
IEEE International Symposium on Precision Clock Synchronization for Measurement, Control, and Communication, Munich, September 2011

Distributed IEC 61499 Material Handling Control

based on Time Synchronization with IEEE 1588

Cheng Pang, Jeffrey Yan, Valeriy Vyatkin
Department of Electrical and Computer Engineering

The University of Auckland

Auckland, New Zealand

E-mail: [cpan024, jyan110]@aucklanduni.ac.nz,

v.vyatkin@auckland.ac.nz

Steven Jennings
Interroll Holding GmbH

Hoeferhof 16

42929 Wermerlskirchen, Germany

E-mail: S.Jennings@interroll.com

Abstract— This paper proposes a method of time-driven

control with high-precision synchronous clocks in distributed

control systems built following the IEC 61499 standard. It

investigates the impact of applying time-driven control on

performance of material handling systems. A time-driven

control system for a multi-diverter conveyor line has been

developed using IEC 61499 Function Blocks architecture with

support of the IEEE 1588 Precision Time Protocol. Analytic

performance model has been developed and comparisons

between the time-driven and two other possible control designs

have been conducted and elaborated in terms of costs, logic

design, and system throughput.

Keywords- manufacturing automation; industrial control;

industrial engineering

I. INTRODUCTION

The shift from PLC (Programmable Logic Controller)

based centralized systems to distributed intelligent systems is

the main trend in the development of industrial automation

systems. This trend was reflected in the development of the

international standard IEC 61499 [1]. The standard supports

the design paradigm based on function blocks (FB). A

function block is design abstraction for a distributed process

or a part thereof. Communication between processes is

modelled in IEC 61499 using events with associated data.

Therefore, this model primarily relies on event-driven

activation of processes in distributed system and their

asynchronous execution.

Time and process synchronization have always been

important factors when designing the control of industrial

automation systems, but not sufficiently addressed in IEC

61499 research and development. The way of time used in

the control varies depending on the system’s functionality.

For example, in motion control systems and robotics, time is

used to synchronize the actions of individual motors or to

coordinate the axes of motion; while in material handling

system (MHS), time can be used to stamp the input data and

then to schedule the output actuation. The appropriate

applications of time in the control design can help improve

the system’s throughput, simplify the logic design, and even

reduce the hardware costs. Time-driven control design is

more suitable for automation systems requiring high

precision and performance than the traditional scan-based

solution [2]. However, the control design is usually subject

to the layout of the control system and available hardware

devices. For instance, in centralized control systems, the use

of time in control algorithms is more intuitive while in

distributed control systems a fundamental issue is to

establish and maintain the same notion of time among all the

control devices.

In this paper we investigate the use of time-driven

distributed IEC 61499 control in material handling systems,

where the use of distributed automation approaches is most

natural due to high spatial distribution and modularity of the

machinery. Time-driven distributed control scenarios are

compared to traditional ones based on central control and

event-driven. Executable control specifications for all

scenarios are implemented using IEC 61499 architecture. In

particular, an implementation of the IEEE 1588 Precision

Time Protocol (PTP) [3] using the RTS IEEE 1588 Network

Stack [4] has been proposed to solve the time

synchronization issue in distributed MHS.

The paper is organized as follows. Section II describes

the overall layout and operations of the multi-diverter

material handling system used as a test case in this work.

Three possible control configurations are presented for this

test case along with a conceptual mathematical model of

material throughput. The model allows comparing the

configurations in terms of system throughput. The related

issues of cost savings and complexity of control logic design

are also discussed. Then, Section III introduces the basic

concepts of the IEEE 1588 PTP protocol and Section IV

introduces basic concepts of IEC 61499 Function Block

architecture. Section V presents the main ideas of using

synchronized time in IEC 61499. The FB implementation

details of the multi-diverter test cases are elaborated in

Section VII. Finally, the paper is concluded in Section VIII.

II. MULTI-DIVERTER MATERIAL HANDLING TEST CASE

The test case studied in this work consists of a single

long conveyor line with a number of diverters as

schematically illustrated in Figure 1.

Figure 1. Multi-Diverter Material Handling Test Case

This work has been sponsored in parts by The University of Auckland,
New Zealand, and Interroll GmbH, Germany

IEEE International Symposium on Precision Clock Synchronization for Measurement, Control, and Communication, Munich, September 2011

This multi-diverter conveyor line is typically used in material

handling systems where different items must be first scanned

to determine their attributes and then diverted to the

corresponding locations further down the line. This sorting

function can be achieved in a number of ways, which are

summarized and discussed in the rest of this section.

In order to achieve quantitative comparisons, a set of

variables and constraints has been defined to describe the

configuration scenarios, as follows:

1. Tdiv is a constant denoting the time the diverter takes

to divert an object and return to its ready state;

2. tcpu specifies the controller’s algorithm execution time;

3. tio is the update time of the I/O configuration (remote

I/O scan cycle);

4. tnet is the worst case delay time for a message to travel

within the system;

5. Tscanner is a constant denoting the time that the scanner

takes to scan a single object;

6. W is the reaction time for a diverter to successfully

divert an object; and,

7. R is the system’s throughput rate in object per second.

The reaction times of the following configuration scenarios

will be analyzed based on the assumption that the systems

have reached the steady states.

A. Centralized Control with Remote I/O’s

The centralized control with remote I/O’s configuration,

as shown in Figure 2, is one of the most common setups in

MHS due to the architecture of PLC. In this configuration, a

single powerful controller and a scanner are installed at the

beginning of the conveyor line with remote I/O’s attached to

the diverters alongside. Items are detected down the line by

the sensors and sorted by the diverters based on the signals

sent by the central controller.

Figure 2. Centralized Control with Remote I/O’s Configuration.

For each diversion, the reaction time of this configuration

can be determined by the addition of the followings:

 tio-cc: item arrives at sensor and sensor reading is

placed on I/O;

 tcpu-cc: controller executes algorithm and makes

decision about diversion;

 tio-cc: diverter actuator activated by controller; and,

 Tdiv: diverter physically pushes the item.

The reaction time, Wcc, can be formulated as:

Wcc = tio-cc + tcpu-cc + tio-cc + Tdiv

= 2tio-cc + tcpu-cc + Tdiv (1)

The throughput rate of the centralized control system, Rcc,

can be thought of as limited by the reaction time of the

system, thus:

Rcc ≤

 (2)

It can be noticed that the jitter delay between sensor reading

and diverter actuation limits the speed of conveyor belt,

which is especially significant in PLC control systems. Both

sensor reading and diverter actuation could potentially take a

single I/O scan to complete.

Moreover, the scan time of remote I/O’s increases as

more remote I/O modules are added and subsequently

increases the response time. For performance critical systems,

running I/O with the lowest scan time is ideal. However,

faster scan time results in lower bandwidth over the field-bus

or network which could limit the scalability to larger system.

Thus, to avoid this delay distributed control with dedicated

I/O’s configuration would be a reasonable option.

B. Distributed Scanning Control

Instead of having a powerful central controller, in the

distributed control configuration, along each diverter there

will be a scanner and a lightweight controller as indicated in

Figure 3, where each diverter controller handles its own I/O.

Figure 3. Distributed Control with Dedicated I/O’s Configuration

This distributed architecture simplifies the control logic’s

design as each controller now only considers its own scan

result and the diverter’s actuation. By introducing dedicated

scanners and I/O modules, the sensor delay in the centralized

configuration is eliminated.

Although the sensor delay is avoided, there is an extra

delay introduced by the additional scanners. On the other

hand, the saving on sensors and powerful central controller

may not cover the costs of additional scanners and

lightweight controllers. Moreover, as the items’ diverting

decisions are made only at the points of diversion, it may be

difficult for the distributed controllers to implement complex

sorting criteria requiring a global view of the system. The

reaction time of this configuration is determined by the

addition of the following factors:

 tio-dsc: item arrives at sensor and sensor reading is

placed on I/O;

 tcpu-dsc: controller executes algorithm and makes

decision about diversion;

 tio-dsc: diverter actuator activated by controller; and,

 Tdiv-dsc: diverter physically pushes the item.

Similar to the centralized scenario, the reaction time Wdsc for

the distributed configuration can be formulated as:

Wdsc = tio-dsc + tcpu-dsc + tio-dsc + Tdiv

IEEE International Symposium on Precision Clock Synchronization for Measurement, Control, and Communication, Munich, September 2011

= 2tio-dsc + tcpu-dsc + Tdiv. (3)

The throughput rate for the distributed scanning control

scenario is limited by the reaction time as well as the

scanning time of the system, thus:

Rdsc =

 (4)

C. Time Synchronous Distributed Control

The clock-synchronized distributed configuration shown

in Figure 4 is an improved variant of the previous distributed

configuration. Each diverter controller stores a table of times

at which it should activate the diverter. The table is updated

by the main controller, which transmits the corresponding

time upon scanning the next material item.

Figure 4. Synchronous Distributed Control Configuration

With the new configuration, the time spent on scanning is

constant and complex sorting algorithms relying on a global

view of the system are possible. The reaction time for this

synchronous scenario can be determined by the following

sequence of actions:

 tcpu-tsdc: diverter controller waits until the

corresponding divert time;

 tio-tsdc: diverter actuator activated by the diverter

controller; and,

 Tdiv: diverter physically pushes the item.

As a result, the reaction time Wtsdc can be calculated as:

Wtsdc = tcpu-tsdc + tio-tsdc + Tdiv. (5)

The throughput rate of the synchronous distributed system is:

Rtsdc =

 (6)

The gain in throughput of the synchronous scenario over the

centralized scenario can be obtained as:

 . (7)

For simplicity purposes, it is assumed that the network

related delays, such as propagation time and congestion, are

negligible, and hence , which gives:

 . (8)

The diverter push time remains constant for all scenarios.

The algorithm execution time and I/O scan time of the

centralized scenario would increase depending on factors

such as complexity of the application and the I/O

configuration.

For comparison of the centralized and synchronous

distributed control configurations some sample parameters

are used. For an average diverter the divert time could be

approximately 300ms. We assume for the centralized

scenario an algorithm execution time of 20ms and a

relatively fast I/O configuration that results in an I/O scan

time of 1ms. For the synchronous scenario, each distributed

controller runs a small amount of code and only manages a

single I/O module thus algorithm complexity is less and

algorithm execution times are much shorter. This system is

assumed to have an algorithm execution time of 10ms and

I/O scan time also of 1ms. A comparison is tabulated below:

TABLE I. PERFORMANCE GAIN

 Centralized Synchronous

Alg. execution 20ms 10ms

I/O scan 1ms 1ms

Push duration 300ms 300ms

Total 20 + 1*2 + 300

=322

10 + 1 + 300

= 311

With these parameters, the overall performance gain is

3.5%. However, when more diverters are added to these

systems, the main area affected will be the I/O scan time. If

we assume the I/O scan time for the centralized system is a

function of the number of diverters and other factors such as

algorithm execution time remain constant, then the previous

equation becomes:

 () (9)

If we approximate the I/O scan time to be proportional to the

number of diverters then we get a linear increase in gain as

we increase the number of diverters.

Furthermore, in both the centralized scenario and the

time synchronous distributed scenario, we assume the

algorithm execution time to be constant. However this is not

entirely true once both systems get extremely large. For the

centralized scenario, if the algorithm that manages the

diversion decisions, is a simple list comparison than the time

taken to iterate the list will grow with the complexity of the

system. Contrast this to the time synchronous distributed

system where each diverter controller only manages the list

of the items that it is required to divert. The algorithm

complexity for the time synchronous distributed system will

be much less than that of the centralized scenario and hereby

the algorithm execution time will be much shorter.

However, to achieve this efficiency improvement, one

fundamental issue is to precisely synchronize clocks in the

distributed controllers and maintain this synchronization with

minimum computation power. Otherwise, the items are

likely to be mistakenly sorted. With synchronous time, the

tasks of the controllers as shown in Figure 4 are simplified to

the followings:

 Main controller records the timestamps of input items,

makes decisions upon the sorting criteria, and then

forwards the time-stamped orders to the downstream

diverter controllers correspondingly; and,

IEEE International Symposium on Precision Clock Synchronization for Measurement, Control, and Communication, Munich, September 2011

 Downstream diverter controllers only need to actuate

their own diverters at the time specified in the

timestamps.

There are few protocols for time synchronization. Section III

below elaborates the protocol used for the MHS test case.

III. THE IEEE 1588 PRECISION TIME PROTOCOL

In this work, the IEEE 1588 PTP protocol is used to

synchronize the system nodes in the MHS test case following

the synchronous distributed configuration. The IEEE 1588

standard defines a protocol that enables precise

synchronization of clocks in measurement and control

systems. Comparing to other clock synchronization protocols,

such as the widely used Network Time Protocol in large

distributed computing systems, the PTP protocol addresses

the synchronization needs of spatially localized distributed

control systems requiring microsecond to sub-microsecond

accuracy in the field of industrial automation. Distributed

systems consisting of nodes capable of processing PTP

messages over a network can adopt the PTP protocol.

In a PTP system, clocks are organized into a master-slave

synchronization hierarchy with the top-level grandmaster

clock determining the reference time for the entire system.

All the other clocks ultimately derive their time from this

grandmaster clock by exchanging PTP messages to

synchronize their time with their masters in the hierarchy. In

this way, the PTP protocol is intended to be administration

free. Figure 5 shows a simple master-slave clock hierarchy.

Figure 5. Simple Master-Slave Clock Hierarchy [3].

According to the number of ports, clocks are classified as

either ordinary clock (single-port) or boundary clock (multi-

port), where each port maintains its own state as:

 Master (M): the port is the source of time on the path;

 Slave (S): the port synchronizes to the master clock

on the path; or,

 Passive (P): the port is neither a master clock nor

synchronized to a master clock.

This master-slave clock hierarchy is established using the

Best Master Clock (BMC) algorithm. By comparing the data

describing the clocks’ characteristics, such as accuracy and

stability, the BMC algorithm concludes which clock is better

and hence updates the clocks’ states. This BMC algorithm

will be executed whenever there is a change in the system,

such as discovery of new clock or removal of existing clock.

Once the clock hierarchy is established, clocks can be

synchronized by exchanging the PTP messages over the

communication path.

IV. FUNCTION BLOCKS ARCHITECTURE OF IEC 61499

The IEC 61499 standard establishes an event-driven

modular architecture for designing the logic of distributed

control systems. The basic building artefact in IEC 61499 is

called Basic FB (BFB), which consists of an interface and an

Execution Control Chart (ECC) as indicated in Figure 6:

Figure 6. Basic Function Block: (a) Interface and (b) ECC

The FB interface consists of event and data I/O’s, where

event signals trigger the evaluation of the FB’s algorithms

and data signals stores evaluation results. The functionality

of a BFB is defined in the ECC, which is a state machine

whose semantics is similar to Moore finite automata with

actions assigned to states. The state’s transition condition is

defined in the EC transition, which consists of an input

event and a predicate over the data inputs and outputs.

When a state transition occurs, algorithms in the associated

actions will be executed and the corresponding output

events will be issued.

A Composite Function Block, on the other hand, is

specified by interface and functionality, defined as a

network of function block instances interconnected via

event and data connections.

FBs can be interconnected via event and data connections

to form an FB Application (FBA), which is the highest level

structure in the IEC 61499 hierarchy. As IEC 61499 is a

deployable execution specification, by adding deployment

details, such as control device layout and communication

network, to the FBA, a deployable system configuration is

created. Examples of the introduced artefacts will be

encountered by the reader further in the paper.

V. IEEE 1588 PRESISION TIME PROTOCOL IN IEC 61499

FUNCTION BLOCK

In our previous work [5], we have discussed possible

implementations of the PTP protocol at different levels of

IEC 61499. A software-only implementation of the PTP

protocol has also been elaborated. In this work, a hardware-

supported off-the-shelf FB-based PTP solution is developed

using the commercial RTS IEEE 1588 Network Stack and

nxtStudio IEC 61499 IDE [6].

The RTS stack allows users to configure the PTP settings

and network layout and then automatically explores the

network to establish the communication paths. Then the

master-slave clock hierarchy will be created and the clocks

will be synchronized. To access the synchronized time, a

Service Interface Function Block (SIFB), as shown in Figure

7 is developed.

IEEE International Symposium on Precision Clock Synchronization for Measurement, Control, and Communication, Munich, September 2011

Figure 7. Interface of RTS_IEEE1588_PTP SIFB.

The main function of this SIFB is to retrieve the current

PTP time from the stack via the RTS API and then provide

this time to the control logic, where:

 INIT initializes the underneath RTS stack;

 TickInterval specifies how frequent the UPDATE

event is emitted;

 UPDATE refreshes the associated data outputs;

 PTP_State indicates whether the current node is a

Master, Slave, or not yet initialized; and,

 PTP_Time_S and PTP_Time_NS represent the second

and nanosecond parts of current timestamp.

The RTS stack is continuously running at the background to

maintain the local clock’s synchronization. However, due to

FB’s event-driven semantics, the latest PTP time can only be

available to other FBs when the UPDATE event is emitted.

As a result, the TickInterval must be precise enough to match

the time resolution required by the control logics.

VI. MHS TEST CASE CONTROL IMPLEMENTATIONS

This section compares and discusses the logic design for

the three MHS test case configurations. Specifically, the

control logics are implemented using event-driven FBs with

cyclically scanned I/O’s. It is also aimed to demonstrate how

time can be incorporated in current FB control design.

Figure 8 (a) illustrates the FB design for the centralized

control configuration, where:

 CentralControl implements the control logic; and,

 KL1408 and KL2408 are FBs for accessing Beckhoff

CX1010 digital I/O modules.

Figure 8. Function Block Design for Centralized Control: (a) FB

Interfaces and (b) CentralizedControl FB’s ECC

The structure of CentralControl’s ECC as shown in Figure 8

(b) is simple. However, the algorithms are complicated as the

control logic must keep track of all the scan results and then

based on the entire system’s sensor values decide which

diverters must be activated. The more I/O’s in the system,

the more complicated the control algorithms will be.

In contrast to the centralized control logic, each of the

lightweight controllers in Figure 3 only needs to consider the

scan result of the incoming item and makes sorting decision

immediately. Figure 9 illustrates the FB design for the

distributed configuration, where the DistributedControl FB’s

ECC is identical to Figure 8 (b).

Figure 9. Function Block Design for Distributed Control

Unlike the isolated controllers in the distributed

configuration, the diverter controllers in the synchronous

configuration must be connected to the main controller to

update their local timestamp records. Figure 10 shows the

distributed system layout for the synchronous configuration,

where controllers are communicating over an Ethernet.

Figure 10. Overall System Layout for the Synchronous Configuration

Device0 contains the control logic for the main controller

and holds the most accurate clock in the system as illustrated

in Figure 11.

Figure 11. Function Block application in the main control device.

An instance of RTS_IEEE1588_PTP provides the PTP

time for the MainControl FB, which receives the scan result

IEEE International Symposium on Precision Clock Synchronization for Measurement, Control, and Communication, Munich, September 2011

from the KL1408 FB and communicates with the remote

controllers through the PUBLISH/SUBSCRIBER FB pairs.

As indicated in Figure 12, upon the UPDATE event input,

the MainControl FB checks whether the associated PTP

clock is properly initialized and the remote controllers are

synchronized. Then upon the REQUEST event input, the new

scan result will be examined based on the sorting criteria and

the next diverting time for the corresponding diverter

controller will be scheduled.

Figure 12. Interface and ECC of the MainControl Function Block

Comparing to the control logic of the centralized

configuration, the main controller does not need to keep

track of all the scan results. Instead, the scan results are

converted into timestamps and stored in the corresponding

remote controller as indicated in Figure 13.

Figure 13. Remote Control Device

As the scan results are examined in the main controller, the

remote diverter controller only needs to match the stored

timestamps with current time and then actuate the diverter.

As shown in Figure 14, the remote controller first waits for

the associated PTP clock to be synchronized with the Master

clock. Then, upon every REQUEST event input, it stores the

next scheduled diversion time. At last, on every UPDATE

event input, the remote controller will only need to compare

its current time with the first stored timestamp. If matched,

the diverter will be actuated. By converting the scan results

into diversion timestamps, the overall logic design of the

synchronous configuration is much simpler than the

centralized configuration.

Figure 14. Interface and ECC of RemoteIOCtrl Function Block

VII. CONCLUSIONS

Appropriate application of time-driven control design in

industrial automation can improve the system performance,

simplify the logic design, and reduce the costs. This paper

demonstrated the use of the IEEE 1588 PTP protocol to

solve the time synchronization issue when designing time-

driven control for distributed automation systems with IEC

61499 architecture. It has been demonstrated that comparing

with centralized control configuration the synchronous

distributed configuration can deliver throughput performance

gain of 3.5% for our simple 3-diverter test case. The gain

increases linearly with the number of diverters in the system.

The proposed method can be applied in any domain that

requires distributed precision time control despite

unpredictable asynchronous nature of IEC 61499 run-time

platforms and communication networks like Ethernet. In

future work we are going to confirm the presented analytic

estimations in experiment and extend the case studies to new

domains, such as distributed automation of SmartGrid.

ACKNOWLEDGMENT

The authors are grateful to Real-Time Systems GmbH for

providing trial version of IEEE 1588 stack, and to

NxtControl (Austria) for providing NxtStudio and NxtForte

software. The authors appreciate fruitful discussions with

William Dai.

REFERENCES

[1] International Electrotechnical Commission, "IEC 61499- Function
blocks for industrial-process measurement and control systems - Part
1: Architecture," ed. Geneva: International Electrotechnical
Commission, 2005, p. 111.

[2] K. Harris, "An application of IEEE 1588 to Industrial Automation," in
Precision Clock Synchronization for Measurement, Control and
Communication, 2008. ISPCS 2008. IEEE International Symposium
on, 2008, pp. 71-76.

[3] IEEE Standard 1588-2008, "IEEE Standard for a Precision Clock
Synchronization Protocol for Networked Measurement and Control
Systems," ed. New York, 2008, p. 289.

[4] Real-Time Systems GmbH. (2011, April). RTS IEEE 1588 Network
Stack [Online]. Available: http://www.real-time-
systems.com/ieee_1588/index.php

[5] C. Pang, V. Vyatkin and C. Fantuzzi, "Time-Complemented Event-
Driven Control Framework for Distributed Motion Control Systems,"
in 9th IEEE Conference on Industrial Informatics (INDIN 2011),
Caparica, Lisbon, Portugal, 2011.

[6] nxtControl. (2011, April). nxtStudio [Online]. Available:
http://www.nxtcontrol.com/en.html

