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Abstract — This paper introduces an approach to
automatic verification of mechatronic systems designed as
plug-and-play of Intelligent Mechatronic Components (IMC).
The control logic of the system is composed from autonomous
controllers of the IMCs and is automatically verified using
model-checking. Net Condition Event Systems formalism (a
modular extension of Petri net) is used to model the
decentralized control logic and discrete-state dynamics of the
plant. A re-configurable pick and place robot is used as an
illustrative example. At first a three cylinder pick and place
robot is used to design our new master-slave architecture for
controller design and then the NCES models are re-used
without much modification in a new 6 cylinder pick and place
robot. The control model is then subjected to model checking
using the ViVe/SESA model checker. A multi closed loop
model of Plant and Controller is used and controller is
extensively verified for safety, liveliness and functional
properties of the robot. Computational Tree Logic (CTL) is
used to specify these properties.

Keywords — NCES, ViVe, SESA, Formal Verification,
Closed-Loop Modeling.

l. INTRODUCTION

There has been substantial amount of growth in industrial
automation systems industry in the last decade with the
growing trend towards de-centralization that brings agility,
scalability, re-configurability and fault tolerance as compared
with the centralized systems [1]. This change has drastically
shifted the traditional centralized control design approach to
the modular reconfigurable engineering architecture. This
has resulted in need for design of distributed control systems.
International Electrotechnical Commission (IEC) has come
with IEC 61499 [2] standard for design of such distributed
control systems [3-5]. The distributed systems should be
modular, reusable, flexible, extendible and reconfigurable.
The idea of using one model for each of the mechatronic
components of an automation system has been explored in
detail over the last few years [6, 7]. This results in these
models being re-used in another automation system where
the same or similar mechatronic components were used.

With the increase in agility requirements there is a need
for better testing and verification frameworks of these
distributed systems. Simulation of these systems is one
widely used approach to testing. In fact IEC 61499
automation tools such as NxtSTUDIO®1.5 [8], ISaGRAF
[9] and Function Block Development Kit (FBDK) [10]
support visual simulation for the reason of testing.
Simulation alone does not guarantee 100% validation of the
automation systems. To address this problem, formal
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verification [11] has been adopted to formally model and
verify the target systems. Discrete state model-checking [12]
is one such formal verification approaches.

Model checking provides an unsupervised automatic
verification process which identifies the model’s design
pitfalls via counterexamples. The first step of model
checking is the formal modeling of the target system in
certain formalism. The Net Condition/Event Systems
(NCES) [13] is one such formalism designed for modeling
distributed control systems. After modeling, the NCES
models can be formally verified against the system properties
specified in computational tree logic (CTL) by the model
checking tools such Vive and SESA [14]. Modeling and
verification using NCES modules has been studied before
and applied in modeling of IEC 61499 function blocks [15-
19]. NCES modules are interconnected by event and
condition arcs to form bigger modules just like the event and
data connections in IEC 61499 function blocks. Event
propagation is modelled directly by event arcs and the
runtime scheduling is assumed to be concurrent and
instantaneous.

The rest of the paper is organized as follows; Section Il
presents in brief about using closed loop modeling of the
automation systems and present the case study example.
Section 1ll presents the proposed master-slave controller
design with a visualization model implemented in
NxtSTUDIO®1.5 [8] (IEC 61499 function blocks), Section
IV presents a brief about NCES and the master-slave
controller in NCES, Section V presents the re-usability and
scalability features of our new controller design, Section VI
presents the CTL verification results and will end with
conclusions and future works.

Il.  MuLTI CLOSED-LOOP MODELING

It is often seen that in some verification frameworks e.g.
[20, 21] controller is verified as a standalone component,
even though such verification has limited capabilities, e.g. it
cannot verify liveliness of the system. Modelling distributed
system as a multi closed-loop model that also incorporates a
model of the plant can achieve a lot more powerful
verification framework, because it is the manufacturing plant
that specifies the safety constraints and the desired
production processes [22-25]. Multi closed-loop modeling
allows for thorough verification of the control logic, and
reduces the complexity of model checking as compared to
only controller verification under an arbitrary inputs
assumption. It also allows checking of specifications
formulated in terms of the plant variables rather than in



terms of controller inputs/outputs. This paper therefore,
describes the modeling of such multi closed-loop behavior as
well as presents new controller design architecture.

A. Case Study Example

To demonstrate benefits of our approach, we will use a
pick and place object shown in Fig 1(a), which is composed
of several mechatronic units as follows:

e There are two horizontal cylinders and a vertical cylinder
that extract and retract. The left horizontal cylinder is half
the size of the right cylinder. The vertical cylinder picks
up the work pieces using the suction unit attached to its
end.

o Both horizontal cylinders have two control signals (CGO:
Cylinder Go Out: extending, CGI: Cylinder Go In:
Retracting). The vertical cylinder has only one control
signal (VCGD: Vertical Cylinder Goes Done). When this
signal is not active, the cylinder moves up (pulled by the
internal spring).

e Each of the cylinders has their own sensors that indicate
the cylinder’s home and end positions. There are also
sensors in each of the three input trays (ppl, pp2 and pp3)
and one in the slider (pp0) to indicate the presence of a
work piece. The suction unit has a built-in sensor, vacuum
indicating that a work piece is sucked.

o Fig 1(b) shows the desired behaviour, it specifies the state
of each cylinder and the vacuum unit when picking and
dropping each of the work pieces.
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Fig 1: (a) Reference object: pick and place robot. (b) Activity diagram of
the pick and place robot

I1l.  MASTER-SLAVE CONTROL ARCHITECURE

Master-Slave is one possible distributed control
architecture out of several options considered in [26, 27]. As
the name suggests one controller (master) will take control
of one or more controllers (slaves) by sending control

commands (e.g. wp Manager depicted in Fig 2 and Fig 3 is a
master). The slave function blocks solely acts based on the
commands being sent to it by the master. Apart from master
and slave function blocks, there is master-slave function
block that acts a slave to one master function block and
master to a slave function block [28]. This is the case for the
vertical cylinder, as it acts as slave to work piece manager
and master to vacuum unit (Fig 3 and Fig 5).

This example (Fig 1) illustrates the design scenario,
where the designer creates different configurations of
mechatronic  systems from available  mechatronic
components. This accelerates the development process.
Obviously, the process of software design of the robot needs
to be accelerated as well and the proposed modular master-
slave control architecture promises such acceleration: the
controller for each new mechatronic configuration can be
assembled by retrieving the corresponding function blocks
and connecting them as illustrated in Fig 2.
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Fig 2: Distributed controller of the robot with Master —Slave architecture
implemented in IEC 61499.
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Fig 3: An example of event exchange among master-slave controllers to
pick up a work piece from tray one
The master-slave controller uses hand shaking, i.e.
whenever master issues a command to the slave, it cannot
issue one more command to the same slave until it has
received a feedback from the slave saying it has completed



its previous task as indicated by the command and feedback
arrows in Fig 3.
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Fig 4: Controller of the horizontal cylmders being implemented as slaves to
work piece manager

Fig 4 shows a slave controller, here IN_.CMD1 and
IN_CMD2 identify the two commands that slave can
handle, which is nothing but commands to either extend the
cylinder or retract the cylinder. OUT_FDB is the feedback
signal to the master. Fig 5 shows the vertical cylinder
controller that acts as master and slave, the extra input event
IN_FDB is the feedback from the slave and extra output
event OUT_CMD is the command to the slave.
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Fig 5: Controller of the vertical cylinder implemented as Master for
vacuum unit and slave for work piece manager

IV. NET CONDITION-EVENT SYSTEMS

Net Condition/Event Systems (NCES) [13, 23, 29] can
be viewed as a modular extension to Petri Nets [30]. The
general idea of NCES is modelling a system as a set of
modules with a particular dynamic behaviour and their
interconnection via signals. An illustrative example of the
graphical notation of a module is provided in Fig 6(a).
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Fig 6: (a) Graphical notation of an NCES module; (b) Modular
Composition of NCES modules results in a “flat” NCES.

Once designed, the modules can be re-used over and
over. Each module has inputs and outputs of two types:
1) Condition inputs/outputs carrying information on
marking of places in other modules.
2) Event inputs/outputs carrying information on firing
transitions in other modules.

Condition and event inputs can be connected with some
transitions inside the module by condition and event arcs.

Places of the module can be connected to the condition
outputs by condition arcs, and transitions can be connected
to the event outputs by event arcs. This concept provides a
basis for a compositional approach to building larger models
from smaller components. The "composition™ is performed
by "gluing" inputs of one module with outputs of another
module as shown in Fig 6(b).

A.  Why NCES?Benefits of NCES over other formalism

There are couple of reasons to prefer place-transition
formalisms to many others formalisms, e.g. finite automata.
The first is their non-interleaving semantics (i.e. possibility
of firing several transitions simultaneously), which better
fits to modelling of distributed processes and of their
interaction. It results in more compact reachability space,
explained as follows.

Modelling of complex distributed systems with automata
usually ends up in many concurrent automata models
communicating via common variables, as illustrated in Fig 7
(a), where two state machines A and B are combined under
“asynchronous parallel operator”. Thus, the overall system
model is a cross-product of the component automata, and to
do model analysis it is necessary to build the cross-product
consisting in this case of 9 states, as one sees in Fig 7 (a).
Alternatively, in NCES a state of a model is determined by
the marking of model places, so any global state of a
distributed system is just one state of the model. This is
shown in Fig 7 (b), where the same model is implemented in
NCES with places (pl-p6) corresponding to states of the
automata A or B (in the obvious manner). In the given initial
state the reachability space of the model consists of only 4
states. The same behaviour obviously will be shown by the
automata model in Fig 7 (a) (the outlined path A1B2—
A1B2— A2B2— A2B3— A3B1— A3B2), but to get it the
whole cross-product automata needs to be built.

The other benefit of NCES is the intuitive modelling
approach. Consider an NCES equivalent pick and place
model conceptually presented in Fig 8. The NCES model of
a moving object, such as a cylinder, is composed in a
modular way following the pattern proposed in [29]. The
NCES modules are connected with explicit event and data
flow as compared to sharing variables in state machines. As
noted in state machines model, two sequencers were used to
order evolution of the automata. This is a considerable
restriction of real life evolutions. In NCES, the controller
output is directly connected to the plant input and vice
versa, and the models make evolutlons asynchronously
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Fig 7: (a) Modelling of two communicating processes by means of
concurrent state machines and their cross-product automaton; (b) The same
model in NCES and its reachability graph



Controller

Model of Cylinders

LC

s

IC VC

Wp Manager

) Maoving Stat
MovingStatus::Status. B = .,

RC

=

Ve
osisan

Rp VACUUM

Maoving Statu:

Fig 8: Conceptual NCES model of the pick and place system

B. Master-Slave model in NCES

Fig 9 shows NCES implementation of the slave cylinder
control logic from Fig 4. Some explicit event connections
are not shown in the illustrations to avoid confusing
crossover connections; instead the grey boxes next to the net
elements specify what they are connected to. Fig 10 shows
the NCES model of the master-slave cylinder controller
described in Fig 5.
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Fig 9: Controller of the horizontal cylinders being implemented as slaves to
work piece manager in NCES

The start state in a NCES model is determined by the
initial marking of the token, in Fig 9 the initial marking is in
“start” place, from this place, on receiving either IN. CMD1
(extend) or IN_CMD?2 (retract) event from the master (work
piece manager) the token moves from start to either
“s _extend” or s_retract” state, once the plant tells the
controller that the cylinder is in either of the end positions
(home or end), transition “t3” or “t4” is fired accordingly
and the token returns to the start state with either “t5” or
“t6” firing and emitting OUT FDB to the work piece
manager and thus completing the command-feedback
handshake. The only difference between slave and master-
slave is transitions “t4” and “t5”, once the vertical cylinder
reaches its end position, it commands its slave by sending

the OUT_CMD event and waits for the IN_FDB event from
the slave, once received “t5” is fired and token returns to the
start position. Fig 11 shows the NCES model of the entire
controller of the robot composed in a modular way similar
to the FBDK model in Fig 2.
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Fig 10: Controller of the vertical cylinder implemented as Master for
vacuum unit and slave for work piece manager in NCES
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V. REUSABILITY AND SCALABITY OF MASTER-SLAVE
ARCHITECTURE

In order to test the scalability and reusability of the
proposed master-slave control pattern, we considered
several configurations of the pick and place robot composed
from various numbers of mechatronic modules. For example,
the configuration in Fig 12 is composed from six cylinders.
Also, more freedom was allowed in the location of input
trays of work pieces at different levels. Unlike the
reconfiguration method described in [31] which is for pre-
determined different run time configurations, the method
here can be used for any type and any number of re-
configurations.
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Fig 12: Re-Configured pick and place robot with 6 cylinders

The safety and functional requirements for all those
configurations are same as of the 3 cylinder robot. Safety
requirements include requirements such as “horizontal and
vertical cylinders do not move at the same time”. The main
functionality is to pick work pieces from the input trays (pp1,
pp2 and pp3) and drop them in the output slider ppO.

Formal verification of the NCES model corresponding to
a particular mechatronic (and control) configuration is seen
as enabler of agile modular mechatronic and software design.

The NCES model for this consisted of 5 slave control
models (all three horizontal cylinders and top two vertical
cylinders) re-used as is from the 3 cylinder model and 1
master-slave control for the bottom vertical cylinder that has
the vacuum unit attached to it which again is just a slave,
just like in the 3 cylinder robot. The only difference between
the two models is the master control module, the work piece
manager. The two work piece mangers are shown in Fig 13.
All the other modules are re-used and only this master
control model needs to be modelled, which will be
automated as well. Auto generation of this model is possible:
given a matrix of the pick and place robot as shown in Fig
1(b), the work piece manager can be automatically
generated.

The main design flow of the work piece manager is
shown in Fig 14. Here, depending on the presence of work
pieces, the token follows one of the three (dashed) branches
of the model and is returned to start state at the end. The
priority considered in the two robot design in this paper is:

e If work piece 1 (ppl) is present, then ppl is picked.

This is achieved in transition ‘t1’ in Fig 14 which is
just connected to true condition input of ppl.
If work piece 2 (pp2) is present and ppl absent, pp2 is
picked. This is achieved in transition ‘t2’ in Fig 14
which is connected to true condition input of pp2 and
false condition input of ppl (n_xxx notation identifies
the false condition inputs).

o If work piece 3 (pp3) is present and both ppl and pp2
are absent, pp3 is picked. This is achieved in transition
‘2’ in Fig 14 which is connected to true condition
input of pp3 and false condition input of pp1 and pp2.

Depending on the input matrix as given in Fig 1(b), the
rest of the flow will just be sending command events to
slave cylinder and receiving feedback from them.
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Fig 13: Work piece manager (master) control blocks of 3 cylinder and 6
cylinder robot
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A. Using Meta-Model to generate the work piece manager

Fig 15 shows the meta-model used to generate the
master controller, i.e the work piece manager. It only shows
the part that is described in Fig 1(b).



<Controller type = "Master-Slave" NumberQIWP = "3" NumberQfHC = "2" NunberOfVC = "1" VacAttach = "VC1">|
<wpl> <wp2> <wp3>

<Action valu " <hction value
<C1_POS v
<C2_POS v
<VC_BOS valu
<Vac value="0n" />
</Betion> </Betion> </Action>
<Action value = "drop" >

"

<hction val
<C1_E0S
<C2_E0S
<VC_ECS
<Vac

<C1_POS
<C2_P0OS
<VC_POS val
<Vac

<Action valu
<C1_POS
<C2_POS val
<VC_POS val 2
<Vac  value="Off" /> <Vac  value="Off" /> Vac
</Bction> </Action> </Action>
</wpl> </wp2> </wp3>
</Controller>

<Action value = "drop" »

Fig 15: Meta-Model for the matrix in Fig 1(b)

Meta-Model has the following details. Composition of
the system (<Controller>) such as type of Controller
architecture (attribute “type”), number of work pieces
(attribute “NumberOfWP), number of horizontal cylinders
(attribute “NumberOfHC), number of vertical cylinders
(attribute “NumberOfVC) and to which cylinder is the
vacuum unit connected (which module will act as master as
well as a slave model i.e attribute “VacAttach). For each
work piece (<wpl>, <wp2>, <wp3>), the meta-model
specifies position/value of the related sensors for both pick
and drop action. Note that the details of each work piece
appear column wise in Fig 15, but in actual it is a text file
and the details occur one after the other. It is shown this way
to save up space.

VI. MODEL CHECKING WITH VIVE/SESA

Both the 3 cylinder and 6 cylinder models were model
checked using the ViVe and SESA tools. CTL was used to
represent  safety, liveliness and other functional
requirements. The advantage with these tools is the ease
with properties can be mentioned. The properties are
presented in terms of the places in the NCES models.

The ViVe tool flattens the whole model consisting of
different sub modules into one (possibly huge) NCES model
as described in section 1V Fig 6 (b), the ViVe tools tree
view of the flat model is shown in Fig 16. The flattened
model can be exposed then to SESA model checker.

For example, to check for the property that says
“Opposite actuator signals (extend and retract) to the
cylinders (C1, C2 in case of 3 cylinder model) should never
be emitted at the same time”, we write the property as “AG
(NOT(p136ANDp137))”, where places pl36 and pl37
correspond to global place number in the flattened NCES
model that actually correspond to the places “s_extend” and
“s_retract” in Fig 9.

In NCES terminology, the tool checks if at all there is a
possibility that a token can be present in both these places at
any given time. Table 1 below summarizes all the properties
that were checked for our two reconfigurable models. It is
even easier to check for the liveliness property of the
cylinder, simply check if all the places in the cylinder model
if they become false (have no token) in future once they
were true (had token). The format of the CTL property will
be AG (pXX -> EF (NOT (pXX))), Where “XX”
corresponds to every place of the flattened controller model.
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Fig 16: Tree View of the vive tool, shows the flat model of the pick and
place robot

The 3 cylinder pick and place robot model checking
resulted in a state space of 3406 states and all the properties
were verified to be true. The 6 cylinder pick and place robot
model checking resulted in a state space of 5853 states and
all the properties were verified to be true. 100% verification
of all the properties proves that the designed controller for
the mechatronic system is reliable, stable and satisfactory.

TABLE 1: LIST OF SAFETY, LIVENESS AND FUNCTIONAL PROPERTIES FOR
THE PICK AND PLACE ROBOT.

Specifications

Opposite actuator signals to the horizontal cylinders

Safety should never be emitted at the same time.

Safety If the signal to descend the vertical cylinder is emitted, the
horizontal cylinder should stand still.

Safety If there is an emission of a control command

corresponding to movements of the horizontal cylinders
then the sensor “vcu” of all the vertical cylinders must be

true.

Safety The horizontal cylinders can move only if the value of
sensor “vcu” of all vertical cylinders is true.

Liveness Absence of deadlocks in the (decentralized) control logic.

Functional If a part is detected by pp1, pp2 or pp3, then in future one
of the horizontal cylinders will be extended (Fig 1(b)).

Functional If a part is detected by pp1, pp2 or pp3, then in the future,
the part will be removed from the tray as given in Fig 1(b).

Functional When the vertical cylinder goes down, both horizontal
cylinders are (and remain) in their end positions (home or
end).

VII. CONCLUSION

One of the main issues with formal verification is design
and development of formal models. It is time consuming,
needs some level of understanding and experience in
modeling. In this paper a new reusable and scalable model
has been proposed, developed and tried on different
reconfigurable systems. With the use of master slave
controller architecture, any reconfigured systems of the pick
and place robot was automatically generated and model
checked for pre-defined properties. Even the writing of the
CTL properties can be fully automated using a Meta Model
representation of the matrix in Fig 1(b) and also the list of
properties in Table 1.




VIIl. FUTURE WORK

The first work which is already in progress is creating a
meta- model using some standards such as CAEX and an
application that can read such a CAEX schema and generate
the master controller like the work piece manager. Work is
also in progress to formulate this idea to prove the
advantages of the master-slave architecture. It will also be
interesting to integrate the ideas such as introducing
selective non determinism in the plant model as expressed in
[32] to achieve better verification results.
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