
IEC 61499 Ontology Model for Semantic 

Analysis and Code Generation 
Wenbin (William) Dai, IEEE Member, University of Auckland, New Zealand, wdai005@aucklanduni.ac.nz 

Victor Dubinin, non-member, University of Penza, Russia, victor_n_dubinin@yahoo.com 

Valeriy Vyatkin, Senior IEEE Member, University of Auckland, New Zealand, v.vyatkin@auckland.ac.nz 

Abstract – The IEC 61499 standard is targeting the enhancement 

of the IEC 61131-3 PLC standard in distributed automation 

systems improving the reconfigurability, portability and 

reusability of automation software. This paper proposes a 

foundation to a novel approach for design the system based on 

IEC 61499 function blocks. This design process is including 

design recovery, configuration, semantic analysis and code 

generation using ontology models as the knowledge base. The 

IEC 61499 ontology model is provided as well as the semantic 

enrichment and corrections are described. The semantic analysis 

for IEC 61499 and the entire framework for code generation will 

be completed in the future. 

Index Terms— IEC 61499, Ontology, Knowledge base, Semantic 

Analysis,  Reasoning, Description Logic. 

I. INTRODUCTION 

To handle the increasing design complexity in the automation 

industry, the distributed reference architecture of the IEC 

61499  standard [1] was created as an improvement for the 

centralized Programmable Logic Controllers (PLC) 

architecture of the IEC 61131-3 standard [2]. Instead of 

cyclical execution model defined in IEC 61131-3, the IEC 

61499 introduced event-triggered function block execution 

model. This execution semantic is aimed for providing more 

efficient processing model for PLCs and also standardizes the 

inter-communication between various devices. Also the 

reconfigurability and reusability of the function block based 

design structure of IEC 61499 is much better than of IEC 

61131-3. 

It has been proven in the recent research (e.g. [3], [4]) that 

IEC 61499 can implement modern software engineering 

design methods, for example object-oriented design patterns, 

much better than PLC tools and languages. This improves the 

design efficiency substantially but, on the other hand, results 

in quite complex graphical programs. Checking their 

syntactic and, especially, semantic correctness becomes a 

challenge. This can be partially overcome by applying some 

“correct by design” methodologies, for example, using the 

physical structure of the plant as a starting point for automatic 

code generation. This requires some “semantic glue” between 

the two worlds: physical object structure and its automation 

software.  

Last but not least, it is important to automate the re-use of 

existing IEC 61131-3 PLC code in the newly developed IEC 

61499 function block solutions. To maximize the reusability 

of the original IEC 61131-3 PLC code, several redesign 

methodologies have been investigated in [5], [6] and [7]. 

However all those methodologies require certain level of 

extra human efforts to put on the migration process and easily 

cause inaccuracy of the result. All those approaches are not 

able to convert the PLC system to function blocks 100% 

accurate automatically and also the original execution 

semantics can vary in the new converted function blocks 

system. Again, a formal semantic link between the concepts 

of PLC programming and function block programming can 

simplify the migration task.  

To provide such a multi-purpose semantic glue, a knowledge 

model for representing the related concepts of the function 

blocks architecture can be of great help. The ontology 

mechanism [25] can be considered as a proper representation 

of such a knowledge base. The word “Ontology” is from 

philosophical study of the nature of being, existence or reality 

originally and now is widely deployed into the semantic web 

programming and service-oriented architecture (SOA). 

Recently this concept is introduced into the automation and 

control area [12]. Ontologies are majorly applied to 

describing manufacturing and processing plants. For example, 

there are some researches on providing a standard ontology 

for manufacturing domain, for instance, MASON [8]. This 

paper aims to provide a general ontology model for the IEC 

61499 standard which is focusing on analysis of system level 

design as well as execution semantic recovery from the code 

level design. 

The W3C Consortium published an international standard of 

ontology language for semantic web – OWL [9]. OWL is an 

extension of RDF (Resource Description Framework) which 

is considered as the fundamental data model of semantic web 

programming. Similar to RDF, OWL is also based on XML. 

There are three versions of OWL: OWL-Full, OWL-DL and 

OWL-Lite. OWL-DL is selected as our target language as: 

 The complexity of OWL-DL is between OWL-Full and 

OWL-Lite which is enough for handling the scenarios. 

 Reasoning can be applied to the ontology model of 

OWL-DL which is based on description logic (DL) [10]. 

For ontology editor and viewer, Protégé [11] is the most 

commonly used tool in academic research for ontology design 

and development. It is an open source tool originally 

developed at the Stanford University. Protégé supports not 

only editing ontology concepts, properties and individuals 

and display ontology in graphical view but also the ontology 

query and reasoning based on the description logic (using 

Plug-ins). We will use Protégé as our editor and viewer tool 

for prototyping the IEC 61499 ontology here. 

The paper is structured as follows: Section II provides a brief 



overview of the ontology concept in computer domains which 

will be used in this paper. The related research works on the 

IEC 61499 ontology are reviewed in section II. The concepts 

and processes of the code generation for IEC 61499 are 

illustrated in section III. In section IV, a complete ontology 

model for IEC 61499 is discussed where properties are 

defined for all the IEC 61499 objects. Then semantic 

correction and enrichment are provided in section V. Based 

on this model, ontology reasoning and semantic analysis are 

discussed in section VI. Finally, future work and conclusion 

are attached in section VII. 

II. RELATED WORKS 

An IEC 61499 ontology is proposed in [12] for semantic 

analysis of IEC 61499 compliant systems. The function block 

type ontology model includes basic, composite and service 

interface function blocks and the system configuration. The 

ontology model for any function block type includes model of 

its interface. Along with that, the ontology model of a basic 

function block includes the Execution Control Chart (ECC) 

ontology model. In the ECC ontology model, EC state, EC 

algorithm, EC Transition and EC Transition conditions are 

defined. Instead of ECC model, the composite function block 

ontology model includes references to component function 

block instances along with models of event and data 

connections. Finally, the system configuration ontology 

model contains devices, resources, applications, links, 

mappings and network segments and their object and data 

properties. That paper provides examples of semantic analysis 

for IEC 61499 files using description logic and Semantic 

Web Rule Language (SWRL) [16]. A semantic analysis tool 

using Protégé plug-in is developed for automatic semantic 

checking. 

In [13], the idea of semantic modelling with ontologies was 

applied to Automation Objects [22-24]. The automation 

object concept is based on the IEC 61499 function block 

model generalizing it to represent mechanical, electrical and 

software model. The automation object is stored in the form 

of UML and semantics of automation objects is defined in 

OWL/XML. To describe semantics of IEC 61499 system 

models and function block networks, the hierarchy 

OWL/XML structure is used to illustrate the complete system 

behaviour from not only software contents but also 

mechatronics information. The automation object ontology is 

compatible with the Protégé tool too. 

The paper [14] is more focused on reconfigurability of the 

control system during the real-time execution for multi-agent 

systems (MAS). To achieve reconfiguration of a 

manufacturing system on the fly, the IEC 61499 standard best 

suits the requirements. The approach provided for MAS is the 

combination of ontological representation for low level 

control and a UML type format for high level control. The 

reasoning can be applied to low level control part which 

provides flexibilities to manufacturing system as well as 

predicting ability to reconfigure the entire system during the 

processing.  

An ontology based reconfiguration system is also using IEC 

61499 in [15]. To achieve rapid reconfiguration during the 

manufacturing process, the agent is built based on an 

ontological model. This model contains all knowledge about 

the manufacturing process. With any change during the 

physical environment, the agent will react without any human 

intervention. This automatic reaction is based on ontology 

query and reasoning. Once the reaction is decided from the 

agent, the system configuration will be reconfigured 

immediately to respond the physical change. 

III. IEC 61499 ONTOLOGY FOR DESIGN RECOVERY AND 

CODE GENERATION 

The design recovery and code generation framework based on 

ontology model for IEC 61499 is outlined in figure 1. The 

design process starts with any IEC 61499 Editor tools, for 

example, NxtStudio [20] or FBDK [21]. When the system 

design is completed, the Design Importer is used to import all 

project files into the knowledge base and create all 

individuals according to IEC 61499 DTDs or XML schema. 

Those instances in the knowledge base together with the pre-

defined IEC 61499 ontology model will be handed over to the 

semantic analysis engine to ensure absence of design errors 

introduced by a human. The verified design will be generated 

again back into IEC 61499 XML format. The advantages of 

this framework are: 

- Even without any IEC 61499 editor, with instances created 

in the framework, the IEC 61499 code can be automatically 

generated. 

- All human mistakes and typo errors during the design can 

be eliminated prior to the testing phase. 

- The design is recoverable from the operation code. The 

code capture engine will use the DL reasoner to detect all 

individuals from the code. The changes made outside the 

framework can be read back to A-Box.  The premise of this 

mechanism is the design pattern and instance names are not 

changed during the manual modifications.  

- This framework is independent from any specific editor tool 

and is compatible with all the tools as well as long as the 

XML Schema is provided.  

 

IEC 61499 files by any 
Editor Tool in XML

(*.fbt or *.sys)

Semantic Analysis Engine 
based on DL and SWRL 

Ontology Individuals 
Generator

(A-Box)

Design Recovery

IEC 61499 Ontology Model
& Queries

(T-Box)

Individuals

Code Generator

IEC 61499 DTDs/
XSDs

IEC 61499 XML DTD/Schema

Verified Individuals

Code 

Terminological vocabulary
SWRL Rules for definition 

of complex IEC 61499 
concepts

Rules

Log

  

Fig.1. IEC 61499 design framework based on ontology. 

IV. LAYERED IEC 61499 ONTOLOGY MODEL DEFINITION 

The IEC 61499 ontology in [12] was manually developed 

leaving questions of how adequate is it to the text of the 

standard and, especially, to particular implementations, which 



may slightly deviate from the standard or may extend its 

insufficiently defined parts. Therefore, in this work we 

propose a layered approach to structuring the ontology, where 

the base level is automatically generated from XML schema 

that captures most of syntactic properties and is used directly 

by IEC 61499 tools for syntactic analysis. This approach 

promises to have less discrepancies between the code syntax 

supported by a tool and its semantic analyser. Moreover, the 

layered approach promises better extensibility of the ontology, 

or possibility to customize it for a particular dialect or design 

pattern. 

A basic knowledge base comprises two components: a T-Box 

and an A-Box [10]. T-Box stands for taxonomy box which 

describes general properties of the concepts. A-Box or 

assertion box which retains knowledge that is specific to the 

individuals of the main of discourse. In IEC 61499 terms, T-

Box is the knowledge base of all properties and relationships 

between IEC 61499 concepts. All actually implemented IEC 

61499 system configurations and function blocks belong to 

A-Box. So the IEC 61499 ontology is defined as: 

K = (T, A)  

where 
- K is the IEC 61499 Ontology Knowledge Base; 

- T is the Terminological Axioms (Rules) of IEC 61499; 

- A is the Assertional Axioms (Individuals) of IEC 61499. 

Here T-Box contains any finite set of IEC 61499 general 

concept inclusion, so T has the form of 

C   D (R   S) or C  D (R  S)  [10] 
where 

- C and D are concepts of IEC 61499; 
- R and S are roles of IEC 61499. 

Now the concepts of IEC 61499 must be clarified.  According 

to the IEC 61499 standard, there are three major domains of 

concepts from the programming point of view: Library 

Elements, Function Block Management Commands and Data 

Types. Library Elements comprise all IEC 61499 elements 

including function block types, system configuration, 

resources, etc. Function block management commands define 

the communication protocol between IEC 61499 devices. 

Finally, all data types allowed in IEC 61499 are listed. 

Overall the IEC 61499 ontology structure is given in figure 1, 

where three major domains are directly connected to IEC 

61499 as top level entity. All sub-domains are defined under 

major domains: 

Library Elements  Common Elements   FB Types   Adapter Types   

Resource Types   System Elements   Sub-Application Types   Network 

Elements.  

and 

Function Block Management Commands  Common Elements   FB Types 

  Data Types   Adapter Types   Requests   Responses. 

As no repeatable concept name is allowed in ontology 

definition, all the IEC 61499 ontology concepts are named as 

DomainName_SubDomainName_ConceptName to avoid 

confusion. If there is no subdomain for a domain like 

DataType, the IEC 61499 ontology concepts are named as 

DomainName__ConceptName instead. 

 

Fig.2. IEC 61499 Ontology Model Overview. 

An IEC 61499 concept, or in another word – element, are 

linked to other elements via some description logic 

relationships.  In the term of OWL, these description logic 

relationships are called properties. There are two types of 

properties in the OWL ontology: Object Property and Data 

Property. An object property is used to describe a property 

value that refers to another object. Correspondingly, the data 

property is used when the property value refers to the actual 

data literal or a data type. In addition, extra information shall 

be stored in annotation properties. A concept Ciis defined as: 

Ci  = (Di, PDi, POi, PAi, DTi, fi)  
where 

- Di is a set of IEC 61499 Ontology Concept Elements related to Ci; 
- PDi is a set of  Data Properties belonging to Ci; 
- POi is a set of Object Properties belonging to Ci; 
- PAi is an Annotation of Ci; 
- DTi is a set of  Data Types used by definition Ci; 
- fi is a constructor which builds a DL expression from Di, PDi, POi, 

DTi for the concept Ci. 

As this ontology is mainly used for semantic analysis and 

code generation, the object properties are mainly containing 

the hierarchy of the IEC 61499 code structure. When using an 

object property to represent an element requiring another 

element, the name of this object property is defined as 

Has_DomainName_SubDomainName_ConceptName. To 

complete this object property, domains and ranges are 

compulsory. The domains are the classes where this object 

property will be used from and ranges are the classes where 

this object property will be applied to. An object property is 

capable to be used in multiple locations in the same ontology 

model. Data properties are utilized to represent the attribute 

values of elements in IEC 61499. When using a data property 

to present the constant value of a data type in the attributes of 

elements, the data property is naming as 

Has_DomainName_SubDomainName_ConceptName_Attribu

teName or Has_ConstantValue_DomainName_ 

SubDomainName_ConceptName when the element itself is a 

constant value. Similar to object property, domain and range 



are required as well. In the data property, domains are the 

locations where this data property will be used from and 

ranges are the pre-defined data types in the XML Schema and 

OWL. 

The idea of IEC 61499 properties ontology definition will be 

illustrated on the concept of FBType of IEC 61499. The 

keyword FBType is a function block type of basic, composite 

or service function block in IEC 61499. A function block type 

comprises of Basic FB type or FB Network (Composite FB) 

or Service (Service Interface FB) associated with an interface 

regardless function block types. Beyond those essential parts, 

there might be some extra details including compiler 

information, version information, etc. For the data properties, 

a function block must have a name and may have some 

comments.  

First step of creating a class is to create all data properties 

used in this class. For instance, FBType must have a name of 

data type String (Characters) in description logic: 

 Has_FBType_Name.String 

And then convert into OWL format in Fig. 3: 

<rdfs:subClassOf> 

    <owl:Restriction> 

        <owl:onProperty rdf:resource="#Has_FBType_Name"/>             

             <owl:qualifiedCardinality     

                     rdf:datatype="&xsd;nonNegativeInteger">1 

            </owl:qualifiedCardinality> 

        <owl:onDataRange rdf:resource="#String"/>                 

     </owl:Restriction> 

</rdfs:subClassOf> 

Fig.3. IEC 61499 Data Property Example of FBType. 

Next step is to create all object properties for this class. An 

FBType either has a Basic Function Block description or 

Function Block Network (Note: For simplicity we use here 

“short” concepts properties names and do not consider 

Service Interface FB): 

 ( =1 Has_FBNetwork.FBNetwork  | =1 Has_BasicFB.BasicFB ) 

and then convert into OWL format in Fig. 4. 
<rdfs:subClassOf> 

    <owl:Class> 

        <owl:unionOf rdf:parseType="Collection">                   

            <owl:Restriction> 

 <owl:onProperty rdf:resource="#Has_BasicFB"/>           

 <owl:onClass rdf:resource="#BasicFB"/>             

 <owl:maxQualifiedCardinality 

                     rdf:datatype="&xsd;nonNegativeInteger">1 

                  </owl:maxQualifiedCardinality> 

             </owl:Restriction> 

            <owl:Restriction> 

 <owl:onProperty rdf:resource="#Has_FBNetwork"/>              

 <owl:onClass rdf:resource="#FBNetwork"/>             

 <owl:maxQualifiedCardinality 

                     rdf:datatype="&xsd;nonNegativeInteger">1 

                  </owl:maxQualifiedCardinality> 

             </owl:Restriction> 

         </owl:unionOf> 

      </owl:Class> 

</rdfs:subClassOf> 

Fig.4. IEC 61499 Object Property Example of FBType. 

The figure 5 is a simplified graphical version of the FBType 

concept. One sees from figure 5 that, an FBType individual 

must have exactly one interface, name, maximum one 

service, identification, version information, compiler 

information and comments, and maximum one Function 

Block Network or Basic Function Block description. 

FBType

FBNetworkBasicFB

CompilerInfo

VersionInfo

Identification

Comment

Name

InterfaceList

Service

Has_Interface
Exactly 1

Has_Identification
Max 1

Has_Comment
Max 1 STRING

Has_Name
Exactly 1 STRING

(Has_FBNetwork max 1) OR
 (Has_BasicFB max 1) OR (Has_Service

max 1)

Has_CompilerInfo
Max 1

Has_VersionInfo
Min 1

 

Fig.5. FBType Concept Ontology. 

In order to quickly define the IEC 61499 ontology T-Box, an 

automatic converting methodology is required to avoid 

human errors during manual processes. 

According to [17], a XML file schema is possible to be 

converted to OWL file automatically. A DTD/XSD to OWL 

engine is developed for automatic generation of ontology 

from XML Schema. The IEC 61499 standard provides 3 

standard DTDs for Library Elements, Function Block 

Management Commands and data types to clarify the IEC 

61499 XML format. Each DTD file is considered as a domain 

in ontology and converted and combined by the DTDtoOWL 

engine into a single IEC 61499 ontology model. The mapping 

process is presented as following: 

1) Each DTD document is considered as a domain in the 

ontology. DTD Elements are grouped into sub-domains 

based on the catalogue mentioned previously. 

2) Each DTD Element is mapped to an OWL class. In order 

to give a unique ID to each class, domain and sub-

domain names must be added as prefixes for class ID. 

3) The hierarchies of the DTD Elements are mapped to the 

object properties and if the Element only has constants, 

they are mapped to the data properties straight away by 

using prefix “Has_ConstantValue_”. In a standard DTD 

document, there are some symbols to indicate occurrence 

of an element as stated in Fig. 6: 

 

Symbol Comment 

* Declaring Zero or More Occurrences of an Element 

+ Declaring Minimum One Occurrence of an Element 

? Declaring Zero or One Occurrences of an Element  

Fig.6. DTD Element Occurrence Symbols [16]. 

The OWL keyword owl:QualifiedCardinality is used to 

represent those occurrence symbols as showing in Fig. 7: 

Symbol Mapping in OWL 

* Owl:minQualifiedCardinality  = 0 

+ Owl:minQualifiedCardinality = 1 

? Owl:maxQualifiedCardinality = 1 

Fig.7. DTD Element Occurrence Symbols Mapping in OWL. 

4) The attributes of an element are mapped to data 

properties. There are two sorts of attributes: 



#REQUIRED and #IMPLIED. Required attribute is 

mapped to Owl:QualifiedCardinality and with exactly 1 

in quantity. Implied attribute means not necessary appear 

in the XML and better map to 

Owl:maxQualifiedCardinality = 1. 

According to the rules above, the developed DTD to OWL 

engine is able to generate the complete IEC 61499 ontology 

T-Box. Finally any instance of a function block type (*.fbt) or 

a system configuration (*.sys) belong to the A-Box.  

V. SEMANTIC CORRECTION AND ENRICHMENT FOR IEC 

61499 ONTOLOGY MODEL 

The semantic information contained in the initial ontology 

generated from the XML schema of IEC 61499 is quite 

limited. Also the terms used by DTDs are not 100% 

equivalent to the terms defined in the IEC 61499 standard 

text. Therefore some of the IEC 61499 standard terms are 

totally missing in the generated ontology model. In order to 

establish a useful ontology model for semantic analysis, 

semantic enrichment is required, which consists of two parts: 

syntax correction and execution rules enrichment. 

First, all syntax must be 100% accurate. In the DTD/XSD 

based ontology, a function block type FBType includes 

maximum one function block network or one basic function 

block and maximum one service. Indeed, this is syntactically 

correct but semantically incorrect. A function block type must 

be a basic, composite or service interface function block. 

According to the DTD (reflected in the generated FBType 

ontology definition), an FBType can have one FB Network 

and also a Service which only exists in Service interface 

function block. To avoid the confusion, three sub-concepts of 

FBType are introduced here: BasicFBType, 

CompositeFBType and ServiceInterface FBType. The 

definitions are illustrated in Figure 8. According to the textual 

syntax of the IEC 61499 standard, the basic FB Type only 

includes exactly one BasicFB and common parts of FBType. 

Same for composite and service interface function block, only 

one FBNetwork or Service is allowed. 

 

Fig.8. New Sub-FBTypes in Protégé. 

Beyond function block types, for an EC action attached to an 

EC State, the definition of ontology is that one or more 

algorithm and one or more output can be attached to an EC 

action. Indeed, the IEC 61499 standard textual syntax states 

that an EC action can have at least one algorithm or output. 

The initial ontology model also allows none of these to be 

present which contradicts the standard. 

Secondly, the execution rules must be inserted into the 

ontology model. For instance, in the generated ontology 

model, event, data and adapter connections are defined as a 

common connection attribute which has the source and the 

destination. Unfortunately, there is no limitation of quantities 

of source and destinations that can be connected in the 

generated ontology model. However, it is defined in the IEC 

61499 standard text that each data input of a component 

function block can only be connected to no more than one 

data output of exactly one other component function block, or 

to no more than one data input of the composite function 

block. The extra data properties must be added for checking 

there is only one data input connecting to one data output and 

the source and destination data variables are the same data 

type or the data types can be cast.  

Also some of the data attributes in the initial ontology model 

actually refer to some classes but are imported just as a data 

variable with the class name. In the ontology definition, a 

component function block has a function block type with a 

data property of string type. So, in the ontology term - FB 

Has_LibraryElement_Commonelements_FB_Type exactly 

one string is allowed. But actually this attribute FB_Type 

refers to the element FBType already existed in the ontology. 

For semantic analysis, an object property of equivalent class 

is created for linking the attribute type of FB to the FBType 

element. 

Last but not the least, detailed connection definitions between 

events, data, adapters and sub-applications are missing from 

the original DTDs and the generated ontology model. 

According to the IEC 61499 standard textual syntax, all sorts 

of connections are clearly defined the source and destination 

of each end. Each end of the connection also specifies the 

function block instance name and input/output variable 

instance name. In our initial ontology model, this is just a 

string variable. No semantic information about any particular 

connection is included. Those details including sources and 

destinations are added as extra object properties in the 

ontology model to describe how the input/output of function 

block instances are linked together. 

VI. SEMANTIC ANALYSIS OF IEC 61499 

Unlike syntax check, semantic analysis of programs cannot 

be completely performed by software tools. However, many 

modern compilers implement some semantic analysis 

functions. However, the methods of such analysis are usually 

hard coded in the compilers. In this work we propose a more 

configurable approach, when the semantic check engine will 

be able to check properties specified in the ontology model 

resulted from the syntax correction and semantic enrichment. 

Semantic analysis is mainly for checking variable, syntax, 

data type, function and linking are semantically correct or 

valid. To fulfil semantic analysis of this ontology model, 

reasoning is applied. The key of ontology reasoning is to test 

consistency of an ontology concept. From [19], to build a 

reasoner for the ontology, the procedures are summarized as: 



 Build a Tree-View model of the ontology concept; 

 Decompose this concept syntactically by applying the 

Tableau algorithms; 

 For nondeterministic rules in the Tableau algorithms, a 

search is necessary; 

 Ensure no clash occurs for rules and stop when no more 

rules applicable. 

Following those principles, semantic analysis for an IEC 

61499 system design starts with the ontology reasoning query.    

A description logic expression shall be built which is 

containing all properties of this particular ontology concept. 

For example, to analyse a basic function block design, the 

description logic expression shall be rearranged as: 

BasicFB   FBtypeelements 
 
 ≤ 1 Has_ECC.ECC 

 
 ≤ 1 Has_InternalVals.InternalVars 

 
  Has_Algorithm.Algorithm 

This description logic formulae states that a class of basic 

function block descriptors is a sub-class of intersection of the 

following four classes: 1) the class of function block type 

elements; 2) a class where every individual has maximum one 

ECC, 3) a class where every individual has maximum one 

internal variable list; 4) a class where every individual has 

some algorithms. To complete this tree-view model, each 

concept involved here must be attached with its own 

description logic formulae. Such as for ECC,  

ECC   FBtypeelements 
 
   Has_ECState.ECState 

 
  Has_ECTransition.EC_Transition 

Description logic expressions need to be passed to the 

semantic analysis engine (reasoner). The engine will perform 

the automatic semantic analysis test based on the query 

ontology concept. The engine‟s structure is  shown in figure 9. 

IEC 61499 files by any 
Editor Tool in XML

(*.fbt or *.sys) IEC 61499 Ontology Model
(T-BOX)

Individuals of IEC 61499 
concepts (A-BOX)

DL Reasoner
(Semantic Analyzer)

Results

Semantic queries in IEC 
61499 terms

(T-BOX)

  

Fig.9. Semantic analysis engine for IEC 61499 ontology. 

VII. CONCLUSIONS AND FUTURE WORK 

This paper presented an IEC 61499 knowledge base using the 

ontology model. This knowledge base of IEC 61499 is 

generated from the IEC 61499 XML schema files and all 

relationship between IEC 61499 concepts are properly 

defined. The ontology model is enhanced by semantic 

corrections and enrichment. This ontology model is suitable 

for the semantic analysis and the code generation for systems 

using the IEC 61499 standard.  

This research work will continue with completing the IEC 

61499 semantic analyser based on DL and SWRL. The 

semantic analysis shall automatic detect any semantic errors. 

The code generator for IEC 61499 will be developed as well 

as the code capture engine. This will complete the design 

framework for IEC 61499. 

VIII. REFERENCES 

[1] IEC 61499, Function Blocks, International Standard, 2005 
[2] IEC 61131-3, Programmable controllers - Part 3: Programming 

languages, International Standard, Second Edition, 2003 

[3] V. Vyatkin, J. Christensen , J. Lastra, “OOONEIDA: An Open, Object-
Oriented Knowledge Economy for Intelligent Distributed Automation”, 

IEEE Transactions on Industrial Informatics, vol. 1, 2005 

[4] A. Zoitl, V. Vyatkin, “IEC 61499 Architecture for Distributed 
Automation: the „Glass Half Full‟ View”, IEEE Industrial Electronics 

Magazine, 3(4), pp. 7-23, 2009, doi: 10.1109/MIE.2009.934789 

[5] W. Dai, V. Vyatkin, “Redesign Distributed IEC 61131-3 PLC System 
in IEC 61499 Function Blocks”, 15th IEEE International Conference 

on Emerging Technology and Factory Automation, 13-16 September 
2010, Bilbao, Spain. 

[6] M. Wenger, A. Zoitl, C. Sunder, H. Steininger, “Semantic Correct 

Transformation of IEC 61131-3 Models into the IEC 61499 Standard”, 
2009 IEEE Conference on Emerging Technologies & Factory 

Automation, Mallorca, ISBN:978-1-4244-2728-4, 7 Pages. 

[7] T. Hussain and G. Frey, "Migration of a PLC Controller to an IEC 
61499 Compliant Distributed Control System: Hands-on Experiences," 

in Robotics and Automation, 2005. ICRA 2005. Proceedings of the 

2005 IEEE International Conference on, 2005, pp. 3984-3989 
[8] S. Lemaignan, A. Siadat, J.Y. Dantan, A. Semenenko, “MASON: A 

Proposal For An Ontology of Manufacturing Domain”, Proceedings of 

the IEEE Workshop on Distributed Intelligent Systems: Collective 
Intelligence and Its Application (DIS), 2006. 

[9] Web Ontology Language – OWL: http://www.w3.org/TR/owl2-

overview/ 
[10] F. Badder, D. Calavanese, D.L. McGuinness, D. Nardi and P.F. Patel-

Schneider, “The Description Logic Handbook, Theory, Implementation 

and Applications, 2nd Edition.”, Published by Cambridge University 
Press, 2007, ISBN 978-0-521-87265-4. 

[11] Protégé, a free, open source ontology editor and knowledge base 

framework, http://protege.stanford.edu/ 
[12] V. Dubinin, V. Vyatkin, “Ontology of IEC 61499 function blocks” , 

International conference “Contemporary information technologies” 

(CIT‟10), Penza, December, 2010 
[13] O. Orozco, J. Lastra, “Adding Function Blocks of IEC 61499 Semantic 

Description to Automation Objects”, IEEE International Conference on 

Emerging Technologies and Factory Automation, Prague, Czech 
Republic, September, 2006, pp 537 – 544. 

[14] W. Lepuschitz, A. Zoitl, M. Valee and M. Merdan, “Towards Self-

Reconfiguration of Manufacturing System Using Automation Agents”, 
IEEE Transactions on Systems, Man, and Cybernetics—Part C: 

Applications and Reviews, Vol. 41, No. 1, January 2011 

[15] Y. Alsafi , V. Vyatkin, “Ontology-based Reconfiguration Agent for 
Intelligent Mechatronic Systems in Flexible Manufacturing”, 

International Journal of Robotics and Computer Integrated 

Manufacturing, DOI: 10.1016/j.rcim.2009.12.001, 2009 
[16] SWRL – A Semantic Web Rule Language Combining OWL and 

RuleML, http://www.w3.org/Submission/SWRL/ 

[17] P. Thuy, Y. Lee, S. Lee, “DTD2OWL: Automatic Transforming XML 
Documents into OWL Ontology”, 2nd International Conference on 

Interaction Sciences: Information Technology, Culture and Human, 

16–18 Aug 2009, ISBN: 978-1-60558-710-3 
[18] DTD Document, W3C Standard, Retrieved from 

http://www.w3schools.com/dtd/dtd_elements.asp 

[19] I. Horrocks, “Description Logic Reasoning”, Lecture Notes from 
University of Manchester, UK, 2005. 

[20] nxtControl GmbH,  nxtControl - Next generation software for next 

generation customers [Online, 2009, June]. Available: 
http://www.nxtcontrol.com/ 

[21] Function Block Development Kit, from Holobloc Ltd, Available: 
http://www.holobloc.com/  

[22] Automation Objects for industrial-process measurement and control 

systems – IEC SB3/TC 65, working draft, 2002. 
[23] Brennan, R.W., Ferrarini, L., Lastra, J.M. and Vyatkin, V. (2006) 

„Automation objects: enabling embedded intelligence in real-time 

mechatronic systems‟, Int. J. Manufacturing Research, 1(4), 379–381 
[24] Vyatkin V., Karras, S., Pfeiffer, T., H.-M. Hanisch, Dubinin V., Rapid 

Engineering and Re-configuration of Automation Objects Using Formal 

Verification, Int. J. Manufacturing Research, 2006, l(4), 382–404 
[25] Ontology General Definition,  http://semanticweb.org/wiki/Ontology  

http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://protege.stanford.edu/download/download.html
http://www.mozilla.org/MPL/MPL-1.1.html
http://protege.stanford.edu/
http://www.holobloc.com/
http://semanticweb.org/wiki/Ontology

