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Abstract – This paper proposes a new method of semantic design 

recovery of automation applications, with source code used to 

generate ontological semantic model of IEC 61499 application. 

The model can be used for automatic semantic analysis of the 

system and automatic code generation for various IEC 61499 

tools. This method creates a foundation for correct-by-design 

development tools and automatic migration between different 

tools. The semantic enrichment and analysis are fulfilled via 

ontology reasoning and query. This complete design loop is 

implemented in a software tool including code capture engine, 

semantic analyzer and code generation engine with the pre-

defined IEC 61499 ontology model. The method is demonstrated 

on a simple control system case study. 

Index Terms— IEC 61499, Function Blocks, Ontology, 

Description Logic (DL), Semantic Analysis, Ontology Reasoning, 

Code Generation and Design Recovery 

I. INTRODUCTION 

The IEC 61499 standard [1] aims at programming next 

generation of automation systems following PLCs compliant 

with IEC 61131-3 standard [2]. One of the key features of the 

IEC 61499 standard is component based design which 

increases the overall level of design and performance of 

developers. The component based design gives an 

opportunity to increase the design level even more by 

attaching semantic categories to each component. The next 

generation tools would be able to support programming in 

terms of semantically rich operations, rather than just blocks. 

Such design process would require design recovery and 

semantic check on code compliance with certain design 

patterns that requires intelligent meta-modelling support. 

Another practical problem is migration from legacy systems. 

In many application domains, the existing base of IEC 61131-

3 applications is large and therefore migration strategy is 

important. The migration IEC 61131-3 PLCs to IEC 61499 

function block systems is considered as an intermediate step 

of introducing distributed control. During the migration 

process, reusing some PLC code is an essential procedure for 

cost saving and reduce development time. It has been shown 

in previous work [3] that the PLC design pattern can be 

reused in function block systems. Other approaches from [4-

7] demonstrate the migration is possible but lots of human 

efforts are required. A new design approach is still needed to 

code transform automatically from one platform to another. 

The IEC 61499 system design is completed by using an IEC 

61499 IDE for instance, FBDK [8] by Holobloc, or NxtStudio 

by NxtControl [9]. These IDEs provide not only editing 

functionalities but also function block run-time environments 

which the developed system could be deployed into 

supported hardware platforms. The developed IEC 61499 

system is also distribution-transparent due to its‟ component-

based organisation. The overall usability of such system is a 

big step ahead as compared to same implementation in IEC 

61131-3 PLCs. 

Along with benefits, the active use of IEC 61499 tools for 

complex application development has revealed some 

problems. For example, creating instances of function blocks 

and manually connecting each input and output are still time 

consuming. Human errors or typos also happen easily during 

this process. Secondly, though the function block design is 

self-explanatory, it is still not sufficiently clear for 

understanding systems‟ semantics especially to project 

managers, engineers and technicians with weak programming 

background. Finally, while FBDK, NxtStudio and other IEC 

61499 IDEs are all following the standard, there are still some 

implementation variations which lead to incompatibility 

between them. In order to solve those issues, a more generic 

design approach would be desirable to be seamlessly 

applicable for all IEC 61499 standard supported tools. 

Those issues can be solved by applying the new approach 

using ontology and description logic proposed in this paper. 

A function block application can be used as a source to 

generate platform independent ontology knowledge base. 

Then, version for a particular platform can be generated 

automatically from the knowledge base.  

The rest of the paper is structured as follows: The general 

information on the IEC 61499 standard is given in section II. 

In section III, the details of new design approach is provided. 

Several reviews of relevant papers are given in section IV. 

The entire ontology model of IEC 61499 is given from 

section V. This section also discusses the ontology query 

engine which is involved in the code generation process. In 

section VI, the design recovery from code level to knowledge 

base process is described. Migration from different IEC 

61499 platforms are also described here. In Section VII, the 

syntactic checking and semantic analysis are performed for 

the recovered design. The code generation procedures are 

given in Section VIII. A case study is given through the entire 

paper. In the final part, the paper is concluded and future 

works are listed. 

II. BRIEF INTRODUCTION TO IEC 61499 

The artefacts of the IEC 61499 function block architecture are 

briefly discussed as follows: 



Function Block (FB) – is a module with interface that 

consists of event and data inputs and outputs. The events also 

will be further referred to as signals. A function block can be 

invoked only by an input event. There are three types of 

function blocks: basic, composite and service interface 

function block. 

The functionality of a basic function block is defined as a 

state machine called Execution Control Chart (ECC). The 

semantics of ECC is similar to Moore finite automata with 

actions assigned to states. An action consists of an algorithm 

and output event issuance (either can be omitted). An EC-

transition has a condition “clocked” by no more than one 

event input and having a guard condition that is a predicate 

over data inputs and internal variables (but no events). 

A Composite Function Block is specified by interface and 

functionality, defined as a network of function block 

instances interconnected via event and data connections. A 

service interface function block (SIFB) for the purposes of 

this paper can be understood as a “black box” whose internal 

structure is not specified.  

On top of function block types, a Function Block Application 

(FBA) is also a network of function block instances, but it has 

no interface. An FBA is a highest level structure in the 

hierarchy of IEC 61499 artefacts considered in this paper. 

A system configuration combines instances of device types 

connected with communication network segments, 

applications, and their mapping into devices. For instance, in 

Fig 1 a simple manipulator control system is shown. The 

manipulator consists of two cylinders controlled by a 

joystick. Two cylinders are declared as Z1 and Z2 of basic 

function block type Cylinder. Limit switches for each 

cylinder are declared as SW1 and SW2 of basic function 

block type Switch respectively. This function block network 

is presented as FBA in the system configuration. 

 

Fig.1. Case Study of Two Cylinders Example. 

III. GENERIC DESIGN APPROACH FOR IEC 61499 

The proposed design approach aims at automatic design 

recovery from the code level, automatic syntactic checking, 

semantic analysis and code generation for various IEC 61499 

platforms. The IEC 61499 platforms FBDK and NxtStudio 

are selected here as the example although there are many 

other tools available like 4DIAC-IDE [10], FBench [11], 

CORFU IDE [12]. The proposed design approach is 

illustrated in Fig.2. 

In the top part of Fig.2, source code of an application or 

system following IEC 61499 and created in NxtStudio or 

FBDK tool, is imported into the knowledge base by the 

design recovery engine. The knowledge base is based on 

ontology and defined in the semantic web language OWL 

[13]. An ontological knowledge base consists of two parts: T-

Box and A-Box. In the ontological terms, definitions are 

belonging to the taxonomy box (T-Box) which contains 

general properties of the ontological concepts. When this is 

applied to the IEC 61499 standard, a T-Box contains 

definitions of all IEC 61499 keywords (concepts) and the 

relationships between those IEC 61499 concepts. In terms of 

ontologies, the system configuration is a concept. A system 

configuration has some devices which are the also concepts. 

Those concepts are linked to the system configuration by 

using object properties. For another example, basic function 

block is also a concept in ontology. The basic function block 

type must contain no more than one execution control chart 

(ECC) is described as basic FB has an object property of 

exactly one ECC. Those concepts are described in the 

description logic [14] which ontology is mainly defined in. 

Various IEC 61499 dialects may have some different naming 

of same concept or some definitions which only supported by 

this platform. For example, nxtStudio introduced some 

keywords in the XML schema that do not exist in the IEC 

61499 standard. As a result, the contents of T-Box for 

nxtStudio and FBDK are not 100% identical.  
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Fig.2. IEC 61499 Design Loop. 
In the other part of those knowledge bases, instances are 

stored into the assertion box (A-Box) which consists of 

knowledge that is specific to the individual system design. In 

the IEC 61499 terminology, an A-Box retains all system 

configurations, settings, parameters and function block 

instances. That information is saved as ontology individuals 

in the A-Box. 

The XML source code of FB applications created in 

NxtStudio or FBDK is interpreted by the design recovery 

engine during the import process and stored into the related 

knowledge base in the OWL format which relies on XML as 

well. 

At this point, the knowledge base contains all essential 

information required for code generation. However, there is 

still another step before the actual code generation can be 



performed. The syntactic checking and semantic analysis 

must be performed prior to code generation to ensure the 

generated code is syntactically 100% compliant with the 

target platform and the system execution behaviour is not 

changed during the design process. This task is handled by 

the syntactic and semantic analysis engine in the tool chain. 

All instances data in the A-Box are verified by this engine. If 

any issue is detected by the analysis engine, manual changes 

are allowed for correcting the design files. 

The last step in the design chain is the code generation. Based 

on the target platform, respected code templates and related 

instances are combined by the code generation engine and 

output as IEC 61499 XML files. The generated code is 

capable to be opened again in the target platform IDE and 

immediately deployed using its mechanisms of compilation 

and deployment. If any change is made again in the IDE 

during the deployment and testing, the modified files can be 

re-imported again into the knowledge base. All changes made 

outside the tool chain are captured completely back. 

IV. RELATED WORKS 

Peltola et al. [15] investigated migration from PLC to IEC 

61499 on example of batch process control applications. The 

original equipment is controlled by PLCs and the program is 

written in sequential flow chart (SFC). The SFC is a visual 

programming language provided in the IEC 61131-3 standard 

which naturally supports state machines way of thinking. The 

authors provide an approach to map the hierarchy of the 

system design into function block networks and convert from 

IEC 61131-3 SFCs into IEC 61499 ECCs. The test result 

proves it is feasible but all the works described in this paper 

are completed manually. The ideas of mapping components 

from IEC 61131-3 to IEC 61499, proposed in that paper, have 

motivated some of the solutions proposed in this work and 

also some of our future work that includes IEC 61131-3 into 

the loop.  

Several design recovery methodologies are illustrated by 

Falcione et al.[16].  Authors focus on recovery the ladder 

logic (LD) and SFC program from programmable logic 

controllers (PLC). The design recovery algorithms for LD 

and SFC are provided. The results are represented in a 

graphical way which is further to be expressed in math 

equations. But this approach is not suitable for code 

generation as the result of this approach is not using an open 

standard format which could be easily interpreted. 

Another design recovery approach is provided by [17]. For 

the re-engineering process of design recovery, authors 

suggest a formal specification language concept mapping 

language (CML) as a storage media. Terminology, 

expressions and grammar definition for the CML are 

provided. The expression definition of CML is similar to 

description logic used by ontology but transformations are 

still done manually. To achieve automatic transformation, this 

approach is also not applicable. 

In [18], the authors of this paper developed a knowledge base 

using ontology for semantic analysis and code generation. In 

the ontological based database, all object properties and 

attributes are imported from the source code automatically. 

There are some essential semantic corrections and 

enrichments are required to correctly express the IEC 61499 

system in the ontology model. In this paper, we continue 

using that model in the next section with extended 

flexibilities to support more platforms rather than just the 

standard IEC 61499 XML. 

V. IEC 61499 KNOWLEDGE BASE GENERATION 

Knowledge bases are the core part of migration between 

various IEC 61499 platforms proposed in this paper. As 

shown in Fig. 2, each knowledge base consists of two parts: 

code templates and instances. The code template part contains 

base functions which will be reused as “components” in the 

function block design. In the IEC 61499 terms, all function 

block types (basic FB, composite FB and service interface 

FB) are considered as the fundamental reusable programming 

organization units (POU) in IEC 61131-3. Those fundamental 

POUs - function block type definitions are imported into the 

code template part in the knowledge base. The second part of 

the knowledge base corresponds to the system configuration. 

All information regarding the declarations of function block 

type instances, event and data connections between function 

block instances and the deployment configurations (for 

instance, devices and resources allocation for function block 

instances) are belonging to this part.  

The T-Box definitions for NxtStudio and FBDK knowledge 

bases must be created prior to applying the migration 

procedure. The IEC 61499 standard is using XML 

representation as the standard code format. XML schema or a 

DTD are required to validate syntax of an XML file. FBDK 

uses the DTD provided within the IEC 61499 standard. 

NxtStudio is also using the standard DTD but with extended 

features. To generalize the ontology rules for various XML 

schemas and DTDs, an automatic conversion from DTD to 

ontology OWL is implemented to avoid time consuming and 

error prone manual conversions. 

The rules of converting standard DTDs to OWLs are 

provided in [19]. In the paper [18], a general approach for 

auto generation ontology from the IEC 61499 standard DTD 

is given in details as well as the semantic corrections and 

enrichment for the DTD based ontology model. This 

approach is suitable not only for the IEC 61499 standard 

DTD but for any DTD. The ontology T-Box generation of 

FBDK is also given in [18]. By using the same approach, the 

ontology T-Box of NxtControl can be created automatically 

as well. 

 
Fig.3. FB Type Ontology Definition in FBDK and NxtControl. 



Similar to the standard IEC 61499 DTD, each DTD element 

is mapped to an ontology class. Hierarchies of the DTD 

elements are described using the ontology object properties 

“Has_Subelements”. And the attributes of each DTD element 

is created as the ontology data properties 

“Has_ElementName_AttributeName” with its value. In Fig. 

3, the generated T-Box rules for function block type are given 

from both FBDK and NxtControl. Comparing the object 

properties, one sees a new DTD element “attribute”  

introduced in NxtControl, which can apply to FBType 

element.. Another additional data property is „namespace‟.  

VI. DESIGN RECOVERY FROM CODE   

After both T-Box definitions are created, the migration 

process starts with the design recovery from the code level. 

The first phase of design recovery is to capture the design 

pattern of the source IEC 61499 system. The design recovery 

engine searches through the system configuration and lists all 

device types, resource types and function block types 

included. Then it searches items in each device type and tries 

to capture any embedded resource type or function block type 

which is not currently in the lists. This search procedure 

repeats with each device type, resource type and composite 

function block type. All function blocks utilized in the 

internal FB network of a composite function block type shall 

also be added to the function block type list.  

With all files using in the IEC 61499 system configuration are 

captured, the second phase of the design recovery process is 

to import all function block types into the code template part 

of the knowledge base based on the XML schema. The 

import process starts with checking if this function block type 

already exists in the knowledge base. If this is a new function 

block type, the engine will go through all XML elements and 

create a respective individual for each element in the 

ontology knowledge base. The relationships between 

elements are established using ontology object properties. 

Those object properties are attached to the ontology node and 

named as <Has_ElementName>. Attributes of each node are 

defined as the ontology data properties with a name of 

<Has_ElementName_AttributeName>. Normally, an XML 

node is defined as: 

<Node Name=”NodeName” AttributeName=”AttributeValue”> 

    <ChildNode Name=”ChildNodeName” ChildAttributeName=”ChildAttributeValue” /> 

</Node> 

The generic mapping from the original XML format above to 

the OWL representation of any imported individual is defined 

as: 

<owl:NamedIndividual rdf:about=”NodeName”> 

    <rdf:type rdf:resource=”Node” /> 

    <Has_ChildNode>ChildNodeName</Has_ChildNode> 

     <Has_Node_AttributeName >AttributeValue</Has_Node_AttributeName> 

</owl:NamedIndividual> 

<owl:NamedIndividual rdf:about=”ChildNodeName”> 

    <rdf:type rdf:resource=”ChildNode” /> 

<Has_ChildNode_AttributeName >ChildAttributeValue 

    </Has_ChildNode_AttributeName> 

</owl:NamedIndividual> 

If this function block type already exists in the knowledge 

base, an update to the existing individual is taken place 

instead of creating a new OWL individual. This process also 

flattens the nested IEC 61499 structure without losing the 

system hierarchy. The flat ontology knowledge base is 

convenient for query and sort.  

The FB Type Valve control of the cylinder control system is 

selected as the example illustrated in Fig. 4. The 

ValveControl is a basic function block type with two event 

inputs INIT/REQ and two event outputs INITO/CNF. There 

are two states in the ECC. In the INIT state, all values are 

cleared back to zero. In the REQ state, PUSH and POP valve 

positions are recalculated according to the current position 

(sp), start switch (startSW) and end switch (endSW) inputs 

values.  

As shown in the bottom part of Fig. 4, the ValveControl is 

created as an owl individual with a resource type of FB Type. 

Referring to the ontology definition in Fig. 3, the object 

properties of FBType - BasicFB, Identification, VersionInfo, 

CompilerInfo and Interface list are linked to the related sub 

node individuals. The data property Has_FBType_Name 

retains the value of ValveControl as the function block type 

name. Similar to the ValveControl FB, all other FBs and the 

system configuration of the cylinder control demo can be 

recovered from the code-level by applying the same rules. 

 

<owl:NamedIndividual rdf:about="#FBType_ValveControl"> 

    <rdf:type rdf:resource="#FBType" /> 

    <Has_Identification  rdf:resource="#FBType_ValveControl_Identification" /> 

    <Has_VersionInfo rdf:resource="#FBType_ValveControl_VersionInfo" /> 

    <Has_CompilerInfo rdf:resource="FBType_ValveControl_CompilerInfo" /> 

    <Has_InterfaceList rdf:resource="#FBType_ValveControl_InterfaceList" /> 

    <Has_BasicFB rdf:resource="#FBType_ValveControl_BasicFB" /> 

    <Has_FBType_Name rdf:datatype="STRING">ValveControl 

    </Has_FBType_Name> 

</owl:NamedIndividual> 

Fig.4. Example of OWL Individual for the ValveControl FB. 

VII. SYNTACTIC AND SEMANTIC ANALYSIS USING IEC 

61499 ONTOLOGY MODEL 

Before the actual code generation can be performed, there are 

two more steps required. The first step is to ensure the target 

ontology model for code generation is syntactically correct. 

The syntax of IEC 61499 files are checked via standard XML 

parser with pre-defined IEC 61499 DTD files. After all files 

are checked the syntax using the XML parser, this generated 

function block system can be opened and edited by FBDK or 

NxtStudio, respectively. 

The semantic analysis is mainly for checking behavioral 

properties which contains not only the correctness of 

connections of FBs and mapping of variables but also the 

execution semantics [20] like detecting event chain loop. The 

semantic rules are defined in SQWRL [21]. SQWRL is a 

query language to get information from the ontology similar 

to SQL database. SQWRL takes a standard SWRL [22] rule 



antecedent and effectively treats it as a pattern specification 

for a query. A single semantic rule is satisfied if the query 

result contains the individual name query asks for. In this 

paper, only one example is given to provide some brief 

overview. Detailed semantic rules can be found in [23]. 

One of the semantic rules is that a system configuration is 

semantically correct if for those event connection chains that 

are initiated from an E_CYCLE SIFB, no event connection 

loop exists in any event chain. One of the common IEC 

61499 design issues is the infinite event loop chain. This 

problem may arise when there is a feedback loop in event 

connections between a group of FBs. This situation is 

exacerbated if event source E_CYCLE is connected to one of 

FBs in the group. As shown in Fig. 5, once the output event 

EO occurs, the system will keep looping through FB_ADD 

and FB_SUB infinitely. A new event EO is raised at the 

E_CYCLE output every 100ms so the number of events that 

need to be processed will be increasing with time. This 

semantic rule ensures that such situation would not occur. 

 
Fig.5. Event Loop Chain in IEC 61499. 
To detect this situation, first step is to list all event inputs in 

the system configuration by using the SQWRL query: 

EventInputs(?EventInputs) ^ Has_Event(?EventInputs, ?Events) ^ 
Has_Event_Name(? Events, ?EventNames) -> sqwrl:select(?EventNames) 

For each event input in the result list, a search through event 

connections is performed for checking indefinite event loop. 

The next step is to detect whether this event input will trigger 

an event output of this function block unconditionally. If 

searching through the basic function block type, this event 

input must be used as the only condition on this EC transition 

and emit an event output. The SQWRL expression for getting 

input events used as the only EC transition condition and its 

destination state name is: 

ECTransition(?ECTransitions) ^ Has_ECTransitionCondition(?ECTransitions, 
?ECTranConds) ^ swrlb:stringEqualIgnoreCase(?ECTranConds, <EventName>) ^ 
Has_ECTransition_Destination(?ECTransitions, ?ECDests) -> 
sqwrl:select(?ECTranConds, ?ECDests) 

If the previous query returns the event input, then another 

SQWRL expression is used to check if this event input also 

emits an output event: 

ECState(?ECStates) ^ Has_ECState_Name(?ECStates, ?ECStateNames) ^ 
swrlb:stringEqualIgnoreCase(?ECStateNames, <ECDest>) ^ 
Has_ECAction(?ECStates, ?ECActions) ^ Has_ECAction_Output(?ECActions, 
?ECOutputs) ^ swrlb:stringEqualIgnoreCase(?ECOutputs, <EventName>) -> 
sqwrl:select(?ECoutputs) 

If an output event is triggered by this event, this output event 

will be continuously checking until the end of the event chain 

or finally loop back to the target input event. Similar 

procedures are used for composite function blocks. For 

service interface function block, instead of ECCs, service 

sequences and transactions are searched. 

According to the system configuration in Fig. 1, event chain 

loops are detected from switch SW1 to cylinder Z1 and 

switch SW2 to cylinder Z2. However, as there is no indefinite 

event loop detected in this application. The chance of infinite 

event loop occurrence is very low as this application is 

completely event-triggered with no repeated input source. 

More details could be found in [24]. 

VIII. CODE GENERATION BASED ON IEC 61499 

ONTOLOGY MODEL 

Once the ontology model of the IEC 61499 system passes 

both the syntax check and semantic analysis, the final step is 

to generate the code for the target IEC 61499 FB system. The 

generation process starts from the system configuration. All 

data properties and object properties of the system 

configuration node in the ontology is listed by the code 

generation engine. An XML root node <System> is created 

and all data properties are mapped to the XML attributes of 

the root node. The next step is to loop through all object 

properties and create sub nodes named as object properties. 

The data properties of each object property are attached as the 

XML attributes as well. This procedure is repeated again for 

every sub node until no more object property is found in the 

ontology model. Also if a function block type, resource type 

or device type is discovered during the code generation 

process, the same procedure will apply to the function blocks, 

resources and devices. Instead of using <System> as the root 

node, IEC 61499 keywords <FBType>, <ResourceType> and 

<DeviceType> are used respectively. 

During the generation process, the data validation is also 

performed simultaneously. Data validation is used to check 

the data correctness for the selected target platform. For 

instance, date format used in the FBDK is “month/day/year” 

but NxtStudio is using “year-month-day”. When generating 

the FBDK code and the attribute data type is date, the value 

must compliance with the suggested format. If the data type is 

not matched and can be converted to the target data type, the 

data casting will be automatically applied to this attribute 

value. 

The real challenge is to generate FBDK code with imported 

ontology individuals from NxtStudio. The mapping between 

two ontology definitions is introduced to solve this issue. The 

ontology mapping [25] is a technique which is used for 

merging two ontologies together or to find correspondences 

between semantically related entities of different ontologies. 

The ontology linking between NxtStudio and FBDK are 

created by using name based checking. As the NxtStudio 

knowledge base is the extended version of the FBDK one, all 

FBDK ontology concepts can be found in the NxtStudio 

ontology. The individual mapping from NxtStudio to FBDK 

is done by comparing the keywords. During the conversion 

process, if a concept name is found in both ontology 

definitions, this individual will be copied to the FBDK 

knowledge. If this is a NxtStudio special implementation, the 

action will be ignored. 

In Fig. 6, the generated FBDK version of cylinder control is 

given. Comparing to the NxtStudio version in Fig. 2, all FB 

Types, event connections, data connections and constants are 

successfully converted automatically. However, the HMI FB 

will not be able to display the interface properly in FBDK due 



to different HMI implementations between FBDK and 

NxtStudio. The generated system configuration is still 

capable for running under FBRT (Function Block Runtime 

within FBDK).  

 
Fig.6. Generated FBDK version of Cylinder Control. 
When applying the mapping from FBDK to NxtStudio, the 

major issue is that some ontology nodes required by 

NxtStudio are not available in FBDK. The solution for that is 

to add in a default value for those nodes. This is represented 

by a data property in the knowledge base: 

VarDeclaration (?Var1) ^ Has_VarDeclaration_DefaultValue(?Var1, Value) 

If a node is not compulsory in the NxtStudio ontology model, 

the default value will be null. Otherwise, a default value will 

be written into Value (for example, the default value for INT 

data type is 0 and the default value for REAL data type is 0.0). 

If anything is not correct due to the generation process, the 

FB design can be changed using the corresponding IEC 

61499 IDE. The design recovery engine is able to capture any 

manual change and store back into the knowledge base 

automatically. 

IX. CONCLUSIONS 

A new ontology based semantic design recovery                                                                     

method is developed in this paper. Its application is 

demonstrated for seamless migration between IEC 61499 

standard compliant tools, but its potential is much greater. 

Once the parts of source code have been semantic classified 

into various semantic categories, each of them can be easier 

migrated to the corresponding target code. 

Code level design recovery, semantic analysis and code 

generation are achieved by using common knowledge base 

defined in the ontology. Specific details of multiple platforms 

can be imported into the knowledge base and be outputted as 

other formats for various platforms. Both the syntactic and 

semantic check is performed before the code generation to 

ensure generated codes are compatible with target platforms. 

A case study has been conducted to prove the automatic 

transformation from one platform to another is feasible.  

This method will be extended to migration of IEC 61131-3 

PLC applications to IEC 61499 with a similar approach based 

on ontology based knowledge base.  
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