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This paper presents an application of formal methods for validation of flexible manufacturing
systems controlled by distributed controllers. A software tool verification environment for
distributed applications (VEDA) is developed for modeling and verification of distributed control
systems. The tool provides an integrated environment for formal, model-based verification of the
execution control of function blocks following the new international standard IEC61499. The
modeling is performed in a closed-loop way using manually developed models of plants and

automatically generated models of controllers.
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1. Introduction

The ultimate goals of the ongoing research and
development works, united by the intelligent manu-
facturing systems (IMS) initiative lie in a reduction of
the production cycle along with extended number of
available options in the product, and on-demand
production and delivery. One of the solutions to fulfill
these goals is a concept of holonic manufacturing
systems (HMS) (IMS, $$$). The HMS concept is
based on the idea of holons that is independent self-
configuring machines, capable of negotiating with
other surrounding holons in order to fulfill the
production plan. HMS promise to meet the increasing
demands for robustness to disturbances, adaptability
and flexibility to rapid change on the factory floor of
manufacturing enterprises. Besides, holonic organiza-
tion helps to cope effectively with failures of
production equipment, along with increasing its
workload and output.

The development of HMS implies numerous
impacts on every part of manufacturing technologies,
including control and software engineering. The state-
of-the-art in hardware of control systems is character-
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ized by wide application of distributed architectures.
If compared with centralized control systems, the
distributed ones consist of components connected to
the environment and to each other by means of
networks, such as PROFIBUS, DeviceNet, CAN, etc.
This architecture provides easy physical integration of
programmable controllers, intelligent field devices,
and engineering tools into the control system. Thus,
the hardware part of the distributed control system
(DCS) can be assembled almost following the ‘‘Plug-
and-Play’’ principle that fits well to the requirements
of HMS. The more evident becomes then the
importance of the corresponding software integration.
The methods and tools currently used for software
design of industrial controllers do not provide the
desired level of software portability, inter-operability
and configurability.

The draft of the international standard IEC61499
(Function Blocks for Industrial Process Measurement
and Control Systems, 1998; Lewis, 2001) is an
attempt to bridge this gap and to provide a
comprehensive software engineering concept for
DCSs, logically consistent with the currently existing
practice and standards of software development. The
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IEC61499 provides the component architecture for
development and modeling of distributed measure-
ment and control applications built from the units
complying with IEC61131-3 (1993)—programming
concept for centralized programmable logic control-
lers (PLCs), and IEC 61804 for DCS.

However, along with numerous benefits that the
HMS concept and IEC61499 promise to bring, there
are serious doubts related to the testing of control
software. With the growing complexity of the
industrial automation systems, software becomes the
most complicated and error prone part. It is intuitively
clear that a system built of self-configuring compo-
nents cannot be completely tested using common
testing methods due to the large number of possible
combinations of different architectures. The current
practice of testing is not sufficient even for complex
centralized control systems. Validation, which relies
on a finite number of tests, guarantees that only the
developed software works correctly for this finite
number of input tests. In reality, the software may
encounter input combinations not covered by the tests,
thus generating unpredictable outputs. This may lead
to erroneous behavior of the production equipment
with the corresponding dismal consequences.

A qualitative improvement of validation can be
achieved by formal verification of the control logic,
along with justification of controller’s robustness with
respect to possible malfunctions of some system
components, such as sensors, actuators, or other
equipment units. The following distinctive features
of the IEC61499 seem to be potentially beneficial for
the achievement of this goal.

e The IEC61499 provides a formal semantic
model of distributed control systems. The
basic programming structure of the new stan-
dard—a function block, is more autonomous
than in IEC61131-3. It may contain a number of
algorithms united by the event-driven execution
control Chart (ECC)—a state machine that
determines the basic execution logic of the
block. Thus, the IEC61499 model provides a
clear separation of concerns: event flow is
separated from data flow, and execution control
is separated from data processing in application
algorithms.

e An application in IEC61499 is built as a net of
function blocks (possibly hierarchial) intercon-
nected via event and data signals, and
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distributed over resources and devices.
Cooperation of the latter with the environment
can be also specified using so called service and
communication interfaces. Thus, a distributed
application can be developed on the abstract
logic level and then applied to a particular
architecture of hardware.

e The MVCDA component architecture using
IEC61499 as suggested in Christensen (2000)
relies upon integration of such components as
control, modeling, view, diagnostics, and adap-
ters within the same project. It allows to define
the formal model of the whole control system
reflecting properties of controllers, other soft-
ware and hardware components, service and
communication interfaces, as well as properties
of the controlled plant.

The above mentioned features provide the means
for analysis of the execution semantics of control
applications on various abstraction levels. Clearly,
more the details known better is the behavior
predicted. The first level of abstraction is only
achieved by the given structure of the system as an
interconnection of the component blocks. A more
detailed semantics is described when the execution
control of the blocks and/or the algorithms are
available. The next level can be achieved when the
structure of the container resources/devices is given
along with mapping of component function blocks
over the containers. A more precise semantics
corresponds to the level when communication
interfaces are defined, and so forth.

In this paper we present an attempt to develop
methods and tools of formal verification applicable to
IEC61499, and correspondingly to HMS. Our
approach is destined to support verification as a
natural part of control engineering. A prototype
software tool VEDA has been developed to show
the feasibility of the approach.

The paper is structured as follows. Section 2 gives a
brief overview of classical methodologies of model-
based formal verification. The software design
concept of IEC61499 is illustrated by means of a
simple example in Section 3. Section 4 is devoted to
the issues of formal modeling of plant-controller
systems, which provide the basis of formal verifica-
tion. We outline some features of the formalism of Net
Condition/Event systems, though in a rather informal
way. More rigorous definitions can be found in Starke
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et al. (2000). Finally, the verification tools are applied
in Section 5 to the example introduced in Section 3.
The paper concluded with a discussion of verification
perspectives in intelligent industrial automation
systems.

2. Classic framework of verification

Methods of formal model-based verification of
control systems have been developed during the last
decade. Representative descriptions can be found in
Clarke et al. (1986), Ostroff (1989), Kowalewski et al.
(2000). An outline of those is as follows:

(1) Verification is applied to a piece of software
code, describing the controller of a certain plant. Plant
and controller form the interconnected closed-loop
control system. The controller code is given in one of
general-purpose or specialized programming lan-
guages, for example, following IEC61131.

(2) The closed-loop system is modeled using an
appropriate finite-state or hybrid formalism, for
example, state machines, Petri nets, etc. The model
of the plant has to be designed manually by control
engineers, while the model of the controller can be
built automatically given the code.

(3) The experience of the control engineers as well
as technical documentation usually provide a lot of
specifications of desired or forbidden behavior of the
plant, i.e. the properties to hold or to avoid. The
specifications have to be formalized using a formal
language compatible with the description of the
model.

(4) Given the model and a number of formal
specifications, it can be formally checked whether the
specifications hold with respect to the model. This
process is called model-checking.

(5) The results of the model-checking have to be
interpreted in terms understandable by the engineers.
For this purpose, a bi-directional mapping from the
original system to its model and back has to be
provided.

This way of verification, however, is still far away
from being everyday practice due to a number of
reasons such as follows:

(1) Despite the number of theoretical and practical
approaches towards practical application of verifica-
tion, there are very few software packages available
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for smooth integration of verification into the control
engineering practice. In particular, the ways of formal
modeling of the controlled plants are different from
the modeling used for simulation and testing. The
variety of formalisms developed for formal modeling
makes standardization of this process difficult.

(2) The verification trials conducted in academia
deal with very simplified examples of control systems.
Comprehensive verification of control applications,
taking into account not only control logic, but also
system issues, is computationally complex and there-
fore unfeasible.

(3) Last, but not the least, is that the control design
companies do not want to cast doubt on their practice
of software development, insisting on that the settled
routine (based on certain norms, rules, and software
engineering concepts) ensures the quality of the final
product.

3. An example of a distributed control application
following IEC61499

Let us illustrate the impact of the distributed design
with the help of a simple plant ‘‘BORING STATION"’
as presented in Fig. 1. It consists of a boring machine
(drill) and a carriage, which delivers workpieces to the
home position of the drill. The loading/unloading of
the carriage is performed in the position detected by
sensor load.pos., opposite to the home position. The
drill has to start drilling when the workpiece comes to
the home position. When drilling is finished, the

CONTROLLER
or
DRILL

CONTROLLER|
or
CARRIER

Fig. 1. Structure of the distributed control system.
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Fig. 2. Block diagram of the control system following IEC61499.

workpiece is moved away. The presence of the
workpiece on the tray is reported by the sensor loaded.

The plant is controlled by two independent
controllers, one for the drill, and the other for the
carriage. Sensors and actuators are connected to their
respective controllers by segments of networks. The
controllers also communicate to each other via a
network. Access to the data is limited for each
controller by the data available in its own network
segments, plus the data explicitly provided by the
other controller.

The block diagram in Fig. 2 shows the (simplified)
structure of the DCS of the plant following the
IEC61499. The application consists of two inter-
connected subapplications  “‘DrilLMVC”’  and
““Carriage. MVC”’ (the MVC abbreviation stands for
model-view-controller). In this particular case, the
subapplications are mapped onto two devices:
“Drill_Dev’’ and ‘‘Carriage_Dev’’. According to
IEC61499, a basic function block consists of a head
(the upper part) and a body (the lower part). The head
is connected to the event inputs and outputs and is
responsible for the execution logic. The body is
connected to the data input/outputs and contains the
data processing algorithms, which are invoked by the
execution control.

Function block CAR_CTL implements the control
logic of the carriage, block DR_CTL controls the drill.
The blocks ‘‘Dril.MV’’ and ‘‘Carriage. MV’’ in our
diagram represent models of their respective objects.
The block ‘‘E_ RESTART’’ models a service function
of the resource which issues the corresponding event
on the warm start-up to initialize the software. Further
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—OUT  WORK.POS.——WP ouT|

BLK —REMOVE LOADED WP ON UNLOAD)
— BLK
—‘

elaboration of the block ‘‘Carriage. MV’ is given in
Fig. 3. The ““VIEW’’ component provides visualiza-
tion of the object, given its coordinate, generated by
the model in block ‘‘Car_Model’’. The model can be
substituted by a process interface function block
implementing interfaces to the corresponding objects.
This way of software design provides a consistent
incorporation of modeling into the development of
control applications.

The internal control logic of the blocks CAR_CTL
and DR_CTL is implemented by means of execution
control charts (ECC). The ECCs are state-machines
whose syntax is a simplified version of the sequential
function chart (SFC) of IEC61131-3. Fig. 4 shows
direct information connections between the two
controllers. For simplicity we allow in our examples
some deviations from the textual and graphical syntax
as defined in IEC61499. Thus, simple algorithms,

CARRIAGE.MV
cHaI -
= CHANGE
LsicHal CHANG =CHGI
IN —
1
CARRIAGE CAR_VIEW
LN COORD——| POS
our —— out LOAD.POS, LOAD.POS.
— REMOVE WORK.POS| WORK.POS
LOADEDf | OADED
REMOVE —

Fig. 3. Internal structure of the block CARRIAGE_MV.

Tradespools Ltd., Frome, Somerset



3B2 Version 6.05¢/W (Mar 29 1999) {Kluwer}Jims/Jims 14_1/111819/5111819.3d Date: 3/12/02 Time 15:50pm Page 127 of 136
Verification of distributed control systems 127
BLOCK i CHGO
-START
START | |iT & NOT UP
INIT READY, CHG CHGQ
INT&WP  INIT N B R
A | =
oH ]
[war ™~ Hour=dcreo]
T v4—VUP
LCHBLELLSED e = )
| sring Hin:=1 Tcreo] R EV LOCK:=0 |CHGO
LOAD_P = LIFT
Wp up
m DRILL = 1
WP T
DRILLED | IN:=0 [READY] DO Lock:=1|cHeo| DRILL
BLK P —— S \orbik out
A4 DOWN [urring HLiFT=1 [
LOCK
LOADED | Remove |- out=1|cHco | N DRILL=0
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Fig. 4. Execution control charts of function blocks CAR_CTL and DR_CTL.

such as an assignment of a variable, are presented
directly at the places, reserved for the algorithm calls.

The applications following IEC61499 can be
presented either graphically, as it is partly shown in
Figs. 3 and 4, or textually, in extended structured text
format. The source code contains the description of
the system’s structure, including internals of compo-
nent function blocks (ECCs, algorithms), their
interconnection to each other, as well as the mapping
of the function blocks to resources and devices. Thus,
the IEC61499 provides a comprehensive model for
description of distributed control applications, which
can also be used for the validation purposes.

4. Modeling formalism of signal-net systems

The interconnected system has to be substituted by its
finite-state model to perform formal model-checking.
We use a modular way of modeling by means of so
called net condition/event systems (NCES) or signal/
net systems (SNS) which exist in several dialects and
have been applied for modelling, verification and
synthesis of controllers and control systems of various
types (Hanisch and Liider, 1999; Hanisch et al., 1997,
Vyatkin and Hanisch, 1999; Hanisch et al., 2000).
From today’s point of view, the general idea which
is common to each particular ‘‘dialect’’ is quite
simple, namely, the way of thinking and modeling a
system as a set of modules with a particular dynamic
behavior and their interconnection via signals. This
way of modeling is a very intuitive one, and the
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modules can be pre-tailored and used over and over
again. Each module is equipped with inputs and
outputs which are of two types:

(1) Condition inputs/outputs carrying state infor-
mation, and

(2) Event inputs/outputs carrying state transition
information.

This way of extension of the system with inputs and
outputs clearly reflects the duality of Petri nets,
namely the clear distinction between states and states
transitions with their own graphical representation,
semantics, and formal properties. An illustrative
example of the graphical notation of a module is
provided in Fig. 5.

Condition input signals as well as event input
signals are connected with transitions inside the
module. Whether a transition of a module fires does

Condition input
Condition input arc

™~

{ s
A module — Condition
output arc
Module__J [J~—Condition
tput
boundary outp
< \0 ~«—Event output
/ \v Event output arc
1\' \ Transition
\ ; ™~ Flow arc
Event input \
Event input arc Token
Place

Fig. 5. Graphical notation of a module.
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Module,

Module,

Fig. 6. Example of modular composition.

not only depend on the current marking (as it is the
case in classical Petri nets) but also on the incoming
condition and event signals. Incoming condition
signals enable/disable a transition by their values in
addition to the current marking. Incoming event
signals force transitions to fire if they are enabled by
marking and by condition signals. Hence, we get a
modeling concept that can represent enabling/dis-
abling of transitions by signals as well as enforcing
transitions by signals. More than this, the concept
provides a basis for a compositional approach to
build larger models from smaller components.
““‘Composition”” is performed by ‘‘glueing’’ inputs
of one module with outputs of another module as
depicted in Fig. 6.

Result of the composition of two NCES N, and N,
is an NCES N, obtained as a union of the components
and which can be represented as a new module. Inputs
and outputs of the ‘‘composition’’ are unions of the
components’ inputs and outputs, except for those
which are interconnected to each other, and hereby
“‘glued’’, i.e. substituted by the -corresponding
condition and event arcs.

NCES having no inputs are called signal/net
systems (SNS) (Hanisch and Liider 1999; Starke et
al.,2000). The model in Fig. 6 is a SNS. The SNS can
be analyzed without any additional information about
their external environment. The semantics of SNS is
defined by the firing rules of transitions. There are
several conditions to be fulfilled to enable a transition
to fire. First, as it is in ordinary Petri nets, an enabled
transition has to have a token concession. That means
that all pre-places have to be marked with at least one
token.'

In addition to the flow arcs from places, a transition
in SN'S may have incoming condition arcs from places
and event arcs from other transitions. A transition is
enabled by condition signals if all source places of the
condition signals are marked by at least one token.
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N
S

S, S, S, S S, S,

Fig. 7. Reachability graph of the interconnected SNS model with
outlined path and sequential state diagram of input/output signals of
the modules.

The other type of influence on the firing can be
described by event signals which come to the
transition from some other transitions in the net.
Transitions having no incoming event arcs are called
spontaneous, otherwise forced. By default presence of
at least one non-zero event signal is required to enable
transitions by event signals. A forced transition is
enabled if it has token concession and it is enabled by
condition and event signals.

SNS are executed in steps, which are the sets of
simultaneously firing net transitions. An executable
step is formed by first picking up a nonempty subset of
enabled spontaneous transitions, and then adding as
many as possible of enabled transitions which are
forced to fire by event signals produced by other
transitions included in the step. Such a step is called
maximal with respect to its forced transitions.

A state of SNS is defined by marking of places.
The tuple M = 0 > denotes the reachability structure
of a SNS, where Z is a finite set of reachable states,
R a finite set of state transitions, and s, an initial
state. A state trajectory is a sequence of states
(8;) = 80581y -3y ens such that Vs;
i 1€Z31€R 5[t > 5;, . Figure 7 presents the
reachability graph for the SNS from Fig. 6. Nodes of
the graph correspond to the states, arcs correspond to
the state transitions. The arcs are marked with their
respective steps of net transitions. One of the
trajectories is unfolded in the figure to the linear
sequence of states, to illustrate changes of the the
model’s parameters by means of a sequential diagram.

There are special means provided for description of
both asynchronous and synchronous behavior in the
same net. This is necessary when modeling of
interconnected plant/controller systems is concerned.
This is achieved either by introduction of obliged
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transitions firing whenever they are enabled, or by
timing.

The concept of discrete timing is applied to the SNS
as follows: to every pre-arc [p, t] of the transition ¢, we
attach an interval [/,h] of natural numbers with
0 <! < h < oco. The interval is also referred to as
permeability interval. If a pre-arc has no explicitly
designated permeability interval, it is assumed to be
[0,00]. The interpretation is as follows. Every place p
bears a clock u(p) which is running iff the place is
marked (m(p) > 0) and switched off otherwise. All
running clocks run at the same speed measuring the
time the token status of its place has not been changed.
If a firing transition ¢ removes a token from the place p
or adds a token to p, the clock of p is turned back to 0.
A (marking-enabled) transition ¢ is time-enabled only
if for any pre-place p of ¢ the clock at place p shows a
time u(p) such that /(p, 1) < u(p) < h(p,t).

A state is characterized by the marking of system
plus the positions of the local clocks at the places. A
state is called dead if no transition is time-enabled and
no transition would become able to fire after any
increments of the clocks. If in state S; there is such a
minimum increment A that some of the transitions
become enabled after elapsing it, then it is said that
the state transition 7:S;—S; has a ‘“‘delay’” A.
Conversely, it can be interpreted as the state S; has a
““‘duration’” A, that specifies the time increment of the
clocks of this state required to make the transition t
enabled.

At a given state all (time-)enabled steps have to be
computed and placed into the list of enabled steps.
Firing of each step brings one more state successor to
the current state. Repetitive application of this
procedure to every subsequent state forms the
reachability space of the model. Time-enableness is
a required but not sufficient condition to include
transition to the firing step. The interpretation of the
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timing intervals is defined by the timing firing rule.
Several such rules have been studied:

(1) Strong vs. weak firing: with the strong rule all
marking enabled (spontaneous) transitions, which
have pre-places with clock position equal to either
low or high time limit, are obligatorily inserted into
the step (can be specified to make for example, either
strong earliest firing rule, or strong latest firing rule).
If the weak rule is chosen then at least one of the
enabled spontaneous transitions has to be included in
step.

(2) Earliest vs. interval firing: in case of the
interval firing a transition is time-enabled at every
clock position within the interval [/,4]. In the earliest
firing rule a transition is time-enabled if it has a pre-
place with the clock value equal to the low bound / of
the time interval.

(3) Ultimo firing: is a certain combination of the
interval and strong rules: a transition is time-enabled
every time tick within the interval and must fire at the
latest at clock position equal to .

It is necessary to mention that in case a transition
has several incoming arcs with permeability intervals
(1, 1], [l 1), .. [1,, h,] then all arcs have to be
permeable for the firing, that means /= max(/;),
h = min(h;). Among all possible combinations of
time constants and time-firing rules, some were found
of interest in some industrial applications. These
combinations are presented in Table 1.

The lower or higher time limits may or may not
(depending on the corresponding rule) force transition
to fire. The “‘interval’’ firing rule accepts presence of
empty transition steps, when time elapses even in the
absence of any enabled transitions. This option may
be useful if aimed at finding of all possible
combinations of overlapping processes and, corre-
spondingly, simultaneous events. On the other hand, it

Table 1. Combinations of time-firing rule and time intervals commonly used for modeling

Time onstants Firing rule

Interpretation

1. [>0h>1 Interval, weak
2. [>0h>1 Ultimo

3. [>0,h=0 Earliest, strong
4. [>0,hi=0 Earliest, weak

Event is expected with minimum delay /, maximum
delay h, or may not occur at all.

Process must get terminated within the interval [/,/].
Process has duration /, and all simultaneously started
processes with the same duration finish simultaneously.
Process has duration /, but termination of all processes
with the same duration may be not synchronized.
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(b)

Instant process

Previous
state

Process-enabling
condition

Process
ended

Next state

Fig. 8. (a) Model of plain time consuming process; (b) Model of instant process.

obviously explodes size of the reachability space. The
(may be confusing) variety of choices extends the
modeling horizons and allows to describe models
more concisely.

5. Modeling of processes

Underlying (sub-)processes which represent on
abstract levels (sub-) states of the model can be
modeled in SNS as places with safe (0/1) marking.
Each stable state can be also explicitly associated with
a duration. Figure 8(a) shows an example of such a
model. The time consuming state, represented by p,
models an action in progress. Transition f, has an
incoming condition arc which starts the process. The
process is in progress while p; is marked.
Permeability interval of the arc (p,,t;) defines the
duration of the process in one of the ways described in
the previous section.

There are some processes which have no duration,
or it can be neglected in comparison to other ones.
Such processes are called ‘‘instant’’. An example of a
model of such a process is given in Fig. 8(b). The
process is started by ‘‘enabling condition’’, but there
is no place marking corresponding to the state
‘“process in progress’’.

More realistic modeling of processes (as the one
shown in Fig. 9) may include exception states in
which the system comes in case of abnormal process
termination. The place p; (modeling the time-
consuming state as in the previous example) is
connected with two transitions: f; stands for the
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normal operation mode with a duration as described in
the previous case, while #, models the exception state,
which may occur anytime within the normal operation
time. This model is most adequate with the ‘‘ultimo’’
firing rule and /# < oo. The reached upper time limit
forces only one of the transitions: either ending the
action normally, or exceptionally.

The described models of atomic processes can be
combined to more complicated ones. Consider the
carriage from the example presented above. The
corresponding model is given in Fig. 10. The model
represents the autonomous carriage and the workpiece
including the logic of its placing/removing. Every
component of the system is modeled by a module.
Interconnections between component blocks of the
system are mapped to condition and event arcs
connecting modules of the model.

The model consists of modules modeling:

e locations and states of the carriage;
e setting/removing of the workpiece;

Process
ended
K> abnormally

Process with exception

Exception

_ R Process
state

in progress
K> Processs

ended

normally

Time-consuming _|
state

Next state

Fig. 9. Model of process with a possible exception.
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Fig. 10. Modular NCES model of the carriage with workpiece.

e sensors load.pos, work.pos, loaded, and the
event generator, which issues an event in every
condition change, that is required for commu-
nication with the IEC61499 function blocks.

The model explicitly defines conditional and time
dependencies related to the co-existence of several
components of the plant’s unit. For example, the
condition arc from the module ‘‘Carriage’’ to the
module ‘‘Workpiece’’ corresponds to the condition
‘““Workpiece can be set/removed to/from the carrier
only at the load position of the latter.”” Typically, each
elementary unit is modeled as a state-machine, where
the states are modeled by the places. The power of
place/transition nets allows, however, not only to
model concurrent interconnected state machines, but
also to represent various quantities, such as material
flows within the same consistent model. Time
properties of the object ‘‘Carriage’’ are expressed in
the model by means of time intervals associated with
place-transition arcs of the model. The model can
substitute the function block ‘‘CARRIAGE”’ in Fig. 3
since it has an identical input/output interface (except
for the output COORD—the numerical value of the
coordinate.).
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Some aspects are worth mentioning before we
proceed to the application of the presented modeling
technique for verification. These aspects are:

(1) We have an intuitive way to model a system
which closely corresponds to the design and
engineering practice and trends.

(2) The modeling technique supports a bottom-up
modeling as well as top-down strategy. One could
start with a set of modules and create a larger model
by composing them. On the other hand, one could
start with a larger system and could decompose it to a
set of subsystems (expressed by modules) and a set of
interconnections (expressed by composition arcs).

(3) Even after composition, the state-of-the-system
is distributed, and the original structure of the
modules is preserved. Even removing a module and
replacing it by another module with the same input/
output interface would be a local operation over the
structure of the model. Hence, composition is far less
complicated as building the cross product of automata
or the interleaving language. This allows us to build
models of realistic scale efficiently.

(4) Discrete state formalisms obviously have more
limited expressive power than the hybrid ones, such as

Tradespools Ltd., Frome, Somerset



3B2 Version 6.05¢/W (Mar 29 1999)

132

discussed in Kowalewski et al. (2001) and Hanisch et
al. 2001. This is true also for NCES. However,
currently existing implementations of SNS model-
checking, such as SESA (1993), allow the model-
checking of realistic-scale applications, having
millions of reachable states, that is hardly to expect
from the hybrid formalisms.

The models of the controller function blocks are
generated automatically by VEDA given their source
code. The methodology of the modeling is discussed
in our prior works (Vyatkin and Hanisch, 2000a;
2000b). Our verification approach essentially requires
the closed-loop interconnection of the plant and
controller models by data and event signals. Thanks
to the distributed nature of the systems being studied,
the resulting models may contain several of such
closed-loop connected components.

6. Verification tools

In this part, we illustrate the application of the
developed integrated software tool VEDA. Overall
correctness of distributed control applications
depends not only on the control logic and data
processing within the algorithms, but also on the
scheduling of the algorithms, communication between
devices, particular architecture of the system, and
mapping of components of the application to a
particular architecture. The description of the control
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system following IEC61499 allows to model all these
issues and take them into account in the process of
verification. Though, at the current stage of the work
VEDA supports modeling of rather primitive function
blocks, it allows to illustrate various qualitative
benefits of IEC61499.

Given a control system, designed and coded
according to IEC61499, the following steps are
assumed as the preceding to VEDA application:

(1) Develop the NCES models of plant compo-
nents and integrate them into the IEC61499 control
applications as discussed above. The design of the
models is supported by means of the graphical editor
as presented in Fig. 11. The formal model can be
appended by a visualization model, which assigns
visualization actions to certain markings of places in
the formal model. The resulting composite model can
be presented as a function block with an interface
following IEC61499. The arcs linking the block in the
original application to other function blocks are
substituted in the model by condition and event arcs
connecting the model of the block with the models of
other respective blocks. We substitute this way the
block CARRIAGE in Fig. 3 by the model from Fig.
10.

(2) Formalize the specifications of desired or
forbidden behavior of the control system. This can
be done using second order predicates or temporal
logic formulae over the variables declared in the
controllers or over parameters of the model of plant.
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[BrNcest7d H\ H\ - TR MM AT
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Fig. 11. Graphical editor of NCES models.

M10692 Kluwer Academic Publishers

Journal of Intelligent Manufacturing (JIMS) 13.6

Tradespools Ltd., Frome, Somerset



3B2 Version 6.05¢/W (Mar 29 1999)

Verification of distributed control systems

Fle Options Help

e = | e e B
ERT) B -

3

{Kluwer}Jims/Jims 14_1/111819/5111819.3d

Date: 3/12/02 Time 15:50pm Page 133 of 136

133

=18l

2 T I e

e[ INITT WAFM (ED] f’
| DCTLINIT [E1)

Fig. 12. VEDA’s display.

When the above steps are fulfilled, the applica-
tion can be loaded into VEDA. The main screen
of VEDA is shown in Fig. 12. Its structure is as
follows:

(1) The tree view shows the hierarchial structure of
the application and a variety of presentation options,
which can be applied to each component. This means
that a block containing the formal model of plant can
be seen as its interface (inputs and outputs) as well as
the textual or graphical form of the NCES model (in
window 1). A “‘pure’’ IEC61499 basic function block
is visible as its interface, as structured text of its
content, or as a graphical view of its execution control
chart. The graphical views can display information
about particular state of the model (marking of places,
etc), or about the state of the execution control.

(2) Modeling/model-checking controls implement
the following functions: create the reachability space
of the model, search for the states satisfying certain
logic conditions, or more sophisticated navigation
functions in the reachability space, search for a
trajectory satisfying a number of conditions,
expressed either as a sequence of (second-order)
predicates, or as a temporal logic formula.

(3) Application/model source view displays the
application being verified in one of the available
graphical or textual formats. The IEC61499 overall
structure, for example, can be presented as a net of
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interconnected component function blocks as well as
an equivalent ASCII text presentation. The same
applies to every component function block.

(4) Process visualization display shows the mod-
eled plant in the state selected in the reachability
space. For the states having non-zero time duration,
process animation can be displayed.

(5) Lists of input, output, and internal variables of
the original application allow to select the desired set
of variables to observe in window the state/time
diagrams of their values.

(6) The behavior of the interconnected model is
represented by means of its reachability graph, where
nodes correspond to the states, and arcs represent
transitions between the states. Thus, a path (a
trajectory) in the reachability graph corresponds to a
particular scenario in the behavior of the model. The
specified path is highlighted in the graph.

(7) Selected state of the reachability graph is
displayed in this window with all outgoing states
and with state transitions marked by the variables
initiating them.

(8) Statistics of the model and the model-checking
status shows the size of the generated model, the size
of the reachability space, and results of the search for
a particular state.

(9) The system’s behavior along the highlighted
trajectory can be represented for detailed analysis by
means of asynchronous timing diagrams. Values of
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Fig. 13. Timing diagram of the state activity variables: state DRILLED of the transfer stage is transient.

the requested inputs, outputs or internal variables can
be shown graphically with respect to the states of the
trajectory. In addition, each state can be visualized in
the animation window (5), and in the source window

(D).

Let us illustrate how VEDA is applied to make sure
that our application never forces the system to the
dangerous state specified as follows: ‘‘Attempt to
move the transfer stage during drilling’’. This
condition can be represented as a predicate in terms
of input/output variables of the blocks as follows:
“DR_CTL.DRILL and CAR_CTL.OUT”’. VEDA
checked the validity of the predicate in the reach-
ability space of the model (2207 states) and found
states where the condition holds. To analyze the
reasons of the incorrect behavior, it is possible to
visualize the trajectories leading to such states with
state/time diagrams of the variables, and provide the
view of the animated process visualization display
along it. The reason becomes clear after a look at the
signal diagram in Fig. 13 and to the correspond-
ing visualization of ECC (as in Fig. 4) and process
view.

Once the carriage arrives at the working position,
its controller has to come to the state DRILLED and
send a corresponding message READY to the
controller of drill. The latter issues blocking condition
BLK, which does not allow the carriage to move away
before the drilling is completed. In fact, the state
DRILLED in the controller of the carriage happens to
be unstable: the condition of the transition to the next
state REMOVE is immediately TRUE, due to the
logic of ECC execution: the outgoing transition
conditions are evaluated even before the output
events, related to a particular state, are issued. This
implies that the state of CAR_CTL is changed to
REMOVE even before the signal READY to DR_CTL
has been issued. To fix this error the transition
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condition NOT BLK has to be fortified as: BLOCK
AND NOT BLK, where BLOCK is an event issued by
DR_CTL after setting BLK to 1. After the modifica-
tion, the erroneous states disappear from the
reachability space.

The repetitive application of such a procedure with
various specifications helps to improve the control-
ler’s correctness.

7. Conclusion

The use of industrial standards provides easy network
integration of our verification approach, as shown in
Fig. 14. Verification that requires high computing
power can be used as an external web-service for
control engineers developing and testing control
systems. Description of the latter in IEC61499 could

Provides services of .
Predicts and

on-line and .
. S resolves conflicts ..
real-time validation Supervising
between holons, )
Verification validates ?ilel\jls
. o
agent dynamically .

runs on a high
performance
computer

forming structures

Sources in [EC61499

Intranet/Internet

Uses verification to extend Engincering
testing of the being developed agent
control systems

Fig. 14. Possible web-integration of the verification agent.
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be sent to the ‘‘Verification agent’’ along with
specifications of desired/forbidden behavior. The
server would perform model generation, model-
checking, and return of results to the client.

Moreover, it can be used in automatic mode by
supervising agents of HMS. It is possible to imagine
dynamically arising configurations of holons which
were not completely tested during the engineering of
the system. In such cases the supervising agent might
validate them upon appearance before allowing to
function. This service can be requested from one of
available appropriate verification agents.

There are two major differences of the approach to
verification proposed in this paper with other similar
works. First, it applies to the domain of distributed
systems and takes into account various ‘‘adjacent’’
issues in addition to pure control logic. Second, it
works with standardized source code of controllers,
that simplifies its application in the engineering
practice. These arguments give a hope on eventual
applicability of this work in industry.

Major doubts on practical applicability of the
proposed approach concern two issues: functional
constraints necessary to impose on original control
systems in order to verify them, and closely related
issue of computational complexity of the formal
model-checking. Though we intentionally did not
address those issues in the paper, certainly any
researcher runs into them dealing with similar
problems. Currently existing model-checking tools
allow handling of systems having up to billions of
reachable states. This means that many industrial
systems, such as machine tools, or automation cells
could be modeled quite precisely for the verification
purposes. New challenges of intelligent manufac-
turing would make the formal methods of validation
simply unavoidable, while the progress in the
information technology ensures constant extension
of the horizons of applicability of such methods.

Practical application of the verification in industry
is in a very early stage, and it is quite likely that it is
limited by other reasons than pure computational
constraints. We hope that our work highlights some of
the problems that have to be addressed along with
waiving the computational limits. In fact, some of the
solutions applied in our work, such as application of
SNS rather than automata, and the closed-loop way of
model composition already helped to minimize the
computational complexity of the model-checking
essentially.
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Notes

1 In case of weighted arcs, with as many tokens as the
weight of the corresponding arc from the pre-place to the
transition.
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