils in the same states.

This situation may be interpreted as follows: The pallet is stuck at the lower
terminal and has not been transmitted to the sledge. After some timeout for
receiving the pallet and without getting it, the lifter starts upward motion while
the sledge conveyor continues running.

Further investigation shows that the low terminal motor is running as well
(Plant.Low_Conv.Status.p1 (p499)), but the pallet remains at the lower terminal
(the formula ‘p205 AND p472 AND p213 AND p499 AND p510 AND p503’
gives the same states in the reachability graph). Furthermore, this situation is not
found for the sledge in the upper terminal position (Plant.Vertical.Vertical.
p3 (p473): checking of the following formula ‘p205 AND p473 AND p213’
gives no states found).

This error reveals an uncontrollable object’s property when nothing can be done by
controller to resolve it. If this situation were to occur with the real lifter the operating
personnel would be required to resolve it and reset the lifter.

 Formal validation of intelligent-automated production systems 103

However, the reason why the controller commands to move up while the loading
operation of the sledge is not complete is interesting, but not the primary goal.
The primary goal is the conclusion that there were no states found in which
the pallet has been successfully loaded onto the sledge (p515), the lifter is half
way (p472) driving up (p205) and the sledge motor is running (p213) (‘p515 AND
p472 AND p205 AND p213’ checking gives no states found).

This situation is one of such type which would not be detected by the common
testing.

3 The next formula represents the situation when the sledge motor is running
to download the pallet while the lifter is at the upper terminal level
where the pallet should be unloaded ‘p473 AND p213’. Checking this simple
request gives no states found in reachability graph. It is therefore possible
to conclude that the sledge conveyor belt will not run to the wrong direction
at the upper terminal level.

4 This formula describes a situation opposite to the previous one: ‘p471 AND p249’.
The sledge conveyor is running to unload the pallet at the lower terminal level.
Checking of the formula also returns a false result meaning that no such states
exist in the reachability graph.

5 Place p503, p515 and p486 model TRUE value of the pallet sensors of the
low conveyor, sledge conveyor and upper conveyor, respectively. Checking
if any of these places ever holds a token gives an affirmative answer. In this
example, we may highlight one of the advantages in applying CTL. The CTL
formula ‘E[E[EF m(p503) = 1 U EF m(p515) = 1] U EF m(p486) = 1]’ represents
the case when a path exists in the reachability graph where first the low terminal
sensor detects a pallet, then the sledge terminal sensor detects a pallet and finally
the upper terminal sensor detects a pallet. This is an example of checkpoint
rule, proving which we may conclude that the lifter is able to transfer a pallet
through it.

The described example may give an idea how the validation routine may look like.
The models of the lifter are available in the internet for download (Lobov, 2004). The
reader may try to evaluate them by SESA model checker that is also available for
download at (SESA, 2004).

The overall model had three hierarchy levels and after assembly from modules
encountered 571 places and 828 transitions. However, the model-checking of the normal
behaviour (without modelling malfunctions in sensors) resulted in a reachability space
not exceeding 60,000 states which was generated on a usual laptop less than in a minute.
This result reflects the efficiency of distributed state modelling with NCES. The expected
state space for the production line shown in Figure1 could be well below a million states
which is a very feasible size for the model checking with SESA.

Besides the possibility to verify or falsify certain properties of the system, another
important advantage is that the method may be applied in absence of physical controller
and physical plant. Consider the following scenario: the manufacturing line where
conveyor modules, lifters, workstations, robotic cells, etc., are being installed.
Mechanical and electrical engineers do installations and tests of the equipments. The time
for project runs out, the deadline is approaching, but the control engineer had no chance
to test the line, since the physical equipment is not ready yet. In this situation

 104 H-M. Hanisch et al.

the application of this method (model-based validation with the model of controller
derived from the source code) may provide an environment for independent development
of control, while the physical plant is being set up.

More details on the practical verification experiences with NCES and the tool
framework can be found by Lobov (2004).

8 Conclusion

The reported work convinced us that the efficient reuse of model elements makes
a difference in the applicability of formal verification for practical control engineering.
The qualitative improvement of the reuse was achieved by the typed modular model
organisation. Of special importance was explicit modelling of plant’s structure and
dynamics. The integrated model development, checking and analysis achieved by the
tool framework ensured further benefits of the approach.

Currently, we are working on extending the framework in order to facilitate the
development of the models of plant.

The recent success of UML as means of model-based system engineering has
attracted attention to UML as to the formal modelling formalism also in industrial
automation. For example, the works (Bonfè and Fantuzzi, 2003; Takatsuka and Tomita,
2002) present first attempts to this end.

The ideas presented in this paper will serve as the basis of an extended modular
modelling paradigm combining the object-oriented typed modelling (of the mainstream
UML) with the benefits of modular place-transition nets.

There is work in progress on further integration of NCES with higher-level UML
models being conducted both in the Universities of Halle (Germany) and Tampere
(Finland) that extends the results presented in this paper. The conversion of UML state
charts defining the dynamics of models into the corresponding NCES models will be the
subject of future research.

Though the UML support is not integrated to the tool framework as described in the
paper, however, the similarity between NCES and IEC61499 function blocks allow for
using the CORFU environment (Thramboulidis, 2002) in connection with Rational Rose
in order to define the model’s structure and interfaces and convert them to the form of
interconnected NCES modules.

Acknowledgements

The work was partially supported by MOVIDA-1, a project funded by the National
Technology Agency in Finland – TEKES and Deutsche Forschungsgemeinschaft under
reference Ha 1886/12-2.

References
Alur, R., Courcoubeitis, C. and Dill, D.L. (1990) ‘Model checking for real-times’, Proceedings of

the Fifth Annual IEEE Symposium on Logics in Computer Science, Philadephia.

Analysing Signal-Nets with SESA (2004) Available at: http://www.informatik.hu-berlin.de/
lehrstuehle/automaten/sesa/.

 Formal validation of intelligent-automated production systems 105

Aygalinc, P. and Denat, J.P. (1993) ‘Validation of functional Grafcet models and performance
evaluation of the associated systems using Petri nets’, Automatic Control Production Systems
A.P.I.I., Vol. 27, pp.81–93.

Bani Younis, M. and Frey, G. (2003) ‘Formalization of existing PLC programs: a survey’,
Proceedings of Computing Engineering in Systems Applications, Lille, France.

Bonfè, M. and Fantuzzi, C. (2003) ‘Design and verification of industrial logic controllers
with UML and state charts’, IEEE Conference on Control Application, 23–25 June, Istanbul,
Turkey.

Clarke, E., Emerson, E.A. and Sista, A.P. (1986) ‘Automatic verification of finite state concurrent
systems using temporal logic’, ACM Transactions on Programming Languages and Systems,
Vol. 8, pp.244–263.

De Loor, Zaytoon, P.J. and Villerman-Lecolier, G. (1997) ‘Abstraction and heuristics for the
validation Grafcet controlled systems’, European Journal of Automation, Vol. 31,
pp.561–580.

FBDK – Function Block Development Kit (2005) Available at: www.holobloc.org, visited in June.

Hanisch, H-M. and Lüder, A. (1999) ‘Modular modelling of closed-loop systems’, Colloquium on
Petri Net Technologies for Modelling Communication Based Systems, Proceedings, Berlin,
Germany, 21–22, October pp.103–126.

Hanisch, H-M. and Lüder, A. (2000) ‘Modular modeling of closed-loop systems’, Colloquium on
Petri Net Technologies for Modeling Communication Based Systems, Proceedings,
Berlin, Germany, pp.103–126.

Hanisch, H-M., et al. (1997) ‘Modelling of PLC behaviour by means of timed net condition/event
systems’, Sixth International Conference on Emerging Technologies and Factory Automation,
Los Angeles, USA.

Hanisch, H-M., Lüder, A. and Thieme, J. (1998) ‘A modular plant modelling technique and related
controller synthesis problems’, IEEE International Conference on Systems, Man, and
Cybernetics, October, Vol. 1, pp.686–691.

Hanisch, H-M., Pannier, T., Peter, D., Roch, S. and Starke, P. (2000) ‘Modelling and verification
of a modular lever crossing controller design’, Automatisierungstechnik, Vol. 48.

Heiner, M. and Menzel, T. (1998) ‘Instruction list verification using a Petri net semantics’,
IEEE International Conference on Systems, Man, and Cybernetics, Vol. 1, pp.716–721.

IDA – Interface for Distributed Automation (2002) Available at: www.ida-group.org.

IEC61499 (2005) Function Blocks for Industrial Process Measurement and Control Systems,
Publicly Available Specification, International Electrotechnical Commission, Technical
Communication 65, Working Group 6, Geneva.

International Standard IEC 1131-3 (1993) Programmable Controllers – Part 3, International
Electrotechnical Commission, Geneva, Switzerland.

Lastra, J.L.M. (2000) ‘Evaluation of new open control systems for light assembly applications’,
MSc Thesis, Tampere University of Technology.

Lobov, A. (2004) An approach to the formal verification of automated manufacturing systems with
programmable control, MSc Thesis, Tampere University of Technology, April, Available at:
http://www.pe.tut.fi/movida/LobovThesis/.

Lobov, A., Lastra, J.L.M., Tuokko, R., and Vyatkin, V. (2003) ‘Methodology for modelling visual
flowchart control programs using Net Condition/Event Systems formalism in distributed
environments’, IEEE Conference on Emerging Technologies in Factory Automation
(ETFA’03), Proceedings, Lisbon, September.

Lobov, A., Lastra, J.L.M., Tuokko, R., and Vyatkin, V. (2004) ‘Modelling and verification of
PLC-based systems programmed with ladder diagrams’, INCOM’2004, Proceedings,
Salvador, Brazil, April.

Nematron Corp. (2001) ‘OpenControl: about open architecture’, Available at: http:
www.nematron.com/OpenControl/oc_architecture.shtml, September.

 106 H-M. Hanisch et al.

PROFInet – project of Profibus User Organization (2004) Available at: http://www.profibus.com.

Rausch, M. and Hanisch, H-M. (1995) ‘Net condition/event systems with multiple condition
outputs’, Symposium on Emerging Technologies and Factory Automation, Proceedings,
INRA/IEEE, Paris, France, October, Vol. 1, pp.592–600.

Sreenivas, R.S. and Krogh, B.H. (1991) ‘On condition/event systems with discrete state
realizations’, Discrete Event Dynamic Systems: Theory and Applications, Vol. 2, No. 1,
pp.209–236.

Starke, P.H. and Hanisch, H-M. (1997) ‘Analysing of signal/event nets’, Proceedings of the Sixth
IEEE International Conference on Emerging Technologies and Factory Automation
ETFA-97, Los Angeles, USA, September, pp.253–257.

Starke, P., Roch, S., Schmidt, K., Hanisch, H-M. and Lüder, A. (2004) ‘Analysing signal-event
systems’, Technical Report, Humboldt Universitat zu Berlin, Institut für Informatik,
Available at: http: www.informatik.hu-berlin.de/lehrstuehle/automaten/tools/, July.

Takatsuka, K. and Tomita, S. ‘On modelling and an algorithm for verifying behaviour of discrete
parallel production system’, PSE2002ASIA.

Thieme, J. (2002) Symbolische Erreichbarskeitanalyse und automatische Implementierung
struktuirter, zeitbewerter Steuerungsmodelle, Dissertation zur Erlagung des Grades Dr.-Ing.,
Berlin: Logos Verl.

Thramboulidis, K. (2001) ‘Using UML for the development of distributed industrial process
measurement and control systems’, IEEE Conference on Control Applications (CCA),
September, Mexico.

Thramboulidis, K. (2002) ‘Development of distributed industrial control applications:
the CORFU framework’, Fourth IEEE International Workshop on Factory Communication
Systems, August, Vasteras, Sweden.

Vyatkin, V. and Hanisch, H-M. (1999) ‘A modelling approach for verification of IEC1499
function blocks using Net Condition/Event Systems’, IEEE Conference on Emerging
Technologies in Factory Automation (ETFA'99), Proceedings, Barcelona, Spain, September,
pp.261–270.

Vyatkin, V. and Hanisch, H-M. (2003) ‘Verification of distributed control systems in intelligent
manufacturing’, Journal of Intelligent Manufacturing, Special issue on Internet Based
Modelling in Intelligent Manufacturing, Vol. 14, No. 1, pp.123–136.

Vyatkin, V., Hanisch, H-M. and Bouzon, G. (2004) ‘Open object-oriented validation framework
for modular industrial automation systems’, INCOM’2004, Proceedings, Salvador,
Brazil, April.

Vyatkin, V., Hanisch, H-M. and Pfeiffer, T. (2003) ‘Modular typed formalism for systematic
modelling of automation systems’, First IEEE Conference on Industrial Informatics
(INDIN’03), Proceedings, Banff, Canada, August.

Vyatkin, V., Hanisch, H-M., Starke, P. and Roch, S. (2000) ‘Formalisms for verification of
discrete control applications on example of IEC1499 function blocks’, Conference ‘Verteilte
Automatisierung’ (Distributed Automation), Proceedings, Magdeburg, Germany, March,
pp.72–79.

