

Formal Verification of Intelligent Mechatronic

Systems with Decentralized Control Logic
Sandeep Patil

The University of Auckland,

Auckland, New Zealand.

spat251@aucklanduni.ac.nz

Valeriy Vyatkin
The University of Auckland,

Auckland, New Zealand.

v.vyatkin@auckland.ac.nz

Majid Sorouri

The University of Auckland,

Auckland, New Zealand.

msor021@aucklanduni.ac.nz

Abstract — This paper introduces an approach to

automatic verification of mechatronic systems designed as

plug-and-play of Intelligent Mechatronic Components (IMC).

The control logic of the system is composed from autonomous

controllers of the IMCs and is automatically verified using

model-checking. Net Condition Event Systems formalism (a

modular extension of Petri net) is used to model the

decentralized control logic and discrete-state dynamics of the

plant. A re-configurable pick and place robot is used as an

illustrative example. At first a three cylinder pick and place

robot is used to design our new master-slave architecture for

controller design and then the NCES models are re-used

without much modification in a new 6 cylinder pick and place

robot. The control model is then subjected to model checking

using the ViVe/SESA model checker. A multi closed loop

model of Plant and Controller is used and controller is

extensively verified for safety, liveliness and functional

properties of the robot. Computational Tree Logic (CTL) is

used to specify these properties.

Keywords — NCES, ViVe, SESA, Formal Verification,

Closed-Loop Modeling.

I. INTRODUCTION

There has been substantial amount of growth in industrial

automation systems industry in the last decade with the

growing trend towards de-centralization that brings agility,

scalability, re-configurability and fault tolerance as compared

with the centralized systems [1]. This change has drastically

shifted the traditional centralized control design approach to

the modular reconfigurable engineering architecture. This

has resulted in need for design of distributed control systems.

International Electrotechnical Commission (IEC) has come

with IEC 61499 [2] standard for design of such distributed

control systems [3-5]. The distributed systems should be

modular, reusable, flexible, extendible and reconfigurable.

The idea of using one model for each of the mechatronic

components of an automation system has been explored in

detail over the last few years [6, 7]. This results in these

models being re-used in another automation system where

the same or similar mechatronic components were used.

With the increase in agility requirements there is a need

for better testing and verification frameworks of these

distributed systems. Simulation of these systems is one

widely used approach to testing. In fact IEC 61499

automation tools such as NxtSTUDIO®1.5 [8], ISaGRAF

[9] and Function Block Development Kit (FBDK) [10]

support visual simulation for the reason of testing.

Simulation alone does not guarantee 100% validation of the

automation systems. To address this problem, formal

verification [11] has been adopted to formally model and

verify the target systems. Discrete state model-checking [12]

is one such formal verification approaches.

Model checking provides an unsupervised automatic

verification process which identifies the model‟s design

pitfalls via counterexamples. The first step of model

checking is the formal modeling of the target system in

certain formalism. The Net Condition/Event Systems

(NCES) [13] is one such formalism designed for modeling

distributed control systems. After modeling, the NCES

models can be formally verified against the system properties

specified in computational tree logic (CTL) by the model

checking tools such Vive and SESA [14]. Modeling and

verification using NCES modules has been studied before

and applied in modeling of IEC 61499 function blocks [15-

19]. NCES modules are interconnected by event and

condition arcs to form bigger modules just like the event and

data connections in IEC 61499 function blocks. Event

propagation is modelled directly by event arcs and the

runtime scheduling is assumed to be concurrent and

instantaneous.

The rest of the paper is organized as follows; Section II

presents in brief about using closed loop modeling of the

automation systems and present the case study example.

Section III presents the proposed master-slave controller

design with a visualization model implemented in

NxtSTUDIO®1.5 [8] (IEC 61499 function blocks), Section

IV presents a brief about NCES and the master-slave

controller in NCES, Section V presents the re-usability and

scalability features of our new controller design, Section VI

presents the CTL verification results and will end with

conclusions and future works.

II. MULTI CLOSED-LOOP MODELING

It is often seen that in some verification frameworks e.g.

[20, 21] controller is verified as a standalone component,

even though such verification has limited capabilities, e.g. it

cannot verify liveliness of the system. Modelling distributed

system as a multi closed-loop model that also incorporates a

model of the plant can achieve a lot more powerful

verification framework, because it is the manufacturing plant

that specifies the safety constraints and the desired

production processes [22-25]. Multi closed-loop modeling

allows for thorough verification of the control logic, and

reduces the complexity of model checking as compared to

only controller verification under an arbitrary inputs

assumption. It also allows checking of specifications

formulated in terms of the plant variables rather than in

terms of controller inputs/outputs. This paper therefore,

describes the modeling of such multi closed-loop behavior as

well as presents new controller design architecture.

A. Case Study Example

To demonstrate benefits of our approach, we will use a

pick and place object shown in Fig 1(a), which is composed

of several mechatronic units as follows:

 There are two horizontal cylinders and a vertical cylinder

that extract and retract. The left horizontal cylinder is half

the size of the right cylinder. The vertical cylinder picks

up the work pieces using the suction unit attached to its

end.

 Both horizontal cylinders have two control signals (CGO:

Cylinder Go Out: extending, CGI: Cylinder Go In:

Retracting). The vertical cylinder has only one control

signal (VCGD: Vertical Cylinder Goes Done). When this

signal is not active, the cylinder moves up (pulled by the

internal spring).

 Each of the cylinders has their own sensors that indicate

the cylinder‟s home and end positions. There are also

sensors in each of the three input trays (pp1, pp2 and pp3)

and one in the slider (pp0) to indicate the presence of a

work piece. The suction unit has a built-in sensor, vacuum

indicating that a work piece is sucked.

 Fig 1(b) shows the desired behaviour, it specifies the state

of each cylinder and the vacuum unit when picking and

dropping each of the work pieces.

Fig 1: (a) Reference object: pick and place robot. (b) Activity diagram of

the pick and place robot

III. MASTER-SLAVE CONTROL ARCHITECURE

Master-Slave is one possible distributed control

architecture out of several options considered in [26, 27]. As

the name suggests one controller (master) will take control

of one or more controllers (slaves) by sending control

commands (e.g. wp Manager depicted in Fig 2 and Fig 3 is a

master). The slave function blocks solely acts based on the

commands being sent to it by the master. Apart from master

and slave function blocks, there is master-slave function

block that acts a slave to one master function block and

master to a slave function block [28]. This is the case for the

vertical cylinder, as it acts as slave to work piece manager

and master to vacuum unit (Fig 3 and Fig 5).

This example (Fig 1) illustrates the design scenario,

where the designer creates different configurations of

mechatronic systems from available mechatronic

components. This accelerates the development process.

Obviously, the process of software design of the robot needs

to be accelerated as well and the proposed modular master-

slave control architecture promises such acceleration: the

controller for each new mechatronic configuration can be

assembled by retrieving the corresponding function blocks

and connecting them as illustrated in Fig 2.

Fig 2: Distributed controller of the robot with Master –Slave architecture

implemented in IEC 61499.

Master(wp Manager)

Slave(LC) Slave/Master(VC)

CMD(Extend)

Slave(RC)

Slave(Vaccum)

CMD-Vacuum-On

CMD(vc Extend)

FDB(vc Ready)

FDB(Ready)

CMD(Retract)

FDB(Ready)

CMD(Retract)

FDB(VacuumReady)

CMD(Extend)

FDB(Cyl1Ready)

CMD-Vacuum-Off

FDB(VacuumReady)

CMD(Retract)

FDB(Ready)

FDB(Ready)Time

Command Feedback

Fig 3: An example of event exchange among master-slave controllers to
pick up a work piece from tray one

The master-slave controller uses hand shaking, i.e.

whenever master issues a command to the slave, it cannot

issue one more command to the same slave until it has

received a feedback from the slave saying it has completed

its previous task as indicated by the command and feedback

arrows in Fig 3.

START

WAIT

1

IN_CMD2

Input events

^INIT

^REQ

^IN_CMD1

^IN_CMD2

Input data

Home

End

1

Output events

INITO^

CNF^

OUT_FDB^

Output data

Extend

Retract

Ready

Home

End

^INIT

GoForward+ NOT Ready

Extend:=TRUE;

Retract:=FALSE; CNF^

Ready:=FALSE; OUT_FDB^

CylAtEnd +Ready

INIT+Ready

Extend:=FALSE;Retract:=FALSE;

 INITO^

Ready:=TRUE; OUT_FDB^

CylAtHome + Ready

GoBackward +NOT Ready
Extend:=FALSE;

Retract:=TRUE; CNF^

Ready:=FALSE; OUT_FDB^

Ready:=TRUE;

OUT_FDB^

IN_CMD1

Ready:=TRUE;

OUT_FDB^

1

Fig 4: Controller of the horizontal cylinders being implemented as slaves to

work piece manager

Fig 4 shows a slave controller, here IN_CMD1 and

IN_CMD2 identify the two commands that slave can

handle, which is nothing but commands to either extend the

cylinder or retract the cylinder. OUT_FDB is the feedback

signal to the master. Fig 5 shows the vertical cylinder

controller that acts as master and slave, the extra input event

IN_FDB is the feedback from the slave and extra output

event OUT_CMD is the command to the slave.

R
ea

d
y
S

la
v
e

End

START

WAIT

1

IN_CMD2

Input events

^INIT

^REQ

^IN_CMD1

^IN_CMD2

^IN_FDB

Input data

Home

End

ReadySlave

1

Output events

INITO^

CNF^

OUT_FDB^

OUT_CMD^

Output data

Extend

Retract

Ready

Home

^INIT

GoForward +NOT Ready

Extend:=TRUE; CNF^
Ready:=FALSE; OUT_FDB^

CylAtEnd + Ready

INIT + Ready
Extend:=FALSE; INITO^

Ready:=TRUE; OUT_FDB^

CylAtHome +Ready

GoBackward + NOT Ready

Extend:=FALSE;CNF^
Ready:=FALSE; OUT_FDB^

Ready:=TRUE; OUT_FDB^

Command

 OUT_CMD^

IN_CMD1

Ready:=TRUE ; OUT_FDB^

1

Fig 5: Controller of the vertical cylinder implemented as Master for

vacuum unit and slave for work piece manager

IV. NET CONDITION-EVENT SYSTEMS

Net Condition/Event Systems (NCES) [13, 23, 29] can

be viewed as a modular extension to Petri Nets [30]. The

general idea of NCES is modelling a system as a set of

modules with a particular dynamic behaviour and their

interconnection via signals. An illustrative example of the

graphical notation of a module is provided in Fig 6(a).

Fig 6: (a) Graphical notation of an NCES module; (b) Modular

Composition of NCES modules results in a “flat” NCES.

Once designed, the modules can be re-used over and

over. Each module has inputs and outputs of two types:

1) Condition inputs/outputs carrying information on

marking of places in other modules.

2) Event inputs/outputs carrying information on firing

transitions in other modules.
Condition and event inputs can be connected with some

transitions inside the module by condition and event arcs.

Places of the module can be connected to the condition

outputs by condition arcs, and transitions can be connected

to the event outputs by event arcs. This concept provides a

basis for a compositional approach to building larger models

from smaller components. The "composition" is performed

by "gluing" inputs of one module with outputs of another

module as shown in Fig 6(b).

A. Why NCES?Benefits of NCES over other formalism

There are couple of reasons to prefer place-transition

formalisms to many others formalisms, e.g. finite automata.

The first is their non-interleaving semantics (i.e. possibility

of firing several transitions simultaneously), which better

fits to modelling of distributed processes and of their

interaction. It results in more compact reachability space,

explained as follows.

Modelling of complex distributed systems with automata

usually ends up in many concurrent automata models

communicating via common variables, as illustrated in Fig 7

(a), where two state machines A and B are combined under

“asynchronous parallel operator”. Thus, the overall system

model is a cross-product of the component automata, and to

do model analysis it is necessary to build the cross-product

consisting in this case of 9 states, as one sees in Fig 7 (a).

Alternatively, in NCES a state of a model is determined by

the marking of model places, so any global state of a

distributed system is just one state of the model. This is

shown in Fig 7 (b), where the same model is implemented in

NCES with places (p1-p6) corresponding to states of the

automata A or B (in the obvious manner). In the given initial

state the reachability space of the model consists of only 4

states. The same behaviour obviously will be shown by the

automata model in Fig 7 (a) (the outlined path A1B2→

A1B2→ A2B2→ A2B3→ A3B1→ A3B2), but to get it the

whole cross-product automata needs to be built.

The other benefit of NCES is the intuitive modelling

approach. Consider an NCES equivalent pick and place

model conceptually presented in Fig 8. The NCES model of

a moving object, such as a cylinder, is composed in a

modular way following the pattern proposed in [29]. The

NCES modules are connected with explicit event and data

flow as compared to sharing variables in state machines. As

noted in state machines model, two sequencers were used to

order evolution of the automata. This is a considerable

restriction of real life evolutions. In NCES, the controller

output is directly connected to the plant input and vice

versa, and the models make evolutions asynchronously.

Fig 7: (a) Modelling of two communicating processes by means of

concurrent state machines and their cross-product automaton; (b) The same

model in NCES and its reachability graph

Fig 8: Conceptual NCES model of the pick and place system

B. Master-Slave model in NCES

Fig 9 shows NCES implementation of the slave cylinder

control logic from Fig 4. Some explicit event connections

are not shown in the illustrations to avoid confusing

crossover connections; instead the grey boxes next to the net

elements specify what they are connected to. Fig 10 shows

the NCES model of the master-slave cylinder controller

described in Fig 5.

Fig 9: Controller of the horizontal cylinders being implemented as slaves to

work piece manager in NCES

The start state in a NCES model is determined by the

initial marking of the token, in Fig 9 the initial marking is in

“start” place, from this place, on receiving either IN_CMD1

(extend) or IN_CMD2 (retract) event from the master (work

piece manager) the token moves from start to either

“s_extend” or s_retract” state, once the plant tells the

controller that the cylinder is in either of the end positions

(home or end), transition “t3” or “t4” is fired accordingly

and the token returns to the start state with either “t5” or

“t6” firing and emitting OUT_FDB to the work piece

manager and thus completing the command-feedback

handshake. The only difference between slave and master-

slave is transitions “t4” and “t5”, once the vertical cylinder

reaches its end position, it commands its slave by sending

the OUT_CMD event and waits for the IN_FDB event from

the slave, once received “t5” is fired and token returns to the

start position. Fig 11 shows the NCES model of the entire

controller of the robot composed in a modular way similar

to the FBDK model in Fig 2.

Fig 10: Controller of the vertical cylinder implemented as Master for

vacuum unit and slave for work piece manager in NCES

Fig 11: NCES model of distributed controller of the robot implemented

with Master –Slave architecture

V. REUSABILITY AND SCALABITY OF MASTER-SLAVE

ARCHITECTURE

In order to test the scalability and reusability of the

proposed master-slave control pattern, we considered

several configurations of the pick and place robot composed

from various numbers of mechatronic modules. For example,

the configuration in Fig 12 is composed from six cylinders.

Also, more freedom was allowed in the location of input

trays of work pieces at different levels. Unlike the

reconfiguration method described in [31] which is for pre-

determined different run time configurations, the method

here can be used for any type and any number of re-

configurations.

Fig 12: Re-Configured pick and place robot with 6 cylinders

The safety and functional requirements for all those

configurations are same as of the 3 cylinder robot. Safety

requirements include requirements such as “horizontal and

vertical cylinders do not move at the same time”. The main

functionality is to pick work pieces from the input trays (pp1,

pp2 and pp3) and drop them in the output slider pp0.

Formal verification of the NCES model corresponding to

a particular mechatronic (and control) configuration is seen

as enabler of agile modular mechatronic and software design.

The NCES model for this consisted of 5 slave control

models (all three horizontal cylinders and top two vertical

cylinders) re-used as is from the 3 cylinder model and 1

master-slave control for the bottom vertical cylinder that has

the vacuum unit attached to it which again is just a slave,

just like in the 3 cylinder robot. The only difference between

the two models is the master control module, the work piece

manager. The two work piece mangers are shown in Fig 13.

All the other modules are re-used and only this master

control model needs to be modelled, which will be

automated as well. Auto generation of this model is possible:

given a matrix of the pick and place robot as shown in Fig

1(b), the work piece manager can be automatically

generated.

The main design flow of the work piece manager is

shown in Fig 14. Here, depending on the presence of work

pieces, the token follows one of the three (dashed) branches

of the model and is returned to start state at the end. The

priority considered in the two robot design in this paper is:

 If work piece 1 (pp1) is present, then pp1 is picked.

This is achieved in transition „t1‟ in Fig 14 which is

just connected to true condition input of pp1.

 If work piece 2 (pp2) is present and pp1 absent, pp2 is

picked. This is achieved in transition „t2‟ in Fig 14

which is connected to true condition input of pp2 and

false condition input of pp1 (n_xxx notation identifies

the false condition inputs).

 If work piece 3 (pp3) is present and both pp1 and pp2

are absent, pp3 is picked. This is achieved in transition

„t2‟ in Fig 14 which is connected to true condition

input of pp3 and false condition input of pp1 and pp2.

Depending on the input matrix as given in Fig 1(b), the

rest of the flow will just be sending command events to

slave cylinder and receiving feedback from them.

Fig 13: Work piece manager (master) control blocks of 3 cylinder and 6

cylinder robot

Fig 14: Flow logic for auto generation of work piece manager

A. Using Meta-Model to generate the work piece manager

Fig 15 shows the meta-model used to generate the

master controller, i.e the work piece manager. It only shows

the part that is described in Fig 1(b).

Fig 15: Meta-Model for the matrix in Fig 1(b)

Meta-Model has the following details. Composition of

the system (<Controller>) such as type of Controller

architecture (attribute “type”), number of work pieces

(attribute “NumberOfWP), number of horizontal cylinders

(attribute “NumberOfHC), number of vertical cylinders

(attribute “NumberOfVC) and to which cylinder is the

vacuum unit connected (which module will act as master as

well as a slave model i.e attribute “VacAttach). For each

work piece (<wp1>, <wp2>, <wp3>), the meta-model

specifies position/value of the related sensors for both pick

and drop action. Note that the details of each work piece

appear column wise in Fig 15, but in actual it is a text file

and the details occur one after the other. It is shown this way

to save up space.

VI. MODEL CHECKING WITH VIVE/SESA

Both the 3 cylinder and 6 cylinder models were model

checked using the ViVe and SESA tools. CTL was used to

represent safety, liveliness and other functional

requirements. The advantage with these tools is the ease

with properties can be mentioned. The properties are

presented in terms of the places in the NCES models.

The ViVe tool flattens the whole model consisting of

different sub modules into one (possibly huge) NCES model

as described in section IV Fig 6 (b), the ViVe tools tree

view of the flat model is shown in Fig 16. The flattened

model can be exposed then to SESA model checker.

For example, to check for the property that says

“Opposite actuator signals (extend and retract) to the

cylinders (C1, C2 in case of 3 cylinder model) should never

be emitted at the same time”, we write the property as “AG

(NOT(p136ANDp137))”, where places p136 and p137

correspond to global place number in the flattened NCES

model that actually correspond to the places “s_extend” and

“s_retract” in Fig 9.

In NCES terminology, the tool checks if at all there is a

possibility that a token can be present in both these places at

any given time. Table 1 below summarizes all the properties

that were checked for our two reconfigurable models. It is

even easier to check for the liveliness property of the

cylinder, simply check if all the places in the cylinder model

if they become false (have no token) in future once they

were true (had token). The format of the CTL property will

be AG (pXX -> EF (NOT (pXX))), Where “XX”

corresponds to every place of the flattened controller model.

Fig 16: Tree View of the vive tool, shows the flat model of the pick and

place robot

The 3 cylinder pick and place robot model checking

resulted in a state space of 3406 states and all the properties

were verified to be true. The 6 cylinder pick and place robot

model checking resulted in a state space of 5853 states and

all the properties were verified to be true. 100% verification

of all the properties proves that the designed controller for

the mechatronic system is reliable, stable and satisfactory.

TABLE 1: LIST OF SAFETY, LIVENESS AND FUNCTIONAL PROPERTIES FOR

THE PICK AND PLACE ROBOT.

 Specifications

Safety

Opposite actuator signals to the horizontal cylinders
should never be emitted at the same time.

Safety If the signal to descend the vertical cylinder is emitted, the

horizontal cylinder should stand still.

Safety If there is an emission of a control command
corresponding to movements of the horizontal cylinders

then the sensor “vcu” of all the vertical cylinders must be
true.

Safety The horizontal cylinders can move only if the value of

sensor “vcu” of all vertical cylinders is true.

Liveness Absence of deadlocks in the (decentralized) control logic.

Functional If a part is detected by pp1, pp2 or pp3, then in future one
of the horizontal cylinders will be extended (Fig 1(b)).

Functional If a part is detected by pp1, pp2 or pp3, then in the future,

the part will be removed from the tray as given in Fig 1(b).

Functional When the vertical cylinder goes down, both horizontal

cylinders are (and remain) in their end positions (home or

end).

VII. CONCLUSION

One of the main issues with formal verification is design

and development of formal models. It is time consuming,

needs some level of understanding and experience in

modeling. In this paper a new reusable and scalable model

has been proposed, developed and tried on different

reconfigurable systems. With the use of master slave

controller architecture, any reconfigured systems of the pick

and place robot was automatically generated and model

checked for pre-defined properties. Even the writing of the

CTL properties can be fully automated using a Meta Model

representation of the matrix in Fig 1(b) and also the list of

properties in Table 1.

VIII. FUTURE WORK

The first work which is already in progress is creating a

meta- model using some standards such as CAEX and an

application that can read such a CAEX schema and generate

the master controller like the work piece manager. Work is

also in progress to formulate this idea to prove the

advantages of the master-slave architecture. It will also be

interesting to integrate the ideas such as introducing

selective non determinism in the plant model as expressed in

[32] to achieve better verification results.

REFERENCES

[1] G. Black and V. Vyatkin, "Intelligent Component-Based

Automation of Baggage Handling Systems With IEC 61499,"

Automation Science and Engineering, IEEE Transactions on,

vol. 7, pp. 337-351, 2010.

[2] International Electrotechnical Commission - IEC61499,

"Function Blocks for Industrial Process Measurement and
Control Systems – Part 1: Architecture," ed. Geneva: Tech.

Comm. 65, Working group 6, 2005.

[3] V. Vyatkin, "Intelligent mechatronic components: control
system engineering using an open distributed architecture," in

Emerging Technologies and Factory Automation, 2003.

Proceedings. ETFA '03. IEEE Conference, 2003, pp. 277-284
vol.2.

[4] V. Vyatkin, IEC 61499 Function Blocks for Embedded and

Distributed Control Systems Design vol. 2: ISA 2007.
[5] V. Vyatkin, "IEC 61499 as Enabler of Distributed and

Intelligent Automation: State-of-the-Art Review," Industrial

Informatics, IEEE Transactions on, vol. 7, pp. 768-781, 2011.
[6] V. Vyatkin, H.-M. Hanisch, S. Karras, T. Pfeiffer, and V.

Dubinin, "Rapid engineering and re-configuration of automation

objects aided by formal modelling and verification,"
International Journal of Manufacturing Research, vol. 1, pp.

382-404, 01-01-2006 2006.

[7] C. Maffezzoni, L. L. Ferrarini, and E. Carpanzano, "Object-
oriented models for advanced automation engineering - modular

modeling in an object oriented database," Control Engineering

Practice, vol. 7, pp. 957-968, 1999.
[8] nxtControl. (2012). NxtSTUDIO. Available:

www.nxtcontrol.com

[9] ICS Triplex ISaGRAF Workbench for IEC 61499/ 61131, v6.
Available: http://www.icstriplex.com/

[10] FBDK – Function Block Development Kit. Available:

www.holobloc.com
[11] R. Drechsler, Advanced Formal Verification. Norwell, MA,

USA: Kluwer Academic Publishers, 2004.

[12] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking.
Cambridge: The MIT Press, 1999.

[13] L. Pinzon, M. A. Jafari, H. M. Hanisch, and Z. Peng, "Modeling
admissible behavior using event signals," Systems, Man, and

Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol.

34, pp. 1435-1448, 2004.
[14] V. Vyatkin, P. Starke, and H.-M. Hanisch. (1999-2002). ViVe

and SESA Model Checkers. Available:

http://www.ece.auckland.ac.nz/~vyatkin/tools/modelchekers.ht
ml

[15] D. Missal, M. Hirsch, and H. M. Hanisch, "Hierarchical

distributed controllers - design and verification," in Emerging
Technologies and Factory Automation, 2007. ETFA. IEEE

Conference on, 2007, pp. 657-664.

[16] V. Vyatkin and H. M. Hanisch, "A modeling approach for
verification of IEC1499 function blocks using net

condition/event systems," in Emerging Technologies and

Factory Automation, 1999. Proceedings. ETFA '99. 1999 7th
IEEE International Conference on, 1999, pp. 261-270 vol.1.

[17] V. Vyatkin and H.-M. Hanisch, "Verification of distributed

control systems in intelligent manufacturing," Journal of
Intelligent Manufacturing, vol. 14, pp. 123-136, 2003.

[18] H. C. Lapp, C. Gerber, and H. M. Hanisch, "Improving

verification and reliability of distributed control systems design
according to IEC 61499," in Emerging Technologies and

Factory Automation (ETFA), 2010 IEEE Conference on, 2010,

pp. 1-8.
[19] V. Vyatkin, Hanisch, H.M., Pfeiffer, T., "Modular typed

formalism for systematic modeling of automation systems," in

1st IEEE Conference on Industrial Informatics (INDIN'03),
Banff, Canada, 2003.

[20] K. G. Larsen, P. Pettersson, and Y. Wang, "Compositional and

symbolic model-checking of real-time systems," in Real-Time
Systems Symposium, 1995. Proceedings., 16th IEEE, 1995, pp.

76-87.

[21] K. G. Larsen, P. Pettersson, and W. Yi, "Model-Checking for
Real-Time Systems," in Proceedings of the 10th International

Conference on Fundamentals of Computation Theory, Dresden,

Germany, 1995, pp. 62-88.
[22] H.-M. Hanisch, "Closed-Loop Modeling and Related Problems

of Embedded Control Systems in Engineering," in Abstract

State Machines 2004. Advances in Theory and Practice. vol.
3052, W. Zimmermann and B. Thalheim, Eds., ed: Springer

Berlin / Heidelberg, 2004, pp. 6-19.

[23] H.-M. Hanisch and A. Lüder, "Modular modeling of closed-loop
systems," in Proc of Colloquium on Petri Net Technologies for

Modeling Communication Based Systems, ed Berlin, Germany,
2000, pp. 103-126.

[24] S. Preusse and H. M. Hanisch, "Specification and verification of

technical plant behavior with symbolic timing diagrams," in
Design and Test Workshop, 2008. IDT 2008. 3rd International,

2008, pp. 313-318.

[25] V. Vyatkin, H.-M. Hanisch, C. Pang, and C.-H. Yang, "Closed-

loop modeling in future automation system engineering and

validation," IEEE Transactions on Systems, Man, and

Cybernetics—Part C: Applications and Reviews, vol. 39, pp. 17-
28, 2009.

[26] V. Vyatkin and H. M. Hanisch, "Design of Controllers aiming at

Plug-and-Play Engineering of Automated Systems from
Mechatronic Components," presented at the Annual Conference

of Italian Automation Society (ANIPLA), Rome, Italy, 2006.

[27] M. Sorouri, S. Patil, and V. Vyatkin, "Plug-and-Play IEC 61499
function blocks for distributed control design of Intelligent

Mechatronic Systems," in 10th Annual IEEE International

Conference on Industrial Informatics, Beijing, China (Paper just
accepted), 2012.

[28] V. Vyatkin and H.-M. Hanisch, "Design of Controllers for Plug-

And-Play Composition of Automated Systems from Smart
Mechatronic Components," presented at the Annual Conference

of Italian Automation Society (ANIPLA), Rome, Italy, 2006.

[29] R. Sreenivas and B. Krogh, "On condition/event systems with
discrete state realizations," Discrete Event Dynamic Systems,

vol. 1, pp. 209-236, 1991.

[30] Z. Mengchu and V. Kurapati, Modeling, Simulation, and
Control of Flexible Manufacturing Systems: A Petri Net

Approach. Hackensack, NJ: World Scientific Publishing

Company, 1999.
[31] M. Khalgui, "NCES-based modelling and CTL-based

verification of reconfigurable embedded control systems,"

Computers in Industry, vol. 61, pp. 198-212, 2010.
[32] S. Patil, S. Bhadra, and V. Vyatkin, "Closed-loop formal

verification framework with non-determinism, configurable by

meta-modelling," in IECON 2011 - 37th Annual Conference on
IEEE Industrial Electronics Society, 2011, pp. 3770-3775.

http://www.nxtcontrol.com/
http://www.icstriplex.com/
http://www.holobloc.com/
http://www.ece.auckland.ac.nz/~vyatkin/tools/modelchekers.html
http://www.ece.auckland.ac.nz/~vyatkin/tools/modelchekers.html

