
Engineering of Validatable Automation Systems
Based on an Extension of UML Combined With

Function Blocks of IEC 61499

Viktor Dubinin

Penza State University,
Russia

e-mail: duvini@mail.ru

Valeriy Vyatkin
Thomas Pfeiffer

Martin Luther University of Halle-Wittenberg,
Germany

e-mail: Valeriy.Vyatkin@iw.uni-halle.de,
Thomas.Pfeiffer@iw.uni-halle.de

Abstract - This paper suggests a comprehensive engineering
framework for software design for component-based distributed
industrial automation based on the combination of UML with the
function block concept of the newly emerging international
standard IEC61499. Four UML diagram types have been used,
namely: class, sequence, cooperation and state-chart diagrams. The
UML design is transformed then to the executable function block
specification following the IEC61499.

I. INTRODUCTION

The main focus that is currently observed in the
development of automation systems is in the transition to
distributed intelligent systems based on network technologies.
This process goes hand in hand with the recognition of the
growing importance (and complexity) of software and
correspondingly software engineering in automation.

Both these trends resulted in the development of new
international standard IEC61499 [1]. According to the IEC61499
reference architecture a control system consists of one of several
independent physical devices communicating via a network
media. The functions of the system are determined by an
application that can be allocated to a single device or can be
distributed over several devices of the system. The application is
defined as a network of function blocks (FB) interconnected via
event and data links. A device is defined as a collection of
resources, each of them is a unit structure having independent
control of its operations and providing certain services to the
applications that may include scheduling and execution of
algorithms.

Examples of automation system design using the function
block concept of IEC61499 can be found in [2,3]. Thus, in [2]
several patterns are suggested, among which the object-oriented
pattern Model/View/Controller (MVC), the Distributed
Application Pattern, the Proxy pattern, etc. In [3] the MVC
pattern is applied to automation of a model of modular
production system based on mechatronic components of FESTO
Didactic GmbH (Germany).

The IEC61499 standard supports the function block based
engineering paradigm. This concept accumulates the experience
of industrial automation practice and combines it with modern
concepts of component-based software engineering. System

description in terms of FB is a kind of executable
specification. For example, the control system exemplified
in [3] executes the function blocks on a Netmaster control
device (a make of Italian company Elsist), that is built
using the embedded Java™ microprocessors TINI of
Dallas Semiconductors (USA) in the Series I and SNAP of
Imsys (Sweden) in the Series II.

However, despite its numerous advantages, the
function block concept of IEC61499 does not use all the
potential benefits of the object-orient and component-based
software engineering.

The object-oriented approach to software engineering
is one of the most promising in the industry. First works on
application of this approach in industrial automation and
control systems date back to early 90-s. One of the
dominating trends in them is the use of Unified Modeling
Language (UML) [5] in general, and of its extensions, such
as UML-RT [6] dedicated for complex embedded and real-
time applications in particular.

Another example of UML extension for modeling of
control systems is CSML [7]. In some works the UML is
combined with some other means of system description,
e.g. data flow diagrams [8], SDL [9], etc.

Along with clear benefits of the object-oriented
methodology, the use of UML exhibits also certain
problems, among which:
1) A weak orientation of control engineers in advanced

software engineering methods.
2) Certain difficulties in implementation of event flows;
3) Difficulties in generation of a fully executable control

application from UML;
There were certain efforts in the last years to bring

together the UML and the FB-based engineering
methodologies, in particular in [10, 11, 15]. Thus, in [15]
both approaches were compared in details, and the
conclusion was made that they are very close to each other
though the former is a subset of the latter. The work [10]
suggests transformation of certain UML diagrams (use
case and sequence diagrams) into networks of function

blocks. These transformations have been used in the software
toolset FBDK CORFU. In [11] a profile for adapter interface
FBs is suggested that would connect ports of the UML-RT with
the FB-oriented languages of IEC61131 [12], IEC61499, and
Matlab/Simulink. Besides, a new initiative of IMS (Intelligent
Manufacturing Systems International R&D Program [13,14])
targets the integration of automation system developers using
open standards, such as IEC61499, IEC61131, and UML.

However, despite the stirring up of the works on bringing
together the function blocks and UML engineering approaches,
they are far from being completed. In particular, the methods of
transformations between UML and FB are still not enough
developed.

As the experience of the authors shows, there is a gap
between the engineering paradigms that sets hurdles in
implementation of UML specifications using the FBs of
IEC61499. One of the reasons of that lays in different
approaches for description of program systems and business
processes (UML) and block diagrams (FB).

The goal of the recently started research project VAIAS -
Validatable Architectures for Industrial Automation Systems

(funded by German Ministry for Education and Research and by
the industrial partners) is the development of an architecture that
attempts to combine:
- an approach to software (and system) engineering following

the structure of the original system (object-based
engineering), and

- inherited validatability, that means facilitated application of
formal analysis methods through the architecture.

VAIAS intends to meet the new challenges of the automation
world providing new software architecture that could better fit to
the decentralized reconfigurable nature of automation systems of
new generation, will have a higher inherited level of robustness,
and will be “friendlier” to formal analysis and synthesis.

The basic building blocks of VAIAS will be Automation
Objects (AO), which can be basic or composite. Description of a
basic block type does not include references to other AO types.
The architecture will be based on the standard IEC61499
architecture at the execution level, and will employ some ideas
of UML at the design level.

In this paper an attempt is made to bring closer the UML
with the function block representation that has resulted in a draft
proposal of UML-FB language, which is considered as the initial
engineering language in the VAIAS architecture.

The paper is structured as follows: In Section 1 the language
UML-FB is introduced. Section 2 features a case study report on
application of the UML-FB for development of distributed
control systems of a mechatronic testbed. Section 3 provides the
rules for transformation of UML models into function blocks. In
conclusion the results and plans for further research works are
discussed.

II. UML-FB LANGUAGE FOR MODELING AND IMPLEMENTATION
OF AUTOMATION SYSTEMS USING THE IEC61499 STANDARD

All structures that are representable in function blocks can
be represented also in the UML-FB language. Thus, the UML-

FB can be considered as a language for modeling
automation systems, and the same time as certain extension
of the FB specification of IEC61499 by the UML means.

For instance, the UML-FB allows explicit definition of
the system’s hierarchy as a class diagram. For specification
of the desired behavior the sequence and cooperation
diagrams can be used, which are not available in
IEC61499. Besides, there is an opportunity to use UML as
a specification query language (for validation and testing
of the model) and as a structural and functional constrain
language (for the synthesis of correct models).

The UML-FB extends UML using the mechanism of
stereotypes. At the same time the firm rules of diagram
application and specific semantic constrain its application
in other application domains.

The approach introduced in this paper relies on the
following assumptions:
1) The function blocks and other structures of IEC61499

are used for describing an “executable specification”
of a control system.

2) The UML-FB is used as a language supporting the
engineering process: modeling, design and
maintenance of the automation system.
These assumptions explain why the transition from the

UML-FB to FB needs to be very smooth and consistent.
Both UML and IEC61499 are using the concept of

typing/instantiation not only for data but also for code
capsules. We implicitly assume that the class concept of
UML corresponds to the function block concept of
IEC61499 and vice verse.

A. Types of diagrams used
The UML-FB uses the following types of diagrams:

class diagrams, sequence diagrams, cooperation diagram
and state charts.

Class diagrams are used for the representation of
structure that includes:
- the full hierarchy of functional system components

(defined by the aggregation and inheritance relations);
- the types of function blocks, subapplications, adapter

interfaces, resources and devices;
- the system, device and resource configurations;
- the function block interfaces including event and data

inputs and outputs and the corresponding WITH
qualifiers;

- the connections between function blocks typical for
instances of given types;

- the constant data representing input parameters of
function blocks, subapplications, resources and devices;
Sequence and cooperation diagrams are used to

support definitions of the application’s dynamics and its
transformation to the connections between function blocks,
as well as between parameters and corresponding function

blocks, resources and devices. They also can be used for the
generation of time-sequence diagrams following ISO TR 8509
which are applied in IEC61499 function block paradigm for
description of behavior of Service Interface Function Blocks.
Using the cooperation diagrams (extended with text constructs at
connections) it is possible to define point to point connections
between function blocks.

State Chart Diagrams of UML-FB are used to specify exact
behavior of components that is determined the Execution
Control Charts (ECC) of basic function blocks. In accordance
with the ECC structure the state charts of UML-FB are made
fairly simple: they do not include composite and historic states,
as well as complex transitions.

B. Types of connections by localization
The class diagrams, sequence diagrams and cooperation

diagrams allow the use of various connection types that are
specified by the criterion of connection’s localization. An
illustration of connection types is given in Figure 1. In the upper
part of the Figure1 (a) a tree of object hierarchy is presented and
in the right part a system of nested function blocks is shown that
is generated from the tree.

Among the connections we distinguish local and transit
ones. The local connections are direct links at the same level of
hierarchy (e.g. between sibling objects as the F1 – F4
connection) and direct inter-level connections, such as the link
between objects F0 and F1.

 F0:A

F1:B

F2:C

F4:E

F5:G

F3:D
а)

F3:D F5:G

F0:A F1:B

F2:C F4:E

б)
Figure 1. An example of object hierarchy and the implied

structure of nested function blocks.
The transit connections are used between objects located on

different levels and possibly even in different branches of the
hierarchy tree. The IEC61499 does not allow direct use of such
connections. To implement a transit connection several inter-
level links have to be used. Besides, a transit link implies re-

definition of interfaces in the classes through which it goes
by. For example, an implementation of the transit link
between F3 and F5 (that is outlined in Figure 1 by a bold
line) requires four links between F3, F2, F1, F4, F5. Each
of the blocks F2 and F1 requires a new output and block F4
acquires a new input. The naming of the generated inputs
and outputs is done according to the name of the link or to
the names of the link roles.

C. Class stereotypes
The stereotyping of classes in UML-FB is done

according to the basic concepts of the IEC61499 standard
and to the classification of function blocks presented
below.

A base of the IEC61499 architecture is the concept of
Function Block (FB). The standard distinguishes basic
(BFB), composite (CFB) and service interface function
blocks (SIFB). Besides, the standard defines
subapplication that is different from the composite FB only
in processing of inputs and outputs: definition of a
subapplication type does not have WITH links between
events and data. This means that no specific storage
provided for inputs and outputs on the level of the
subapplication.

The classification of function blocks is presented in
Figure 2.

FB

CFB BFB

SIFB

PSIFB TSIFB CSIFB
Figure 2. Function block classification.

The FB-Class is located in the root of the hierarchy
and defines all other classes. BFB represents basic function
block. BFB stands for Basic Function Blocks, CFB for
Composite Function Blocks, and SIFB for Service
Interface Function Blocks. This classification comes
directly from IEC61499. We suggest some specification of
the classification of SIFBs based on their functional
domain: PSIFB stands for process interface function blocks
that provide connection with controlled object (plant),
TSIFB are used to implement for interfaces with peripheral
equipment, such as timers, and CSIFB for encapsulation of
communication functions.

Besides, the class diagrams if UML-FB use the
following stereotypes of classes with self-explanatory
names: SUB for subapplications, ADAPTER,
CONSTANT, SERVICE (a service in a SIFBs), SYSTEM,
DEVICE, DEVICE_TYPE, RESOURCE,

RESOURCE_TYPE, APPLICATION and a pre-defined
Interface stereotype.

D. Class diagram relations
A class diagram of the UML-FB uses relations of

aggregation, inheritance, association, and dependency. The
system hierarchy of function blocks can be completely defined
using the aggregation. It defines not only a complete hierarchy
of classes (or FB types) but also determines the hierarchy of
objects (in other words, instances of function blocks) that is
achieved using aggregative connections roles. Name of the role
determines the name of the corresponding function block
instance. Thus the number of instances of certain function block
type is determined by the number of the corresponding
aggregation links.

The association relation is used to determine the event, data
and adapter connections between FB. An associative link
(which can be of type EVENT, DATA or ADAPTER)
determines an each-to-each correspondence between the
corresponding FB instances.

The inheritance relation can be applied to describe
inheritance of event, data, and adapter inputs and outputs of
function blocks, as well as to describe inheritance of complete
interfaces.

The dependency relation allows the definition of various
semantic relationships between objects, such as “Client-Server”,
“Daemon”, “Mechanic link”,” Physical link”, but does not
directly influence the code-generation.

III. AN EXAMPLE OF UML-FB SPECIFICATION

In this Section the ideas of UML-FB based system
engineering will be justified by giving an example of a control
system development for a testbed that is a model of modular
production system presented in Figure 3. The system consists of
three production stations that model production process by
moving workpieces and performing various operations on them.
The processing units are represented by “mechatronic objects”
that are capable of performing certain operations, for example
measuring of the workpiece height, drilling the workpiece, etc.

Figure 3. A model of modular production system.

The testbed is installed in Automation Technology Lab of
Martin-Luther University of Halle-Wittenberg (Germany) [16].

A commercially available modular processing system
of FESTO Didactic (Germany) was taken as a base of the
testbed. Each station is controlled by a Netmaster control
device (a make of Italian company Elsist) that is a mini-
controller with analogue and discrete I/Os and TINI
microprocessor – a hardware implementation of the Java
virtual machine.

For execution of function blocks we used FBRT from
Rockwell Automation – that is a Java based run-time
platform included in the experimental software toolset
supporting IEC61499, which runs both on PC and on
Netmasters thanks to the platform independence of Java.
The other part of the toolset is Function Block
Development Kit (FBDK) – the engineering software tool
[17]. A PC was used as an engineering station, as well as
for allocation of human-machine interface components and
for rendering of the process. PC and Netmaster were
connected via Ethernet.

As shown in Figure 3, the plant is composed of three
stations, namely Distribution Station, Test Station, and
Processing Station. The function of the Distribution Station
is to draw a workpiece from a magazine and to feed it to
the Test station. The Distribution Station is composed of
two modules, i.e., the feed magazine module and the
transfer module. The function of the Test Station is, to
determine the material characteristics of the workpiece, to
check the workpiece height, and either to reject the
workpiece or to make it available for the subsequent
station determined by its material characteristics.

a)

b)

Figure 4. UML-FB representation of a cylinder
(pusher).

The Processing station consists of a rotary table with 4 slots
for workpieces, a drill, a device measuring quality of the drilling
(checker), and a clamp preventing rotation of the table during the
drilling and measurement operations. One may clearly
distinguish 4 “mechatronic objects” in this system: table, drill,
checker and clamp. In addition, there is a human machine
interface panel with several buttons, switches and LEDs.

The development of the control system of the testbed was
performed following the methodologies of object-oriented and
structural design. The latter includes both bottom-up and top-
down methodologies. The application of the bottom-up
methodology is justified by the existence of mechatronic
equipment that can be delivered by its vendor accompanied by
some pre-programmed embedded devices and/or software
components.

Figure 5. Binary semaphore implementation in UML and in

the form of function blocks.

The design process consists of the hierarchical composition
of virtual logic devices up to the level sufficient to control the
whole station.

A control device of the (n+1)th level of hierarchy is
represented as a pair, consisting of one or more controlled

devices of level n and of a control of level n. It is assumed
that a virtual device of level n provides services of a higher
level than a device of level n-1. Electromechanical devices
like sensors and actuators are assumed to be of level 0.
Virtual devices of level 1 are designated to be standard
event flow devices that play a special role in system
engineering. In terms of IEC61499 such devices are
represented as SIFBs.

Figure 4 features an example of class and sequence
diagrams representing a virtual control device of a pusher
that is implemented by a pneumatic cylinder. The pusher,
represented as a class SGV2 (of level 2), has an event input
req_eject “eject the workpiece” and event output cnf_eject
for confirmation of the ejection.

It is assumed that the vendor of the pusher supplies it
with the service interface function block SGV1. Control of
the pusher follows the specification presented in Figure 4
(bottom) as a sequence diagram.

IV. GENERATION OF FUNCTION BLOCKS FROM UML
MODELS

In the presented methodology the design of purely
program components can be conducted in accordance with
the top-down approach. For instance, to implement a
binary semaphore initially a CFB-class Semaphore was
developed, that was specified further with BFB classes
EI_Var and Arbitr as exemplified in Figure 5, top. The
CFB-class Semaphore has the following event inputs:
p1,p2,p3 – close requests from clients 1,2,and 3
correspondingly; v – a request to open semaphore; and
event outputs e1, e2 and e3 – that are the confirmations of
the semaphore’s closure from the clients 1, 2, and 3
correspondingly.

Figure 6. A composite function block

generated from the class diagram in Figure 4.

The example in Figure 5 also illustrates the use of
different types of relations in the class diagram. Thus, the
Semaphore class aggregates three instances Var1, Var2
and Var3 of type EI_Var. A same-level connection “av-
>w” between the classes Arbitr and EI_Var implies that

the event output av of the block Arbitr will be connected with
event outputs of blocks Var1, Var2 and Var3. The inter-level
link “v-> v” with an EVENT stereotype between classes
Semaphore and Arbitr defines a connection between input v of
the capsule and the same name input of the nested function block
of the Arbitr type.

The Semaphore class inherits the event inputs e1, e2 and e3
from the Arbitr class. Class EI_Var inherits the interface
I_EI_Var.

Provided that there is a cooperation diagram is defined, a
network of function blocks can be generated as the one in Figure
5. Figure 6 illustrates another example of a function block
network generated from the diagrams in Figure 4.

V. TOOL FRAMEWORK

All steps of the suggested engineering process are supported
by the corresponding software tools developed in Penza State
University as follows:

- Converter from UML to IEC 61499 function blocks is intended
for transformation of UML-model supported by CASE-tool
Rational Rose to XML-representation of IEC 61499 function
blocks. A set of function blocks is in accordance to IEC 61499
standard.

- Converter from IEC 61499 function blocks to UML is intended
for transformation of XML-representation of IEC 61699
function blocks to UML-model supported by CASE-tool
Rational Rose. A set of function blocks is in accordance to
IEC 61499 standard.

Experimental prototypes of tools are available at [18, 19] for
download.

VI. CONCLUSION

The paper presented an approach supporting the automation
systems’ engineering that is based on UML and IEC61499.
Application of several UML diagrams has been studied that
together provide a comprehensive support of the engineering
process.

The further steps of the work will include extensions of the
developed backbone framework in the direction of particular
ontologies that would make the engineering more “object-
oriented” in the sense of physical mechatronic objects rather
than objects in pure software-engineering sense. The goal of
such an extension would be to provide a consistent system
engineering approach around the engineering of the software
part.

Another possible extension would be to study the ways of
encapsulation of the object’s dynamics with a goal of providing
a comprehensive framework for modeling of the closed-loop
automation systems.

ACKNOWLEDGEMENT

The work of V. Vyatkin and T. Pfeiffer was supported in
part by the cooperative project VAIAS funded by the German
Ministry for Education and Research (BMBF) and industry.

REFERENCES
[1]. IEC61499 – Function Blocks for Industrial Process Measurement

and Control Systems, International Electric Commission, Draft,
Tech.Comm.65, Working group 6, Geneva, 2001

[2]. J.H. Christensen. Design patterns for systems engineering with IEC
61499, Conference “Distributed Automation” (Verteile
Automatisierung), Proceedings, Magdeburg, Germany, 2000

[3]. X. Cai, V. Vyatkin, H.-M. Hanisch, Design and implementation of
a prototype control system according to IEC 61499, 9th IEEE
International Conference on Emerging Technologies and Factory
Automation (ETFA2003), Proceedings, Lisbon, Portugal, 2003

[4]. T. Tomilla, O.Venta, K. Koskinen. Next generation industrial
automation – needs and opportunities // Automation Technology
Review, 2001, p.34-41

[5]. Gomma, H. Designing Concurrent, Distribute, and Real-Time
Applications with UML, Addison Wesley 2000

[6]. B.Selic, J.Rumbaugh. Using UML for complex real-time systems,
http://www.objecttime.com/technical/umlrt.html

[7]. K.Zagar, M.Plesko, M.Sekoranja, G.Tkacik, A.Vodovnik. The
control system modeling language, 8 th Int. Conf. On
Accelerator&Large Experimental Physics Control Systems, Proc.,
San Jose, California, 2001, p. 472-474

[8]. M.Bonfè, C.Donati, C.Fantuzzi. An application of software design
methods to manufacturing systems supervision and control, IEEE
Conf. on Control Application (IEEE-CCA), Glasgow, Scotland,
2002

[9]. H.J. Koehler, U. Nickel, J. Niere, A. Zuendorf, Integrating UML
diagrams for production control systems, Proc. 22nd Int. Conf. on
Software Engineering, Limerick, Ireland, 2000, pp.241-251

[10]. C. Tranoris, K. Thramboulidis. Integrating UML and the function
block concept for the development of distributed control
applications, 9th IEEE Int.Conf. on Emerging Technologies and
Factory Automation (ETFA2003), Lisbon, Portugal, 2003

[11]. T. Heverhagen, R. Tracht, R. Hirschfeld, A profile for integrating
function blocks into the Unified Modeling Language, International
Workshop SVERTS'03, Proceedings, San Francisco, California
2003

[12]. International Standard IEC 1131-3, Programmable Controllers -
Part 3, International Electrotechnical Commission, 1993, Geneva,
Switzerland

[13]. OOONEIDA: An Open Object-Oriented kNowledge Economy for
Intelligent Industrial Automation: Official web-site:
http://www.oooneida.info

[14]. Vyatkin V., Christensen J., J.L. Martinez Lastra, Auinger F.
OOONEIDA: An Open, Object-Oriented kNowledge Economy for
Intelligent Distributed Automation, 1st IEEE Conference on
Industrial Informatics (INDIN'03), Proceedings, Banff, Canada,
August, 2003

[15]. Wei Zhang, Christian Diedrich, Wolfgang Halang, Comparison
between Function Block-Oriented and Object-Oriented Design in
Control Applications, 27th IFAC/IFIP/IEEE Workshop on Real-
Time Programming, WRTP 2003, Proceedings

[16]. Distributed Automation Testbed: http://at.iw.uni-
halle.de/~testbeds/plant.htm

[17]. Function Block Development Kit
http://www.holobloc.com/fbdk/README.htm

[18]. Converter from UML to IEC 61499 function blocks:
http://alice.stup.ac.ru/~dvn/fb61499/uml_fb/converters/alshin/

[19]. Converter from IEC 61499 function blocks to UML:
http://alice.stup.ac.ru/~dvn/fb61499/uml_fb/converters/raskin/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

