
Ontology-based Design Recovery and Migration

between IEC 61499 - compliant Tools
Wenbin (William) Dai, Graduate IEEE Member, wdai005@aucklanduni.ac.nz

Valeriy Vyatkin, Senior IEEE Member, v.vyatkin@auckland.ac.nz

Victor Dubinin, victor_n_dubinin@yahoo.com

Abstract – This paper proposes a new method of semantic design

recovery of automation applications, with source code used to

generate ontological semantic model of IEC 61499 application.

The model can be used for automatic semantic analysis of the

system and automatic code generation for various IEC 61499

tools. This method creates a foundation for correct-by-design

development tools and automatic migration between different

tools. The semantic enrichment and analysis are fulfilled via

ontology reasoning and query. This complete design loop is

implemented in a software tool including code capture engine,

semantic analyzer and code generation engine with the pre-

defined IEC 61499 ontology model. The method is demonstrated

on a simple control system case study.

Index Terms— IEC 61499, Function Blocks, Ontology,

Description Logic (DL), Semantic Analysis, Ontology Reasoning,

Code Generation and Design Recovery

I. INTRODUCTION

The IEC 61499 standard [1] aims at programming next

generation of automation systems following PLCs compliant

with IEC 61131-3 standard [2]. One of the key features of the

IEC 61499 standard is component based design which

increases the overall level of design and performance of

developers. The component based design gives an

opportunity to increase the design level even more by

attaching semantic categories to each component. The next

generation tools would be able to support programming in

terms of semantically rich operations, rather than just blocks.

Such design process would require design recovery and

semantic check on code compliance with certain design

patterns that requires intelligent meta-modelling support.

Another practical problem is migration from legacy systems.

In many application domains, the existing base of IEC 61131-

3 applications is large and therefore migration strategy is

important. The migration IEC 61131-3 PLCs to IEC 61499

function block systems is considered as an intermediate step

of introducing distributed control. During the migration

process, reusing some PLC code is an essential procedure for

cost saving and reduce development time. It has been shown

in previous work [3] that the PLC design pattern can be

reused in function block systems. Other approaches from [4-

7] demonstrate the migration is possible but lots of human

efforts are required. A new design approach is still needed to

code transform automatically from one platform to another.

The IEC 61499 system design is completed by using an IEC

61499 IDE for instance, FBDK [8] by Holobloc, or NxtStudio

by NxtControl [9]. These IDEs provide not only editing

functionalities but also function block run-time environments

which the developed system could be deployed into

supported hardware platforms. The developed IEC 61499

system is also distribution-transparent due to its‟ component-

based organisation. The overall usability of such system is a

big step ahead as compared to same implementation in IEC

61131-3 PLCs.

Along with benefits, the active use of IEC 61499 tools for

complex application development has revealed some

problems. For example, creating instances of function blocks

and manually connecting each input and output are still time

consuming. Human errors or typos also happen easily during

this process. Secondly, though the function block design is

self-explanatory, it is still not sufficiently clear for

understanding systems‟ semantics especially to project

managers, engineers and technicians with weak programming

background. Finally, while FBDK, NxtStudio and other IEC

61499 IDEs are all following the standard, there are still some

implementation variations which lead to incompatibility

between them. In order to solve those issues, a more generic

design approach would be desirable to be seamlessly

applicable for all IEC 61499 standard supported tools.

Those issues can be solved by applying the new approach

using ontology and description logic proposed in this paper.

A function block application can be used as a source to

generate platform independent ontology knowledge base.

Then, version for a particular platform can be generated

automatically from the knowledge base.

The rest of the paper is structured as follows: The general

information on the IEC 61499 standard is given in section II.

In section III, the details of new design approach is provided.

Several reviews of relevant papers are given in section IV.

The entire ontology model of IEC 61499 is given from

section V. This section also discusses the ontology query

engine which is involved in the code generation process. In

section VI, the design recovery from code level to knowledge

base process is described. Migration from different IEC

61499 platforms are also described here. In Section VII, the

syntactic checking and semantic analysis are performed for

the recovered design. The code generation procedures are

given in Section VIII. A case study is given through the entire

paper. In the final part, the paper is concluded and future

works are listed.

II. BRIEF INTRODUCTION TO IEC 61499

The artefacts of the IEC 61499 function block architecture are

briefly discussed as follows:

Function Block (FB) – is a module with interface that

consists of event and data inputs and outputs. The events also

will be further referred to as signals. A function block can be

invoked only by an input event. There are three types of

function blocks: basic, composite and service interface

function block.

The functionality of a basic function block is defined as a

state machine called Execution Control Chart (ECC). The

semantics of ECC is similar to Moore finite automata with

actions assigned to states. An action consists of an algorithm

and output event issuance (either can be omitted). An EC-

transition has a condition “clocked” by no more than one

event input and having a guard condition that is a predicate

over data inputs and internal variables (but no events).

A Composite Function Block is specified by interface and

functionality, defined as a network of function block

instances interconnected via event and data connections. A

service interface function block (SIFB) for the purposes of

this paper can be understood as a “black box” whose internal

structure is not specified.

On top of function block types, a Function Block Application

(FBA) is also a network of function block instances, but it has

no interface. An FBA is a highest level structure in the

hierarchy of IEC 61499 artefacts considered in this paper.

A system configuration combines instances of device types

connected with communication network segments,

applications, and their mapping into devices. For instance, in

Fig 1 a simple manipulator control system is shown. The

manipulator consists of two cylinders controlled by a

joystick. Two cylinders are declared as Z1 and Z2 of basic

function block type Cylinder. Limit switches for each

cylinder are declared as SW1 and SW2 of basic function

block type Switch respectively. This function block network

is presented as FBA in the system configuration.

Fig.1. Case Study of Two Cylinders Example.

III. GENERIC DESIGN APPROACH FOR IEC 61499

The proposed design approach aims at automatic design

recovery from the code level, automatic syntactic checking,

semantic analysis and code generation for various IEC 61499

platforms. The IEC 61499 platforms FBDK and NxtStudio

are selected here as the example although there are many

other tools available like 4DIAC-IDE [10], FBench [11],

CORFU IDE [12]. The proposed design approach is

illustrated in Fig.2.

In the top part of Fig.2, source code of an application or

system following IEC 61499 and created in NxtStudio or

FBDK tool, is imported into the knowledge base by the

design recovery engine. The knowledge base is based on

ontology and defined in the semantic web language OWL

[13]. An ontological knowledge base consists of two parts: T-

Box and A-Box. In the ontological terms, definitions are

belonging to the taxonomy box (T-Box) which contains

general properties of the ontological concepts. When this is

applied to the IEC 61499 standard, a T-Box contains

definitions of all IEC 61499 keywords (concepts) and the

relationships between those IEC 61499 concepts. In terms of

ontologies, the system configuration is a concept. A system

configuration has some devices which are the also concepts.

Those concepts are linked to the system configuration by

using object properties. For another example, basic function

block is also a concept in ontology. The basic function block

type must contain no more than one execution control chart

(ECC) is described as basic FB has an object property of

exactly one ECC. Those concepts are described in the

description logic [14] which ontology is mainly defined in.

Various IEC 61499 dialects may have some different naming

of same concept or some definitions which only supported by

this platform. For example, nxtStudio introduced some

keywords in the XML schema that do not exist in the IEC

61499 standard. As a result, the contents of T-Box for

nxtStudio and FBDK are not 100% identical.

Design
Recovery

Engine

IEC 61499
NxtControl

IEC 61499
FBDK

XML XML

Semantic and
Syntactic Analysis

Engine

Code Generation
Engine

OWL/XML

OWL/XML

XML

XML

OWL/XML

NxtControl
Knowledge Base

(Code Template +
Instances)

FBDK
Knowledge Base

(Code Template +
Instances)

OWL/XML

Fig.2. IEC 61499 Design Loop.
In the other part of those knowledge bases, instances are

stored into the assertion box (A-Box) which consists of

knowledge that is specific to the individual system design. In

the IEC 61499 terminology, an A-Box retains all system

configurations, settings, parameters and function block

instances. That information is saved as ontology individuals

in the A-Box.

The XML source code of FB applications created in

NxtStudio or FBDK is interpreted by the design recovery

engine during the import process and stored into the related

knowledge base in the OWL format which relies on XML as

well.

At this point, the knowledge base contains all essential

information required for code generation. However, there is

still another step before the actual code generation can be

performed. The syntactic checking and semantic analysis

must be performed prior to code generation to ensure the

generated code is syntactically 100% compliant with the

target platform and the system execution behaviour is not

changed during the design process. This task is handled by

the syntactic and semantic analysis engine in the tool chain.

All instances data in the A-Box are verified by this engine. If

any issue is detected by the analysis engine, manual changes

are allowed for correcting the design files.

The last step in the design chain is the code generation. Based

on the target platform, respected code templates and related

instances are combined by the code generation engine and

output as IEC 61499 XML files. The generated code is

capable to be opened again in the target platform IDE and

immediately deployed using its mechanisms of compilation

and deployment. If any change is made again in the IDE

during the deployment and testing, the modified files can be

re-imported again into the knowledge base. All changes made

outside the tool chain are captured completely back.

IV. RELATED WORKS

Peltola et al. [15] investigated migration from PLC to IEC

61499 on example of batch process control applications. The

original equipment is controlled by PLCs and the program is

written in sequential flow chart (SFC). The SFC is a visual

programming language provided in the IEC 61131-3 standard

which naturally supports state machines way of thinking. The

authors provide an approach to map the hierarchy of the

system design into function block networks and convert from

IEC 61131-3 SFCs into IEC 61499 ECCs. The test result

proves it is feasible but all the works described in this paper

are completed manually. The ideas of mapping components

from IEC 61131-3 to IEC 61499, proposed in that paper, have

motivated some of the solutions proposed in this work and

also some of our future work that includes IEC 61131-3 into

the loop.

Several design recovery methodologies are illustrated by

Falcione et al.[16]. Authors focus on recovery the ladder

logic (LD) and SFC program from programmable logic

controllers (PLC). The design recovery algorithms for LD

and SFC are provided. The results are represented in a

graphical way which is further to be expressed in math

equations. But this approach is not suitable for code

generation as the result of this approach is not using an open

standard format which could be easily interpreted.

Another design recovery approach is provided by [17]. For

the re-engineering process of design recovery, authors

suggest a formal specification language concept mapping

language (CML) as a storage media. Terminology,

expressions and grammar definition for the CML are

provided. The expression definition of CML is similar to

description logic used by ontology but transformations are

still done manually. To achieve automatic transformation, this

approach is also not applicable.

In [18], the authors of this paper developed a knowledge base

using ontology for semantic analysis and code generation. In

the ontological based database, all object properties and

attributes are imported from the source code automatically.

There are some essential semantic corrections and

enrichments are required to correctly express the IEC 61499

system in the ontology model. In this paper, we continue

using that model in the next section with extended

flexibilities to support more platforms rather than just the

standard IEC 61499 XML.

V. IEC 61499 KNOWLEDGE BASE GENERATION

Knowledge bases are the core part of migration between

various IEC 61499 platforms proposed in this paper. As

shown in Fig. 2, each knowledge base consists of two parts:

code templates and instances. The code template part contains

base functions which will be reused as “components” in the

function block design. In the IEC 61499 terms, all function

block types (basic FB, composite FB and service interface

FB) are considered as the fundamental reusable programming

organization units (POU) in IEC 61131-3. Those fundamental

POUs - function block type definitions are imported into the

code template part in the knowledge base. The second part of

the knowledge base corresponds to the system configuration.

All information regarding the declarations of function block

type instances, event and data connections between function

block instances and the deployment configurations (for

instance, devices and resources allocation for function block

instances) are belonging to this part.

The T-Box definitions for NxtStudio and FBDK knowledge

bases must be created prior to applying the migration

procedure. The IEC 61499 standard is using XML

representation as the standard code format. XML schema or a

DTD are required to validate syntax of an XML file. FBDK

uses the DTD provided within the IEC 61499 standard.

NxtStudio is also using the standard DTD but with extended

features. To generalize the ontology rules for various XML

schemas and DTDs, an automatic conversion from DTD to

ontology OWL is implemented to avoid time consuming and

error prone manual conversions.

The rules of converting standard DTDs to OWLs are

provided in [19]. In the paper [18], a general approach for

auto generation ontology from the IEC 61499 standard DTD

is given in details as well as the semantic corrections and

enrichment for the DTD based ontology model. This

approach is suitable not only for the IEC 61499 standard

DTD but for any DTD. The ontology T-Box generation of

FBDK is also given in [18]. By using the same approach, the

ontology T-Box of NxtControl can be created automatically

as well.

Fig.3. FB Type Ontology Definition in FBDK and NxtControl.

Similar to the standard IEC 61499 DTD, each DTD element

is mapped to an ontology class. Hierarchies of the DTD

elements are described using the ontology object properties

“Has_Subelements”. And the attributes of each DTD element

is created as the ontology data properties

“Has_ElementName_AttributeName” with its value. In Fig.

3, the generated T-Box rules for function block type are given

from both FBDK and NxtControl. Comparing the object

properties, one sees a new DTD element “attribute”

introduced in NxtControl, which can apply to FBType

element.. Another additional data property is „namespace‟.

VI. DESIGN RECOVERY FROM CODE

After both T-Box definitions are created, the migration

process starts with the design recovery from the code level.

The first phase of design recovery is to capture the design

pattern of the source IEC 61499 system. The design recovery

engine searches through the system configuration and lists all

device types, resource types and function block types

included. Then it searches items in each device type and tries

to capture any embedded resource type or function block type

which is not currently in the lists. This search procedure

repeats with each device type, resource type and composite

function block type. All function blocks utilized in the

internal FB network of a composite function block type shall

also be added to the function block type list.

With all files using in the IEC 61499 system configuration are

captured, the second phase of the design recovery process is

to import all function block types into the code template part

of the knowledge base based on the XML schema. The

import process starts with checking if this function block type

already exists in the knowledge base. If this is a new function

block type, the engine will go through all XML elements and

create a respective individual for each element in the

ontology knowledge base. The relationships between

elements are established using ontology object properties.

Those object properties are attached to the ontology node and

named as <Has_ElementName>. Attributes of each node are

defined as the ontology data properties with a name of

<Has_ElementName_AttributeName>. Normally, an XML

node is defined as:

<Node Name=”NodeName” AttributeName=”AttributeValue”>

 <ChildNode Name=”ChildNodeName” ChildAttributeName=”ChildAttributeValue” />

</Node>

The generic mapping from the original XML format above to

the OWL representation of any imported individual is defined

as:

<owl:NamedIndividual rdf:about=”NodeName”>

 <rdf:type rdf:resource=”Node” />

 <Has_ChildNode>ChildNodeName</Has_ChildNode>

 <Has_Node_AttributeName >AttributeValue</Has_Node_AttributeName>

</owl:NamedIndividual>

<owl:NamedIndividual rdf:about=”ChildNodeName”>

 <rdf:type rdf:resource=”ChildNode” />

<Has_ChildNode_AttributeName >ChildAttributeValue

 </Has_ChildNode_AttributeName>

</owl:NamedIndividual>

If this function block type already exists in the knowledge

base, an update to the existing individual is taken place

instead of creating a new OWL individual. This process also

flattens the nested IEC 61499 structure without losing the

system hierarchy. The flat ontology knowledge base is

convenient for query and sort.

The FB Type Valve control of the cylinder control system is

selected as the example illustrated in Fig. 4. The

ValveControl is a basic function block type with two event

inputs INIT/REQ and two event outputs INITO/CNF. There

are two states in the ECC. In the INIT state, all values are

cleared back to zero. In the REQ state, PUSH and POP valve

positions are recalculated according to the current position

(sp), start switch (startSW) and end switch (endSW) inputs

values.

As shown in the bottom part of Fig. 4, the ValveControl is

created as an owl individual with a resource type of FB Type.

Referring to the ontology definition in Fig. 3, the object

properties of FBType - BasicFB, Identification, VersionInfo,

CompilerInfo and Interface list are linked to the related sub

node individuals. The data property Has_FBType_Name

retains the value of ValveControl as the function block type

name. Similar to the ValveControl FB, all other FBs and the

system configuration of the cylinder control demo can be

recovered from the code-level by applying the same rules.

<owl:NamedIndividual rdf:about="#FBType_ValveControl">

 <rdf:type rdf:resource="#FBType" />

 <Has_Identification rdf:resource="#FBType_ValveControl_Identification" />

 <Has_VersionInfo rdf:resource="#FBType_ValveControl_VersionInfo" />

 <Has_CompilerInfo rdf:resource="FBType_ValveControl_CompilerInfo" />

 <Has_InterfaceList rdf:resource="#FBType_ValveControl_InterfaceList" />

 <Has_BasicFB rdf:resource="#FBType_ValveControl_BasicFB" />

 <Has_FBType_Name rdf:datatype="STRING">ValveControl

 </Has_FBType_Name>

</owl:NamedIndividual>

Fig.4. Example of OWL Individual for the ValveControl FB.

VII. SYNTACTIC AND SEMANTIC ANALYSIS USING IEC

61499 ONTOLOGY MODEL

Before the actual code generation can be performed, there are

two more steps required. The first step is to ensure the target

ontology model for code generation is syntactically correct.

The syntax of IEC 61499 files are checked via standard XML

parser with pre-defined IEC 61499 DTD files. After all files

are checked the syntax using the XML parser, this generated

function block system can be opened and edited by FBDK or

NxtStudio, respectively.

The semantic analysis is mainly for checking behavioral

properties which contains not only the correctness of

connections of FBs and mapping of variables but also the

execution semantics [20] like detecting event chain loop. The

semantic rules are defined in SQWRL [21]. SQWRL is a

query language to get information from the ontology similar

to SQL database. SQWRL takes a standard SWRL [22] rule

antecedent and effectively treats it as a pattern specification

for a query. A single semantic rule is satisfied if the query

result contains the individual name query asks for. In this

paper, only one example is given to provide some brief

overview. Detailed semantic rules can be found in [23].

One of the semantic rules is that a system configuration is

semantically correct if for those event connection chains that

are initiated from an E_CYCLE SIFB, no event connection

loop exists in any event chain. One of the common IEC

61499 design issues is the infinite event loop chain. This

problem may arise when there is a feedback loop in event

connections between a group of FBs. This situation is

exacerbated if event source E_CYCLE is connected to one of

FBs in the group. As shown in Fig. 5, once the output event

EO occurs, the system will keep looping through FB_ADD

and FB_SUB infinitely. A new event EO is raised at the

E_CYCLE output every 100ms so the number of events that

need to be processed will be increasing with time. This

semantic rule ensures that such situation would not occur.

Fig.5. Event Loop Chain in IEC 61499.
To detect this situation, first step is to list all event inputs in

the system configuration by using the SQWRL query:

EventInputs(?EventInputs) ^ Has_Event(?EventInputs, ?Events) ^
Has_Event_Name(? Events, ?EventNames) -> sqwrl:select(?EventNames)

For each event input in the result list, a search through event

connections is performed for checking indefinite event loop.

The next step is to detect whether this event input will trigger

an event output of this function block unconditionally. If

searching through the basic function block type, this event

input must be used as the only condition on this EC transition

and emit an event output. The SQWRL expression for getting

input events used as the only EC transition condition and its

destination state name is:

ECTransition(?ECTransitions) ^ Has_ECTransitionCondition(?ECTransitions,
?ECTranConds) ^ swrlb:stringEqualIgnoreCase(?ECTranConds, <EventName>) ^
Has_ECTransition_Destination(?ECTransitions, ?ECDests) ->
sqwrl:select(?ECTranConds, ?ECDests)

If the previous query returns the event input, then another

SQWRL expression is used to check if this event input also

emits an output event:

ECState(?ECStates) ^ Has_ECState_Name(?ECStates, ?ECStateNames) ^
swrlb:stringEqualIgnoreCase(?ECStateNames, <ECDest>) ^
Has_ECAction(?ECStates, ?ECActions) ^ Has_ECAction_Output(?ECActions,
?ECOutputs) ^ swrlb:stringEqualIgnoreCase(?ECOutputs, <EventName>) ->
sqwrl:select(?ECoutputs)

If an output event is triggered by this event, this output event

will be continuously checking until the end of the event chain

or finally loop back to the target input event. Similar

procedures are used for composite function blocks. For

service interface function block, instead of ECCs, service

sequences and transactions are searched.

According to the system configuration in Fig. 1, event chain

loops are detected from switch SW1 to cylinder Z1 and

switch SW2 to cylinder Z2. However, as there is no indefinite

event loop detected in this application. The chance of infinite

event loop occurrence is very low as this application is

completely event-triggered with no repeated input source.

More details could be found in [24].

VIII. CODE GENERATION BASED ON IEC 61499

ONTOLOGY MODEL

Once the ontology model of the IEC 61499 system passes

both the syntax check and semantic analysis, the final step is

to generate the code for the target IEC 61499 FB system. The

generation process starts from the system configuration. All

data properties and object properties of the system

configuration node in the ontology is listed by the code

generation engine. An XML root node <System> is created

and all data properties are mapped to the XML attributes of

the root node. The next step is to loop through all object

properties and create sub nodes named as object properties.

The data properties of each object property are attached as the

XML attributes as well. This procedure is repeated again for

every sub node until no more object property is found in the

ontology model. Also if a function block type, resource type

or device type is discovered during the code generation

process, the same procedure will apply to the function blocks,

resources and devices. Instead of using <System> as the root

node, IEC 61499 keywords <FBType>, <ResourceType> and

<DeviceType> are used respectively.

During the generation process, the data validation is also

performed simultaneously. Data validation is used to check

the data correctness for the selected target platform. For

instance, date format used in the FBDK is “month/day/year”

but NxtStudio is using “year-month-day”. When generating

the FBDK code and the attribute data type is date, the value

must compliance with the suggested format. If the data type is

not matched and can be converted to the target data type, the

data casting will be automatically applied to this attribute

value.

The real challenge is to generate FBDK code with imported

ontology individuals from NxtStudio. The mapping between

two ontology definitions is introduced to solve this issue. The

ontology mapping [25] is a technique which is used for

merging two ontologies together or to find correspondences

between semantically related entities of different ontologies.

The ontology linking between NxtStudio and FBDK are

created by using name based checking. As the NxtStudio

knowledge base is the extended version of the FBDK one, all

FBDK ontology concepts can be found in the NxtStudio

ontology. The individual mapping from NxtStudio to FBDK

is done by comparing the keywords. During the conversion

process, if a concept name is found in both ontology

definitions, this individual will be copied to the FBDK

knowledge. If this is a NxtStudio special implementation, the

action will be ignored.

In Fig. 6, the generated FBDK version of cylinder control is

given. Comparing to the NxtStudio version in Fig. 2, all FB

Types, event connections, data connections and constants are

successfully converted automatically. However, the HMI FB

will not be able to display the interface properly in FBDK due

to different HMI implementations between FBDK and

NxtStudio. The generated system configuration is still

capable for running under FBRT (Function Block Runtime

within FBDK).

Fig.6. Generated FBDK version of Cylinder Control.
When applying the mapping from FBDK to NxtStudio, the

major issue is that some ontology nodes required by

NxtStudio are not available in FBDK. The solution for that is

to add in a default value for those nodes. This is represented

by a data property in the knowledge base:

VarDeclaration (?Var1) ^ Has_VarDeclaration_DefaultValue(?Var1, Value)

If a node is not compulsory in the NxtStudio ontology model,

the default value will be null. Otherwise, a default value will

be written into Value (for example, the default value for INT

data type is 0 and the default value for REAL data type is 0.0).

If anything is not correct due to the generation process, the

FB design can be changed using the corresponding IEC

61499 IDE. The design recovery engine is able to capture any

manual change and store back into the knowledge base

automatically.

IX. CONCLUSIONS

A new ontology based semantic design recovery

method is developed in this paper. Its application is

demonstrated for seamless migration between IEC 61499

standard compliant tools, but its potential is much greater.

Once the parts of source code have been semantic classified

into various semantic categories, each of them can be easier

migrated to the corresponding target code.

Code level design recovery, semantic analysis and code

generation are achieved by using common knowledge base

defined in the ontology. Specific details of multiple platforms

can be imported into the knowledge base and be outputted as

other formats for various platforms. Both the syntactic and

semantic check is performed before the code generation to

ensure generated codes are compatible with target platforms.

A case study has been conducted to prove the automatic

transformation from one platform to another is feasible.

This method will be extended to migration of IEC 61131-3

PLC applications to IEC 61499 with a similar approach based

on ontology based knowledge base.

X. REFERENCES

[1] IEC 61499, Function Blocks, International Standard, First Ed., 2005

[2] IEC 61131-3, Programmable controllers - Part 3: Programming
languages, International Standard, Second Edition, 2003

[3] W.Dai, V. Vyatkin, “Redesign distributed IEC 61131-3 PLC system in

IEC 61499 function blocks”, 15th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA), Bilbao,

Spain, 2010, Page 1 – 8.

[4] C. Gerber, H.-M. Hanisch, and S. Ebbinghaus, “From IEC 61131 to
IEC 61499 for Distributed Systems: A Case Study”, EURASIP Journal

on Embedded Systems, Volume 2008, Article ID 231630, 8 pages,

doi:10.1155/2008/231630
[5] C. Sünder, M. Wenger, C. Hanni, I. Gosetti, H. Steininger, J. Fritsche,

„Transformation of existing IEC 61131-3 automation projects into

control logic according to IEC 61499”, IEEE International Conference
on Emerging Technologies and Factory Automation, Hamburg,

Germany, September, 2008

[6] O.J.L. Orozco, J.L.M. Lastra, “Agent-Based Control Model for
reconfigurable manufacturing systems”, 2007 12th IEEE International

Conference on Emerging Technology and Factory Automation , 25-28

September 2007, Page 1233 - 1238.
[7] K. Thramboulidis, G. Koumoutsos, G. Doukas, “Towards a Service-

Oriented IEC 61499 compliant Engineering Support Environment”,

IEEE 11th International Conference on Emerging Technologies and
Factory Automation, 2006, Page 758 – 765.

[8] FBDK – Function Block Development Kit [Online], available from

http://www.holobloc.com/
[9] nxtControl GmbH, nxtControl – Next generation software for next

generation customers [Online, 2009, June], http://www.nxtcontrol.com

[10] 4DIAC, An open source IEC 61499 IDE and runtime [Online],
available from http://www.fordiac.org

[11] FBench, An open source IDE for IEC 61499 [Online], available from

http://www.ece.auckland.ac.nz/~vyatkin/fbench/
[12] CORFU, Function block development environment [Online], available

from http://seg.ee.upatras.gr/corfu/dev/index.htm

[13] Ontology General Definition [Online], available from
http://semanticweb.org/wiki/Ontology

[14] F. Badder, D. Calavanese, D.L. McGuinness, D. Nardi and P.F. Patel-

Schneider, “The Description Logic Handbook, Theory, Implementation
and Applications, 2nd Edition.”, Published by Cambridge University

Press, 2007, ISBN 978-0-521-87265-4

[15] J. Peltola, J. Christensen, S. Sierla, K. Koskinen, “A Migration Path to
IEC 61499 for the Batch Process Industry”, 5th IEEE International

Conference on Industrial Informatics, 2007, Volume 2, Page 811 – 816

[16] A. Falcione, B.H. Krogh, “Design recovery for relay ladder logic”,
IEEE Control Systems Magazine, 13(2), 1993 Page 90 – 98

[17] W. Lim, J.V. Harrison, P.A. Bailes, A. Berglas, “Design Recovery

through formal specification”, Australian Software Engineering
Conference, 1998, Page 22 – 31.

[18] W.Dai, V. Dubinin, V. Vyatkin, “IEC 61499 Ontology Model for

Semantic Analysis and Code Generation”, 9th IEEE International
Conference on Industrial Informatics, 26 – 29 July 2011, Lisbon,

Portugal

[19] P. Thuy, Y. Lee, S. Lee, “DTD2OWL: Automatic Transforming XML

Documents into OWL Ontology”, 2nd International Conference on

Interaction Sciences: Information Technology, Culture and Human,
16–18 Aug 2009, ISBN: 978-1-60558-710-3

[20] V. Vyatkin, “The IEC 61499 Standard and its Semantics” – IEEE

Industrial Electronics Magazine, 3(4), 2009
[21] M. O‟Connor, A. Das, “SQWRL: a Query Language for OWL”, OWL:

Experiences and Directions (OWLED), Fifth International Workshop

2009, Vol 529.
[22] SWRL: A Semantic Web Rule Language Combining OWL and

RuleML[Online], retrieved from

http://www.w3g.org/Submission/SWRL/
[23] W.Dai, V. Dubinin, V. Vyatkin, “Semantic Analysis of IEC 61499

Systems Using Automatically Generated Ontological Models”, IEEE

Transactions on Industrial Informatics, 2011, submitted
[24] V. Dubinin, V. Vyatkin, “Cycle detection in IEC 61499 function block

systems using ontologies”, International conference CIT’11, Penza,

May, 2011
[25] J. Euzenat, P. Shaviko, “Ontology Matching”, Published by Springer,

2007, ISBN:3-540-49611-4

http://www.holobloc.com/
http://www.nxtcontrol.com/
http://www.fordiac.org/
http://www.ece.auckland.ac.nz/~vyatkin/fbench/
http://seg.ee.upatras.gr/corfu/dev/index.htm
http://semanticweb.org/wiki/Ontology
http://www.w3g.org/Submission/SWRL/

