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Abstract: Formal verification of intelligent mechatronic systems needs to 
incorporate a detailed description of the system architecture in order to provide 
sufficient results. Especially  

• the model of function blocks with precise semantics 
• real-time behaviour has to be included. 

This paper focuses on the IEC 61499 control applications for automation 
objects, the building blocks for intelligent mechatronic systems.  
A comprehensive approach for their formal description of control behaviour 
incorporating also the operating system policy and physical time as parameter 
for real-time behaviour is given on the basis of Net Condition/Event Systems 
for a typical control device configuration.

Keywords: intelligent mechatronic components; temporal specification; 
functional specification; formal description; net condition/event systems. 

Reference to this paper should be made as follows: Sünder, C. and Vyatkin, V. 
(2009) ‘Functional and temporal formal modelling of embedded controllers for 
intelligent mechatronic systems’, Int. J. Mechatronics and Manufacturing 
Systems, Vol. 2, Nos. 1/2, pp.215–235. 

Biographical notes: Christoph Sünder earned a Master’s of Science in 
Electrical Engineering from Vienna University of Technology, Austria, in 2004 
and his Dr. Sci. Degree in Electrical Engineering from the same University in 
2008. Currently he is with Thales Rail Signalling Solutions GesmbH (Austria) 
as a consultant from IVM Engineering, responsible for safety management of 
main line interlocking systems. This paper is related to his engagement as 
research assistant at the Automation and Control Institute (ACIN), Vienna 
University of Technology. His research interests encompass distributed 
automation systems, zero-downtime evolution of production systems, 
verification and motion control. 



      

      

      

   216 C. Sünder and V. Vyatkin    

      

      

      

      

Valeriy Vyatkin is a Senior Lecturer with the Department of Electrical and 
Computer Engineering at the University of Auckland, New Zealand.  
His previous faculty positions were with Martin Luther University of  
Halle-Wittenberg in Germany and with Taganrog State University of Radio 
Engineering in Russia. His research interests are in the area of industrial 
informatics, including software engineering for industrial automation systems, 
distributed software architectures, methods of formal validation of  
industrial automation systems and theoretical algorithms for improving their 
performance. His specific expertise area is in distributed automation and the 
IEC 61499 standard. 

1 Introduction 

In recent years the situation in mechatronics industry has been changing dramatically.  
As the term mechatronics has been established as the combination of mechanical and 
electronic components, which determine the functioning of the system, for many years, 
new challenges and developments can be observed in the market as described in 
Bouyssounouse and Sifakis (2005, Section 28.2). Companies that have been established 
as simple machine builders, based on solid know-how of the mechanical engineering 
involved, move to embedded systems as the functionality of the machine is captured to a 
bigger extent in software code than in mechanical and electronics components. 

The key findings presented in this survey can be summarised in the following 
statements: 

• Components in mechatronic systems become programmable and their functionality is 
mainly expressed in software (so-called embedded software). Thus, the mechatronic 
systems are becoming more intelligent on account of embedded intelligence.  

• The ratio of design costs for the software is steadily increasing and becomes the 
largest part of the overall costs (multi-technology departments are in charge of the 
overall system requirements). 

• The control logic of mechatronic systems is getting more and more decentralised. 
Intelligence is added even to sensors and basic actuators. 

• Mechatronic systems become networked and interact with the environment in order 
to fulfil their tasks (e.g., delegate tasks to the environment). 

A mechatronic system is the result of the aggregation of components (as this is usual 
since many years), but the single components are able to compute logic by themselves; 
they do interact with other components within the mechatronic system and coordinate 
their actions. This scenario of intelligent mechatronic systems within the overall plant has 
been the basis for different approaches such as for instance reconfigurable manufacturing 
systems (Koren et al., 1999) or an open, object-oriented knowledge economy for 
intelligent industrial automation (Vyatkin et al., 2005). Within these approaches the 
common understanding of a component that incorporates computational power in order to 
act autonomously on the one hand and as basic element for the engineering with different 
views of its functionality on the other hand can be identified. As basic definition we will 
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use the term automation object, as it has been defined in Vyatkin (2003) to comprise 
three main elements: 

• Mechatronic component: A physical functional device with sensors, actuators and 
electric circuits.

• Embedded control device: A computing device with interfaces to the sensors and 
actors as well as to the network.

• Software components: A set of data and control logic implementing various 
automation functions. These elements provide the autonomy and cooperation of the 
automation object. 

The role of the automation object within the engineering of a mechatronic system is 
manifold. It starts from the representation of the mechanical parts of the component  
(e.g., CAD data) to the electrical or pneumatic circuit descriptions and the software 
functionality in terms of software code, visualisation, or interaction diagrams with the 
environment. Based on these different views the overall engineering process of a 
mechatronic system, which is as already stated above multi-technology point of view,  
can be established as composition of automation objects. To give a demonstrative picture 
of such an engineering process we refer to Strasser et al. (2005) who have investigated on 
engineering tools for this kind of design process. Figure 1 gives the schematic of the 
hardware representation of a production facility, with the basic components having 
included an embedded device with software components. 

Figure 1 Hardware representation of reconfigurable production facilities (see online version
for colours) 

Source: Based on Strasser et al. (2005) 

This paper aims at the special aspect of formal description and verification/validation of 
automation components within a mechatronic system. Due to the fact that the 
functionality of automation components is defined to a large extent by software 
components, the interaction of the mechanic and electronic components with the software 
components has to be considered very carefully. A comprehensive formal description of 
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the behaviour of the software components has to be taken into consideration in order  
to provide the basis for significant statements on the correctness of the automation 
component’s functionality. The combination of these formal models of the different 
automation objects may be used as the basis for the evaluation of intelligent mechatronic 
systems. This work focuses on single automation objects as the basic building blocks. 

The remainder of this paper is as follows: Section 2 will discuss the architecture of an 
automation component as well as the resulting requirements for its formal description and 
verification. A linear axis will be used for illustration, which includes an overview on the 
model (Section 3) and a detailed description (Section 4). Both functional and temporal 
behaviour will be taken into consideration. Finally, some formal modelling results are 
presented in Section 5 and related work is summarised in Section 6. The paper concludes 
with further work directions on this topic in Section 7. 

2 Problem description 

The focus of this study is verification of the behaviour of a control system composed of 
an embedded device, further referred to as ‘controller’, and a process (e.g., manufacturing 
or energy production), further referred to as ‘plant’.  

As a general prerequisite, the control logic is represented in terms of the IEC 61499 
standard (IEC 61499-1, 2005), and the internal architecture of the device is characterised 
by its compliance with this standard. For the analysis purposes it makes sense to 
represent architecture of the device in multi-layered form.  

Main structural element of the IEC 61499 architecture is the function block, which is 
a component, encapsulating data, some behavioural logic and data processing algorithms. 
Function blocks form applications, which can be allocated to devices. The standard 
provides mechanisms for building abstract models of computing control devices, which 
can be further subdivided into independent containers called resources. The IEC 61499 
function blocks correspond to the application layer of the device architecture, as seen in 
Figure 2 (right).  

The device model is implemented by the FB execution environment (FBEE),  
which provides the mechanisms for executing function block networks. In particular,  
it implements an event passing mechanism from one function block to another, which is 
the basic execution control mechanism in IEC 61499.  

The FBEE uses services of a Real-Time Operating System (RTOS), which,  
in general, can support execution of other applications concurrently with FBEE. Finally, 
the RTOS runs on a particular hardware platform and uses its services. The behaviour of 
the control device is influenced by the functions of all the layers described above.  
To verify its correctness, it is required to model the entire device, especially when fine 
real-time properties and deterministic behaviour of the whole device are concerned.  
Then powerful automatic validation techniques need to be applied in order to prove the 
logical and temporal correctness of this process.  

The analytic model analysis techniques have limited applicability due to the presence 
of non-deterministic disturbances from the plant or from communication networks, 
leading to explosion in the number of different behaviour traces. Model based simulation 
can be helpful to ensure the correct behaviour within a single trace and to estimate its 
timing. However, all system traces, corresponding to different combinations of input 
disturbances, cannot be exhaustively checked by simulation. The formal verification by 
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model-checking (Clarke et al., 1999) is a technique that allows proving the correctness of 
a system’s behaviour in presence of non-deterministic inputs. The exhaustive proof is 
performed by software tools, called model-checkers. In case if an incorrect state is found, 
the model-checker can supply description of the trace leading to such a failure. 

Figure 2 Simplified structure of the IEC 61499-compliant device (left), and the layered model 
architecture of the device (right) (see online version for colours) 

Due to the high model complexity and the complex device structure, the modelling 
approach needs to support modularity in order to derive a model of the entire device as a 
composition of constant and variable model parts. For a particular embedded device the 
details of the hardware, RTOS, and FBEE do not change from application to application, 
so they can be modelled once and later combined with the model of the control 
application, applying the model of reconfiguration on top. Moreover, the models need to 
be designed with the following requirements in mind: 

Modelling of function blocks needs to take into account their precise semantics: The IEC 
61499 standard defines a generic model of FBs that are executed according to their event 
connections. But the standard’s definitions of event propagation and of FB execution are 
quite ambiguous as reported at Sünder et al. (2006), engi  et al. (2006) and Dubinin and 
Vyatkin (2006). In addition, many important implementation details are not specified, 
leaving the decision up to the implementer. So, the standard’s text is not sufficient to 
define unambiguous FB execution semantics, and the details of the implementation 
choice of the FBEE vendor needs to be modelled too. 

Real-time behaviour: The correctness of a control application implemented by the device 
described in Figure 2 means the fulfillment of functional as well as of temporal 
requirements (Kopetz, 1997). Correspondingly, the correctness of an application can be 
proved only by taking into account its real time characteristics – e.g., ‘the response time 
of the controller that is being re-configured should not exceed a maximum limit’. A 
model must capture real-time characteristics of the system if such characteristics of basic 
operations are known and included in it. 
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3 Model overview 

The layered architecture of the system model (Figure 2 (right)) is structurally similar to 
the system (shown in the left side of the same Figure) and is explained in the following. 
For the purposes of this study a simple control system will be considered, which controls 
electric linear drive lifting some payload, see Figure 3. 

Control application: The closed-loop controller is implemented as a function block 
application, following the traditional cascade control pattern with two control loops for 
speed and position. Correspondingly, there are two controller function blocks Speed_CTL
and Pos_CTL, both being instances of the P_CTL function block type, implementing 
proportional control. Readings of the position sensors are delivered to the controllers  
by the ‘Sensors’ FB, and the value of speed is sent to the actuator via the ‘Actuator’ FB. 
The cascaded control loops are driven by two different clocks: the inner loop by the 5 ms 
clock (CLOCK5 ms FB), and the outer loop by the 50 ms clock (CLOCK50 ms FB).
Both clocks are implemented using instances of the RT_E_CYCLE FB type, which 
identifies the event chain triggered by the EO event as a real-time constrained execution 
path. 

Plant: Although we are mainly focusing on the processes within the control device, 
explicit modelling of its environment (i.e., a plant) is beneficial, as indicated by  
Hanisch (2004), Machado et al. (2003) and proven in Hanisch et al. (2006). Therefore, in 
this study, the system will be, in general, modelled as a closed-loop combination of plant 
and controller. Even when the plant is not explicitly presented, it should be noted that the 
modelling of the controller will allow its integration with the model of the plant.  
Precise modelling of plant dynamics may be not always possible by a particular 
modelling formalism, and it is important to ensure that even an abstracted discrete model 
of plant emits most of important events. 

Communication network: As the scope of this paper is limited to a single control device, 
the influences of a communication network are abstracted to two different types: 

• triggering of a function block execution by a message arrived from the network 

• disturbances to the control application caused by processing of a message for any 
other program being executed concurrently with FBEE, within the same control 
device. 

Hardware: This layer of the model represents only essential properties of the control 
device hardware, such as CPU speed, and parallel processing in multi-core processors.  
In the case study, the evaluation board phyCORE AT91M55800A (Phytec Messtechnik 
GmbH, 2003) was used. The board’s CPU is ATMEL AT91M55800A microcontroller, 
which utilises the ARM7TDMI ARM thumb processor core. It is assumed that the 
variations in the execution time of code segments are negligible for the purpose of 
modelling. 

Operating system: It is assumed that the FBEE uses one or more threads (lightweight 
concurrent processes) of the RTOS. The threads are characterised by their priorities. 
Their scheduling and inter-process interaction can be modelled explicitly for a particular 
RTOS. The combination of the RTOS model with the hardware model gives the model of 
a particular runtime platform of a control device. This part of the model also provides the 
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room for taking into account the impact of other programs being executed on the same 
control device in parallel with the IEC 61499 control application. 

The open source operating system Embedded Configurable Operating System (eCos) is 
used in this study (Massa, 2003). The model captures characteristic features of the  
multi-threading implementation, along with the inter-thread interaction mechanisms.  
For instance, eCos provides the possibility to use a priority based preemptive scheduler 
with 32 priority levels and two basic scheduling paradigms for one (Bitmap) or more 
threads (Multi-Level Queue, MLQ) per priority level. Interrupts can be integrated into the 
application by use of callback functions, which are activated as soon as the corresponding 
interrupt occurs. 

Figure 3 Function block application controlling the linear drive (see online version for colours) 

FB execution environment (FBEE): The standardised details of the IEC 61499 execution 
model, along with implementation-dependent details, can be explicitly modelled and 
encapsulated in the model of execution environment. The details of such modelling using 
the modular language of Net Condition/Event Systems (NCES) stem from Vyatkin and 
Hanisch (1999), where NCES modelling of FB execution was proposed. In this work, the 
4DIAC runtime environment (FORTE) has been used, which is available as open  
source project (4DIAC, 2008). FORTE is capable of executing IEC 61499 FB networks 
with real-time constraints and provides extensive reconfiguration possibilities.  
Zoitl et al. (2007) give a detailed description of the implemented real-time concept which 
is called event chain concept. The central elements are the sources of events (event 
sources, ES), which usually are triggered externally (e.g., from the network or a timer). 
Each ES triggers some FBs according to the connections within the application.  
The event chain is assigned to be executed within one thread of the operating system: 
real-time threads for constrained event chains and background threads for unconstrained 
event chains. Within a thread, the event propagation is characterised by the so-called 
event dispatcher concept. Each triggered input event is put into a queue. The FBs are 
executed according to the order of the events within this queue. 
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Additional programs: The impact of additional programs, such as a web server, being 
executed in a parallel thread, can be taken into account as thread of the RTOS as 
discussed earlier. 

4 Formal model of an automation object 

4.1 Modelling language 

An important requirement for the formal modelling language is support of modularity 
enabling structural design of large models, following the multi-layer architecture 
presented in Figure 2. Moreover, the modelling language has to support efficient model 
encapsulation and re-use, since formal models of particular control device parts can be 
designed by their particular vendors. 

Popular formal languages for modelling distributed systems are place-transition nets 
which exist in many dialects (the most famous are Petri Nets which stem from Petri 
(1962)). In such formalisms places are loaded with tokens, and a distribution of tokens 
across the places determines state of the model. Tokens can move from place to place 
through transitions, connected to the places by means of flow arcs. However, original 
Petri Nets are rather a mathematical than engineering language and the need to improve 
their expressiveness has been long recognised, for example, by Gomes and Barros 
(2005), who reviewed the Composition and Refinement/Abstraction mechanisms 
provided in various dialects of Petri Nets. Wurmus (2002) introduces CNET, a modular 
approach for the formal description and design of distributed control systems, which is 
described by a class of coloured Petri Nets. The NCES formalism (Rausch and Hanisch, 
1995) is another attempt to add explicit modularity to Petri Nets. In NCES, modularised 
Petri Nets are augmented by event and condition arcs, helping to synchronise transitions 
and deliver information from places to transitions without incurring the token flow. This 
kind of nets with the model typing improvements from Vyatkin and Hanisch (2005) 
supports modular design, encapsulation and model re-use via instantiation of model 
types. Modules can be put together to larger modules, enabling a hierarchical architecture 
of the total model. 

We will use the formalism of NCES for the description of our formal models. One of 
the reasons of that is availability of the tool chain (Vyatkin, 2008) for NCES modelling as 
well as for their verification. Another important aspect is the modelling of pre-emptive 
code execution (see discussion in the next section). We will discuss the modelling of the 
grey shaded elements of Figure 2 (right) according to the prerequisites FB execution 
semantics and real-time behaviour mentioned in Section 2 in the following subsections. 

4.2 Hardware 

The hardware of a control device is characterised by the speed of code execution, which 
is an essential property of the formal model. It is assumed, that the code structure is linear 
and each command has fixed execution time. Thus, the execution time for linear 
segments of code is constant, can be measured off-line and assigned to the model 
parameters, as proposed in Sünder et al. (2007), where static timing analysis of FB 
networks was achieved on account of using the runtime environment parameters. 
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Passing of time is modelled in NCES by adding time intervals of kind (T1, T2) to the 
token flow arcs from places to transitions, where T1-delay, and T2-deadline, are integer 
numbers, such that 0 ≤ T1 < T2. In our models T2 is always equal to , so only delays are 
modelled. Figure 4 presents the idea of modelling of the delay caused by the execution of 
the linear program code. Suppose the code takes ten time units to execute. As soon as an 
event arrives from the event input start, the token jumps from p1 to p2. The internal clock 
of p2 starts counting. As soon as its value is equal to ten, the timed arc from p2 to t2 is 
enabled and an event at the event output ended is emitted. The above described scenario 
is valid, if the condition input enable is assigned the value true in all states until ended is 
emitted. 

Figure 4 NCES model of physical time by timed flow arcs (see online version for colours) 

However, the linear execution of code may be disrupted due to several reasons, such as 
interrupts or higher priority threads. An interruption can be modelled by the change of the 
condition input enable from true to false. However, the internal clock of place p2 will 
continue counting; regardless of the value on the condition input enable. Therefore,  
the time delay representing the physical execution time would not be correct in case of an 
interruption of the code execution. 

An enhanced model of linear code execution which correctly handles interruptions is 
depicted in Figure 5 in NCES modules Code1 and Code2. The time delay is represented 
by a (numeric) marking of place p2. As soon as the place p2 receives a token, the internal 
clock starts counting. By use of transition t3, which is ‘looped back’ to place p2 by a 
timed arc with delay one, each time unit one token is added to place p2. The arc weight 
(multiplicity) of the flow arc from place p2 to transition t2 (for example, in Code1 it is 
equal to six corresponds to the desired time delay. As soon as this number of tokens is 
achieved in place p2, transition t2 fires and p2 remains unmarked. If the value of the 
condition enable changes to false as a result of an interruption, the time counting will be 
interrupted as well. The whole model in Figure 5 illustrates modelling of pre-emption of 
the Code1 execution by Code2 execution. It is assumed that Code1 takes five time units 
to run, and Code2 takes three time units to run. The scenario is illustrated in Figure 6 by 
means of timing-state diagram, representing parameters of the model. First the Code1
starts activated by the event input start. The module Monitor has two places: p1 stands 
for the state allowing execution of Code1, and p2 for the state where it is pre-empted  
by Code2. Suppose the interrupt occurs when two fifth of the Code1 have been executed, 
i.e., after two time units. The marker moves from p1 to p2 and the increment of marking 
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in Code1.p2 is blocked. Then an event input Code2.start receives an event and the similar 
counting takes place in p2 of Code2. When the marking four is reached after three time 
units, Code2 terminates, and Code1 resumes and takes three more time units. 

Figure 5 Model of pre-emption: Code1 is interrupted by Code2 (see online version for colours) 

Summarising this approach, the execution time of code structures is modelled by time 
delays, which are derived as a result of measuring actual execution time of particular 
program parts. Due to interrupts or higher priority threads, the execution may be 
disrupted at any time. However, using the proposed enhanced model of the execution 
modelled by delay, delays in pre-empted modules will be handled correctly. 
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Figure 6 Diagram showing discrete states of the model and values of discrete time (see online 
version for colours) 

4.3 Operating system 

The RTOS is the basis for the interaction of all programs of the control device.  
The main part of it is the scheduler, which takes care of the execution of the different 
threads within the system. Additionally, also the interrupt handling and the corresponding 
execution of callback functions has to be handled. For the formal models of the operating 
system, a clear description of its interfaces is necessary to provide simple composable 
modules for different configurations. There are two kinds of interfaces that need to be 
distinguished:  

• an interface between a thread and the scheduler 

• an interface between different priority levels within the scheduler. 

Interface between thread and scheduler: A thread can be configured for one of the  
32 different priorities of the eCos scheduler. The thread can either suspend itself, or claim 
resources for execution. The scheduler issues execution time to the thread. A very simple 
interface is sufficient for the interaction between scheduler and thread (we describe the 
interface from the scheduler’s side): 

• event input for recognition of the suspension of the thread 

• event input for recognition of the thread’s request to become active 

• condition output for assigning execution control to the thread. 

Interface between priority levels within the scheduler: A modular model of the scheduler 
can be achieved by splitting up the control of different priority levels. The functionality 
of one priority level is determined by the type of scheduler (bitmap or MLQ). Each 
priority can be interrupted by a higher priority. If no thread within the priority level wants 
to become active, control is passed to the next lower priority. The interface is 
characterised as follows: 

• activation of the scheduler priority, which means that the priority level assigns 
execution control 

• hand over execution control to the next lower priority, if the priority level does not 
need it 
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• hand over execution control to a higher priority, if it has claimed for it 

• input for the condition (suspended, want to be active) of the next lower priority 

• input for the condition (suspended, want to be active) of all higher priorities 

• output for the condition (suspend, want to be active) of the priority itself. 

Callback functions: A callback function can be handled in the same way as a thread, since 
it disrupts the execution of all lower prior threads and callback functions (there exist also 
an order within the callback functions). 

Figure 7 depicts the overall configuration of an RTOS consisting of two threads  
Thread1 and Thread2 (hosted on the same priority level) and one callback function 
CallbackFunction (e.g., for a timer). At this level the scheduler Scheduler and the 
different threads/callback functions are interrelated by the simple interface mentioned 
above. Additionally, based on the functionality programmed further interactions between 
these elements (e.g., CallbackFunction calls some method within Thread1, as this takes 
place typically for an ES trigger) can be modelled. The internal realisation of the 
scheduler can be established based on modules for each of the priority levels. 

Figure 7 RTOS configuration with three tasks and two priority levels 

Real-time behaviour: The RTOS influences the temporal behaviour of the control  
device to a very big extent. The execution interruption of threads and external events 
(callback functions) according to scheduling policy is one main aspect. But also the  
time consumption for the scheduling activities needs to be considered. Table 1 
summarises the most important parameters measured for the given hardware (phyCORE 
AT91M55800A). These are the time necessary to switch between execution contexts 
(thread switching time) as well as the time required to switch to and from the idle state 
(thread suspension, thread resumption). 
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Table 1 Real-time behaviour of actions within eCos (hosted on phyCORE AT91M55800A) 

Thread switching time 82.0 µs 
Thread suspension 10.1 µs 
Thread resumption 13.3 µs 

4.4 Function block execution environment 

The 4DIAC runtime environment utilises different threads and callback functions of the 
operating system. The real-time constraint execution of event chains is mapped onto 
different threads. The external events, which trigger the event chains and therefore 
execution of FB networks, are assigned to the various sources of interrupts, which are 
integrated by the callback functions. Therefore, the mapping of the runtime environment 
functions to the RTOS threads is almost static, except for the allocation of priorities 
based on the real-time constraints defined in a FB application. We will consider two 
items of FORTE in more detail: the event dispatcher and the mutual exclusion 
mechanism for the access to the event dispatcher. 

Event dispatcher: The event dispatcher is the central element of each thread 
corresponding to event chains in FB networks. It represents an event queue, which stores 
each input event that is issued within the FB network as well as the occurrence of an 
external event. In case of external events, only an identification of the event source  
(ES-ID) is put into the event dispatcher. This ES-ID is handled in the same manner as 
input events and causes the execution of the ES FB. As soon as the event dispatcher is not 
empty, the thread claims for execution time. Figure 8 depicts the NCES model of a thread 
including an event dispatcher EventDispatcher and the access for external events.  
For each event, which may be put into the event dispatcher, the following interface is 
provided by EventDispatcher (Figure 8 only mentions the interface for one event): 

• The insertion of an event is represented by the input event inEV, which will be 
acknowledged by the output event readyEV.

• If a FB is called for execution, the corresponding output event outEV is issued by the 
EventDispatcher. After finishing the execution of the FB, control flow returns to the 
event dispatcher via the input event endEV.

The execution of the overall thread is controlled by the number of events within 
EventDispatcher. As soon as an event is inserted into the queue, the output event Wakeup
is issued. The suspension of the thread will be issued by the event dispatcher via the 
output event Suspend, if there are no more events within the queue and the current 
execution of the FBs has been finished. 

Mutual exclusion: In such cases, as when the timer callback function issues an ES-ID to 
the event dispatcher, a critical inter-process interaction occurs. It may happen, that the 
thread itself as well as the callback function use the event dispatcher simultaneously.  
The implemented solution is the establishment of a critical region and a mutual exclusion 
with priority inversion for the occurrence of a higher prioritised invocation (such as the 
timer interrupt). Figure 8 depicts the principal NCES model for this configuration.  
The critical region EventDispatcher surrounded by modules for registration of event flow 
(RegIn and RegOut), which control the module Semaphore. Based on this information the 
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invocation of EventDispatcher by a callback function can be blocked (MUTEX) and the 
current execution of the event dispatcher will be finished (only within the critical region) 
before continuing the execution of the higher priority callback function. 

Figure 8 NCES model of the event dispatcher and the access via mutual exclusion policy 

Real-time behaviour: In order to describe the time consumption of the execution of event 
chains next to the pure execution time of each FB instance additional parameters of the 
FBEE have to be taken into consideration. Based on the event dispatcher concept for 
event propagation, these are the time necessary for insertion and fetching of events to and 
from the event dispatcher. Table 2 depicts the measurement values for FORTE based on 
the eCos operating system and the phyCORE AT91M55800A microcontroller board. 

Table 2 Real-time behaviour of actions within FORTE 

Insertion of an event 7.0 µs 
Fetching of an event 11.1 µs 

4.5 Control application 

The control application consists of IEC 61499 FB networks. The formal modelling of  
FB networks can be subdivided into several issues:  

• the event interface 

• the execution control chart (ECC) of basic FBs 

• data interface and algorithms, as well as 

• composite FBs. 
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Event interface: The transformation of the event interface needs to be adapted to the 
implementation of the runtime environment. Figure 9 depicts the interface of the FB 
‘E_CYCLE’ (a) and the corresponding NCES model (b). As the event dispatcher fetches 
input events of FBs for execution, direct mapping of IEC 61499 input events to NCES 
events is possible. The end of the execution of a FB is indicated by the event output
FBready. By use of this event the execution control is handed back to the event 
dispatcher. In case of an output event, there exists also an appropriate NCES output 
event. This event is used to put all connected input events into the event dispatcher.  
A confirmation is given by a related input event (readyEO as confirmation of EO in 
Figure 9(b)). 

Figure 9 The FB type E_CYCLE represented (a) in IEC 61499 and (b) as NCES model 

 (a) (b) 

The second part of the NCES model provides the interface to the callback function used 
for the timer. Each FB utilising the timer functionality may start (startTI) or stop (stopTI)
the related counter within the callback function. If the FB instance will be invoked by the 
timer, first the ID of the FB instance is put into the event dispatcher (see description 
above). Then the corresponding output from the event dispatcher (outEV) is connected to 
TIinvoke. The execution control is handed back to the event dispatcher via the event 
output FBreadyTI.

Execution control chart: The ECC is an event driven state machine, therefore generation 
of the corresponding NCES model is straightforward. It must be ensured, however, that 
the formal model precisely follows the execution flow as implemented in the runtime 
environment. For instance, after the invocation of the FB by an input event, all transitions 
with their origin at the active ECC state are evaluated one by one. As soon as one 
transition clears, the ECC state will be changed and the corresponding actions are 
executed, again one by one. Therefore, timing parameters can be extracted and used to 
parameterise the formal models to achieve the same real-time behaviour for the 
verification. These parameters are related to the runtime environment and do not need to 
be measured for each basic FB separately. 

Data interface and algorithms: NCES is limited in representing data types other than 
Boolean. In case if an integer variable takes a limited number of known values, it can be 
modelled by the corresponding number of NCES places. These places can be connected 
by condition arcs to the parts of the model corresponding to the operations using the data 
values. When the NCES model is generated from an FB, all operations with the data can 
be identified and if they consist only in comparing a variable with a constant, or assigning 
it a constant value, such cases can be handled quite easily. 
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In the general case – as done in Pang and Vyatkin (2007) – a NCES place can hold the 
number of tokens equal to the value of the modelled variable, but the use of this approach 
is quite bulky. 

Composite FBs: A composite FB consists of a FB network by itself. The borders of the 
composite FB are transparent for the events, only the latching of data based on the event 
data associations has to be modelled. The event interface elements of the component FBs 
have to be connected through its borders to the event dispatcher of the resource or ES. 

Real-time behaviour: The time consumption of one FB instance may be measured 
separately for each instance. This is necessary for instance for Service Interface FBs 
which do have any kind of interaction included. For basic FBs (and composite FBs) the 
definition of the standard can be used to describe the execution flow within the FB and 
provide appropriate timing parameters. These parameters are independent of the FB 
instance. Table 3 summarises different parameters for basic FBs, which need to be used 
according to the concrete type of FB. 

Table 3 Real-time behaviour for execution of basic FBs in FORTE 

Time for invocation of FB 7.9 µs 
Overhead for WITH connected data inputs 57.1 µs 
Latching of data input (INT) 7.0 µs 
Evaluation of ECC transition (event) 7.0 µs 
Evaluation of ECC transition (condition) 7.6 µs 
Time for algorithm execution Specific for FB 
Sending output event Included acc. to Table 2 
Latching of data output (INT) 71.2 µs 

5 Prototypic formal model of an automation object 

As an example for an automation object we will investigate the linear drive already 
described above. According to the structure of an IEC 61499-compliant device, each 
element within the layered model architecture has to be provided as formal model.  
The grey shaded elements have been described already in Section 4. In addition, also the 
environment has to be taken into consideration. Herein we will distinguish between the 
model of the plant and other elements which describe some interrelation with the system 
environment (communication network, additional programs). 

Plant model: The formal model of the plant has to describe the temporal behaviour of the 
movement of the axis. Herein appropriate descriptions, which usually already exist for 
the design of the closed-loop control circuit, need to be modelled by means of NCES. 
The linear axis used for this automation object depicted in Figure 3 can be described by 
the transfer function which uses the velocity reference value as input and the position 
applied to the linear axis as output. As a simplification the velocity control application is 
added to the model of the plant in this case. The application necessary for the velocity 
closed-loop control is hosted within a separate thread (according to the real-time 
constrained operation), and as it provides a linear execution of events its overall 
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execution behaviour can be modelled as one linear execution of code (of course including 
also the possibility of interruption according to the scheduling policy of the operating 
system). The model represents an abstraction of the total system model. 

Interrelation with the system environment: Another open issue within the layered model 
architecture regards to the communication network as well as other programs within the 
control device. If we are not interested in the details of these elements, a rough estimation 
of their behaviour can be used for the verification of the automation object. As basis 
event occurrence patterns can be included in order to describe a typical (or perhaps also 
the worst case) situation for communication requests. A typical pattern is for instance the 
bounded model, which limits the occurrence of consecutive events by a lower bound, the 
minimal inter-arrival time Tmin, and an upper bound, the maximum inter-arrival time Tmax.
Figure 10 depicts the NCES model for the occurrence of an event according to the 
parameters Tmin = 3 and Tmax = 5 (time units in the formal model). Next to the occurrence 
of events at the event output eo the module includes two event inputs start and stop in 
order to control the occurrence of events within this model. The model further includes 
time delays which would be capable to handle interruptions as depicted in Figure 5. 
Therefore, this model may be used either for the representation of external events from 
i.e., the communication network, but may be also used to describe different execution 
lengths of e.g., additional programs within the control device. 

Figure 10 NCES model for bounded event occurrence with minimal (three time units) and 
maximal (five time units) inter-arrival time 

Analysis of temporal behaviour: Next to the verification of correct behaviour of the 
control device the above described methodology may be used also during the design for 
enhanced analysis. For instance the bounds of execution time for a specific part of the 
control application (according to our example for instance the position control) can be 
analysed based on different environmental conditions. The need for such enhanced 
methodologies is stated for instance in Bouyssounouse and Sifakis (2005, Section 7.4)  
as follows:  
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“Testing is often performed to measure real-time execution time and response 
time e.g., to check resource utilisation or obtain an estimation for the worst case 
execution time. However, using this approach is very problematic because it is 
difficult to obtain safe and accurate bounds.” 

By use of the above described incorporation of real-time measurements into the system 
model together with a comprehensive model of the internal behaviour of all elements of 
the control device it is possible to achieve more detailed and meaningful checks and 
analysis of temporal behaviour. 

6 Related work 

There do exist different approaches related to the above mentioned methodology of 
incorporation of functional and temporal behaviour into intelligent mechatronic systems, 
which can be split up into two parts:  

• verification of IEC 61499 under enhanced environment conditions 

• verification including the real-time behaviour of a system. 

Verification of IEC 61499: Vyatkin (2006) describes especially the modelling of 
execution semantics of IEC 61499 FBs by use of NCES. These enhancements of  
Vyatkin and Hanisch (1999) concentrate on the correct order of actions within  
a FB as well as the propagation of events over the network by use of a scheduler,  
which provides sequential operation of events. There is no runtime environment  
available for these models; further directions are a software implementation as well as a 
hybrid hardware/software implementation using Field Programmable Gate Arrays. 
Khalgui et al. (2004) propose a state machine model compliant to the standard IEC 
61499. To avoid unpredictable behaviour in the case of simultaneous occurrences of 
events, they propose to design an offline scheduling of FB execution. They verify the 
scheduling correctness using the state machine model. By use of this scheduler,  
a hard-coded execution model of a runtime environment can be implemented.  

engi  et al. (2006) describe their formal model of the runtime environment FUBER, 
which they have developed based on interacting finite automata in Supremica. In this 
case the formal description includes many aspects of the runtime behaviour. For instance, 
the event execution model specifies that each FB instance must wait for another instance 
to finish its event handling before it can begin its own event handling. Incoming events of 
a FB instance are stored in a queue; all FB instances waiting for execution are also 
handled in another queue. By use of such a detailed formal description of the runtime 
behaviour, they are able to proof in many details the behaviour of the FUBER 
implementation. Physical time is not mentioned in their approach. As the implementation 
of FUBER is based on Java, the virtual machine as well as the underlying operating 
system needs to be included to the models for the consideration of physical time. 

Verification including real-time behaviour: The topic of formal description of real-time 
applications and especially RTOS and their applications has been discussed in several 
applications. Corbett (1996) aims at the formal description of Ada programs, with special 
attention to its concurrency and real-time constructs. For scheduling of tasks the task 
dispatching policy has been modelled. The formal description is based on constant slope 
hybrid automata, whereas a transition represents a code region and execution time is 
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modelled with an appropriate delay before its (instantaneous) transition. Cofer and 
Rangarajan (2003) describe the verification of the DEOS real-time operating system by 
use of SPIN model checker. In detail, the rate monotonic scheduler policy is implemented 
and analysed in contrast to an event-triggered system environment. Waszniowski and 
Hanzalek (2003) depict their model of a RTOS with timed automata. They claim that 
timed automata theory is not suitable to model pre-emption; therefore they focus on 
cooperative scheduling. The formal description includes for instance inter process 
communication via semaphores or context switching time. Krakora et al. (2004) utilise 
the combination of the RTOS with communication via CAN for verification of a 
distributed control application. 

7 Conclusions 

Mechatronic systems emerge towards intelligent systems, which consist of components 
that are capable to provide enhanced functionalities. These so-called automation 
components are foreseen to increase engineering efficiency, but on the other hand do 
need more comprehensive models in order to prove the correctness of single components 
as well as overall intelligent mechatronic systems. This work provides a detailed 
description of a methodology to describe the functional as well as the temporal behaviour 
of automation components, based on a comprehensive modelling approach for all parts 
within the overall system architecture including their execution time.  

The proposed methodology does not only enhance the expressiveness of model 
checking for proving the properties of a given system, but may be used also for better 
analysis during system design. Resource utilisation or the bounds of execution time of 
certain parts of the application can be analysed based on the overall model of the system 
architecture.
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