
Towards a Formal Semantic Model
of IEC 61499 Function Blocks

V. Dubinin*, V. Vyatkin**
*The University of Penza,

Russia
**The University of Auckland,

New Zealand

 Abstract – This paper proposes a formal model of IEC
61499 function blocks and systems. The model is intended to
be used in description of formal semantic model of function
blocks’ execution.
The paper outlines a number of challenges for function
blocks that are supposed to be answered by the proposed
model.

I. INTRODUCTION

In this paper we discuss challenges and solutions for
computational implementation of systems composed of
function blocks of the IEC 61499 standard [1]. Although,
there were a number of works attempting development of
a formal model for function blocks [2-6], all those works
were using some existing formalisms for defining the
function block semantics. This is explained by the
purpose of those works, which largely aimed at the formal
verification of function block-based applications.

Alternatively, this paper follows the approach started
in [7] and attempts to propose a “stand alone” model not
referring to other formalisms that may bring all sorts of
overheads, from implementation to understanding issues.
Main application area of the introduced semantics is the
development of an efficient execution platform for
function blocks. This direction of work has specific
practical importance after final adoption and publication
of IEC 61499, and a number of works [8-11] have been
attacking the issue of function blocks (FB) execution from
different angles.

We are using the standard set theoretical notation and
state-transition model of a function block application. We
also assume that the hierarchical application can be
reduced to a “flat” one. Thus, the main implementation
issues are:
• Model of a basic function block;
• Model of event dispatching;
• Model of data transfer between two basic function

blocks the takes into account event-data associations
of both sender and receiver;
Once the models are created and implemented, our

intention is to represent the semantic of the models in
form of intermediate “pseudo code” or in some standard
programming language.

The paper is structured in the following way. In
Section 2 we present an (incomplete) list of potential
tricky problems arising at the development of an
execution environment of function blocks. In Section 3
we introduce basic notation for the types used in
definition of function blocks-based applications. Section 4
presents formal model notation for function block
networks. In Section 5 the problem of generating system
of FB instances is addressed. Section 6 presents general

remarks on the function block model, and Section 7
provides semantic model of function block interfaces. In
Section 8 an illustration of the interface model application
is provided. Section 9 presents a formal model of
application functioning. The paper is concluded with an
outlook of problems and future work plans.

II. POTENTIAL PROBLEMS

There are some “tricky” questions regarding the function
block execution rules. The reason for that is the standard is
not completely defining the execution semantics of
function block applications. In such situation a legitimate
way of implementation is to add the implementation
details so that they would not contradict with those already
covered in the standard.

A. Connections between function blocks. Event and
data associations.
Data inputs and outputs of function blocks are

associated with their input and output events. However,
interconnection between blocks may not follow these
association. An example is shown in Figure 1. The event
dispatching mechanism has to take in account this case.
For example, current implementation FBDK [2] does not
care about data sampling at all.

Figure 1. “Cross” connection of event and data.

B. Function block invocation and clearance of input
events

Let us assume that the function block whose ECC
fragment is shown in Figure 2,a is in State1 when input
event EI1 occurs. COND1, COND2 are Boolean guard
conditions not containing event variables. Value of both
COND1 and COND2 becomes TRUE after the input
variables associated with EI1 have been refreshed.

1) Which transition will be cleared: to State 2 or to
State3?

According to the semantics of basic function block
described in the standard, transitions are evaluated in some
pre-defined order, for example, according to how they are
sequenced in the XML representation, or in the graphical
representation. In this case if the graphical order is chosen
(left to right) then the transition to State 3 will occur.

2) If the transition will be to the State3, would the
execution stop after that, or the transition to the State 4
would immediately occur?
 This question refers to the “clearance rules” of event
inputs, meaning “whether EI1 remains ON after the first
transition evaluation”.

a) b) c)

Figure 2. Examples of Execution Control Charts with “not
very straightforward” semantics.

The rules for input events “clearance” are not described in
the standard in sufficient detail. This gives some freedom
in the implementation leading to implementations with
potentially different behaviour of the same function block
application. For example, new version of the function
block development kit (FBDK) released in March, 2006
has the following execution semantics [5]: “…transitions
containing no events will only be evaluated once, at the
completion of an EC state. So if you have any EC states
with no "eventful" transitions, you have to be able to
guarantee that at least one (and preferably only one) guard
condition will be true upon completion of the State.
Otherwise the ECC will freeze in the culpable state.”

We assume that every event input can be used at most
once. We also assume that the event inputs can be cleared
unused.

C. How many transitions may trigger with a single
input event

This question is relevant to the rule of event input
clearance. In Figure 2,c the input event EI1 arrives when
the ECC is in the State 1. Upon EI1 both COND1 and
COND2 evaluate to TRUE. The question is if only the
transition to State2 occurs, or it the state switch continues
to State 3?

D. When the output events are issued?
There are two options: either emit output events right

after the algorithms have completed their execution or
wait until no more ECC transitions is enabled, and then
emit all the output events set in the states the ECC passed
from the invocation altogether.
We assume the first option of immediate output event
issuance.

In this case, however, the routine of event dispatching
between blocks becomes of special importance, since the
ECC of one block can continue its evaluation, while
another block shall be activated by an event issued in one
of previous states. This makes real the problem of
concurrent execution of function blocks.

E. Hierarchy of composite function blocks
For the purposes of defining clear execution

semantics the hierarchical function block structures can

be reduced to the “flat” ones consisting of only basic
function blocks.

F. Algorithms execution time and scheduling
According to the standard, algorithm execution is the

service provided by resource. In case of multiple function
being concurrently executed within the resource, the
algorithms need to be scheduled. The algorithm’s and FB’s
syntax, however does not provide any additional
information for scheduling, like execution time and
deadlines.

G. Sequence of local communications
Local communication function blocks (PUBL, SUBL) are
used for an efficient communication between different
resources within one physical device. These blocks have
interface similar to the communication function blocks
using services of network protocols. Even if we are
considering applications, that have no subdivision on
devices and resources, considering implementation
mechanism for PUBL/SUBL can be of great advantage.
Thus SUBL function blocks can be sources of events in the
network leading to the question of event dispatching order
(say in case if several SUBL blocks subscribe to the single
PUBL).

Figure 3. In which sequence the function blocks A and B will

be activated?

H. Event dispatching
Since multiple events can be issued by a basic function
block during its execution session (i.e. after the block is
activated by an event) are immediate activation of the
blocks where the events are linked to in general is not
feasible. Thus an external mechanism (with respect to
basic function blocks) is required for events dispatching.
In [13] it was proposed to add the timing requirements
information to the event arcs which could be used as the
base for events’ scheduling.

I. Predictability of response time
There are two reasons delayed response of a function block
control application on an input event:

- it can be either absence of an event propagation
path from the event source FB to the reaction
output FB;

- the path is present but execution of function
blocks along this path takes too long.

III. BASIC FUNCTION BLOCK TYPE DEFINITION

Answering the questions raised above requires
development of an execution semantic for function blocks.
A Basic Function Block type is determined by tuple
(Interface, ECC, Alg, V), where Interface and ECC –
Execution Control Chart are self explanatory.

Alg={alg1,alg2,…, algf} is a set of algorithm identifiers,
can be Alg = ∅; V={v1,v2,…,vp} – set of internal variables,
can be V = ∅;.

For each algorithm identifier algi there exists a
function falgi, determining the algorithm’s behaviour:

0 0 0

: () () () () ()i
v V v Vvi VI vo VO vo VO

falg Dom vi Dom vo Dom v Dom vo Dom v
∈ ∈∈ ∈ ∈

× × → ×∏ ∏ ∏ ∏ ∏
As one sees from the definition, algorithms can change
only internal and output variables of the function block.
Interface is determined by tuple
Interface=(EI0,EO0,VI0,VO0,IW,OW), where
EI0={ei1

0,ei2
0,…,eik0

0} is a set of event inputs;
EO0={eo1

0,eoi2
0,…,eol0

0} is a set of event outputs;
VI0={vi1

0,vi2
0,…,vim0

0} is a set of data inputs;
VO0={vo1

0,vo2
0,…,von0

0} is a set of data outputs;
IW⊆ EI0 × VI0 is a set of WITH-associations for inputs;
OW⊆ EO0 × VO0 is a set of WITH-associations for
outputs.

For correctness of an interface the following
conditions have to be fulfilled: VI0 \ Pr2 IW= ∅ и VO0 \
Pr2 OW= ∅.

ei1
ei2

eik
…

vi1
vi2

vil
… …

…

eo1
eo2

eom

vo1
vo2

von

Figure 4. Syntactic model of a function block type interface

In other words, each data input and output has to be
associated with at least one event. An example of a
function block interface is given in Figure 4. Execution
control of a basic function block is described by an
automaton model that determines sequence and conditions
of execution of algorithms contained in the function
block. This model is called Execution Control Chart.

We will use the following notation for ECC
definition. The set of all functions mapping set A to set B
will be denoted as [A→B]. In unambiguous cases some
cases indexes of set element can be omitted. Dom(x)
denotes the set of values of a variable x.
The ECC diagram is determined as a tuple
ECC=(ECState, ECTran, ECTCond, ECAction, PriorT,
s0), where ECState={s0,s1,s2,…,sr} is a set of EC states;
ECTran⊆ECState×ECState is a set of EC transitions;

0 0

0

: [() ()

() () { , }]
ei EI vi VI

v Vvo VO

ECTCond ECTran Dom ei Dom vi

Dom vo Dom v true false
∈ ∈

∈∈

→ × ×

× →

∏ ∏

∏ ∏

is a function, assigning the EC transitions conditions in
the form of Boolean formulas defined over domain of
input, output and internal variables, and input event
variables According to the standard, the EC condition can
contain no more than one EI variable.

0[() { , }]ei EI Dom ei true false∀ ∈ = - that is: all EI
variables are Boolean variables;

ECAction: ECState\{s0}→ECA* is a function, assigning
EC actions to all but initial EC states., where ECA=
Alg×EO0∪ Alg∪ EO0 is a set of syntactically correct EC
actions.. The symbol * is here used to denote a set of all
possible chains built using a base set. Each EC state can
have zero or more EC actions. Each action may include an
algorithm and one output event reference, or just either of
them.
According to the standard the order of actions’ execution is
determined by the location of actions in the chain defined
by function ECAction;
PriorT: ECTran → {1, 2,…} is a enumerating function
assigning priorities to EC transitions. According to the IEC
61499 standard the transition’s priority is defined by the
location of the ECC transition in FB type definition. The
nearer an ECC transition to top of the list of ECC
transitions in FB definition the larger its priority;
s0∈State is the initial state.
It is said an ECC is in canonical form if each state has no
more than one associated action. An arbitrary ECC can be
easily transformed to the canonical form substituting states
with several associated actions by chains of states with
“always TRUE” transitions between them.

IV. FUNCTION BLOCK NETWORKS

Types of a composite function block and
subapplication are defined as tuple:
(Interface, FBI, FBIType, EventConn, DataConn), where
Interface – interface as defined above. The specific part of
subapplication interface is the absence of WITH-
associations, i.e. IW=OW=∅;
FBI={fbi1, fbi2,…, fbin} – set of instances of other function
block types. Each instance fbij∈ FBI is determined by a
tuple of following four sets:

EIj={ei1
j,ei2

j,…,eikj
j} – set of event inputs;

EOj={eo1
j,eoi2

j…,eolj
j}– set of event outputs;

VIj={vi1
jvi2

j…,vimj
j}– set of data inputs;

VOj={vo1
jvo2

j…,vonj
j}– set of data outputs.

FBIType: FBI→ FBType – function assigning type to
instance. Interface of a function block instance is identical
to the interface of its respective function block type. It
should be noted that sometimes in process of top-down
design a function block instance can have no type
assigned.
More specifically, the value domain of FBIType for a
composite function block type is the set BFBType ∪
CFBType ∪ SIFBType. For a subapplication type this set
is appended by the set SubApplType, as a subapplication
can be mapped onto several resources while a composite
function block resides in one.

U U
n1j n1j

0j0j EOEIEIEOEventConn
, ,

)()(
∈ ∈

∪×∪⊆ - is a set of

event connections;

U UU UU
n1j

0

n1j

j

n1j

jj0 VOVIVOVIVIDataConn
, ,,

))(()(
∈ ∈∈

××⊆ -

is a set of data connections;
For the data connections the following condition must
hold:

)]()[(),(),,(qputEventConnuqtp =→=∈∀ that
says no more than one connection can be attached to one
data input. There is no such constraint for event
connections as an implicit use of E_SPLIT and
E_MERGE function blocks is presumed.

V. TRANSITION FROM A SYSTEM OF TYPES TO A SYSTEM
INSTANCES

The transitions from a system of types to the system
of instances is done by substitution of the corresponding
reference instances by the corresponding real object
instances. Real instances are obtained by cloning of the
type description corresponding to the reference object.

Syntactically an instance is a copy of its
corresponding type. Hence we will use the notation
introduced for the corresponding types.

The system of instances is completely determined by
the corresponding hierarchy tree denoted by the following
tuple: (F, Aggr, FBITypeA, FBIdA), where F is a set of
(real) instances of FBs and subapplications;
Aggr⊆F×F – the relation of aggregation;
FBITypeA: F→FBTName – function marking the tree
nodes by function block type names;
FBIdA: F→Id – function marking the tree nodes by
unique identifiers from the Id domain.
The recursive algorithm expand(f) instantiates all
reference instances included in a real instance f .

procedure expand(f)
 if KindOf(f)∈{cfb,subappl,appl} then
 do forall fbi∈FBI(FBITypeA(f))
 newF=InstanceOf(FBIType(fbi))
 Substitute fbi by newF
 F=F ∪ {newF}
 Aggr=Aggrr ∪ {(f, newF)}
 FBITypeA= FBITypeA ∪ {(newFB,
 FBTName(FBIType(fbi))}
 FBIdA=FBIdA ∪ {(newFB, NewId())}
 expand(newF)
 end_forall
 end_if
end_procedure

The algorithm is using the following auxiliary

functions: InstanceOf forms an instance of of a given
type. Function KindOf determines the kind of the type for
given instance (basic, composite, etc.). Function FBI
determines the set of reference instances for a given type.
The function NewId creates new unique identifier for a
created real instance.

Substitution of a reference instance by the real
instance is performed in three steps:

1) add real instance;
2) embed real instance;
3) remove reference instance;
 The embedding of real instance is done be re-wiring

of all connections from the reference instance to the real
instance. Certainly, the interfaces of the reference
instance and of the real instance have to be identical.
Construction of the tree of instances starts from some
initial type fbt0:

f0=InstanceOf(fbt0);
F={f0}; Aggr=∅;
FBITypeA={(f0,,FBTName(fbt0))};
FBId={(f0, NewId())};
expand(f0)

It should be noted that transition from a system of types to
the system of instances can be sufficiently described by
means of graph grammars [14].

VI. FUNCTION BLOCK MODEL FOR FUNCTION BLOCK
SEMANTICS REPRESENTATION

In the following we present elements of a function
block semantic model. The formal model belongs to the
state-transition class models. This class of models
includes finite automata, formal grammars, Petri nets, etc.

The model is rich enough to represent the behavior of
a real function block system. However we use some
abstractions simplifying the model analysis, in particular
reducing model’s state space. Main model’s features are as
follows:

1) A model is FB instance but not FB type oriented
2) A model is flat, and the ECCs of basic function

blocks are in canonical form. Thus, main elements of the
model are basic FBs and data valves (the latter mechanism
will be introduced in Section VIII).

3) Timing aspects of are not considered, the model is
purely discrete state.

4) There is ЕСС interpreter (called “ECC operation
state machine” in standard) that can be in either idle or
busy state.

5) Evens and data are reliably delivered from block
to block without losses.

6) Model transitions are implemented as
transactions. A transaction is an indivisible action. All
operations in a single transaction are performed
simultaneously accordingly operation order.

7) The model uses several artifacts not directly
mentioned in the standard, for example: data buffers and
data valves.

VII. SEMANTIC MODEL OF INTERFACES

We are using the following semantic interpretation of
interface elements:
1) For each event input of a basic function block there is

a corresponding event variable.
2) For each data input of basic or composite FB there is

a variable of the corresponding type;
3) For each data output of a basic function block there is

an output variable and associated data buffer.
4) For each data output of composite block there is data

buffer;
5) No variables are introduced for data inputs and

outputs of subapplications;
6) Each constant at an input of a FB is implemented by

a data buffer;
In our interpretation, data buffers (of unit capacity)

serve for storing the data that emitted by function blocks
using the associated event output. In principle, the capacity
of buffers can be increased.

For representation of semantic models of interfaces we
suggest the following graphical notation (Figure 5, Figure

6). The data buffers of size 1 are represented by circles
standing next to the corresponding outputs and inputs. A
black dot shown next to the circle indicates the filled
status of the buffer.

5 2 7

ei1

ei2

ei3

eo1

eo2

vo1vi1

vi2

Figure 5. Semantic model of a basic function block
interface.

13

12

10

9

11

16
vi1

15

14

vi2

eo1 1

X

eo2 2

3

4

5

6

7

8

ei1

ei2

ei3

vo1

Figure 6. Semantic model of composite function block

interface;

One can note that the values of buffered data are
included in the state of their respective function blocks or
data valves instead of being directly included to the global
network state. This is justified by the fact that a data
buffer is associated with an output variable of function
blocks.

Figure 7 shows the solution of the problem from
Figure 1. The solution uses “buffer” variables for each
data connection. The working is as follows. At the event
output EO of FB1 the output variable DO of FB1 is
copied to the buffer B1. At the event output EO of FB2
buffer B1 is copied to DI of FB3 and FB3 starts.

Figure 7. Buffers on the data connections.

VIII. BUFFERS AND DATA VALVES FOR FLATTENING OF
HIERARCHICAL FUNCTION BLOCK APPLICATIONS

The considered networks are assumed to be “flat”,
that is not to include hierarchically other composite
function blocks. Hierarchical structures of function blocks
have to be transformed to the “flat” ones. For that the
composite blocks have to be substituted by their content
appended by data valves implementing data transfer
through their interfaces.

The idea of data valves is explained as follows.
Composite function blocks consist of a network of

function blocks. However its inputs and outputs are not
directly passed to the members of the network. They are
subject to the “data sampling on event” rule. When
translation of hierarchical composite blocks to a flat
network is done, the data cannot just flow between the
blocks of different hierarchical levels without taking into
account the buffers. Illustration is provided in Figure 8.

Figure 8. Nested composite blocks cannot be “flattened”

without taking into account their inputs and outputs

One may think that the nested network of blocks in the
upper part of Figure 8 is equivalent to the network in the
lower part. This is not true and the reason is explained as
follows. As illustrated in Figure 9, the composite function
blocks FB6 and FB7 have event/data associations that
determine sampling of the data while they are passed from
block to block. The event/data association, that can be
arbitrary and not following the associations within the
composite block, need special treatment when borders of
the composite block are dissolved in the process of
flattening.

Figure 9. Interconnection between composite function blocks

FB6 and FB7 with event-data associations shown.

For dealing with this problem, the concept of data
valves with buffers was introduced in [7]. The concept and
notation of data valves are illustrated in Figure 10, a) and
b) respectively.

a) b)
Figure 10. a) Input is copied to the output of the valve when
the event input arrives; b) compact notation of data valves.

A data valve is functional element having one input
and one output event and more than data inputs and

outputs. Number of data inputs has to be equal to the
number of data outputs. The syntactic model of
subapplication can be taken to represent the data valves.

13

13

10

9

12

16

15

14
1

X

2

3

4

5

6

7

8

DV3

DV1

DV2

buf1

buf2
buf3

Figure 11. The model of the composite function block from

Figure 6 implemented using data valves

Each outgoing and incoming event input (with their
respective data associations) of a composite function
block is resulted in a data valve. For the example
presented in Figure 8 the result of one step of “flattening”
with data valves implementing the “border issues” is
presented in Figure 12. We do not represent the valves in
the function block notation as we regard them to be a step
towards lower level implementation of function blocks.

Figure 12. The function block obtained as a result of one

step of ‘flattening’ with data valves

IX. CONCLUSIONS

In this paper we presented an attempt to create
foundations of a standalone syntactic and, partially,
semantic model of function blocks of IEC 61499,
although the lack of space has not allowed for more detail
address of the semantic. The work aims at providing a
common language to the researches working on
implementation of function block execution environments
and function block verification systems.

The paper has added some items to the list of known
problems of function block’s execution and has proposed
some solutions, for example a model of consistent data
transfer between function blocks using data valves.

The work on the semantic part of the model will be
continued with several implementation ideas in mind.

X. REFERENCES

1. Function blocks for industrial-process measurement and
control systems - Part 1: Architecture, International
Electrotechnical Commission, Geneva, 2005

2. Function Block Development Kit (FBDK),
http://www.holobloc.com/doc/fbdk/index.htm

3. Vyatkin V., Hanisch H.-M. A modelling approach for
verification of IEC1499 function blocks using Net
Condition/Event Systems, Proc. IEEE conference on

Emerging Technologies in Factory Automation (ETFA'99),
Barcelona, Spain, 1999, pp. 261—270

4. H. Wurmus, B. Wagner, IEC 61499 konforme Beschreibung
verteilter Steuerungen mit Petri-Netzen, Conference
Verteilte Automatisierung,, Proceedings, Magdeburg, 2000

5. Stanica P., Gueguen H. Using Timed Automata for the
Verification of IEC 61499 Applications, IFAC Workshop on
Discrete Event Systems (WODES’04), Reims, France, 2004

6. Faure J.M., Lesage J.J., Schnakenbourg C., Towards IEC
61499 function blocks diagrams verification, IEEE Int.
Conference on Systems, Man and Cybernetics (SMC02),
October 6-9, Hammamet, Tunisia, 2002

7. Lueder, C. Schwab, M. Tangermann, and J. Peschke. Formal
models for the verification of IEC 61499 function block
based control applications. IEEE Conference on Emerging
Technologies and Factory Automation (ETFA’2005),
Proceedings, Catania, Italy, September 2005.

8. V. Dubinin, V. Vyatkin “Formalized definition and
modelling of IEC 61499 function block systems”, Letters of
Tertiary Education Institutions, Volga region, Russia, Penza
State University Publishers, 2005, N 5, pp.76-89

9. K. Thramboulidis, G. Doukas, A. Frantzis. Towards an
Implementation Model for FB-based Reconfigurable
Distributed Control Applications, 7th IEEE International
Symposium on Object-oriented Real-time distributed
Computing, ISORC 2004

10. Zoitl A., Grabmair G., Auinger F., and Sunder C. Executing
real-time constrained control applications modelled in IEC
61499 with respect to dynamic reconfiguration, 3rd IEEE
Conference on Industrial Informatics, Proceedings, Perth,
Australia, August 2005.

11. L. Ferrarini and C. Veber, Implementation approaches for
the execution model of IEC 61499 applications, 2nd IEEE
Conference on Industrial Informatics, Proceedings, Berlin,
June 2004.

12. Vyatkin V.: Execution semantic of Function Blocks based
on the Model of Net Condition/Event Systems, 4th IEEE
Conference on Industrial Informatics, Singapore, 2006,
Proceedings

13. J. Christensen, remark on the execution semantic in the new
version of FBDK, 2006, March, - private communication.

14. C. Schwab, M. Tangermann, A. Lüder, A. Kalogeras, L.
Ferrarini, Mapping of IEC 61499 Function Blocks to
Automation Protocols within the TORERO Approach, 4th
IEEE Conference on Industrial Informatics (INDIN 2006),
Proceedings, Berlin, June 2004

15. Handbook of Graph Grammars and Computing by Graph
Transformation, World Scientific Publishing, 1997 - 99, vol.
1 (ed. Grzegorz Rozenberg)

16. C. Sünder, A.Zoitl, J. H.Christensen, V.Vyatkin, R.
Brennan, A. Valentini, L. Ferrarini, K. Thramboulidis, T.
Strasser, J. L.Martinez-Lastra, and F. Auinger: Usability and
Interoperability of IEC 61499 based distributed automation
systems, 4th IEEE Conference on Industrial Informatics
(INDIN 2006), Proceedings, Singapore, 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

