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Abstract-This paper proposes an approach to achieving fast reconfiguration of modular manufacturing 

systems, based on an ontology-based reconfiguration agent. The agent uses ontological knowledge of the 

manufacturing environment for the purpose of reconfiguration without human intervention. The current 

mass customization era requires increased flexibility and agility in the manufacturing systems to adapt 

changes in manufacturing requirements and environments. Our configuration agent minimises the overheads 

of the current reconfiguration process by automating it. It infers facts about the manufacturing environment 

from the ontological knowledge model and then decides whether the current environment can support the 

given manufacturing requirements. This paper proposes the agent architecture enabling the integration 

between the high level planning with the distributed low level control compliant with the upcoming IEC 

61499 function blocks standard. 
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I. INTRODUCTION 

The rise of the global economy has generated a greater competition for the manufacturing enterprise from 

every part of the globe. Nowadays, to be competitive, manufacturers must not only produce low-priced 

products with high quality, but also manufacture products that need to be customised according to the 

customer’s personal preferences. Consequently, these requirements take the reasonability of increasing the 

product variants and decreasing the product life cycles. The consequences of these trends creates a need of 

building more efficient, flexible and agile manufacturing systems that can adapt new and changing 

requirements or changes in the manufacturing environment. These systems will allow manufacturers to 

produce multiple variations of customised products at the price of standardised mass products [1]. 

In this paper we propose an ontology-based reconfiguration agent that attempts to produce a new 

reconfiguration of the system reacting on changes in the requirements or the manufacturing environment. 

The agent forms a new reconfiguration after analysing the new requirements and inferring facts about the 

environment to deduce whether the current environment can handle the given requirements. The benefit of 

this approach is minimizing the overheads of the reconfiguration process by achieving rapid reconfiguration 

with minimum human intervention.  

A methodology is proposed to integrate the high level planning with the low level control of the 

mechatronic system by using a deployment manager that manages the deployment process of the new 

reconfiguration on the embedded level of the system. 

Rest of the paper is organised as follows: Section II defines the reconfiguration challenge in the 

manufacturing industry and introduces our proposed solution to this challenge while Section III introduces 

the notion of ontological knowledge representation and Section IV discusses the knowledge model of our 

simple manufacturing environment model. Section V introduces a reconfiguration agent and then discusses 



its architecture and implementation, while Section VI gives an insight on our future work. Finally in Section 

VII conclusions are drawn. 

II. RECONFIGURATION CHALLENGE 

One of the main challenges faced by the manufacturing industries is rapid reconfiguration of 

manufacturing systems to handle rapid change in business environment without human intervention. One 

important criteria of the manufacturing factory is the flexibility characteristic of producing multiple 

variations of customised products. The factory must be flexible enough to support different sequences of 

production as well as allowing changes in the production system for new products offerings [1].  

A number of works, addressing the reconfiguration problem, were departing from the fact, that the 

mechatronic components, or machines, have autonomous control and resemble robots in behaviour [2]. 

When placed together they are capable of advertising own services and discovering services of the other 

machines in the group. In this paper we are looking at the problem from a different angle: if the capabilities 

of individual machines are described in some formal form, how to infer the capabilities of their 

aggregation? Would it be possible to specify the requirements to a missing component, provided that some 

machines are already supplied and specification of the desired product is given?  

In this paper we present a methodology based on the ontology-based reconfiguration agent [3]. This 

methodology can reduce some of the overhead mentioned above by rapidly reconfiguring the system via 

inferring useful facts from the ontological descriptions of the manufacturing environment. This approach is 

further extended by deployment manager that deploys the new configuration produced by the 

reconfiguration agent on the distributed controllers of the system. 

The proposed methodology can reduce some of the overheads mentioned above by rapidly reconfiguring 

the system via utilising the ontological descriptions of the manufacturing environment and using 



reconfiguration agent that infer useful facts from these descriptions. Moreover the reconfiguration agent 

analyses the given requirement to check if the manufacturing environment can handle it. 

III. RELATED WORKS 

A reconfigurable manufacturing system (RMS) is defined as “a system designed at the outset for rapid 

change in structure, as well as in hardware and software components, in order to quickly adjust production 

capacity and functionality within a part family” [4].  

The RMS concept of living and evolving factories, that quickly adapt new products and changing market 

demands, was introduced at Engineering Research Centre of the University of Michigan (UM) in the mid 

1990s. Subsequently, RMS enabling technologies were developed at both the UM and in Europe and 

Canada. RMS is being recognised today as a necessary tool for increasing productivity and sustaining profit 

despite abrupt global market changes. The RMS is designed to have the best of both worlds – the high 

throughput of dedicated manufacturing lines (DML) and the flexibility of flexible manufacturing systems 

(FMS). It is intended to handle changes in production capacity and manufacturing requirements. Many 

approaches have been proposed in the academic literature to deal with the reconfiguration manufacturing 

paradigm. The well-known approaches are biological manufacturing systems (BMS) [6] and holonic 

manufacturing systems (HMS) [7]. 

A biological manufacturing system is a distributed manufacturing system, in which each part tries to 

achieve its own goals and each machine tries to attract them for processing. It has the capability of learning 

and healing itself when problems appear in various work stations and it is structured from the bottom up in a 

self-organised manner. BMS focuses on self-organising and evolution since it is the major strength of 

biological organism to keep cells alive. 

A holonic manufacturing system is based on the concept of holon. A holon is an autonomous and co-

operative building block of a manufacturing system for transforming, transporting, storing and/or validating 



information and physical objects. It consists of two parts: an information processing part and physical 

processing part. It can be part of another holon and has the ability to create and control the execution of its 

own plan and/or strategies. HMS is considered a system of holons that co-operate to achieve a goal or 

objective and integrates the entire range of manufacturing activities from order booking through design, 

production, and marketing. 

Implementations of intelligent manufacturing systems rely on the use of techniques developed in the 

artificial intelligence, for example multi-agent techniques, formal knowledge representation and knowledge 

inference.  

Semantic Web technologies have attracted lately great interest of industrial automation researchers. Lastra 

and Delamer [8] formulate one of the problems as follows: How to enable two devices with no previous 

knowledge on each other’s type, conceived using different paradigms and interaction models but still with 

complementary skill sets, to interact autonomously? 

 

IV. TEST CASE EXAMPLE 

The following laboratory example illustrates some reconfiguration ideas and challenges of a modular 

machine which is a representative model of a simple work cell that can be found in various manufacturing 

environments. The machine is shown in Figure 1. It consists of four parts: Machine I (Processing Machine), 

Machine II (Handling Machine), Simple Conveyor Chain and Machine III (Filling Station). Each machine is 

built from some mechatronic devices for performing manufacturing or logistic operations.  

The Machine I consists of four mechatronic devices: rotating indexing table, plunger, drill and kicker 

performing respectively rotating, hole checking, drilling and kicking. The Machine II consists of two 

devices: receptacle and picker. The receptacle performs presence detection and colour sensing while the 

picker performs picking and sorting, The simple conveyor chain consist of four independent conveyor loops 



and is used for moving the work pieces across the manufacturing floor. The Machine III consists of two 

tanks and a mixing valve. It is used for filling the supplied pieces with the liquid in its tanks.  

This work cell supports multiple production scenarios [9] resulting from change of product, its features, 

availability of components, orders, etc. Figure 2 shows an example of supporting multiple sequences of 

production resulting from change in the availability of components. It illustrates the complying of two 

different scenarios with the same given requirement: hole testing followed by drilling then hole filling with 

a colour liquid (red or green) according to the colour of the work piece. In scenario (i), following the hole 

testing process, the rotating indexing table moves the work piece towards the drill. If the work piece does 

not have a hole, the drill drills a hole in the work piece only if the plunger has not drilled a hole then the 

rotating indexing table moves the work pieces towards the kicker in which it gets kicked to the receptacle. 

The picker picks the work piece after being detected and colour sensed by the receptacle and places the 

work piece on Conveyor IV which moves the work piece to Machine III, then Machine III fills the work 

piece with a coloured liquid. Whereas in scenario (ii), Conveyor IV is faulty which means the picker has to 

place the work piece on Conveyor I which moves the work piece to Conveyor II then from Conveyor II to 

Conveyor III and then Conveyor III moves the work piece to Machine III. 

The addition of a new device or the replacement of a faulty device with a new one requires deactivation of 

the system. Moreover, after physically connecting and allocating the device, it may require the adjustments 

of some lower level controls, production plans and may require reprogramming parts of the control system. 

In order to recognise the operations and skills of a newly added device and identify any fault within any 

device in the work cell, a knowledge representation is needed a) to capture characteristics and relations 

among these devices b) to be capable of embedding theories of intelligent reasoning; c) to be capable of 

incorporating concepts from different manufacturing domains; d) to be capable of formally representing 

concepts and relations in which provides computability; and e) to be capable of describing the real world of 

manufacturing. 



V. ONTOLOGICAL KNOWLEDGE REPRESENTATION 

The famous definition given by Thomas Gruber says that an ontology is a “formal specification of 

conceptualisation” [10]. An ontology specification is a formal description of a domain of interest, used for a 

particular purpose and expressed with a controlled vocabulary. The computer scientists have made a clear 

distinction between the terminological components (Tbox) and assertional components (Abox). The Tbox 

vocabulary specifies concepts that have associated Abox facts. Figure 3 shows the relationship between an 

Abox and Tbox. The combination of both represents a knowledge base for the domain [11]. In our case the 

manufacturing industry is our domain of interest; Tbox describes the concepts in the manufacturing industry 

whereas Abox represents the instances of these concepts. 

The knowledge of the manufacturing environment can be formalised along with the rules and the 

relationships between the objects. The reason behind formalising is to form a reliable and interoperable 

description of the manufacturing s domain. Hence ontologies can be used as a means of formalising this 

knowledge using a common vocabulary or a standard common language like OWL to ensure 

interoperability.  

There were a few efforts towards forming a common manufacturing ontology during the last decade such 

as the work [13] done by the National Institute of Standards and Technology, followed by a recent proposal 

of a common manufacturing upper ontology for manufacturing system (MASON). The proposal was built 

upon three head concepts: entities, operations and resource [14]. The principle behind that is to provide 

shared and common understanding of the manufacturing domain. MASON has already been used across 

many useful applications such as multi agent systems for manufacturing [15]. 

VI. KNOWLEDGE MODEL 

The knowledge model of our simple manufacturing environment is expressed using OWL – Web 

Ontology Language developed by W3C (World Wide Web Consortium). OWL is a language used for 



defining and instantiating web ontologies. OWL’s interoperability is achieved by the use of the standardized 

eXtensible Markup Language (XML). OWL supports knowledge sharing and reuse which is very important 

for adding new facts to the knowledge model and keeping it up to date [16],[17]. These features have been 

recently utilised in forming an OWL representation of the Automation Object Reference model for 

Industrial-Process Measurement and Control Systems [18],[19],[20].  

OWL-DL, one of the OWL dialects, is used for expressing our knowledge model for the reason that it 

ensures reasoning will be computable and decidable. Protégé [21], an open source platform for creating 

knowledge models, is used for creating the Tbox (formal specification of the environment) and the Abox 

(instances of machines that comply with Tbox) of our environment. Each machine has an OWL document 

with instances of all the class (operations and resources) propertied related to the machines. Our knowledge 

model is based on MASON. Figure 4 shows the main important head concepts that have been identified: 

Resource, Operation with the addition of Controller. 

The Controller concept is important in terms of identifying the distributed controllers of the system. The 

experimental testbed described above is controlled by distributed control devices compliant with the new 

IEC 61499 standard [22], [23]. Correspondingly, the Controller component of the knowledge model 

includes descriptors, defining a specific run-time platform support of IEC 61499 function blocks. In our 

case-study only two run-time platforms have been specified: FBRT [24] and some other (non-FBRT). The 

Operation concept consists of two sub-concepts: Manufacturing Operation and Logistic Operation. Most of 

the time, the logistic operations are acting as a link between manufacturing operations. 

Table 1 shows some of the important properties that we identified in the environment based on MASON. 

These properties play a crucial role in helping in inferring useful facts about the environment. 

 

 

 
  



TABLE I Important properties in the sample manufacturing environment. 
 

Property Description 

‘nextOperation’ This property determines the next feasible operation 
that can follow the current operation. 

‘requiresTool’ This property links Operation with its Tool(s). Its 
opposite property is ‘requiredToolFor’ 

‘isLastOperation’ This property classifies the feasible last operation(s) in 
a machine  

‘isStartUpOperation’ This property classifies the  feasible start-up 
operation(s) in a machine 

‘controlledBy’ This property links the tool with the embedded level 
controller. Its opposite property is ‘controles’ 

‘requiresMachine’ This property links Machine with its Operation(s). Its 
opposite property is ‘enableRealisationOf’ 

 

Figure 5 shows some instances (Abox facts) of our manufacturing system and the relationship between 

them. The two main important instances are the processing machine instance (Processing_machine_1) and 

handling machine instance (Handling_machine_1). The other instances are the operations instances 

performed by these machines. As seen in this figure, the ‘nextOperation’ property links the operations 

forming a graph like structure. The decision engine of the configuration agent uses this structure in the 

process of generating a new configuration. There are other instances which are not shown in this figure like 

instances of the tools that perform these operations.  

In order to support the additions of new devices to the environment, the knowledge model needs to 

facilitate growth in terms of concepts and relationships. For that reason, all the main concepts and 

relationships of the manufacturing domain is included in the upper ontology OWL document of the 

knowledge model. At the same time, each machine has an OWL ontology document that extends the upper 

manufacturing ontology to include more specific sub-concepts and relations related to the machine and 

instances of the objects related to the machine such as the machine, tools, operations, etc. Therefore, the 

upper ontology document consists of Tbox only while the machines OWL documents consist of both parts: 

Tbox and Abox. 



VII. RECONFIGURATION AGENT  

The proposed ontology-based reconfiguration agent is an intelligent software agent that allows the 

manufacturing system to adapt changes in the manufacturing requirement and/or environment. It generates 

an alternative or a new feasible configuration that satisfies the requirements. The new configuration consists 

of a sequence of manufacturing operations which are available in the manufacturing floor. The software 

agent decides the new manufacturing configuration using the inferred facts about the manufacturing 

environment ontological knowledge model, the extracted information about the floor specification, and the 

given manufacturing requirements.  

The  reconfiguration agent performs three main tasks: (i) it checks whether a requested operation is 

supported by the manufacturing environment, or not; (ii) it generates a new configuration by forming a 

sequence of logistic operations that inter-connects the requested operations together; and (iii) it divides the 

new generated configuration into sub-configurations according to the distribution of the controllers; and (iv) 

it provides feedback of the reason behind any task failure if any of the three tasks are not completed.  

A. Architecture 

The reconfiguration agent has a multi-layered architecture consisting of three layers: the intelligent 

decision layer, the analysing and modelling layer, and the specification layer. Each layer depends on the 

layer beneath it and uses its capabilities and features. At this same time, each layer consists of components 

that are responsible of carrying out specific activities and/or providing specific functions. 

 Figure 6 shows all the three layers of the reconfiguration agent and their components. The architectural 

division of the layers is based on the specialisation level of the layer. The first layer explicitly provides all 

the knowledge and specification needed for decision making. The second layer extracts the given explicit 

information, transforms it into an implicit format, and then analyse it and model it for easy access and 

manipulation. It extracts and creates a list of the requested operation from the requirements specification; a 



list of the available machines in the manufacturing floor from the floor specification; and an ontological 

knowledge model from the environment knowledge specification. The third layer is where the intelligent 

reasoning takes place which includes generating final configuration, dividing the generated configuration 

into sub-configurations according to the distribution of the controllers.  

The most essential components of the agent are: Knowledge Modeller, Decision Engine, and Deployment 

Manager. 

B. Implementation 

The prototype of our reconfiguration agent has been implemented using Java platform in conjunction with 

Eclipse IDE. The main reasons behind using Java platform are: (i) the accessibility of frameworks that 

support programmatic environment for OWL; and (ii) the availability of OWL reasoners for knowledge 

inferring and decisive reasoning. These frameworks and reasoners can ease and speed up the prototyping 

process of the reconfiguration agent.  

 Jena [25]- an open source Java framework that provides a programmatic environment for OWL - has 

been used for creating the ontological knowledge model of the manufacturing environment. It constructs a 

tree-like graph of the knowledge from reading the given machine's OWL documents and provides methods 

that enable access, update and manipulate the knowledge model.  

Pellet [26], an open-source Java based OWL-DL reasoner is used as our rule-based reasoner to work in 

conjunction with Jena framework. It has been used by the decision engine and deployment manager for 

inferring facts about our ontology model of the environment. Also, it has been used by the knowledge 

modeller for the merging process of the machines’ knowledge and for checking the consistency of the OWL 

documents. 

JDOM [27], a Java representation of XML documents is used by the requirements analyser and floor 

analyser components for reading the manufacturing requirements XML document and floor specification 

XML document. 



C. Requirements Analyser 

Requirements analyser extracts all the required operations from the Requirements XML document. An 

example of the requirements is as follows:  

<Requirements> 
 <ReqOperations> 
   <ReqOperation> 
      Hole_testing 
   </ReqOperation> 
   <ReqOperation option = {depth: 2cm, speed = 12}> 
      Drilling 
   </ReqOperation> 
   <ReqOperation option = {criteria: hole_presence}> 
      Sorting 
   </ReqOperation> 
 </ReqOperations> 
</Requirements> 

 

The root element of the requirements document is Requirements. For the sake of simplicity, we only 

considered Requested Operations as the only element of requirements. It consists of at least one or more 

Requested Operation element. The options attribute of the Requested Operation is used to state further 

specification of the requested operation. Different requested operation has different options. E.g. Drill 

options can include the depth of the hole and speed of the drill while Sorting options can include the criteria 

of the sorting methodology. The requirement analyser creates an ordered list of required operations object. 

Each object contains the name and the options of the requested operation. This list is used later on by the 

decision engine component of the system. 

D. Floor Analyser 

The floor analyser captures all the needed floor specification about the machines in the manufacturing 

system from the floor specification document. This includes the location, orientation, OWL ontology 

document of each machine and the connections of one machine to another.  

An example is as follows:  

 



<FloorSpecification>  
 <Machines> 
  <Machine ID=1 initial=true pos={x0:2 y0:2 x1:2 y1:2}> 
    <MachineOntology> 

http://localhost/ProcessingMachine.owl 
</MachineOntology> 
<ConnectedTo startupOp = "Rotation" >2</ConnectedTo> 

  </Machine> 
  <Machine ID = 2 initial=false pos={x0:2 y0:2 x1:2 y1:2}>  
    <MachineOntology> 
      http://localhost/HandlingMachine.owl 
    </MachineOntology> 
    <ConnectedTo startupOp = "Picking,  
                  Presence_detection" > 
      1 
    </ConnectedTo> 
  </Machine> 
 </Machines> 
</FloorSpecification> 

Floor Specification element is the root element of the document. It consists of the Machines element and 

the Ontologies Element. The Machines element can contain one or more Machine element depending on 

the number of machines in the manufacturing floor. The position attribute of the machine elements is used 

to determine the location and the orientation of the machine. For the sake of simplicity, we assumed that any 

machine in our environment can fit in a squared shape frame. ‘x0’ and ‘y0’ determines the position of the 

top left hand corner point of the machine while the ‘x1, and y1’ is the position of the bottom right corner 

point of the machine. The ID attribute of the machine is used for identifying the machine while the initial 

attribute is used to determine the startup machines. The Machine element contains two sub- elements: one 

MachineOntology and at least one ConnectedTo Elements. The MachineOntology has the URL of the 

machine’s OWL document while the ConnectedTo states the machines that this machine connects to. The 

attributes of ConnectedTo determine the startupOperation in that connection. The floor analyser creates a 

graph of the available machines objects and provides methods for accessing this graph. Each object includes 

all the extracted information (location and Ontology URL). This list is used later on by the knowledge 

modeller component. 

 



C. Knowledge Modeller 

The knowledge modeller constructs ontology knowledge model of the manufacturing environment using 

the machines list extracted by the floor analyser. This list contains vital information about the machines for 

the operation of the knowledge modeller: the URL of the OWL document and the location of each machine. 

The modeller uses Jena model factory and Pellet inference engine (given by the decision engine) to 

construct an Ontology model of the factory floor by reading each machine’s OWL document. The model 

factory converts each OWL document to a graph which is the primary data structure in Jena. This graph is 

wrapped by a model that provides convenient methods for the decision engine to access the contents of the 

graph. 

D. Decision Engine 

The decision engine produces a feasible configuration that satisfies the given requirements using the floor 

graph and the ontology knowledge model. First it uses Pellet and Jena to connect the last operations with the 

initial operations of the machines in the factory floor via the ‘nextOperation’ property then starts to inspect 

whether the requested operations exist in our ontology knowledge model. If all of them exist, it tries to find 

the logistic operations that can connect the requested operations with each other.  It accesses the first 

satisfied requested operation and marks it as current operation. At the same time it performs a search until it 

finds the next satisfied requested operation. If it can not find one or a series of logistic operations that 

connects the current operation to the next one, it indicates that it can not connect the two operations. After 

that it moves to the next satisfied operation and tries to do the same searching process until it finds next 

requested operation.  

Figure 7 shows an example of two different requirements and the results produced by the decision engine. 

The facts about our environment (see Figure 5) show that the drilling operation comes after the hole testing 

and not vice versa. We were able to infer that by performing a search through the graph-like structure of the 

operations. The ‘Requirements I’ can be satisfied because the operations are available and a logistic path 



exists between them while the ‘Requirements II’ can not be satisfied because there is no logistic connection 

between hole testing and drilling. Also this figure shows that the system can produce two different 

configurations in the (Drilling_Sorting section) and (Hole_testing - Sorting section), since the decision 

engine concluded that the picker can pick the workpiece from two different locations (the receptacle and 

rotary_hole of the rotating table) as both are within the given range of picking in the ontology. 

E. Deployment Manager 

After successfully generating a new configuration of the system, the deployment manager deploys the 

new configuration on the distributed controllers of the system. The deployment process of the new 

configuration is not a straight forward process for the reason that different devices are controlled by 

different controllers. Thus the deployment manager uses the knowledge model of the manufacturing 

environment to determine the tools that execute the operations in the new configuration and then it identifies 

the controllers that control these tools. After that it divides the new configuration into sub-configurations 

according to the distribution of the controllers and then deploys the sub-configuration on the right 

controller.  

Figure 8 shows an example of division of the new configuration (Hole_testing_1   Rotation_2  

Drilling_1   Rotation_3  Kicking_1  Picking_1  Sorting_1) into two sub configuration: sub-

configuration I (Hole_testing_1   Rotation_2  Drilling_1   Rotation_3  Kicking_1) and sub-

configuration II (Picking_1  Sorting_1). In the example, the deployment manager determines all the tools 

that execute the operations of the configuration via ‘requiresOperation’ property and then identifies the 

controllers of the tools via the ‘controlledBy’ property. Subsequently, it divides the generated configuration 

into sub-configurations according to the identified controllers (Machine_I_Cntrl, Machine_II_Cntrl) and 

then distributes and deploys the new sub-configurations across the low level controllers. 



The proposed low level controllers of our system have to be in compliance with the IEC 61499 function 

block standard [22], which provides modular design with well-defined interfaces, portability and transparent 

mapping of applications to different hardware configurations. 

The detailed description of the low-level control architecture is beyond the scope of this paper due to the 

space constraints. In short, in our proposed design, each controller consists of a function block for each 

device, player function block, and object transfer adapter function block. Each device function block 

encapsulates all the functionalities of the device. The player function block is connected with deployment 

manager and also with all the function blocks of the devices, in order to deploy the given sub-configuration 

in the controller. The object transfer adapter controls the transfer protocol between the controllers. Figure 9 

shows the proposed low level controllers of our system. 

VIII. FUTURE WORK 

The future work can be categorised into three different categories. The first category involves improving 

the current reconfiguration agent prototype in terms of decision making skills, architecture, analysing, etc. 

The second category involves improving the use of ontology in representing the manufacturing environment 

and manufacturing specification. The third category includes integrating the reconfiguration agent with the 

embedded controllers.  

Improving the current prototype involves improving the problem solving skills of the agents in terms of 

solving more complex problems. One way of improving this is extending the architecture of the decision 

engine or adding new components that can fully utilise OWL-DL knowledge inferring and decidable 

reasoning capabilities.  

The ontological knowledge model of our simple manufacturing environment can be improved with the 

addition of floor specifications to the current knowledge model instead of having it in a separate XML file. 



At the same time requirement specifications can be represented using ontology. This will enable the agent to 

reason and infer knowledge about the specifications. 

Our current research is moving towards integrating the reconfiguration agent with the distributed 

controllers of our system’s low level components. This will enable the agent to interact and communicate 

directly with the controllers of the components for the purpose of immediately deploying the new 

configuration. The distributed low level controllers of our system have been developed in compliance with 

the IEC 61499 standard. 

IX. CONCLUSION 

The developed ontology-based reconfiguration agent is an intelligent reasoning software agent that allows 

the manufacturing system to adapt to changes in the manufacturing requirement and/or environment by 

generating an alternative or a new feasible configuration. The new configuration consists of a sequence of 

manufacturing operations that is available in our manufacturing floor and satisfies the current 

manufacturing requirement. The software agent intelligently decides the new manufacturing configuration 

using the inferred facts about the ontological knowledge model of the environment and the extracted 

information about the floor specification and the given manufacturing requirements.  

The agent prototype has been implemented using Java platform in conjunction with Eclipse IDE. Jena - an 

open source java framework that provides a programmatic environment for OWL - has been used for 

representing the ontological knowledge model of the manufacturing environment. Pellet - an open-source 

Java based OWL-DL reasoner - has been used as a rule-based reasoner to work in conjunction with Jena 

framework. 

The prototype of the reconfiguration agent has been used to solve small reconfiguration problems. The 

agent uses the knowledge model to infer knowledge about the environment. Subsequently and according to 

the derived facts from the knowledge model, it generates solutions to these reconfiguration problems if 



possibly achieved. Each solution consists of new feasible configuration which is divided by the agent into 

sub-configurations according to the distribution of the embedded controllers in the system. 
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List of figures and their captions 
 
 
Figure 1. Machine I, Machine II, Conveyors, and Machine III work together form a small manufacturing 

environment. Machine I (Processing Machine) is used for processing work pieces while 

Machine II (Handling Machine) is used for handling and sorting work pieces. Simple 

Conveyor chain is used for moving the work pieces while Machine III (Filling Station) is used 

for filling the pieces with the right coloured liquid. 

Figure 2.  Two different production scenarios are shown in this figure: scenarios (i) with all functional 

mechatronic devices, and scenario (ii) with faulty mechatronic devices. Both scenarios satisfy 

the requested requirements. 

Figure 3.  The knowledge base of a particular domain. 

Figure 4.  Ontology describing the knowledge model of our testbed (Tbox). 

Figure 5.   Facts instances (Abox) of our model environment 

Figure 6.  The layered architecture of the ontology-based reconfiguration agent 

Figure 7.  An example of two different requirements 

Figure 8.  An example of the new configuration division. 

Figure 9.  The layered proposed low level controllers of our system. 
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