

 Int. J. Mechatronics and Manufacturing Systems, Vol. 2, Nos. 1/2, 2009 215

 Copyright © 2009 Inderscience Enterprises Ltd.

Functional and temporal formal modelling
of embedded controllers for intelligent mechatronic
systems

Christoph Sünder*
Automation and Control Institute,
Vienna University of Technology,
Gusshausstrasse 27-29/376, 1040 Vienna, Austria
E-mail: suender@acin.tuwien.ac.at
*Corresponding author

Valeriy Vyatkin
Department of Electrical and Computer Engineering,
The University of Auckland,
Private bag 92019, Auckland, New Zealand
E-mail: v.vyatkin@auckland.ac.nz

Abstract: Formal verification of intelligent mechatronic systems needs to
incorporate a detailed description of the system architecture in order to provide
sufficient results. Especially

• the model of function blocks with precise semantics
• real-time behaviour has to be included.

This paper focuses on the IEC 61499 control applications for automation
objects, the building blocks for intelligent mechatronic systems.
A comprehensive approach for their formal description of control behaviour
incorporating also the operating system policy and physical time as parameter
for real-time behaviour is given on the basis of Net Condition/Event Systems
for a typical control device configuration.

Keywords: intelligent mechatronic components; temporal specification;
functional specification; formal description; net condition/event systems.

Reference to this paper should be made as follows: Sünder, C. and Vyatkin, V.
(2009) ‘Functional and temporal formal modelling of embedded controllers for
intelligent mechatronic systems’, Int. J. Mechatronics and Manufacturing
Systems, Vol. 2, Nos. 1/2, pp.215–235.

Biographical notes: Christoph Sünder earned a Master’s of Science in
Electrical Engineering from Vienna University of Technology, Austria, in 2004
and his Dr. Sci. Degree in Electrical Engineering from the same University in
2008. Currently he is with Thales Rail Signalling Solutions GesmbH (Austria)
as a consultant from IVM Engineering, responsible for safety management of
main line interlocking systems. This paper is related to his engagement as
research assistant at the Automation and Control Institute (ACIN), Vienna
University of Technology. His research interests encompass distributed
automation systems, zero-downtime evolution of production systems,
verification and motion control.

 216 C. Sünder and V. Vyatkin

Valeriy Vyatkin is a Senior Lecturer with the Department of Electrical and
Computer Engineering at the University of Auckland, New Zealand.
His previous faculty positions were with Martin Luther University of
Halle-Wittenberg in Germany and with Taganrog State University of Radio
Engineering in Russia. His research interests are in the area of industrial
informatics, including software engineering for industrial automation systems,
distributed software architectures, methods of formal validation of
industrial automation systems and theoretical algorithms for improving their
performance. His specific expertise area is in distributed automation and the
IEC 61499 standard.

1 Introduction

In recent years the situation in mechatronics industry has been changing dramatically.
As the term mechatronics has been established as the combination of mechanical and
electronic components, which determine the functioning of the system, for many years,
new challenges and developments can be observed in the market as described in
Bouyssounouse and Sifakis (2005, Section 28.2). Companies that have been established
as simple machine builders, based on solid know-how of the mechanical engineering
involved, move to embedded systems as the functionality of the machine is captured to a
bigger extent in software code than in mechanical and electronics components.

The key findings presented in this survey can be summarised in the following
statements:

• Components in mechatronic systems become programmable and their functionality is
mainly expressed in software (so-called embedded software). Thus, the mechatronic
systems are becoming more intelligent on account of embedded intelligence.

• The ratio of design costs for the software is steadily increasing and becomes the
largest part of the overall costs (multi-technology departments are in charge of the
overall system requirements).

• The control logic of mechatronic systems is getting more and more decentralised.
Intelligence is added even to sensors and basic actuators.

• Mechatronic systems become networked and interact with the environment in order
to fulfil their tasks (e.g., delegate tasks to the environment).

A mechatronic system is the result of the aggregation of components (as this is usual
since many years), but the single components are able to compute logic by themselves;
they do interact with other components within the mechatronic system and coordinate
their actions. This scenario of intelligent mechatronic systems within the overall plant has
been the basis for different approaches such as for instance reconfigurable manufacturing
systems (Koren et al., 1999) or an open, object-oriented knowledge economy for
intelligent industrial automation (Vyatkin et al., 2005). Within these approaches the
common understanding of a component that incorporates computational power in order to
act autonomously on the one hand and as basic element for the engineering with different
views of its functionality on the other hand can be identified. As basic definition we will

 Functional and temporal formal modelling of embedded controllers 217

use the term automation object, as it has been defined in Vyatkin (2003) to comprise
three main elements:

• Mechatronic component: A physical functional device with sensors, actuators and
electric circuits.

• Embedded control device: A computing device with interfaces to the sensors and
actors as well as to the network.

• Software components: A set of data and control logic implementing various
automation functions. These elements provide the autonomy and cooperation of the
automation object.

The role of the automation object within the engineering of a mechatronic system is
manifold. It starts from the representation of the mechanical parts of the component
(e.g., CAD data) to the electrical or pneumatic circuit descriptions and the software
functionality in terms of software code, visualisation, or interaction diagrams with the
environment. Based on these different views the overall engineering process of a
mechatronic system, which is as already stated above multi-technology point of view,
can be established as composition of automation objects. To give a demonstrative picture
of such an engineering process we refer to Strasser et al. (2005) who have investigated on
engineering tools for this kind of design process. Figure 1 gives the schematic of the
hardware representation of a production facility, with the basic components having
included an embedded device with software components.

Figure 1 Hardware representation of reconfigurable production facilities (see online version
for colours)

Source: Based on Strasser et al. (2005)

This paper aims at the special aspect of formal description and verification/validation of
automation components within a mechatronic system. Due to the fact that the
functionality of automation components is defined to a large extent by software
components, the interaction of the mechanic and electronic components with the software
components has to be considered very carefully. A comprehensive formal description of

 218 C. Sünder and V. Vyatkin

the behaviour of the software components has to be taken into consideration in order
to provide the basis for significant statements on the correctness of the automation
component’s functionality. The combination of these formal models of the different
automation objects may be used as the basis for the evaluation of intelligent mechatronic
systems. This work focuses on single automation objects as the basic building blocks.

The remainder of this paper is as follows: Section 2 will discuss the architecture of an
automation component as well as the resulting requirements for its formal description and
verification. A linear axis will be used for illustration, which includes an overview on the
model (Section 3) and a detailed description (Section 4). Both functional and temporal
behaviour will be taken into consideration. Finally, some formal modelling results are
presented in Section 5 and related work is summarised in Section 6. The paper concludes
with further work directions on this topic in Section 7.

2 Problem description

The focus of this study is verification of the behaviour of a control system composed of
an embedded device, further referred to as ‘controller’, and a process (e.g., manufacturing
or energy production), further referred to as ‘plant’.

As a general prerequisite, the control logic is represented in terms of the IEC 61499
standard (IEC 61499-1, 2005), and the internal architecture of the device is characterised
by its compliance with this standard. For the analysis purposes it makes sense to
represent architecture of the device in multi-layered form.

Main structural element of the IEC 61499 architecture is the function block, which is
a component, encapsulating data, some behavioural logic and data processing algorithms.
Function blocks form applications, which can be allocated to devices. The standard
provides mechanisms for building abstract models of computing control devices, which
can be further subdivided into independent containers called resources. The IEC 61499
function blocks correspond to the application layer of the device architecture, as seen in
Figure 2 (right).

The device model is implemented by the FB execution environment (FBEE),
which provides the mechanisms for executing function block networks. In particular,
it implements an event passing mechanism from one function block to another, which is
the basic execution control mechanism in IEC 61499.

The FBEE uses services of a Real-Time Operating System (RTOS), which,
in general, can support execution of other applications concurrently with FBEE. Finally,
the RTOS runs on a particular hardware platform and uses its services. The behaviour of
the control device is influenced by the functions of all the layers described above.
To verify its correctness, it is required to model the entire device, especially when fine
real-time properties and deterministic behaviour of the whole device are concerned.
Then powerful automatic validation techniques need to be applied in order to prove the
logical and temporal correctness of this process.

The analytic model analysis techniques have limited applicability due to the presence
of non-deterministic disturbances from the plant or from communication networks,
leading to explosion in the number of different behaviour traces. Model based simulation
can be helpful to ensure the correct behaviour within a single trace and to estimate its
timing. However, all system traces, corresponding to different combinations of input
disturbances, cannot be exhaustively checked by simulation. The formal verification by

 Functional and temporal formal modelling of embedded controllers 219

model-checking (Clarke et al., 1999) is a technique that allows proving the correctness of
a system’s behaviour in presence of non-deterministic inputs. The exhaustive proof is
performed by software tools, called model-checkers. In case if an incorrect state is found,
the model-checker can supply description of the trace leading to such a failure.

Figure 2 Simplified structure of the IEC 61499-compliant device (left), and the layered model
architecture of the device (right) (see online version for colours)

Due to the high model complexity and the complex device structure, the modelling
approach needs to support modularity in order to derive a model of the entire device as a
composition of constant and variable model parts. For a particular embedded device the
details of the hardware, RTOS, and FBEE do not change from application to application,
so they can be modelled once and later combined with the model of the control
application, applying the model of reconfiguration on top. Moreover, the models need to
be designed with the following requirements in mind:

Modelling of function blocks needs to take into account their precise semantics: The IEC
61499 standard defines a generic model of FBs that are executed according to their event
connections. But the standard’s definitions of event propagation and of FB execution are
quite ambiguous as reported at Sünder et al. (2006), engi et al. (2006) and Dubinin and
Vyatkin (2006). In addition, many important implementation details are not specified,
leaving the decision up to the implementer. So, the standard’s text is not sufficient to
define unambiguous FB execution semantics, and the details of the implementation
choice of the FBEE vendor needs to be modelled too.

Real-time behaviour: The correctness of a control application implemented by the device
described in Figure 2 means the fulfillment of functional as well as of temporal
requirements (Kopetz, 1997). Correspondingly, the correctness of an application can be
proved only by taking into account its real time characteristics – e.g., ‘the response time
of the controller that is being re-configured should not exceed a maximum limit’. A
model must capture real-time characteristics of the system if such characteristics of basic
operations are known and included in it.

 220 C. Sünder and V. Vyatkin

3 Model overview

The layered architecture of the system model (Figure 2 (right)) is structurally similar to
the system (shown in the left side of the same Figure) and is explained in the following.
For the purposes of this study a simple control system will be considered, which controls
electric linear drive lifting some payload, see Figure 3.

Control application: The closed-loop controller is implemented as a function block
application, following the traditional cascade control pattern with two control loops for
speed and position. Correspondingly, there are two controller function blocks Speed_CTL
and Pos_CTL, both being instances of the P_CTL function block type, implementing
proportional control. Readings of the position sensors are delivered to the controllers
by the ‘Sensors’ FB, and the value of speed is sent to the actuator via the ‘Actuator’ FB.
The cascaded control loops are driven by two different clocks: the inner loop by the 5 ms
clock (CLOCK5 ms FB), and the outer loop by the 50 ms clock (CLOCK50 ms FB).
Both clocks are implemented using instances of the RT_E_CYCLE FB type, which
identifies the event chain triggered by the EO event as a real-time constrained execution
path.

Plant: Although we are mainly focusing on the processes within the control device,
explicit modelling of its environment (i.e., a plant) is beneficial, as indicated by
Hanisch (2004), Machado et al. (2003) and proven in Hanisch et al. (2006). Therefore, in
this study, the system will be, in general, modelled as a closed-loop combination of plant
and controller. Even when the plant is not explicitly presented, it should be noted that the
modelling of the controller will allow its integration with the model of the plant.
Precise modelling of plant dynamics may be not always possible by a particular
modelling formalism, and it is important to ensure that even an abstracted discrete model
of plant emits most of important events.

Communication network: As the scope of this paper is limited to a single control device,
the influences of a communication network are abstracted to two different types:

• triggering of a function block execution by a message arrived from the network

• disturbances to the control application caused by processing of a message for any
other program being executed concurrently with FBEE, within the same control
device.

Hardware: This layer of the model represents only essential properties of the control
device hardware, such as CPU speed, and parallel processing in multi-core processors.
In the case study, the evaluation board phyCORE AT91M55800A (Phytec Messtechnik
GmbH, 2003) was used. The board’s CPU is ATMEL AT91M55800A microcontroller,
which utilises the ARM7TDMI ARM thumb processor core. It is assumed that the
variations in the execution time of code segments are negligible for the purpose of
modelling.

Operating system: It is assumed that the FBEE uses one or more threads (lightweight
concurrent processes) of the RTOS. The threads are characterised by their priorities.
Their scheduling and inter-process interaction can be modelled explicitly for a particular
RTOS. The combination of the RTOS model with the hardware model gives the model of
a particular runtime platform of a control device. This part of the model also provides the

 Functional and temporal formal modelling of embedded controllers 221

room for taking into account the impact of other programs being executed on the same
control device in parallel with the IEC 61499 control application.

The open source operating system Embedded Configurable Operating System (eCos) is
used in this study (Massa, 2003). The model captures characteristic features of the
multi-threading implementation, along with the inter-thread interaction mechanisms.
For instance, eCos provides the possibility to use a priority based preemptive scheduler
with 32 priority levels and two basic scheduling paradigms for one (Bitmap) or more
threads (Multi-Level Queue, MLQ) per priority level. Interrupts can be integrated into the
application by use of callback functions, which are activated as soon as the corresponding
interrupt occurs.

Figure 3 Function block application controlling the linear drive (see online version for colours)

FB execution environment (FBEE): The standardised details of the IEC 61499 execution
model, along with implementation-dependent details, can be explicitly modelled and
encapsulated in the model of execution environment. The details of such modelling using
the modular language of Net Condition/Event Systems (NCES) stem from Vyatkin and
Hanisch (1999), where NCES modelling of FB execution was proposed. In this work, the
4DIAC runtime environment (FORTE) has been used, which is available as open
source project (4DIAC, 2008). FORTE is capable of executing IEC 61499 FB networks
with real-time constraints and provides extensive reconfiguration possibilities.
Zoitl et al. (2007) give a detailed description of the implemented real-time concept which
is called event chain concept. The central elements are the sources of events (event
sources, ES), which usually are triggered externally (e.g., from the network or a timer).
Each ES triggers some FBs according to the connections within the application.
The event chain is assigned to be executed within one thread of the operating system:
real-time threads for constrained event chains and background threads for unconstrained
event chains. Within a thread, the event propagation is characterised by the so-called
event dispatcher concept. Each triggered input event is put into a queue. The FBs are
executed according to the order of the events within this queue.

 222 C. Sünder and V. Vyatkin

Additional programs: The impact of additional programs, such as a web server, being
executed in a parallel thread, can be taken into account as thread of the RTOS as
discussed earlier.

4 Formal model of an automation object

4.1 Modelling language

An important requirement for the formal modelling language is support of modularity
enabling structural design of large models, following the multi-layer architecture
presented in Figure 2. Moreover, the modelling language has to support efficient model
encapsulation and re-use, since formal models of particular control device parts can be
designed by their particular vendors.

Popular formal languages for modelling distributed systems are place-transition nets
which exist in many dialects (the most famous are Petri Nets which stem from Petri
(1962)). In such formalisms places are loaded with tokens, and a distribution of tokens
across the places determines state of the model. Tokens can move from place to place
through transitions, connected to the places by means of flow arcs. However, original
Petri Nets are rather a mathematical than engineering language and the need to improve
their expressiveness has been long recognised, for example, by Gomes and Barros
(2005), who reviewed the Composition and Refinement/Abstraction mechanisms
provided in various dialects of Petri Nets. Wurmus (2002) introduces CNET, a modular
approach for the formal description and design of distributed control systems, which is
described by a class of coloured Petri Nets. The NCES formalism (Rausch and Hanisch,
1995) is another attempt to add explicit modularity to Petri Nets. In NCES, modularised
Petri Nets are augmented by event and condition arcs, helping to synchronise transitions
and deliver information from places to transitions without incurring the token flow. This
kind of nets with the model typing improvements from Vyatkin and Hanisch (2005)
supports modular design, encapsulation and model re-use via instantiation of model
types. Modules can be put together to larger modules, enabling a hierarchical architecture
of the total model.

We will use the formalism of NCES for the description of our formal models. One of
the reasons of that is availability of the tool chain (Vyatkin, 2008) for NCES modelling as
well as for their verification. Another important aspect is the modelling of pre-emptive
code execution (see discussion in the next section). We will discuss the modelling of the
grey shaded elements of Figure 2 (right) according to the prerequisites FB execution
semantics and real-time behaviour mentioned in Section 2 in the following subsections.

4.2 Hardware

The hardware of a control device is characterised by the speed of code execution, which
is an essential property of the formal model. It is assumed, that the code structure is linear
and each command has fixed execution time. Thus, the execution time for linear
segments of code is constant, can be measured off-line and assigned to the model
parameters, as proposed in Sünder et al. (2007), where static timing analysis of FB
networks was achieved on account of using the runtime environment parameters.

 Functional and temporal formal modelling of embedded controllers 223

Passing of time is modelled in NCES by adding time intervals of kind (T1, T2) to the
token flow arcs from places to transitions, where T1-delay, and T2-deadline, are integer
numbers, such that 0 ≤ T1 < T2. In our models T2 is always equal to , so only delays are
modelled. Figure 4 presents the idea of modelling of the delay caused by the execution of
the linear program code. Suppose the code takes ten time units to execute. As soon as an
event arrives from the event input start, the token jumps from p1 to p2. The internal clock
of p2 starts counting. As soon as its value is equal to ten, the timed arc from p2 to t2 is
enabled and an event at the event output ended is emitted. The above described scenario
is valid, if the condition input enable is assigned the value true in all states until ended is
emitted.

Figure 4 NCES model of physical time by timed flow arcs (see online version for colours)

However, the linear execution of code may be disrupted due to several reasons, such as
interrupts or higher priority threads. An interruption can be modelled by the change of the
condition input enable from true to false. However, the internal clock of place p2 will
continue counting; regardless of the value on the condition input enable. Therefore,
the time delay representing the physical execution time would not be correct in case of an
interruption of the code execution.

An enhanced model of linear code execution which correctly handles interruptions is
depicted in Figure 5 in NCES modules Code1 and Code2. The time delay is represented
by a (numeric) marking of place p2. As soon as the place p2 receives a token, the internal
clock starts counting. By use of transition t3, which is ‘looped back’ to place p2 by a
timed arc with delay one, each time unit one token is added to place p2. The arc weight
(multiplicity) of the flow arc from place p2 to transition t2 (for example, in Code1 it is
equal to six corresponds to the desired time delay. As soon as this number of tokens is
achieved in place p2, transition t2 fires and p2 remains unmarked. If the value of the
condition enable changes to false as a result of an interruption, the time counting will be
interrupted as well. The whole model in Figure 5 illustrates modelling of pre-emption of
the Code1 execution by Code2 execution. It is assumed that Code1 takes five time units
to run, and Code2 takes three time units to run. The scenario is illustrated in Figure 6 by
means of timing-state diagram, representing parameters of the model. First the Code1
starts activated by the event input start. The module Monitor has two places: p1 stands
for the state allowing execution of Code1, and p2 for the state where it is pre-empted
by Code2. Suppose the interrupt occurs when two fifth of the Code1 have been executed,
i.e., after two time units. The marker moves from p1 to p2 and the increment of marking

 224 C. Sünder and V. Vyatkin

in Code1.p2 is blocked. Then an event input Code2.start receives an event and the similar
counting takes place in p2 of Code2. When the marking four is reached after three time
units, Code2 terminates, and Code1 resumes and takes three more time units.

Figure 5 Model of pre-emption: Code1 is interrupted by Code2 (see online version for colours)

Summarising this approach, the execution time of code structures is modelled by time
delays, which are derived as a result of measuring actual execution time of particular
program parts. Due to interrupts or higher priority threads, the execution may be
disrupted at any time. However, using the proposed enhanced model of the execution
modelled by delay, delays in pre-empted modules will be handled correctly.

 Functional and temporal formal modelling of embedded controllers 225

Figure 6 Diagram showing discrete states of the model and values of discrete time (see online
version for colours)

4.3 Operating system

The RTOS is the basis for the interaction of all programs of the control device.
The main part of it is the scheduler, which takes care of the execution of the different
threads within the system. Additionally, also the interrupt handling and the corresponding
execution of callback functions has to be handled. For the formal models of the operating
system, a clear description of its interfaces is necessary to provide simple composable
modules for different configurations. There are two kinds of interfaces that need to be
distinguished:

• an interface between a thread and the scheduler

• an interface between different priority levels within the scheduler.

Interface between thread and scheduler: A thread can be configured for one of the
32 different priorities of the eCos scheduler. The thread can either suspend itself, or claim
resources for execution. The scheduler issues execution time to the thread. A very simple
interface is sufficient for the interaction between scheduler and thread (we describe the
interface from the scheduler’s side):

• event input for recognition of the suspension of the thread

• event input for recognition of the thread’s request to become active

• condition output for assigning execution control to the thread.

Interface between priority levels within the scheduler: A modular model of the scheduler
can be achieved by splitting up the control of different priority levels. The functionality
of one priority level is determined by the type of scheduler (bitmap or MLQ). Each
priority can be interrupted by a higher priority. If no thread within the priority level wants
to become active, control is passed to the next lower priority. The interface is
characterised as follows:

• activation of the scheduler priority, which means that the priority level assigns
execution control

• hand over execution control to the next lower priority, if the priority level does not
need it

 226 C. Sünder and V. Vyatkin

• hand over execution control to a higher priority, if it has claimed for it

• input for the condition (suspended, want to be active) of the next lower priority

• input for the condition (suspended, want to be active) of all higher priorities

• output for the condition (suspend, want to be active) of the priority itself.

Callback functions: A callback function can be handled in the same way as a thread, since
it disrupts the execution of all lower prior threads and callback functions (there exist also
an order within the callback functions).

Figure 7 depicts the overall configuration of an RTOS consisting of two threads
Thread1 and Thread2 (hosted on the same priority level) and one callback function
CallbackFunction (e.g., for a timer). At this level the scheduler Scheduler and the
different threads/callback functions are interrelated by the simple interface mentioned
above. Additionally, based on the functionality programmed further interactions between
these elements (e.g., CallbackFunction calls some method within Thread1, as this takes
place typically for an ES trigger) can be modelled. The internal realisation of the
scheduler can be established based on modules for each of the priority levels.

Figure 7 RTOS configuration with three tasks and two priority levels

Real-time behaviour: The RTOS influences the temporal behaviour of the control
device to a very big extent. The execution interruption of threads and external events
(callback functions) according to scheduling policy is one main aspect. But also the
time consumption for the scheduling activities needs to be considered. Table 1
summarises the most important parameters measured for the given hardware (phyCORE
AT91M55800A). These are the time necessary to switch between execution contexts
(thread switching time) as well as the time required to switch to and from the idle state
(thread suspension, thread resumption).

 Functional and temporal formal modelling of embedded controllers 227

Table 1 Real-time behaviour of actions within eCos (hosted on phyCORE AT91M55800A)

Thread switching time 82.0 µs
Thread suspension 10.1 µs
Thread resumption 13.3 µs

4.4 Function block execution environment

The 4DIAC runtime environment utilises different threads and callback functions of the
operating system. The real-time constraint execution of event chains is mapped onto
different threads. The external events, which trigger the event chains and therefore
execution of FB networks, are assigned to the various sources of interrupts, which are
integrated by the callback functions. Therefore, the mapping of the runtime environment
functions to the RTOS threads is almost static, except for the allocation of priorities
based on the real-time constraints defined in a FB application. We will consider two
items of FORTE in more detail: the event dispatcher and the mutual exclusion
mechanism for the access to the event dispatcher.

Event dispatcher: The event dispatcher is the central element of each thread
corresponding to event chains in FB networks. It represents an event queue, which stores
each input event that is issued within the FB network as well as the occurrence of an
external event. In case of external events, only an identification of the event source
(ES-ID) is put into the event dispatcher. This ES-ID is handled in the same manner as
input events and causes the execution of the ES FB. As soon as the event dispatcher is not
empty, the thread claims for execution time. Figure 8 depicts the NCES model of a thread
including an event dispatcher EventDispatcher and the access for external events.
For each event, which may be put into the event dispatcher, the following interface is
provided by EventDispatcher (Figure 8 only mentions the interface for one event):

• The insertion of an event is represented by the input event inEV, which will be
acknowledged by the output event readyEV.

• If a FB is called for execution, the corresponding output event outEV is issued by the
EventDispatcher. After finishing the execution of the FB, control flow returns to the
event dispatcher via the input event endEV.

The execution of the overall thread is controlled by the number of events within
EventDispatcher. As soon as an event is inserted into the queue, the output event Wakeup
is issued. The suspension of the thread will be issued by the event dispatcher via the
output event Suspend, if there are no more events within the queue and the current
execution of the FBs has been finished.

Mutual exclusion: In such cases, as when the timer callback function issues an ES-ID to
the event dispatcher, a critical inter-process interaction occurs. It may happen, that the
thread itself as well as the callback function use the event dispatcher simultaneously.
The implemented solution is the establishment of a critical region and a mutual exclusion
with priority inversion for the occurrence of a higher prioritised invocation (such as the
timer interrupt). Figure 8 depicts the principal NCES model for this configuration.
The critical region EventDispatcher surrounded by modules for registration of event flow
(RegIn and RegOut), which control the module Semaphore. Based on this information the

 228 C. Sünder and V. Vyatkin

invocation of EventDispatcher by a callback function can be blocked (MUTEX) and the
current execution of the event dispatcher will be finished (only within the critical region)
before continuing the execution of the higher priority callback function.

Figure 8 NCES model of the event dispatcher and the access via mutual exclusion policy

Real-time behaviour: In order to describe the time consumption of the execution of event
chains next to the pure execution time of each FB instance additional parameters of the
FBEE have to be taken into consideration. Based on the event dispatcher concept for
event propagation, these are the time necessary for insertion and fetching of events to and
from the event dispatcher. Table 2 depicts the measurement values for FORTE based on
the eCos operating system and the phyCORE AT91M55800A microcontroller board.

Table 2 Real-time behaviour of actions within FORTE

Insertion of an event 7.0 µs
Fetching of an event 11.1 µs

4.5 Control application

The control application consists of IEC 61499 FB networks. The formal modelling of
FB networks can be subdivided into several issues:

• the event interface

• the execution control chart (ECC) of basic FBs

• data interface and algorithms, as well as

• composite FBs.

 Functional and temporal formal modelling of embedded controllers 229

Event interface: The transformation of the event interface needs to be adapted to the
implementation of the runtime environment. Figure 9 depicts the interface of the FB
‘E_CYCLE’ (a) and the corresponding NCES model (b). As the event dispatcher fetches
input events of FBs for execution, direct mapping of IEC 61499 input events to NCES
events is possible. The end of the execution of a FB is indicated by the event output
FBready. By use of this event the execution control is handed back to the event
dispatcher. In case of an output event, there exists also an appropriate NCES output
event. This event is used to put all connected input events into the event dispatcher.
A confirmation is given by a related input event (readyEO as confirmation of EO in
Figure 9(b)).

Figure 9 The FB type E_CYCLE represented (a) in IEC 61499 and (b) as NCES model

 (a) (b)

The second part of the NCES model provides the interface to the callback function used
for the timer. Each FB utilising the timer functionality may start (startTI) or stop (stopTI)
the related counter within the callback function. If the FB instance will be invoked by the
timer, first the ID of the FB instance is put into the event dispatcher (see description
above). Then the corresponding output from the event dispatcher (outEV) is connected to
TIinvoke. The execution control is handed back to the event dispatcher via the event
output FBreadyTI.

Execution control chart: The ECC is an event driven state machine, therefore generation
of the corresponding NCES model is straightforward. It must be ensured, however, that
the formal model precisely follows the execution flow as implemented in the runtime
environment. For instance, after the invocation of the FB by an input event, all transitions
with their origin at the active ECC state are evaluated one by one. As soon as one
transition clears, the ECC state will be changed and the corresponding actions are
executed, again one by one. Therefore, timing parameters can be extracted and used to
parameterise the formal models to achieve the same real-time behaviour for the
verification. These parameters are related to the runtime environment and do not need to
be measured for each basic FB separately.

Data interface and algorithms: NCES is limited in representing data types other than
Boolean. In case if an integer variable takes a limited number of known values, it can be
modelled by the corresponding number of NCES places. These places can be connected
by condition arcs to the parts of the model corresponding to the operations using the data
values. When the NCES model is generated from an FB, all operations with the data can
be identified and if they consist only in comparing a variable with a constant, or assigning
it a constant value, such cases can be handled quite easily.

 230 C. Sünder and V. Vyatkin

In the general case – as done in Pang and Vyatkin (2007) – a NCES place can hold the
number of tokens equal to the value of the modelled variable, but the use of this approach
is quite bulky.

Composite FBs: A composite FB consists of a FB network by itself. The borders of the
composite FB are transparent for the events, only the latching of data based on the event
data associations has to be modelled. The event interface elements of the component FBs
have to be connected through its borders to the event dispatcher of the resource or ES.

Real-time behaviour: The time consumption of one FB instance may be measured
separately for each instance. This is necessary for instance for Service Interface FBs
which do have any kind of interaction included. For basic FBs (and composite FBs) the
definition of the standard can be used to describe the execution flow within the FB and
provide appropriate timing parameters. These parameters are independent of the FB
instance. Table 3 summarises different parameters for basic FBs, which need to be used
according to the concrete type of FB.

Table 3 Real-time behaviour for execution of basic FBs in FORTE

Time for invocation of FB 7.9 µs
Overhead for WITH connected data inputs 57.1 µs
Latching of data input (INT) 7.0 µs
Evaluation of ECC transition (event) 7.0 µs
Evaluation of ECC transition (condition) 7.6 µs
Time for algorithm execution Specific for FB
Sending output event Included acc. to Table 2
Latching of data output (INT) 71.2 µs

5 Prototypic formal model of an automation object

As an example for an automation object we will investigate the linear drive already
described above. According to the structure of an IEC 61499-compliant device, each
element within the layered model architecture has to be provided as formal model.
The grey shaded elements have been described already in Section 4. In addition, also the
environment has to be taken into consideration. Herein we will distinguish between the
model of the plant and other elements which describe some interrelation with the system
environment (communication network, additional programs).

Plant model: The formal model of the plant has to describe the temporal behaviour of the
movement of the axis. Herein appropriate descriptions, which usually already exist for
the design of the closed-loop control circuit, need to be modelled by means of NCES.
The linear axis used for this automation object depicted in Figure 3 can be described by
the transfer function which uses the velocity reference value as input and the position
applied to the linear axis as output. As a simplification the velocity control application is
added to the model of the plant in this case. The application necessary for the velocity
closed-loop control is hosted within a separate thread (according to the real-time
constrained operation), and as it provides a linear execution of events its overall

 Functional and temporal formal modelling of embedded controllers 231

execution behaviour can be modelled as one linear execution of code (of course including
also the possibility of interruption according to the scheduling policy of the operating
system). The model represents an abstraction of the total system model.

Interrelation with the system environment: Another open issue within the layered model
architecture regards to the communication network as well as other programs within the
control device. If we are not interested in the details of these elements, a rough estimation
of their behaviour can be used for the verification of the automation object. As basis
event occurrence patterns can be included in order to describe a typical (or perhaps also
the worst case) situation for communication requests. A typical pattern is for instance the
bounded model, which limits the occurrence of consecutive events by a lower bound, the
minimal inter-arrival time Tmin, and an upper bound, the maximum inter-arrival time Tmax.
Figure 10 depicts the NCES model for the occurrence of an event according to the
parameters Tmin = 3 and Tmax = 5 (time units in the formal model). Next to the occurrence
of events at the event output eo the module includes two event inputs start and stop in
order to control the occurrence of events within this model. The model further includes
time delays which would be capable to handle interruptions as depicted in Figure 5.
Therefore, this model may be used either for the representation of external events from
i.e., the communication network, but may be also used to describe different execution
lengths of e.g., additional programs within the control device.

Figure 10 NCES model for bounded event occurrence with minimal (three time units) and
maximal (five time units) inter-arrival time

Analysis of temporal behaviour: Next to the verification of correct behaviour of the
control device the above described methodology may be used also during the design for
enhanced analysis. For instance the bounds of execution time for a specific part of the
control application (according to our example for instance the position control) can be
analysed based on different environmental conditions. The need for such enhanced
methodologies is stated for instance in Bouyssounouse and Sifakis (2005, Section 7.4)
as follows:

 232 C. Sünder and V. Vyatkin

“Testing is often performed to measure real-time execution time and response
time e.g., to check resource utilisation or obtain an estimation for the worst case
execution time. However, using this approach is very problematic because it is
difficult to obtain safe and accurate bounds.”

By use of the above described incorporation of real-time measurements into the system
model together with a comprehensive model of the internal behaviour of all elements of
the control device it is possible to achieve more detailed and meaningful checks and
analysis of temporal behaviour.

6 Related work

There do exist different approaches related to the above mentioned methodology of
incorporation of functional and temporal behaviour into intelligent mechatronic systems,
which can be split up into two parts:

• verification of IEC 61499 under enhanced environment conditions

• verification including the real-time behaviour of a system.

Verification of IEC 61499: Vyatkin (2006) describes especially the modelling of
execution semantics of IEC 61499 FBs by use of NCES. These enhancements of
Vyatkin and Hanisch (1999) concentrate on the correct order of actions within
a FB as well as the propagation of events over the network by use of a scheduler,
which provides sequential operation of events. There is no runtime environment
available for these models; further directions are a software implementation as well as a
hybrid hardware/software implementation using Field Programmable Gate Arrays.
Khalgui et al. (2004) propose a state machine model compliant to the standard IEC
61499. To avoid unpredictable behaviour in the case of simultaneous occurrences of
events, they propose to design an offline scheduling of FB execution. They verify the
scheduling correctness using the state machine model. By use of this scheduler,
a hard-coded execution model of a runtime environment can be implemented.

engi et al. (2006) describe their formal model of the runtime environment FUBER,
which they have developed based on interacting finite automata in Supremica. In this
case the formal description includes many aspects of the runtime behaviour. For instance,
the event execution model specifies that each FB instance must wait for another instance
to finish its event handling before it can begin its own event handling. Incoming events of
a FB instance are stored in a queue; all FB instances waiting for execution are also
handled in another queue. By use of such a detailed formal description of the runtime
behaviour, they are able to proof in many details the behaviour of the FUBER
implementation. Physical time is not mentioned in their approach. As the implementation
of FUBER is based on Java, the virtual machine as well as the underlying operating
system needs to be included to the models for the consideration of physical time.

Verification including real-time behaviour: The topic of formal description of real-time
applications and especially RTOS and their applications has been discussed in several
applications. Corbett (1996) aims at the formal description of Ada programs, with special
attention to its concurrency and real-time constructs. For scheduling of tasks the task
dispatching policy has been modelled. The formal description is based on constant slope
hybrid automata, whereas a transition represents a code region and execution time is

 Functional and temporal formal modelling of embedded controllers 233

modelled with an appropriate delay before its (instantaneous) transition. Cofer and
Rangarajan (2003) describe the verification of the DEOS real-time operating system by
use of SPIN model checker. In detail, the rate monotonic scheduler policy is implemented
and analysed in contrast to an event-triggered system environment. Waszniowski and
Hanzalek (2003) depict their model of a RTOS with timed automata. They claim that
timed automata theory is not suitable to model pre-emption; therefore they focus on
cooperative scheduling. The formal description includes for instance inter process
communication via semaphores or context switching time. Krakora et al. (2004) utilise
the combination of the RTOS with communication via CAN for verification of a
distributed control application.

7 Conclusions

Mechatronic systems emerge towards intelligent systems, which consist of components
that are capable to provide enhanced functionalities. These so-called automation
components are foreseen to increase engineering efficiency, but on the other hand do
need more comprehensive models in order to prove the correctness of single components
as well as overall intelligent mechatronic systems. This work provides a detailed
description of a methodology to describe the functional as well as the temporal behaviour
of automation components, based on a comprehensive modelling approach for all parts
within the overall system architecture including their execution time.

The proposed methodology does not only enhance the expressiveness of model
checking for proving the properties of a given system, but may be used also for better
analysis during system design. Resource utilisation or the bounds of execution time of
certain parts of the application can be analysed based on the overall model of the system
architecture.

Acknowledgement

The authors want to thank Alois Zoitl for his support on implementation details of the
automation object under consideration. We also want to express our gratitude to
Tarik Ferhatbegovic, Ivo Gosetti, Christian Hanni, Richard Mandl, and Wei Zhang,
who provided detailed considerations of specific items during their project works and
master theses at the Automation and Control Institute, Vienna University of Technology.

References
Bouyssounouse, B. and Sifakis, J. (Eds.) (2005) Embedded Systems Design: The ARTIST Roadmap

for Research and Development, Lecture Notes in Computer Science (LNCS 3436),
Springer-Verlag, Berlin/Heidelberg, ISBN 978-3-540-25107-1.

engi , G., Ljungkrantz, O. and Akesson, K. (2006) ‘Formal modeling of function block
applications running in IEC 61499 execution runtime’, Proceedings of the 11th IEEE
International Conference on Emerging Technologies and Factory Automation (ETFA’06),
Prague, Czech Republic, September, pp.1269–1276.

Clarke, E.M., Grumberg, O. and Peled, D.A. (1999) Model Checking, The MIT Press, Cambridge
MA, USA, ISBN 0-262-03270-8.

 234 C. Sünder and V. Vyatkin

Cofer, D.D. and Rangarajan, M. (2003) ‘Event-triggered environments for verification of real-time
systems’, Proceedings of 35th Winter Simulation Conference (WSC’03), December,
New Orleans LA, USA, pp.915–922.

Corbett, J.C. (1996) ‘Timing analysis of Ada tasking programs’, IEEE Transactions on Software
Engineering, Vol. 22, No. 7, July, pp.461–483.

4DIAC (2008) Framework for Distributed Industrial Automation and Control, Profactor
Produktionsforschungs GmbH, Online available: http://www.fordiac.org, March.

Dubinin, V. and Vyatkin, V. (2006) ‘Towards a formal semantic of IEC61499 function blocks’,
Proceedings of the Fourth IEEE International Conference on Industrial Informatics
(INDIN’06), Singapore, July, pp.6–11.

Gomes, L. and Barros, J.P. (2005) ‘Structuring and composability issues in Petri nets modelling’,
IEEE Trans. on Industrial Informatics, Vol. 1, No. 2, pp.112–123.

Hanisch, H.M. (2004) ‘Closed-loop modeling and related problems of embedded control systems in
engineering, lecture notes on computer science (LNCS 3052), Proceedings of 11th Int.
Workshop on Abstract State Machines (ASM’04), Springer-Verlag, Berlin Heidelberg,
Lutherstadt Wittenberg, Germany, May, pp.6–19.

Hanisch, H.M., Lobov, A., Martinez Lastra, J.L., Tuokko, R. and Vyatkin, V. (2006) ‘Formal
validation of intelligent-automated production systems: towards industrial applications’,
International Journal on Manufacturing Technology and Management (IJMTM), Inderscience
Enterprise Ltd., Vol. 8, Nos. 1–3, pp.75–106, ISSN 1368-2148.

IEC 61499-1 (2005) Function Blocks – Part 1: Architecture, 1st ed., International Standard,
International Electrotechnical Commission, Geneva.

Khalgui, M., Rebeuf, X. and Simonot-Lion, F. (2004) ‘A behaviour model for IEC 61499 function
blocks’, Proceedings of Third Workshop on Modelling of Objects, Components, and Agents,
Aarhus, Denmark, October, pp.71–88.

Kopetz, H. (1997) Real-Time Systems: Design Principles of Distributed Embedded Applications,
Kluwer Academic Publisher, Boston, ISBN 0-7923-9894-7.

Koren, Y., Heisel, U., Jovane, F., Moriwaki, T., Pritschow, G., Ulsoy, G. and van Brussel, H.
(1999) ‘Reconfigurable manufacturing systems’, Annals of the CIRP, Vol. 48, No. 2,
pp.527–540.

Krakora, J., Waszniowski, L., Pisa, P. and Hanzalek, Z. (2004) ‘Timed automata approach to real
time distributed system verification’, Proceedings of Fifth IEEE International Workshop on
Factory Communication Systems (WFCS’04), Vienna, Austria, September, pp.407–410.

Machado, J.M., Denis, B., Lesage, J.J., Faure, J.M. and Ferreira da Silva, J.C.L. (2003) ‘Increasing
the efficiency of PLC program verification using a plant model’, Proceedings of Int. Conf. on
Industrial Engineering and Production Management (IEPM’2003), Porto, Portugal, 10pp.

Massa, A.J. (2003) Embedded Software Development with eCosTM, Prentice-Hall Professional
Technical Reference, Pearson Education, ISBN 0-13-035473-2, Upper Saddle River,
New Jersey, USA.

Pang, C. and Vyatkin, V. (2007) ‘Towards formal verification of IEC61499: modelling of data and
algorithms in NCES’, Proceedings of the Fifth IEEE International Conference on Industrial
Informatics (INDIN’07), Vienna, Austria, July, pp.879–884.

Petri, C.A. (1962) Kommunikation mit Automaten, PhD Thesis, University of Bonn (in German).
Phytec Messtechnik GmbH (2003) phyCORE-AT91M55800A, Hardware Manual L-618e_32003.
Rausch, M. and Hanisch, H.M. (1995) ‘Net condition/event systems with multiple condition

outputs’, Proceedings of INRA/IEEE Symposium on Emerging Technologies and Factory
Automation, Magdeburg, Germany, October, Vol. 1, pp.592–600.

Strasser, T., Fessl, K., Hämmerle, A. and Ankerl, M. (2005) ‘Rapid reconfiguration of
machine-tools for holonic manufacturing systems’, Proceedings of 16th IFAC World
Congress, Prague, Czech Republic, July, p.6.

 Functional and temporal formal modelling of embedded controllers 235

Sünder, C., Rofner, H., Vyatkin, V. and Favre-Bulle, B. (2007) ‘Formal description of an IEC
61499 runtime environment with real-time constraints’, Proceedings of the Fifth IEEE
International Conference on Industrial Informatics (INDIN’07), Vienna, Austria, July,
pp.1123–1129.

Sünder, C., Zoitl, A., Christensen, J.H., Vyatkin, V., Brennan, R.W., Valentini, A., Ferrarini, L.,
Strasser, T., Martinez-Lastra, J.L. and Auinger, F. (2006) ‘Interoperability and useablity of
IEC 61499’, Proceedings of the Fourth IEEE International Conference on Industrial
Informatics (INDIN’06), Singapore, July, pp.31–37.

Vyatkin, V. (2003) ‘Intelligent mechatronic components: control system engineering using an open
distributed architecture’, Proceedings of Ninth IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA’03), Lisbon, Portugal, September, pp.277–284.

Vyatkin, V. (2006) ‘Execution semantics of function blocks based on the model of net
condition/event systems’, Proceedings of the Fourth IEEE International Conference on
Industrial Informatics (INDIN’06), Singapour, July, pp.874–879.

Vyatkin, V. (2008) Block Design, Visual Framework for Verification of Function Blocks,
Online available: http://www.fb61499.com/valid.html, March.

Vyatkin, V. and Hanisch, H.M. (1999) ‘A modeling approach for verification of IEC1499 function
blocks using net condition/event systems’, Proceedings of the Seventh IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA’99), Barcelona, Spain,
September, pp.261–270.

Vyatkin, V. and Hanisch, H-M. (2005) ‘Re-use in formal modelling and verification of distributed
control systems’, Proceedings of IEEE Int. Conference on Emerging Technologies and
Factory Automation (ETFA’05), Catania, Italy, September.

Vyatkin, V., Christensen, J.H. and Martinez Lastra, J.L. (2005) ‘OOONEIDA: an open,
object-oriented knowledge economy for intelligent industrial automation’, IEEE Transactions
on Industrial Informatics, Vol. 1, No. 1, pp.4–17.

Waszniowski, L. and Hanzalek, Z. (2003) ‘Analysis of real time operating system based
applications’, Proceedings of First International Workshop on Formal Modeling and Analysis
of Timed Systems (FORMATS’03), Marseille, France, September, pp.219–233.

Wurmus, H. (2002) CNET – Komponentenbasierter Entwurf Verteilter Steuerungssysteme Mit
Petri-Netzen, PhD Thesis, University of Hannover (in German).

Zoitl, A., Grabmair, G., Smodic, R. and Strasser, T. (2007) ‘An execution environment for
real-time constrained control software based on IEC 61499’, Proceedings of the Fifth IEEE
International Conference on Industrial Informatics (INDIN’07), Vienna, Austria, July,
pp.853–859.

