
SMCC-07-11-0291.R1 1

Abstract—This paper presents a new framework for design and

validation of industrial automation systems based on systematic

application of formal methods. The engineering methodology

proposed in this paper is based on the component design of

automated manufacturing systems from intelligent mechatronic

components. Foundations of such components’ information

infrastructure are the new IEC 61499 architecture and the

Automation Object concept. It is illustrated in this work how these

architectures, in conjunction with other advanced technologies,

such as UML, Simulink and Net Condition/Event Systems, form a

framework that enables pick-and-place design, simulation, formal

verification, and deployment with the support of a suite of

software tools. The key feature of the framework is the inherent

support of formal validation techniques achieved on account of

automated transformation among different system models. The

paper appeals to developers of automation systems and of

automation software tools via showing the pathway to improve the

system development practices by combining several design and

validation methodologies and technologies.

Index Terms—manufacturing automation, mechatronics,

software reusability, software verification and validation

I. INTRODUCTION

HE major challenge of embedded system design has been

recently defined by Henzinger and Sifakis in [1] as the

ability to achieve the following goals:

(1) encompass heterogeneous execution and interaction

mechanisms for system components;

(2) provide abstractions that isolate the design

sub-problems requiring creativity from those that can

be automated;

(3) scale by supporting compositional, correct-by-

construction techniques; and,

(4) ensure the robustness of the resulting systems.

In particular, it is emphasized that “shortcomings of current

design, validation, and maintenance processes make software

the most costly and least reliable part of embedded

Manuscript received November, 17, 2007. The work was supported in part

by the research grant VAIAS of the German Ministry of Education and

Research, and by the University of Auckland research grant SRF 3607893.

Valeriy Vyatkin is with the Department of Electrical and Computer

Engineering, University of Auckland, New Zealand (phone: +64-9-3737599

ext. 89437, e-mail: v.vyatkin@auckland.ac.nz).

Hans-Michael Hanisch is with Institute of Information Sciences, Martin

Luther University of Halle – Wittenberg, Germany.

Cheng Pang and John Yang are with the Department of Electrical and

Computer Engineering, University of Auckland, New Zealand

applications” and the main “culprit” of that is “the lack of

rigorous techniques for embedded systems design”. The

conclusion of [1] states that “…embedded systems design

requires a more holistic approach that integrates essential

paradigms from hardware and software design and control

theory”. The key features of such an approach are “shift of the

emphasis from design synthesis to design verification—the

proof of correctness”, and “frameworks supporting

transformations across heterogeneous model boundaries”.

Very similar challenges have been recognized and dealt with

in the industrial automation domain (e.g. see [2]), which

includes good deal of embedded control systems design for

manufacturing applications. In automation, the central part of

the design concerns with development and programmatic

implementation of control logic, and the ultimate design

success criterion is the correct behaviour of the controlled

manufacturing system. This is ensured by verification and

validation (V&V) of the controllers through debugging and

testing of their code, using simulation, and applying

correct-by-design techniques. In particular, computer

simulation is widely used for prototyping automated

manufacturing systems and, less often, for verifying actual

controller code (e.g. Control Build Validation software suit

[3]). However, even the simulation-based debugging cannot

reveal all potential pitfalls of control logic, especially when it is

decentralised. As a result, complimentary techniques of

mathematical proof of correctness (known as formal

verification [4]) are being actively researched. One such

technique is model-checking [5-7]. Model-checking can be

used to analyse the embedded control part, including the

control logic and some details of the underlying run-time

platform, or the entire closed-loop plant and controller system.

The first approach is most common in verification of classic

embedded systems and business software. The environment is

considered there as an input to the embedded control and some

non-determinism introduced in such inputs can help in proving

the robustness of the verified embedded system.

Contrary, control systems are usually analyzed using

closed-loop models. Model-checking using only an open-loop

model of the controller may help to identify some undesired

controller reactions. However, it is by no means appropriate to

verify the correct behaviour of the controlled object which

indeed is the major point of concern. This simple truth has often

been (and is still) misunderstood or even neglected. In fact, no

liveness property can be proven by an open-loop model. It is

basic knowledge in automation technology that closing the

control loop significantly changes the behaviour of both the

Closed-Loop Modelling in Future Automation

System Engineering and Validation

Valeriy Vyatkin, Senior Member IEEE, Hans-Michael Hanisch, Senior Member IEEE,

Cheng Pang, Member IEEE and Chia - han Yang, Non-member

T

SMCC-07-11-0291.R1 2

plant and the controller. Therefore, any claim that an open-loop

analysis of behaviour would prove the correctness of the plant

behaviour under control is wrong. There is a growing

recognition of the benefits of the closed-loop approach in the

research community dealing with formal verification of

industrial automation systems, as justified, for example, in

[8-10]. The main problem for wider adoption of the closed-loop

verification is the lack of model design methods, which can

transform this activity from a kind of art to a systematic routine,

well integrated into usual activities of control engineers.

This paper addresses the issue of model development and

reuse to cater for the closed-loop verification and validation

techniques in industrial automation domain. A

model-integrated design framework is proposed, which follows

the object-oriented design principles based on using intelligent

mechatronic components for design of automated

manufacturing machines and systems [11-13]. The framework

facilitates the closed-loop V&V of complex systems with

decentralised control logic by supporting simulation,

formal-verification and code deployment. As the

implementation concerns, the proposed ideas can be used to

extend the existing engineering support software tools, or as a

foundation of new toolsets, by combining system design with

the closed-loop V&V capability.

The main motivation for the formal verification research in

automation so far has been improving the overall safety and

robustness by finding bugs or undesired features, which could

not be revealed by testing, either on real or simulated machine.

In this paper another hypothesis on the utility of formal

verification is presented and justified in the context of

reconfigurable and adaptive manufacturing systems [14].

Testing of new configurations of control systems obtained as a

result of physical reconfiguration of automated manufacturing

systems becomes the main bottleneck for their fast

commissioning. Therefore, an automated verification can

essentially contribute to systems’ flexibility.

The paper is structured as follows. Section II presents the

problem statement and outlines the goal of this work. Section

III outlines the features of the proposed engineering framework

and the corresponding data flows to justify the needs for

component-based design and the corresponding requirements

to automation system’s internal component organisation. The

most important gaps between the proposed framework and the

existing model-based engineering concepts are identified in

Section IV. The key role of the IEC 61499 standard in bridging

the practices of control systems design, software design, and

the industrial automation legacy is also elaborated in Section

IV. Then, the overall modelling structure is proposed in Section

V, which is the base for designing model templates and is

common for the analytic, simulation, computation and

verification models. The discrete-state modelling is discussed

in Section VI. In particular, the concept of transforming the

hybrid Stateflow model to the equivalent discrete model in

timed Net Condition/Event Systems is presented. Section VII

presents the rationale and details of using formal verification

for proving the correctness of new system configurations

obtained as a result of a reconfiguration process. Then, Section

VIII briefly explains the set of software tools used in the

prototype implementation of the framework and the first

application’s experiences are then analyzed. The paper is

concluded with a short summary and a plan for future work in

Section IX followed by acknowledgements and references.

II. PROBLEM STATEMENT

Computer-aided verification and validation of automation

systems requires models of machines’ behaviour. Building

these from scratch for every machine is very effort-consuming

and thus not practical. A structural model composition

approach is required, which is not only modular, but also

reflects the hierarchical structure of manufacturing machines

and systems.

In addition, computer simulation cannot reveal all the design

pitfalls and cannot cope effectively with distributed systems,

and reconfiguration. Thus, it needs to be appended by the

automated formal verification techniques. Formal verification,

in general, requires different type of models than simulation.

Traditionally, the research effort on improving the efficiency

of embedded automation systems design was concentrating

around programming technologies, like controller design

patterns, refinement of high-level specifications to executable

code, and validation of embedded controllers, regarding them

as yet another embedded computer application. As a result,

there is no design framework which can efficiently support

model development, use and re-use as a consistent part of the

automation software development cycle.

This work aims to propose:

• an architecture and design flow of automation systems

which can accommodate behavioural models at every

object scale and design stage;

• systematic modelling methods, based on the use of model

templates, automatic model transformation and their

re-use; and,

• closed-loop verification and validation procedures

integrated with controller development.

III. MODEL-INTEGRATED DESIGN

In this work it is assumed that a new system, such as a

machine or a production cell, is built from available intelligent

mechatronic components (IMC), which are provided by their

vendors along with controllers programmed to perform a

certain set of operations, and with the ability to communicate

with each other by means of messages and shared data. The

controllers can be represented in an abstract model form or in

some programming language, and can reside and be executed in

the IMCs’ embedded control devices (if any).

An overview of the design flow is presented in Fig. 1 and is

explained as follows. It is assumed that the design will be

computer-aided and facilitated by a software toolset, but not

necessarily fully automatic. In the first design step of a new

SMCC-07-11-0291.R1 3

Fig. 1. Sketch of the engineering framework supporting the integrated

validation

system, a tool similar to the usual computer-aided design

(CAD) tools will facilitate capturing the system’s concept (item ① in Fig. 1) by picking IMCs from a library ② and placing

them into the design space ③. It is also assumed that an IMC is

provided by its vendor along with a repository of software

components and models (further referred to as repository of the

IMC intellectual property (IP) or IP repository), such as

embedded controllers implementing its basic operations,

rendering components visualizing its operations, and modelling

components for simulation and verification. With the

standardized interfaces and common protocols for

inter-component communication, it will be possible to integrate

IMCs one with another seamlessly in a plug-and-play way. The

result of the integration is the overall system model consisting

of a set of interconnected component models and integration

models (e.g. protocols). Such system model enables

closed-loop simulation and formal verification using the

corresponding software tools ⑥ , ⑦ . Thus, the executable

high-level specification of the system’s controller will be

assembled from the constituent embedded controllers possibly

with some central controller-coordinator. The tool will

facilitate mapping of the executable specification of the

system’s software onto a particular configuration of distributed

networking hardware ⑧. Models for different verification and

use activities (e.g. simulation, model-checking, execution) can

be translated one to another, that is achieved by using common

structure and interfaces in all model types. Verification will

check whether the integration process has resulted in the

desired behaviour of the entire system.

To illustrate the proposed ideas, a mechatronic system called

Workpiece Distribution Station, or WDS, as shown in Fig. 1 ①

will be used throughout the paper. The system consists of three

mechatronic components: a Storage unit, a Transfer unit, and a

control Panel with buttons. The Storage unit is composed from

two parts: a Magazine storing a pile of workpieces and a Feeder

shifting the lowest workpiece in the pile to the output position.

The Magazine is equipped with a sensor that detects the

presence of workpieces in the pile. The Feeder has two end

position sensors: one for the retracted position and the other for

the extended position of the Feeder’s cylinder shaft. The

Transfer unit grasps a workpiece at the output position of the

Storage using its vacuum suction and carries it to the

subsequent station. In our experiments two types of Transfer

units with slightly different parameters are used. The first

Transfer unit (L-Transfer) uses a stepper motor to drive the arm

at a constant speed. The second Transfer unit (NL-Transfer) is

driven by a DC motor whose speed changes continuously at the

start-up and slow-down phases.

Fig. 2. Workpiece Distribution Station design scenario: fixed system structure

with replaceable components

One particular design scenario of the WDS system is

demonstrated in Fig. 2. The WDS has a fixed structure, of a

Transfer unit picking up workpieces from the Storage and

dropping them to some transportation system on the other side.

There is a variety of available IMCs, each of which can be

inserted into the system. However, the requirements of the

system’s behaviour do not change with the replacement of any

mechatronic component. Validity of the same requirements

needs to be verified for each new configuration. The

requirements can include safety conditions, liveness (lack of

deadlocks), functional correctness, and so on.

Fig. 3. MVC design pattern architecture

In our approach, the internal architecture of the components

in the knowledge repository follows the object-oriented

Model-View-Control (MVC) design pattern [15], adapted by

Christensen in [16] to the domain of industrial automation and

integrated with the IEC 61499 standard architecture [17].

According to the MVC pattern as indicated in Fig. 3, the core

part of the IMC software is organized from two interconnected

components:

• Autonomous (low-level) Controller, which implements

a set of operations, published as services to be used

directly or by higher level controller-coordinator, and

SMCC-07-11-0291.R1 4

• Object, which provides an interface to the input/output

signals of the IMC, or to one of the behavioural Models

included in its IP repository.

The behavioural Models, provided in the IP repository, can be

used for verification of the standalone IMC’s behaviour, or as

building blocks for creating the behavioural model of the whole

system. The identical interface makes the Model component

interchangeable with the Object component, thus providing an

easy pathway from simulation to deployment. The combination

of these two functions enables simulation of the system in

closed-loop with the actual, ready for deployment control code.

Moreover, the simulation model is obtained with a high degree

of components’ re-use.

Additionally, the View component supports interactive

simulation by rendering the system’s status based on the

parameters provided by the Model. It also can be re-used in

different deployment scenarios. Being connected to the real

object instead of the model, the View component will render

the object’s status in real time. Other functions, such as

Diagnostics and Database Logger are also fed by the data from

the Object or the Model. In contrast, the Human-Machine

Interface (HMI) component is connected in the closed-loop

with the controller.

Fig. 4. Component design of a manufacturing system from the mechatronic

component

The MVC pattern allows precise closed-loop simulation and

formal verification of complex mechatronic systems by

re-using models of their constituent parts as seen in Fig. 4 for

our illustrative example. Models and controllers of two

mechatronic components are taken from their IP repositories

and connected one with another in closed-loop. Models of

different IMCs are connected with each other, via standardized

interfaces, when such a connection is imposed by the system’s

structure.

As a result, the model of the system’s behaviour can be

designed with 100% re-use of the component models. The

controllers enclosed in the knowledge repositories are intended

to be re-used to the maximum extent, but some changes may be

inevitable. The controller-coordinator in many cases will be

required, although it can be avoided in some cases where each

IMC has autonomous behaviour with loose dependence on the

surrounding IMCs. In such cases, the IMCs’ coordination can

be purely interlock-based as proposed in [18]. The resulting

system model can be used in the corresponding V&V activity.

Finally, the controller and the model of the whole system can be

included into the system’s IP repository.

IV. ENABLING TECHNOLOGIES: RELATED WORK

There are existing integrated model-based engineering

frameworks, such as Matlab/Simulink and Unified Modelling

Language (UML), but still they do not cover the full spectrum

of needs and thus cannot be used consistently throughout the

whole engineering process as outlined in the previous section.

UML accumulates several practices from software

engineering on refinement of specifications to executable code

but lacks the support of thinking in the control engineering’s

way. Consequently, UML has no means to support simulation

with necessary precision and weakly supports the system’s

deployment to distributed embedded targets.

In contrast, Matlab/Simulink provides sufficient control

engineering support with code generation for some embedded

targets but lacks support of automation architectures, such as

IEC 61131-3 [18]. Reverse engineering is difficult as well as

the mapping to distributed architectures.

None of these frameworks does support formal verification

per se. There are some research works on generation of formal

models from both UML and Simulink representations, for

example [19], but they do not cover the full range of V&V

activities needed in a consistent engineering framework. Thus,

reverse engineering from the formal models back to UML or

Simulink models has not been sufficiently worked out.

In addition to UML and Simulink, the proposed engineering

framework was influenced by and partially relies on the

following concepts and technologies:

• The IEC 61499 function blocks architecture [17],[18] which

provides portable high-level executable specification

framework for distributed automation. As a result, a

complex distributed system combining control,

visualization, simulation, data logging, and so on can be

defined in a single “language” and then can be analyzed and

deployed.

• The ideas of mechatronic architectures and

model-integrated mechatronics as described in [11-13] and

[21], worked out in detail for discrete-state modelling of

mechatronic systems in [19, 22], and [23].

• The concept of Automation Object (AO), following [24]

and [25], and Semantic Web technologies, in particular the

Web Ontology Language (OWL) [26], which can be used as

a mechanism for automatic integration of AOs.

• The progress in discrete-state formal verification

methodologies and tools, and modular formal languages, in

particular Net Condition/Event Systems [8]. There are other

modular formal modelling languages, which can be used in

the discrete-state verification, for instance input/output

automata [27], CNets [28], and MCFSM [29];

• The OOONEIDA approach [30] which suggests re-use of

the models from IP repositories of individual mechatronic

components when a new system is created. The IEC 61499

standard and the Automation Object concept offer an

architectural framework for such repositories.

The central element of the proposed framework is the IEC

61499 function block (FB) architecture. A FB is a component

encapsulating data, algorithms of data processing, interfaces

consisting of event and data inputs/outputs, and an execution

SMCC-07-11-0291.R1 5

control function. There are two types of function blocks:

• basic FBs, where a state machine implements the

execution control; and,

• composite FBs, where the execution control is implicitly

determined by the order of event and data

interconnections among the constituent function blocks.

Fig. 5. An example of a basic function block definition (controller of the

Storage component): (a) interface, composed of event and data inputs and

outputs with associations between events and data; (b) Execution Control Chart:

a state machine describing reaction on events and call of algorithms;

The controller of the Storage mechatronic component in Fig.

5 is an example of a basic FB. The controller implements the

interlocking protocol from [18], which enables easy integration

with other objects on the right and on the left from the Storage.

If compared to UML, the function block architecture

provides a similar level of abstraction for definition of basic

components, namely event-driven state machines and

algorithms in various programming languages. Its distinctive

features include the support of traditional PLC programming

languages (of the IEC 61131-3 standard [19]) inside the

algorithms, explicit component interfaces, composite

components and sub-applications defined as networks of other

components. In our opinion, the most important feature of the

IEC 61499 architecture is the bridging between traditional

computing architectures and control architectures. Being the

architecture for embedded computing systems, the IEC 61499

supports the block diagram way of thinking of control

engineers. Therefore, the use of function blocks to encapsulate

intellectual property related to a mechatronic component

provides a better re-use mechanism and makes the concept

“What You Verify is What You Run” feasible.

When it comes to the deployment to distributed embedded

targets, the use of IEC 61499 provides the following benefits.

First, the function blocks are portable and have

platform-independent execution semantics. Second, unlike

plain software code, they include additional means for

specification and documentation of their behaviour, such as

Execution Control Charts (ECC) in basic FBs. These features

simplify the creation of “parameterized templates” of

functional and behavioural models, which can be generated on

demand for a particular mechatronic device and for particular

states of the system development workflow.

The IEC 61499 architecture provides the means to add or

remove the simulation capabilities dynamically to the real

device by substituting, appending, or modifying the device’s

management and scheduling functions. Thus, both simulation

models and other software parts, such as control, can be

implemented in a coherent way within the same architecture.

Models of this form can be used for off-line simulation, as well

as online for predictive control, as proposed in [31].

A system configuration in IEC 61499 is a model of an

application deployed to computing devices, which can also be

used for exhaustive simulation of a particular distributed

system taking into account details of inter-device

communications. Thus, the use of the IEC 61499 architecture

enables verification of complete distributed control systems.

The key elements of the system models in IEC 61499 are device

and resource types and communication and service interface

function blocks. These model elements can capture such fine

details as the execution time (depending on CPU performance),

memory size, network characteristics, scheduling policy due to

specific network protocols, and so forth. It will be shown in the

next sections that each of these model elements can be further

formally modelled in a discrete-state formalism. The resultant

discrete-state model will have the same structure as the original

function block system, but can be used for model-checking.

V. MODELLING

The IMC’s models required to be included in the IP

repository can be classified in the following categories:

• Functional models consist of description and

implementation of control algorithms, communication

protocols, visualization functions, and so on. In the

proposed framework, the IEC 61499 architecture is used as

an intermediate functionality encapsulation language to

represent such models.

• Behavioural models capture the uncontrolled behaviour of

the object. Since there is no single modelling language

which could be efficiently used in all the required V&V

activities, at least three different forms of model

representations seem to be necessary:

1. A hybrid model in form of a hybrid automaton [33] is a

mathematically rigorous analytic model capturing

both continuous and discrete dynamics of the object. A

hybrid automaton is a state machine where state

transitions happen as discrete events, while continuous

variables change according to some differential

equations assigned to the states. A closest computer

language is the Stateflow diagram of

Matlab/Simulink.

2. Executable behavioural model in form of basic and

composite function blocks of IEC 61499 is used for

off-line simulation in closed-loop with the actual

controller code, or even for embedded online

simulation, enabling predictive control.

SMCC-07-11-0291.R1 6

3. The discrete-state model is mainly needed for formal

verification by model-checking, which is very

computationally hard for the hybrid models. In our case

it is represented in the form of the modular formal

language called Net Condition/Event Systems (NCES)

[8], which is a well established modular discrete-state

and discrete-time place-transition formalism similar to

Petri nets [34], but with additional elements for

modelling communication. NCES preserve the structure

of distributed systems specified in a modular form of

Stateflow diagrams and IEC 61499 function blocks and

enables their formal verification. NCES have been used

in a number of formal verification projects, for example

in the one described in [23].

The set of required functions is determined by the use-case

scenarios of mechatronic components, which are: (i) integration

to a system, (ii) testing, simulation and deployment, and (iii)

exploitation and maintenance. The latter scenario may include

re-configuration of the system.

A mechatronic component may consist of other mechatronic

components. Such a composite component has an additional

description model in form of Mechatronic Object Diagrams

(MOD) similar to object diagrams in UML. A conceptual

example of such a diagram is presented for the Storage in Fig.

7. According to the MOD, the Storage can be seen as a

hierarchical 3-level structure. The Storage object (level 1) is

composed of two simpler mechatronic components, namely a

Magazine and a Feeder (level 2). The Feeder, in turn, consists

of a linear drive based on a pneumatic cylinder and two sensors

indicating end positions of the drive (level 3). Behavioural

models in each level follow the structural templates shown in

the left part of Fig. 7. Thus, the Feeder’s model is composed

according to the template “Single process with sensors” which

fits for purpose of modelling simple mechatronic objects. The

right part of the figure shows the behavioural models of the

Feeder obtained by application of this template. The Simulink

block diagram, generated according to the same template is

presented in Fig. 7, (right, top), with the correspondence

between the Simulink and the function block models illustrated

by arrows.

According to the template the model is composed of three

types of elements explained as follows:

1) Logic status of the process, such as “Moving status” for

the cylinder moving along a linear axis. This part of the

model corresponds to the logic part of the mechatronic

component and describes how to convert the control

signals to the operation status. Therefore, this part is

purely logical and can be implemented as a finite state

machine (FSM).

2) Model of dynamic properties, such as “Linear” in Fig. 7.

This part provides the state of the model that can be

represented by a number of numeric parameters. Their

evolution is best described by differential equations. On

the other hand, reaction on logic control signals requires

purely discrete description mechanisms like FSM.

Therefore, such models are best described as hybrid

automata, whose states can be associated with invariant

functions as follows. The values of continuous system

parameters are assigned according to the invariant

functions of the form I(x, t) = 0 associated with a state,

where x represents a numeric system parameter, and t

denotes local clocks of the state. For example, in Fig. 7 the

“Move forward” state of the Linear model describes the

dependency Pos’:=Speed (first derivative of the

coordinate (Pos) is assigned to the input parameter

Speed), i.e. �����, �� 	 ���
 �
����.

3) Sensors physically present in the modelled object signal

Fig. 6. Structural model of the instance FStorage_w_CTL of the class Storage with Control, the design templates, corresponding to different system levels.

SMCC-07-11-0291.R1 7

that certain parameters are within a certain range of

values. For instance, the end-position sensors of the

Feeder indicate the piston’s position in the intervals [0%,

5%] and [95%, 100%] of its working interval.

The model’s elements are connected to each other via

graphical links representing data flow. For example, the model

of the dynamics “Linear” passes the numeric value POS (an

integer within the interval [0, 100]) to the models of both

sensors.

Such a modular model structure enables re-use of model

components. For example, there could be two almost identical

pneumatic cylinders, different only in their control signals. One

cylinder could require separate signals for moving in each

direction, while in the other one the high level of the same

signal commands to move the piston forth and the low level

drives it backwards. In this case, the models will be different

only in the “Moving Status” element. Another benefit of such a

modular structure is the opportunity to model explicitly

malfunctions of certain elements, such as sensors, and see how

the control logic reacts on it. The malfunctions can be modelled

by adding non-determinism to the behaviour of some sensors.

For doing that one just needs to substitute the model types of

certain components, for example change type of the function

block instance HOME_SENSOR from “Sensor” to some new

type “Sensor_with_Fault”, and program it accordingly.

Fig. 7. The data-flow in the model co-design and model transformation

The template-based model design need be complemented

with automatic model transformations in order to reduce the

model-development effort. The flow of possible model

transformations is illustrated in Fig. 8. At first, the CAD tool

creates the structural model of the system captured in the MOD

form. Then, the MOD can be refined into a Simulink block

diagram based on a particular model template. Both the

Simulink block diagram model and the MOD can be the source

for automatic generation of the function block model and

modular discrete-state model (e.g. in NCES). In addition, the

function block model can also be used to generate the NCES

model [35] and vice versa. The model-transformation

capability will add more freedom to the designer, allowing

original model development in the language best fit to the

actual problem.

On the other hand, the MOD can also include descriptions of

various relations between the components, for example

directions and properties of material flow, as shown in Fig. 6.

These descriptors can be used for automatic generation of the

material passing parts of the model, for example, between

Magazine and Feeder, or between Storage and Transfer.

Discrete material flow between components is implemented

using the Producer-Consumer protocol with buffer of size 1.

The implementations of the protocol in two of three modelling

languages (NCES and function blocks) are provided in Fig. 8.

The NCES model is simplified and does not include passing of

the workpiece type from module to module. The working

scenario of the protocol is presented in Fig. 8(c).

Fig. 8. The discrete “token” passing protocol between two models of

mechatronic components, implemented in a) NCES, b) function blocks; c) a

working scenario

VI. DISCRETE-STATE MODELLING AND MODEL-GENERATION

Discrete-state model-checking of an automation system can

be used to prove the controller’s safety (i.e. avoidance of

undesired behaviour), correctness (compliance with the

specifications) and robustness (i.e. correct reaction on some

unexpected behaviour of the plant). Considerable progress has

been achieved recently in modelling of programmable

controllers using different discrete-state formalisms, both

traditional PLC based (a survey is presented in [36]) and

distributed, based on IEC 61499 (e.g. [37, 38]). Some of such

approaches take into account fine but important details of

program execution in embedded control devices, such as data

interfacing, reaction on external events, multi-threading, and

dynamic reconfiguration (e.g. [39]), The control logic (in a

particular environment of operating system, runtime

environment, etc.) must be verified in closed-loop with the

model of the plant, as discussed in Section I. Having the explicit

model of the plant can be beneficial for many reasons, even to

SMCC-07-11-0291.R1 8

reduce the complexity of model-checking. By introducing

certain non-determinism in particular parts of the plant model,

for example to the models of sensors, actuators, or

communication lines, one can expose the controller to a more

realistic range of inputs than it can be done in the simulation.

In the proposed framework the NCES formalism is used for

discrete-state modelling. Its modularity can preserve the

structure of discrete-state model in the analytic and simulation

models. Thus, the controller part of the closed-loop model can

be automatically generated. The plant part still has to be

designed manually. Then, the modular discrete-state NCES

model of the system can be used for state-space

model-checking. Moreover, similar to function blocks, the

modular nature and support of type instantiation allow existing

NCES models to be re-used with minor changes.

In order to facilitate the development of plant models, the

model-transformation and structural templates are applied.

NCES models of dynamic properties are generated from hybrid

Stateflow models using the straightforward discretization

technique, presented in the following. In short, the

discretization, for a given grid of the model parameter values

{x1, x2,…, xn}, finds the corresponding clock readings {t1,t2,…,

tn} in which the hybrid model’s parameter takes these values.

Then the clock readings are used to parameterize the discrete

timed model.

Let us assume that the original hybrid automaton HA is

defined by state transition rules of the following kind:

�/���, ���
������
���, where each state S� has associated clocks

ti, which are reset to zero when the state becomes active, x is a

continuous parameter, and ���, �� = 0 is a function defining an

invariant while
� is an active state. The predicate � = D

defines the guard condition of the transition, i.e. transition to

��� occurs when x reaches the value D.

The discretization transformation of the HA to a discrete

NCES model is done via an intermediate timed automaton

(TA): HA + discretization info → TA → NCES. Consider the

case of spatial discretization, when the interval of length D

(domain of a model’s parameter, e.g. coordinate) is divided into

N subintervals of equal length. The corresponding timed

discrete model needs exact values of times corresponding to the

coordinate grid points.

The original hybrid automaton HA is transformed first to a

timed automaton TA by converting each transition rule of the

HA to a sequence of rules
� = �!�
"�#�������� ���

"�#�$������ …
"�&�'������ �'� = S��� with the guard conditions defined by the

function (�)� = �*+� ,�- i/, where �"+��0� is a root of equation

��0, �� = 0 for a given a, i.e. �*+����: �2�"+����, �3 = 0 ∀� (in

case if the equation is not easily solved analytically, a numeric

solution can be used).

For example, let’s consider the linearly moving shaft of the

cylinder in Fig. 10. For the state “Moving forward” the

invariant function I is I(x,t)=x(t)’+Speed = 0. The solution of

this equation is T�)� = �+�������� = �∙�
-∙7899: . Assuming

D=100, the number of discretization grid points N=4 and

Speed=5, the time values to be used in the transition conditions

of the TA will be: T�)� = ;5)|) = 1,4@ = 5, 10,15,20.

Fig. 9. Using the model of dynamic properties of the cylinder (hybrid state

machine encapsulated in function block LINEAR) for automatic generation of

discrete models.

The use of NCES is especially beneficial for modelling of

distributed systems, composed of several of such timed

automata “running” concurrently. Each timed automaton TA

can be trivially coded in terms of timed NCES, by encoding

each state by a place and associating the i-th arc with the

interval [T(i), ∞] (in timed NCES an interval [l, h] is associated

with a place-transition arc where l denotes the lower bound of

the permeability time interval and h corresponds to the upper

bound).

The transformation is illustrated in Fig. 9 for the “Linear”,

hybrid automaton model. In this example, the role of x is played

by Pos, and the state invariant looks like: Pos’+Speed = 0. The

hybrid “Linear” module is used as the source for two purely

discrete-state models, explained as follows.

The one on the left-hand side is a very simplified 3-state

model of the linear movement that distinguishes three

positions: home (place p1), end (p3), and in between (p2). This

model distinguishes static and dynamic states of the drive, but it

does not reflect precisely the location of the piston while in

movement.

The model on the right is obtained by the discretisation of the

cylinder’s interval into 4 segments of equal length, assuming

the Speed=5% of the interval per time unit. A token in places

p2, p3, p4, p5 models the position of the cylinder in one of the

intervals. Using this model, it will be possible to distinguish

between positions of the cylinder.

Both models can be used in place of the “Linear” module in

the network in Fig. 7 (right, bottom). Depending on the used

model, the precision of model-checking and its complexity (i.e.

the number of reachable states) will be different. The

discretisation is an engineering trade-off which obviously

decreases the precision of continuous parameters. In return it

allows checking closed-loop systems, having reasonably

complex controllers and reasonably detailed plant models. The

hybrid “Linear” model can be also easily implemented as the

SMCC-07-11-0291.R1 9

corresponding function block.

VII. FORMAL VERIFICATION FOR

NEW CONFIGURATION TESTING

The verification experiment described in this section follows

the design scenario illustrated earlier in Fig. 2. Once the new

system is designed from the corresponding IMCs, its simulation

and verification models will be automatically “assembled” and

then the verification can be performed. The examples of the

invariant conditions describing the allowed or forbidden

situations for the whole system are as follows:

1) The Transfer and workpiece in the Feeder never collide;

2) The Transfer is not attempting to return to the Storage with

a workpiece when there is another workpiece in the

extended Feeder. Such a situation can happen when the

delivery area of the Transfer gets occupied while it moves,

so the controller of the Transfer may decide to go back;

and,

3) A workpiece is released by the Transfer only at the

unloading position, opposite to the Storage unit.

The verification will check the validity of the model’s

behaviour against the specifications, highlighting those

invariants which failed for the given model. Then the

simulation models will be used to illustrate the failures by

playing back the animated behaviour leading to the failure.

Following this way, errors in controllers can be easily detected

to avoid the time consuming testing process.

In particular, problems can arise when integrating

mechatronic components with controllers not tailored to each

other, but designed according to an interlocking protocol.

Slight differences in the protocol implementation in one

communicating side can lead to completely different behaviour

of the system. In the described experiment, one of the used

Storage units had a controller incorrectly setting the

interlocking condition “ALLOW_RIGHT”, which enabled

Transfer to approach right after it has started pushing the

workpiece from the left position, rather than on arrival to the

right position. Conducted simulations did not reveal any

problem in the system’s behaviour. However, the

model-checking has shown a situation when the collision of the

Transfer and the workpiece can happen. The problem shows

itself only when a very light workpiece is followed by a very

heavy one in the magazine. As illustrated in Fig. 10 (a), in this

case the Transfer returns back to the Storage before the

workpiece arrives, and the workpiece hits the sucking nozzle of

the Transfer. The figure shows the x coordinate of both Feeder

and Transfer as a function of time. Two trajectories are shown

for the Transfer, one for the light workpiece (gray line) and the

other (thick black line) for the heavy. The Feeder’s trajectory is

shown for the case of the heavy workpiece.

The specification of the collision needs to take into account

that the Transfer is already in the “potential collision area”,

while the Feeder enters its potential collision area (Fig. 10(b)).

One sees in Fig. 10(a) that the collision does not happen if a

heavy workpiece follows another heavy one. The

model-checking of the discrete-state timed NCES model

explores all possible combinations of workpiece sequences in

the magazine and includes the scenario leading to the collision.

(a)

(b)

Fig. 10. The use of hybrid model analysis to find proper discretization intervals

including the collision events. a) fce=feeder collision event, tce=transfer

collision event; b) enlarged collision area

In real-life applications it is expected that the reasons leading

to the failures will be fixed by the designer manually (in the

code of controllers). As a result of this process, the system will

be commissioned only if it is free of any errors and fully

complies with the specifications.

The structural and semantic similarities of NCES and

function blocks help to identify not only the overall design

pitfalls but also the specific function blocks causing the

problem. The similarity of the NCES and the FB models can be

seen from Fig. 6. The NCES model has the same topology as

the original function block network while each constituent

module also has a similar interface compared to its counterpart

function block.

Although the hybrid model-checking is computationally

complex to be used for comprehensive model analysis of

closed-loop models, especially with a sophisticated controller

part, it can be extremely useful in the validation framework if

applied in a limited scale, which can be illustrated in the sample

system as shown in Fig. 10.

The events of entering the potential collision areas are

determined by the coordinate of each object and need to be

included in the behaviour of their respective NCES models.

Provided that the position in those models is generated by the

discretized counterpart of the “Linear” model (from Fig. 9), the

timing intervals on the arcs need to include the time of such

event occurrences. The collision points can be derived

absolutely formally by exposing the system’s hybrid model,

which can be obtained following the pattern in Fig. 4 as a

combination of the “black box” models of the Transfer and

SMCC-07-11-0291.R1 10

Feeder dynamics plus models of their controllers, to the

CheckMate model checker [40] that works with

Matlab/Simulink Stateflow.

Fig. 11. Full CheckMate model for finding collision time of the

FEEDER-TRANSFER system

Fig. 11 presents a sample CheckMate model which may be

used to find the collision point of the system once it is modelled

properly in Simulink. This model is built in order to verify

whether the collision between the Feeder and Transfer will

happen. The CheckMate model is constructed by combining

standard Simulink blocks (Finite State Machine Block

(FSMB)) with two custom block types: Polyhedral Threshold

Bloc (PTHB) sets up the constraints regarding to the positions

of Feeder and Transfer (i.e. “tate” presents “Transfer at

Extended position” and “fatr” presents “Feeder at Retrieved

position” etc). The Switched Continuous System Blocks

(SCSB) sets the initial values and the parameters relating to this

verification scenario. FSMB contains the hybrid state models of

the closed-loop control system that is verified. For each type of

workpiece the corresponding movement duration (from start to

the entrance of the collision area) can be derived and included

in the timed NCES model as described in Section V.

In order to find the collision time of the Feeder and Transfer

units, Matlab/Simulink and CheckMate were used to model

both the plants and the controllers of the two units. The model

is built based on the assumption where the collision happened

when both Feeder and Transfer enter the “dangerous zone” (as

per Fig. 11). There are several ways one can find the collision

time with Matlab/Simulink package, one of which is to use

CheckMate as demonstrated here. In Fig. 12, the closed-loop

model of the system containing Feeder and Transfer is built,

and the scope monitors the positions of the two units and plots

them in respect to time.

In the scenario described in Fig. 12, the collision happened at

time 118.75 sec after arrival of “workpiece available signal”.

This is when both Feeder and Transfer enter the dangerous

zone. Therefore the discretisation rate must be chosen so that

this collision point at time 118.75 sec will be included in the

grid.

VIII. TOOLS AND EXPERIENCES

The V&V framework for Intelligent Mechatronic

Components outlined in this paper has been partially

implemented in a number of software tools. In its current state,

a mechatronic system can be initially modelled in function

blocks using FBench [41], which is an open-source integrated

extensible development environment for engineering,

simulating, analyzing, and deploying IEC 61499 applications.

The function block models of controllers are then automatically

translated into the functionally equivalent NCES models by the

NCES model generator plug-in of FBench, while the plant

models are manually created in the Visual NCES Editor (ViEd)

[42]. ViEd is a full-featured editor for designing and editing

NCES models represented in XML files, which can be stored in

a common repository to accelerate the modelling process. The

NCES models are then assembled and visually analyzed and

verified using the model checkers implemented in the Visual

Verifier (ViVe) [42] with safety and liveness properties, for

example, specified in both computational tree logic [43] and

predicate logic. ViEd and ViVe have been integrated and form

the Visual Verification framework. Furthermore, the Web

Ontology Language and the Protégé tool [44] are used as a

framework to define interrelations between models as proposed

in [45].

The presented design methodology has been applied in

several research projects, starting from the testbed consisting of

three mechatronic stations whose implementation was reported

in [46], and extending the scale by an order of magnitude as

described in [31, 48-50]. The design templates and model

transformation can be efficiently applied to the graphical

models of Simulink, function blocks, and NCES using the

graphs transformation approach supported, for example, by the

AGG software tool [51].

Both qualitative and quantitative benefits were meant to be

achieved and the conducted laboratory experiments prove these

expectations. The qualitative benefits are in enabling the design

of more intelligent automation systems having better

reconfiguration potential than the existing systems, and higher

reliability and robustness. This is a clear advancement as

compared to the state of the art in industry, where the

simulation in the loop with the actual, ready to be deployed

code is not common. The use of IEC 61499 function blocks and

of the MVC pattern enables this scenario, and the model

transformations allow the application of model-checking in the

cases when analytic methods and hybrid verification are not

applicable for complexity reasons. Another qualitative benefit

is the possibility of running “embedded simulation” in the

deployed configurations, providing systematic use of the

predictive control concept. The quantitative benefits are in

reduced design effort for creation of new systems and of their

reconfigurations.

SMCC-07-11-0291.R1 11

IX. CONCLUSIONS AND OUTLOOK

This work attempted to outline the methodology of holistic

automation systems design which inherently supports a range

of verification and validation scenarios as a part of system

development. The architecture of the corresponding design

framework is presented, and the underlying models are

proposed. It is shown how the IEC 61499 architecture provides

the executable specification level that enables this

methodology. In particular, it is shown which features are

essential and how they are to be applied in order to implement

the holistic design concept and benefit from it.

In order to integrate models of plant behaviour in all

verification and validation scenarios, a method for structural

design of such models is proposed. The method is implemented

in the form of graph templates supported by standardized

interfaces and protocols and model transformation techniques.

The latter allow deriving from analytic Simulink/Stateflow

diagram both an executable function block simulation model

and modular discrete-state model suitable for state-space

model-checking. The discretization algorithm is presented in a

constructive way along with a method for deriving the

discretization interval using the hybrid model (in Matlab

Simulink/Stateflow and CheckMate). Summarizing, the

reported results of the on-going research contribute to solving

the grand challenge [1] by developing a way to encompass

heterogeneous execution and interaction mechanisms for

system components (analytic, simulation and verification

models and scenarios), provide abstractions that isolate the

design sub-problems requiring human creativity from those that

can be automated (e.g. automatic model-generation for models

of controllers and model transformation for models of plant),

which enables correct-by-construction models (developed

following the proposed templates and patterns), and eventually

ensures the robustness of the entire system.

However, the amount of work to completely solve the

“embedded grand challenge” in the industrial automation

domain is still enormous and cannot be accomplishedd by the

work of one group of researchers. Our efforts will be focusing

on the development of standardized data models supporting the

model types discussed in this paper, and integration of the

software tools in an open tool chain implementing the design

flow from Fig. 1. The framework is intended to be applied to

more complicated industrial systems in order to demonstrate its

tangible benefits.

REFERENCES

[1] T. A. Henzinger and J. Sifakis, "The Discipline of Embedded Systems

Design”, IEEE Computer Magazine, vol. 40, pp. 32-40, 2007.

[2] H.-M. Hanisch, "Closed-Loop Modeling and Related Problems of

Embedded Control Systems in Engineering," in Proc Intl Conf Abstract

State Machines: advances in theory and practice (ASM’04), Lutherstadt

Wittenberg, 2004, pp. 24-28.

[3] TNI-Software, "Control Build Validation," [Online (2008, April)]:

http://www.tni-software.com/fr/produits/controlbuild/index.php.

[4] Wikipedia, "Formal Verification," (2008, April) [Online]. Available:

http://en.wikipedia.org/wiki/Formal_verification.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking.

Cambridge: The MIT Press, 1999.

[6] G. Frey and L. Litz, "Formal methods in PLC programming," in Proc

2000 IEEE Conf Systems, Man, and Cybernetics, pp. 2431-2436, vol.4.

[7] W. Farn, "Formal verification of timed systems: a survey and

perspective," Proceedings of IEEE, vol. 92, pp. 1283-1305, 2004.

[8] H.-M. Hanisch and A. Lüder, "Modular modeling of closed-loop

systems," in Proc of Colloquium on Petri Net Technologies for Modeling

Communication Based Systems, Berlin, Germany, 2000, pp. 103-126.

[9] J. M. Machado, B. Denis, J. J. Lesage, J. M. Faure, and C. L. Ferreira da

Silva, "Increasing the efficiency of PLC program verification using a

plant model," in Proc Intl Conf on Industrial Engineering and Production

Management (IEPM's 2003), Porto, Portugal, 2003, p. 10-16.

[10] V. Vyatkin and H.-M. Hanisch, "Verification of Distributed Control

Systems in Intelligent Manufacturing," Journal of Intelligent

Manufacturing, vol. 14, pp. 123-136, 2003.

[11] V. Vyatkin, "Intelligent mechatronic components: control system

engineering using an open distributed architecture," in Proc of 2003 IEEE

Conf on Emerging Technologies and Factory Automation,pp.277-284,v.2

[12] J. L. M. Lastra, "Reference Mechatronic Architecture for Actor-based

Assembly Systems", Doctor of Philosophy Thesis, Tampere University of
Technology, Tampere, Finland, 2004.

[13] K. Thramboulidis, "Model-integrated mechatronics - toward a new

paradigm in the development of manufacturing systems," IEEE

Transactions on Industrial Informatics, vol. 1, pp. 54-61, 2005.

[14] Y. Koren, U. Heisel, F. Jovane, T. Moriwaki, G. Pritchow, H. Van

Brussel, and A. G. Ulsoy, "Reconfigurable Manufacturing Systems,"

CIRP Annals, vol. 48, pp. 527-540, 1999.

[15] "Model-View-Controller design pattern," (2008, April) [Online].

Available: http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html.

[16] J. H. Christensen, "Design patterns for systems engineering with IEC

61499," in Proc Conf Verteilte Automatisierung, Magdeburg, Germany,

2000.

[17] IEC 61499-1, Function Blocks - Part 1 Architecture, International

standard, International Electrotechnical Commission, 2005.

[18] V. Vyatkin, IEC 61499 Function Blocks for Embedded and Distributed

Control System Design, Instrumentation Society of America, USA, 2007.

[19] International Electrotechnical Commission, Programmable Controller -

Part 3: Programming Languages, IEC 61131-3 Standard. Geneva:

International Electrotechnical Commission, 1993.

[20] M. Bonfe and C. Fantuzzi, "Design and verification of mechatronic

object-oriented models for industrial control systems," in Proc 2003 IEEE

Conf on Emerging Technologies and Factory Automation, (ETFA'03), pp.

253-260 vol.2.

[21] [19]M. Bonfé and C. Fantuzzi, "Mechatronic objects encapsulation in

IEC 1131-3 norm," in Proc of IEEE Intl Conf on Control Applications,

2000, pp. 598-603.

[22] V. Vyatkin and H.-M. Hanisch, "Re-use in Formal Modeling and

Verification of Distributed Control Systems," in Proc. 2005 IEEE Conf

on Emerging Technologies and Factory Automation, Catania, Italy, 2005.

[23] H.-M. Hanisch et al., "Formal validation of intelligent-automated

production systems: towards industrial applications," Intl Journal of

Manufacturing Technology and Management, vol. 8, pp. 75-106, 2006.

[24] International Electrotechnical Commission, Automation Objects for

industrial-process measurement and control systems - IEC SB3/TC 65,

working draft. Geneva, 2002.

[25] R. W. Brennan, L. Ferrarini, J. L. M. Lastra, and D. V. Vyatkin,

"Automation objects: enabling embedded intelligence in real-time

mechatronic systems," Intl Journal of Manufacturing Research, vol. 1,

pp. 379-381, 2006.

[26] W3C Recommendation 10th February 2004, "OWL Web Ontology

Language Guide," (2008, April) [Online]. Available:

http://www.w3.org/TR/2003/PR-owl-guide-20031215/.

[27] N. Lynch and M. Tuttle, "Hierarchical Correctness Proofs for Distributed

Algorithms," in Proc 6th ACM SIGACT-SIGOPS Symp on Principles of

Distributed Computing, Vancouver, Canada, 1988, pp. 137-155.

[28] N. Hagge and B. Wagner, "A new function block modeling language

based on Petri nets for automatic code generation," IEEE Trans on

Industrial Informatics, vol. 1, pp. 226-237, 2005.

[29] E. W. Endsley and D. M. Tilbury, "Modular verification of modular finite

state machines," in Proc 2004 IEEE Conference on Decision and Control

(CDC’04), pp. 972-979, vol.1.

[30] V. Vyatkin, J. H. Christensen, J. L. M. Lastra, "OOONEIDA: An Open,

Object-Oriented Knowledge Economy for Intelligent Distributed

Automation,"IEEE Trans on Industrial Informatics, vol.1, pp. 4-17, 2005.

[31] G. Black and V. Vyatkin, "An Ontology-based Reconfiguration Agent for

Intelligent Mechatronic Systems," in Proc 4th Intl Conference on Holonic

and Multi-agent systems in Manufacturing, Regensburg, Germany, 2007.

SMCC-07-11-0291.R1 12

[32] "Storage-Transfer Case study," (2008, April) [Online]. Available:

http://www.fb61499.com/StorageTransfer.html.

[33] T. A. Henzinger, "The theory of hybrid automata," in Verification of

Digital and Hybrid Systems, M. K. Inan and R. P. Kurshan, (Eds), New

York: Springer-Verlag, 2000, pp. 265-292.

[34] M. Zhou and K. Venkatesh, “Modelling, Simulation and Control of

Flexible Manufacturing Systems: A Petri Net Approach”. New Jersey:

World Scientific Publishing Company, 1999.

[35] C. Pang and V. Vyatkin, "Automatic Model Generation of IEC 61499

Function Block Using Net Condition/Event Systems," in Proc 2008 IEEE

Conf on Industrial Informatics (INDIN’08), Daejeon, Korea

[36] M. Bani Younis and G. Frey, "Formalization of Existing PLC Programs:

A Survey," in Proc IEEE/IMACS Multiconference on Computational

Engineering in Systems Applications (CESA’03), Lille, France, 2003.

[37] C. Schnakenbourg, J. M. Faure, and J. J. Lesage, "Towards IEC 61499

function blocks diagrams verification," in Proc 2002 IEEE Conference on

Systems, Man and Cybernetics, vol.3.
[38] M. Stanica, "Behavioral Modeling of IEC 61499 Control Applications."

Doctor of Philosophy Université de Rennes, Rennes, France, 2005.

[39] C. Sunder, H. Rofner, V. Vyatkin, and B. Favre-Bulle, "Formal

description of an IEC 61499 runtime environment with real-time

constraints," in Proc 5th IEEE Conf on Industrial Informatics, Vienna,

Austria, 2007, pp. 853-859

[40] "Checkmate hybrid model checker," (2008, April) [Online]. Available:

http://www.ece.cmu.edu/~webk/checkmate.

[41] The University of Auckland, "FBench - Open Source Function Block

Engineering Tool," (2008, April) [Online]. Available:

http://oooneida-fbench.sourceforge.net/.

[42] The University of Auckland, "Visual Framework for Verification of

Function Blocks," (2008, April) [Online]. Available:

http://www.fb61499.com/valid.html.

[43] E. M. Clarke, E. A. Emerson, and A. P. Sistla, "Automatic verification of

finite-state concurrent systems using temporal logic specifications," ACM

Trans. Program. Lang. Syst., vol. 8, pp. 244-263, 1986.

[44] The University of Stanford, "The Protégé Project," (2008, April)

[Online]. Available: http://protege.stanford.edu.

[45] Y. Al-Safi and V. Vyatkin, "An Ontology-based Reconfiguration Agent

for Intelligent Mechatronic Systems," in Proc 4th Intl Conference on

Holonic and Multi-agent systems in Manufacturing, Regensburg,

Germany, 2007.

[46] V. Vyatkin, H.-M. Hanisch, S. Karras, and X. Cai, "IEC 61499 as an

architectural framework to integrate formal models and methods in

practical control engineering," in Electric Automation SPS/IPC/Drives,

K. Bender et al.(Eds.) Heidelberg, Hüthig, 2002, pp. 310-318.

[47] M. Hirsch, C. Gerber, H. M. Hanisch, and V. Vyatkin, "Design and

Implementation of Heterogeneous Distributed Controllers According to

the IEC 61499 Standard - A Case Study," in Proc 5th IEEE Intl Conf on

Industrial Informatics, 2007, pp. 829-834.

[48] A. R. Sardesai, O. Mazharullah and V. Vyatkin, "Reconfiguration of

mechatronic systems enabled by IEC 61499 function blocks," in 2006

Australasian Conf on Robotics and Automation, Auckland, New Zealand.

[49] Martin Luther University of Halle-Wittenberg, "FESTO Modular

production system model," (2008, April) [Online]. Available:

http://aut.informatik.uni-halle.de/forschung/testbed/index.de.php.

[50] The University of Auckland, "Intelligent mechatronic testbed," (2008,

April) [Online]: http://www.ece.auckland.ac.nz/~vyatkin/mitra_lab.html.

[51] G. Taentzer, "AGG: A Graph Transformation Environment for Modeling

and Validation of Software," in Applications of Graph Transformations

with Industrial Relevance. Vol. 3062/2004: Springer Berlin/Heidelberg,

2004, pp. 446-453.

Valeriy Vyatkin is graduated with a Diploma Degree

in Applied Mathematics from Taganrog State

University of Radio Engineering (TSURE), Taganrog,

Russia in 1988. He holds Dr. Sci. degree (1998) and

Ph.D. (1992) earned at the same University, and Dr.

Eng. (1999) degree earned at Nagoya Institute of

Technology, Nagoya, Japan, in 1999.

 Currently he is Senior Lecturer with the Department

of Electrical and Computer Engineering at the

University of Auckland, New Zealand. His previous

faculty positions were with Martin Luther University

of Halle-Wittenberg in Germany (Assistant Professor,

1999- 2004), and with TSURE (Senior Lecturer, Professor, 1991-2002). He has

been IEEE Senior Member since 2004.
Research interests of Dr. Vyatkin are in the area of industrial informatics,

including software engineering for industrial automation systems, distributed

software architectures, methods of formal validation of industrial automation
systems and theoretical algorithms for improving their performance. The

specific expertise area of Dr. Vyatkin is in distributed automation and the IEC

61499 standard.

Hans-Michael Hanisch is graduated with a Diploma

Degree in Chemical Engineering at Polytechnical

Institute of Merseburg, East Germany, in 1982. In

1987 he earned the degree Dr.-Ing. (PhD) with

"summa cum laude" from the same institute. From

1987-1991 he was a Senior Research Assistent

(PostDoc position) at the same institute before he

changed to the Department of Chemical Engineering,

University of Dortmund, where he was funded by a

Habilitation Grant of the Deutsche Forschungsgemeinschaft (German

Research Foundation). From 1994 - 1999 he was a Professor at the Institute of

Automatic Control, Dept. of Electrical Engineering, University of Magdeburg

as the Head of the Discrete Control Systems Laboratory. He received the

Habilitation (qualification as University Teacher) at the Department of

Chemical Engineering, University of Dortmund in 1995.

From 1998 – 1999 he was the Head of the Institute of Automatic Control at

University of Magdeburg. He stayed as a visiting researcher at the Department

of Industrial Engineering, Rutgers University, USA, in 1996, 1998 and 2003.

Since January 2000 he has been a Full Professor at the Department of

Engineering Science and later at the Institute of Computer Science at Martin

Luther University of Halle-Wittenberg and the Head of the Automation

Technology Laboratory. Since 2001 he has been a Senior Member of IEEE.

Research interests of Prof. Hanisch are: discrete event modelling techniques,

controller synthesis and implementation, verification, Batch processes, Flexible

manufacturing systems, Process optimization, fault detection and error

recovering, distributed systems.

Cheng Pang is currently a Ph.D. candidate and senior

teaching assistant in the Department of Electrical and

Computer Engineering at the University of Auckland,

New Zealand. He holds BE (2005) and ME (2007) from

the same university. His current research interests are in

the field of industrial informatics, especially the design

and development methodologies and formal verification

of IEC 61499 function block applications, and the

development of software tools for engineering function

blocks.

Chia-han Yang is currently a PhD student in the

Department of Electrical and Computer Engineering at

the University of Auckland, New Zealand. He holds a

BE (2006) degree from the same university. His

current research relates to simulation and validation for

distributed control systems.

