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Abstract — This paper introduces an approach to 

automatic verification of mechatronic systems designed as 

plug-and-play of Intelligent Mechatronic Components (IMC). 

The control logic of the system is composed from autonomous 

controllers of the IMCs and is automatically verified using 

model-checking.  Net Condition Event Systems formalism (a 

modular extension of Petri net) is used to model the 

decentralized control logic and discrete-state dynamics of the 

plant.  A re-configurable pick and place robot is used as an 

illustrative example. At first a three cylinder pick and place 

robot is used to design our new master-slave architecture for 

controller design and then the NCES models are re-used 

without much modification in a new 6 cylinder pick and place 

robot. The control model is then subjected to model checking 

using the ViVe/SESA model checker. A multi closed loop 

model of Plant and Controller is used and controller is 

extensively verified for safety, liveliness and functional 

properties of the robot. Computational Tree Logic (CTL) is 

used to specify these properties.  

Keywords — NCES, ViVe, SESA, Formal Verification, 

Closed-Loop Modeling. 

I.  INTRODUCTION 

There has been substantial amount of growth in industrial 

automation systems industry in the last decade with the 

growing trend towards de-centralization that brings agility, 

scalability, re-configurability and fault tolerance as compared 

with the centralized systems [1]. This change has drastically 

shifted the traditional centralized control design approach to 

the modular reconfigurable engineering architecture. This 

has resulted in need for design of distributed control systems.  

International Electrotechnical Commission (IEC)  has come 

with IEC 61499 [2] standard  for design of such distributed 

control systems [3-5]. The distributed systems should be 

modular, reusable, flexible, extendible and reconfigurable. 

The idea of using one model for each of the mechatronic 

components of an automation system has been explored in 

detail over the last few years [6, 7]. This results in these 

models being re-used in another automation system where 

the same or similar mechatronic components were used. 

With the increase in agility requirements there is a need 

for better testing and verification frameworks of these 

distributed systems. Simulation of these systems is one 

widely used approach to testing. In fact IEC 61499 

automation tools such as NxtSTUDIO®1.5 [8], ISaGRAF 

[9] and Function Block Development Kit (FBDK) [10] 

support visual simulation for the reason of testing. 

Simulation alone does not guarantee 100% validation of the 

automation systems. To address this problem, formal 

verification [11] has been adopted to formally model and 

verify the target systems. Discrete state model-checking [12] 

is one such formal verification approaches.  

Model checking provides an unsupervised automatic 

verification process which identifies the model‟s design 

pitfalls via counterexamples. The first step of model 

checking is the formal modeling of the target system in 

certain formalism. The Net Condition/Event Systems 

(NCES) [13] is one such formalism designed for modeling 

distributed control systems. After modeling, the NCES 

models can be formally verified against the system properties 

specified in computational tree logic (CTL) by the model 

checking tools such Vive and SESA [14].  Modeling and 

verification using NCES modules has been studied before 

and applied in modeling of IEC 61499 function blocks [15-

19]. NCES modules are interconnected by event and 

condition arcs to form bigger modules just like the event and 

data connections in IEC 61499 function blocks. Event 

propagation is modelled directly by event arcs and the 

runtime scheduling is assumed to be concurrent and 

instantaneous.  

The rest of the paper is organized as follows; Section II 

presents in brief about using closed loop modeling of the 

automation systems and present the case study example.  

Section III presents the proposed master-slave controller 

design with a visualization model implemented in 

NxtSTUDIO®1.5 [8] (IEC 61499 function blocks), Section 

IV presents a brief about NCES and the master-slave 

controller in NCES, Section V presents the re-usability and 

scalability features of our new controller design, Section VI 

presents the CTL verification results and will end with 

conclusions and future works.   

II. MULTI CLOSED-LOOP MODELING 

It is often seen that in some verification frameworks e.g. 

[20, 21] controller is verified as a standalone component, 

even though such verification has limited capabilities, e.g. it 

cannot verify liveliness of the system. Modelling distributed 

system as a multi closed-loop model that also incorporates a 

model of the plant can achieve a lot more powerful 

verification framework, because it is the manufacturing plant 

that specifies the safety constraints and the desired 

production processes [22-25]. Multi closed-loop modeling 

allows for thorough verification of the control logic, and 

reduces the complexity of model checking as compared to 

only controller verification under an arbitrary inputs 

assumption. It also allows checking of specifications 

formulated in terms of the plant variables rather than in 



         

terms of controller inputs/outputs. This paper therefore, 

describes the modeling of such multi closed-loop behavior as 

well as presents new controller design architecture.  

A. Case Study Example 

To demonstrate benefits of our approach, we will use a 

pick and place object shown in Fig 1(a), which is composed 

of several mechatronic units as follows:  

 There are two horizontal cylinders and a vertical cylinder 

that extract and retract. The left horizontal cylinder is half 

the size of the right cylinder. The vertical cylinder picks 

up the work pieces using the suction unit attached to its 

end. 

 Both horizontal cylinders have two control signals (CGO: 

Cylinder Go Out: extending, CGI: Cylinder Go In: 

Retracting). The vertical cylinder has only one control 

signal (VCGD: Vertical Cylinder Goes Done). When this 

signal is not active, the cylinder moves up (pulled by the 

internal spring). 

 Each of the cylinders has their own sensors that indicate 

the cylinder‟s home and end positions. There are also 

sensors in each of the three input trays (pp1, pp2 and pp3) 

and one in the slider (pp0) to indicate the presence of a 

work piece. The suction unit has a built-in sensor, vacuum 

indicating that a work piece is sucked.  

 Fig 1(b) shows the desired behaviour, it specifies the state 

of each cylinder and the vacuum unit when picking and 

dropping each of the work pieces. 

 

Fig 1: (a) Reference object: pick and place robot. (b) Activity diagram of 

the pick and place robot 

III. MASTER-SLAVE CONTROL ARCHITECURE 

Master-Slave is one possible distributed control 

architecture out of several options considered in [26, 27]. As 

the name suggests one controller (master) will take control 

of one or more controllers (slaves) by sending control 

commands (e.g. wp Manager depicted in Fig 2 and Fig 3 is a 

master). The slave function blocks solely acts based on the 

commands being sent to it by the master. Apart from master 

and slave function blocks, there is master-slave function 

block that acts a slave to one master function block and 

master to a slave function block [28]. This is the case for the 

vertical cylinder, as it acts as slave to work piece manager 

and master to vacuum unit (Fig 3 and Fig 5). 

This example (Fig 1) illustrates the design scenario, 

where the designer creates different configurations of 

mechatronic systems from available mechatronic 

components. This accelerates the development process. 

Obviously, the process of software design of the robot needs 

to be accelerated as well and the proposed modular master-

slave control architecture promises such acceleration: the 

controller for each new mechatronic configuration can be 

assembled by retrieving the corresponding function blocks 

and connecting them as illustrated in Fig 2. 

 
Fig 2: Distributed controller of the robot with Master –Slave architecture 

implemented in IEC 61499. 
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Fig 3: An example of event exchange among master-slave controllers to 
pick up a work piece from tray one 

The master-slave controller uses hand shaking, i.e. 

whenever master issues a command to the slave, it cannot 

issue one more command to the same slave until it has 

received a feedback from the slave saying it has completed 



         

its previous task as indicated by the command and feedback 

arrows in Fig 3. 
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Fig 4: Controller of the horizontal cylinders being implemented as slaves to 

work piece manager 

Fig 4 shows a slave controller, here IN_CMD1 and 

IN_CMD2 identify the two commands that slave can 

handle, which is nothing but commands to either extend the 

cylinder or retract the cylinder. OUT_FDB is the feedback 

signal to the master. Fig 5 shows the vertical cylinder 

controller that acts as master and slave, the extra input event 

IN_FDB is the feedback from the slave and extra output 

event OUT_CMD is the command to the slave. 
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Fig 5: Controller of the vertical cylinder implemented as Master for 

vacuum unit and slave for work piece manager 

IV. NET CONDITION-EVENT SYSTEMS  

Net Condition/Event Systems (NCES) [13, 23, 29] can 

be viewed as a modular extension to Petri Nets [30]. The 

general idea of NCES is modelling a system as a set of 

modules with a particular dynamic behaviour and their 

interconnection via signals. An illustrative example of the 

graphical notation of a module is provided in Fig 6(a). 

 
Fig 6: (a) Graphical notation of an NCES module; (b) Modular 

Composition of NCES modules results in a “flat” NCES. 

Once designed, the modules can be re-used over and 

over. Each module has inputs and outputs of two types:  

1) Condition inputs/outputs carrying information on 

marking of places in other modules. 

2) Event inputs/outputs carrying information on firing 

transitions in other modules. 
Condition and event inputs can be connected with some 

transitions inside the module by condition and event arcs. 

Places of the module can be connected to the condition 

outputs by condition arcs, and transitions can be connected 

to the event outputs by event arcs. This concept provides a 

basis for a compositional approach to building larger models 

from smaller components. The "composition" is performed 

by "gluing" inputs of one module with outputs of another 

module as shown in Fig 6(b). 

A. Why NCES?Benefits of NCES over other formalism 

There are couple of reasons to prefer place-transition 

formalisms to many others formalisms, e.g. finite automata. 

The first is their non-interleaving semantics (i.e. possibility 

of firing several transitions simultaneously), which better 

fits to modelling of distributed processes and of their 

interaction. It results in more compact reachability space, 

explained as follows.  

Modelling of complex distributed systems with automata 

usually ends up in many concurrent automata models 

communicating via common variables, as illustrated in Fig 7 

(a), where two state machines A and B are combined under 

“asynchronous parallel operator”.  Thus, the overall system 

model is a cross-product of the component automata, and to 

do model analysis it is necessary to build the cross-product 

consisting in this case of 9 states, as one sees in Fig 7 (a). 

Alternatively, in NCES a state of a model is determined by 

the marking of model places, so any global state of a 

distributed system is just one state of the model. This is 

shown in Fig 7 (b), where the same model is implemented in 

NCES with places (p1-p6) corresponding to states of the 

automata A or B (in the obvious manner). In the given initial 

state the reachability space of the model consists of only 4 

states. The same behaviour obviously will be shown by the 

automata model in Fig 7 (a) (the outlined path A1B2→ 

A1B2→ A2B2→ A2B3→ A3B1→ A3B2), but to get it the 

whole cross-product automata needs to be built.  

The other benefit of NCES is the intuitive modelling 

approach. Consider an NCES equivalent pick and place 

model conceptually presented in Fig 8. The NCES model of 

a moving object, such as a cylinder, is composed in a 

modular way following the pattern proposed in [29]. The 

NCES modules are connected with explicit event and data 

flow as compared to sharing variables in state machines. As 

noted in state machines model, two sequencers were used to 

order evolution of the automata. This is a considerable 

restriction of real life evolutions. In NCES, the controller 

output is directly connected to the plant input and vice 

versa, and the models make evolutions asynchronously. 

 
Fig 7: (a) Modelling of two communicating processes by means of 

concurrent state machines and their cross-product automaton; (b) The same 

model in NCES and its reachability graph 



         

Fig 8: Conceptual NCES model of the pick and place system 

B. Master-Slave model in NCES 

Fig 9 shows NCES implementation of the slave cylinder 

control logic from Fig 4. Some explicit event connections 

are not shown in the illustrations to avoid confusing 

crossover connections; instead the grey boxes next to the net 

elements specify what they are connected to. Fig 10 shows 

the NCES model of the master-slave cylinder controller 

described in Fig 5.  

 
Fig 9: Controller of the horizontal cylinders being implemented as slaves to 

work piece manager in NCES 

The start state in a NCES model is determined by the 

initial marking of the token, in Fig 9 the initial marking is in 

“start” place, from this place, on receiving either IN_CMD1 

(extend) or IN_CMD2 (retract) event from the master (work 

piece manager) the token moves from start to either 

“s_extend” or s_retract” state, once the plant tells the 

controller that the cylinder is in either of the end positions 

(home or end), transition “t3” or  “t4” is fired accordingly 

and the token returns to the start state with either “t5” or 

“t6” firing and emitting OUT_FDB to the work piece 

manager and thus completing the command-feedback 

handshake. The only difference between slave and master-

slave is transitions “t4” and “t5”, once the vertical cylinder 

reaches its end position, it commands its slave by sending 

the OUT_CMD event and waits for the IN_FDB event from 

the slave, once received “t5” is fired and token returns to the 

start position. Fig 11 shows the NCES model of the entire 

controller of the robot composed in a modular way similar 

to the FBDK model in Fig 2. 

 
Fig 10: Controller of the vertical cylinder implemented as Master for 

vacuum unit and slave for work piece manager in NCES 

 
Fig 11: NCES model of distributed controller of the robot implemented 

with Master –Slave architecture 



         

V. REUSABILITY AND SCALABITY OF MASTER-SLAVE 

ARCHITECTURE 

In order to test the scalability and reusability of the 

proposed master-slave control pattern, we considered 

several configurations of the pick and place robot composed 

from various numbers of mechatronic modules. For example, 

the configuration in Fig 12 is composed from six cylinders. 

Also, more freedom was allowed in the location of input 

trays of work pieces at different levels. Unlike the 

reconfiguration method described in [31] which is for pre-

determined different run time configurations, the method 

here can be used for any type and any number of re-

configurations. 

 
Fig 12: Re-Configured pick and place robot with 6 cylinders 

The safety and functional requirements for all those 

configurations are same as of the 3 cylinder robot. Safety 

requirements include requirements such as “horizontal and 

vertical cylinders do not move at the same time”. The main 

functionality is to pick work pieces from the input trays (pp1, 

pp2 and pp3) and drop them in the output slider pp0. 

Formal verification of the NCES model corresponding to 

a particular mechatronic (and control) configuration is seen 

as enabler of agile modular mechatronic and software design.   

The NCES model for this consisted of 5 slave control 

models (all three horizontal cylinders and top two vertical 

cylinders) re-used as is from the 3 cylinder model and 1 

master-slave control for the bottom vertical cylinder that has 

the vacuum unit attached to it which again is just a slave, 

just like in the 3 cylinder robot. The only difference between 

the two models is the master control module, the work piece 

manager. The two work piece mangers are shown in Fig 13. 

All the other modules are re-used and only this master 

control model needs to be modelled, which will be 

automated as well. Auto generation of this model is possible:  

given a matrix of the pick and place robot as shown in Fig 

1(b), the work piece manager can be automatically 

generated.  

The main design flow of the work piece manager is 

shown in Fig 14. Here, depending on the presence of work 

pieces, the token follows one of the three (dashed) branches 

of the model and is returned to start state at the end. The 

priority considered in the two robot design in this paper is:  

 If work piece 1 (pp1) is present, then pp1 is picked. 

This is achieved in transition „t1‟ in Fig 14 which is 

just connected to true condition input of pp1.   

 If work piece 2 (pp2) is present and pp1 absent, pp2 is 

picked. This is achieved in transition „t2‟ in Fig 14 

which is connected to true condition input of pp2 and 

false condition input of pp1 (n_xxx notation identifies 

the false condition inputs). 

 If work piece 3 (pp3) is present and both pp1 and pp2 

are absent, pp3 is picked. This is achieved in transition 

„t2‟ in Fig 14 which is connected to true condition 

input of pp3 and false condition input of pp1 and pp2. 

Depending on the input matrix as given in Fig 1(b), the 

rest of the flow will just be sending command events to 

slave cylinder and receiving feedback from them. 

 
Fig 13: Work piece manager (master) control blocks of 3 cylinder and 6 

cylinder robot  

 
Fig 14: Flow logic for auto generation of work piece manager 

A. Using Meta-Model to generate the work piece manager 

Fig 15 shows the meta-model used to generate the 

master controller, i.e the work piece manager. It only shows 

the part that is described in Fig 1(b).  



         

 
Fig 15: Meta-Model for the matrix in Fig 1(b) 

Meta-Model has the following details. Composition of 

the system (<Controller>) such as type of Controller 

architecture (attribute “type”), number of work pieces 

(attribute “NumberOfWP), number of horizontal cylinders 

(attribute “NumberOfHC), number of vertical cylinders 

(attribute “NumberOfVC) and to which cylinder is the 

vacuum unit connected (which module will act as master as 

well as a slave model i.e attribute “VacAttach). For each 

work piece (<wp1>, <wp2>, <wp3>), the meta-model 

specifies position/value of the related sensors for both pick 

and drop action. Note that the details of each work piece 

appear column wise in Fig 15, but in actual it is a text file 

and the details occur one after the other. It is shown this way 

to save up space. 

VI. MODEL CHECKING WITH VIVE/SESA 

Both the 3 cylinder and 6 cylinder models were model 

checked using the ViVe and SESA tools. CTL was used to 

represent safety, liveliness and other functional 

requirements. The advantage with these tools is the ease 

with properties can be mentioned. The properties are 

presented in terms of the places in the NCES models.  

The ViVe tool flattens the whole model consisting of 

different sub modules into one (possibly huge) NCES model 

as described in section IV Fig 6 (b), the ViVe tools tree 

view of the flat model is shown in Fig 16. The flattened 

model can be exposed then to SESA model checker. 

For example, to check for the property that says 

“Opposite actuator signals (extend and retract) to the 

cylinders (C1, C2 in case of 3 cylinder model) should never 

be emitted at the same time”, we write the property as “AG 

(NOT(p136ANDp137))”, where places p136 and p137 

correspond to global place number in the flattened NCES 

model that actually correspond to the places “s_extend” and 

“s_retract” in Fig 9.  

In NCES terminology, the tool checks if at all there is a 

possibility that a token can be present in both these places at 

any given time. Table 1 below summarizes all the properties 

that were checked for our two reconfigurable models. It is 

even easier to check for the liveliness property of the 

cylinder, simply check if all the places in the cylinder model 

if they become false (have no token) in future once they 

were true (had token). The format of the CTL property will 

be AG (pXX -> EF (NOT (pXX))), Where “XX” 

corresponds to every place of the flattened controller model. 

 
Fig 16: Tree View of the vive tool, shows the flat model of the pick and 

place robot 

The 3 cylinder pick and place robot model checking 

resulted in a state space of 3406 states and all the properties 

were verified to be true. The 6 cylinder pick and place robot 

model checking resulted in a state space of 5853 states and 

all the properties were verified to be true. 100% verification 

of all the properties proves that the designed controller for 

the mechatronic system is reliable, stable and satisfactory. 

TABLE 1: LIST OF SAFETY, LIVENESS AND FUNCTIONAL PROPERTIES FOR 

THE PICK AND PLACE ROBOT. 

 Specifications  

 
Safety 

Opposite actuator signals to the horizontal cylinders 
should never be emitted at the same time. 

Safety If the signal to descend the vertical cylinder is emitted, the 

horizontal cylinder should stand still. 

Safety If there is an emission of a control command 
corresponding to movements of the horizontal cylinders 

then the sensor “vcu” of all the vertical cylinders must be 
true. 

Safety The horizontal cylinders can move only if the value of 

sensor “vcu” of all vertical cylinders is true. 

Liveness Absence of deadlocks in the (decentralized) control logic. 

Functional If a part is detected by pp1, pp2 or pp3, then in future one 
of the horizontal cylinders will be extended (Fig 1(b)). 

Functional If a part is detected by pp1, pp2 or pp3, then in the future, 

the part will be removed from the tray as given in Fig 1(b). 

Functional When the vertical cylinder goes down, both horizontal 

cylinders are (and remain) in their end positions (home or 

end). 

VII. CONCLUSION 

One of the main issues with formal verification is design 

and development of formal models. It is time consuming, 

needs some level of understanding and experience in 

modeling. In this paper a new reusable and scalable model 

has been proposed, developed and tried on different 

reconfigurable systems. With the use of master slave 

controller architecture, any reconfigured systems of the pick 

and place robot was automatically generated and model 

checked for pre-defined properties. Even the writing of the 

CTL properties can be fully automated using a Meta Model 

representation of the matrix in Fig 1(b) and also the list of 

properties in Table 1.  



         

VIII. FUTURE WORK 

The first work which is already in progress is creating a 

meta- model using some standards such as CAEX and an 

application that can read such a CAEX schema and generate 

the master controller like the work piece manager. Work is 

also in progress to formulate this idea to prove the 

advantages of the master-slave architecture. It will also be 

interesting to integrate the ideas such as introducing 

selective non determinism in the plant model as expressed in 

[32] to achieve better verification results.  
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