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Abstract—This paper describes a step-by-step approach for 

developing modular and reusable logic controllers of mechatronic 

systems. Following that, it presents the results of employing three 

distributed control methods, including master-slave, peer-to-peer 

and independent controllers on a pick-and-place robot as a simple 

showcase of implementing a distributed control system on 

industrial applications, using  the  emerged IEC 61499 standard. 

Moreover, it addresses possibilities and challenges of using each 

approach.    
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I. INTRODUCTION 

The design of modular, versatile, and reusable (and ideally 

“Plug-and-Play”) control logic systems has been one of the 

principal challenges confronted by modern manufacturing 

industries. This is due to the fact that the conventional control 

paradigms, which are essentially based on case by case design 

and centralization of control tasks, lack fundamental 

capabilities such as agility, scalability, handling complexity, 

re-configurability and fault tolerance [1], which all hinder this 

industry to meet the ever increasing expectations of the market. 

Some of these abilities have been partially provided by other 

influential players to the manufacturing world. For instance, 

mechanical engineers’ implementation of modern material 

handling systems with prefabricated modular parts has 

considerably facilitated assembly, reconfiguration and 

portability in various industrial applications, including 

manufacturing [2]. Similarly, over the past decades, single-

purpose industrial controllers have been gradually replaced    

by robust software components providing more flexibility, 

interoperability and reusability to the manufacturing systems 

and many hardware vendors are nowadays producing devices 

that can be utilized in different systems without much 

customization effort (plug-and-play)[3, 4]. 

In software engineering, over the last decades, a large 

amount of research has been devoted to implement and 

improve  logic control design methods and an extensive review 

of such scientific approaches may be found in [5]. However,  

in spite of the considerable  advances and achievements of all 

these academic endeavours, these software methods are still far 

from fulfilling modern industrial demands[6, 7].  

It is therefore vital that software designers define suitable 

design patterns that concentrate on “cross-cutting control logic 

functionalities and suitably abstracting from application 

specific details”[8] which will make the design of complex 

automated systems easier and faster for engineers and 

practitioners. In fact, the ideal case would be to have intelligent 

software components that have most of their functionalities 

“pre-automated by the vendors” [3] and users can conveniently 

tailor them to their particular application with the least 

integration effort. Furthermore, these software components 

would be capable of being distributed throughout the network, 

regardless of the size of the application, which can be as small 

as a simple drilling machine [9] or as enormous as a smart grid 

[10] dominating across a country or even a continent, while 

each software component is able to interact with the entire 

system and sharing data and information with them.  

II. IEC 61499 STANDARD FOR DISTRIBUTED CONTROL 

SYSTEMS 

Among the current industrial programming standards for 

industrial controllers,  IEC 61499 [11-13] promises significant 

advantages to the users in terms of simplicity of system level 

design and more importantly, the possibility of distributing 

control programs over variant distributed hardware and 

throughout the entire network [14, 15].  

According to the IEC 61499, a function block’s interface 

comprises a number of data and event inputs and outputs. The 

functionality block’s main execution semantics consists of a 

finite state machine known as ‘ECC’ (Execution Control 

Chart) which is composed of a set of states that are connected 

with Boolean transition conditions and each state can contain 

one or more actions being defined as algorithms. On an input 

event trigger, the associated input values are refreshed and 

depending on the ECC, one or more algorithm(s) may be 

executed. Finally, after execution of algorithm(s) at each state, 

output data are generated and the designated event outputs will 

be issued [9].   

Despite a number of advantages promised by the IEC 

61499 technology, its industrial acceptance are still limited, 

which can be partially explained by the lack of proven design 

methods and patterns for distributed systems software of 

modular mechatronic components. Hence, in order to migrate 

sustainably from centralized to distributed control, some 

questions and concerns need to be addressed including: 

 How could larger and more complex systems be 

incrementally derived from simpler controllers in a generic 

way [3]? 

 How could the controllers’ interfaces be defined in a 

standard way so that controller components can be 

connected together and reused conveniently [3]? 

III. AIMS AND OBJECTIVES 



To address some of the aforementioned concerns and to 

step toward facilitating distributed control design, this research 

proposes a systematic approach toward controller design of 

mechatronic components and as an instance, a design process 

for a controller block of a cylinder whose instances can be 

adapted to different control patterns with the least modification 

effort is described. Following that section, it presents three 

design approaches using the IEC 61499 function blocks, 

namely master-slave, peer-to-peer and independent control as 

well as comparing them with the traditional centralized control. 

Then, each scenario has been evaluated in terms of design 

effort, complexity, modularity and reusability in a simple Pick-

and-Place Robot developed as a case study.  

IV. DESIGN OF A REUSABLE CONTROLLER 

Function BLOCK (CFB) 

In order to design a reusable and application-independent 

Controller Function Block (CFB) which is in charge of 

managing all the behaviours of the mechatronic components 

assigned to it, the following steps must be taken. 

A. Specify Functionality:  

The first step to design a CFB is to precisely define its 

functionalities, which include specifying all the algorithms 

needed to utilize its actuators. In the specified example shown 

in Fig 1, the only expected functionality of a double-acting 

cylinder CFB would be to set two Boolean values associated 

with two pneumatic valve switches to either ON or OFF. 

 
Fig 1: A basic single cylinder control system. 

Functionalities of a CFB, appear as algorithms in the ECC 

states (e.g. GoForward and GoBackward shown in Fig 2) and 

in this case, are written in Structured Text which is one of the 

IEC 61131-3 [13] compliant languages. It is important to note 

that even two mechatronic components which may operate 

similarly might have different CFB functionalities. For 

instance, a single-acting cylinder (spring-return), compared to 

a double-acting cylinder (mentioned above) has a different 

functionality, as it only has one output and requires setting one 

Boolean value into true or false. Therefore, physical objects 

with various functionalities require different controller types.  

B. Self-Perception (S): 

  The term ‘self-perception’ is used to ascertain the 

information a CFB receives as input data from its own sensors. 

In the cylinder example, the two end position sensors (Home 

and End as depicted in Fig 2), will enable the controller to 

perceive its location and find out when the cylinder arrives at 

either end positions. These two states are represented in the 

ECC as ‘CylAtEnd’ and ‘CylAtHome’ (Fig 2).  All sensor 

inputs are connected to an input event (‘REQ’) which refreshes 

sensors data, whenever their values are changed. Any change 

in functionality of a mechatronic device, may also pose some 

changes in its self-perceptions. For instance, if in an 

application, a cylinder is assumed to stop in the middle 

position, then, adding another sensor would be necessary, to 

notify when the cylinder has reached its middle point.  

C. Initialization(I): 

In general, initialization is required for any controller block 

which demands pre-set outputs. In a CFB, as soon as the 

‘INIT’ event is triggered, the ‘INIT’ algorithm is invoked and 

it initializes the CFB by giving initial values to the outputs 

before it is normally executed (Fig 2). Then, the output event 

(‘INITO’) will be issued to confirm initialization and if 

connected to other FBs, trigger their initialization event.  
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Fig 2: Cylinder controller for the system depicted in Fig 1 (prior to applying 

any decision condition) 

Following the aforementioned steps, so far, the controller 

has acquired its interface with the plant[3], as well as the 

required algorithms for its operation . However, it is not yet 

capable enough to be utilized in any application, since no task 

has been assigned to it, and as well, it is not known when and 

under what conditions, these tasks should be performed. This 

fact is illustrated in Fig 2 by the missing transition conditions, 

denoted with ‘*’.  The ECC of the cylinder CFB contains five 

states, including ‘INIT’, ‘GoForward’, ‘CylAtEnd’, 

‘GoBackward’ and ‘CylAtHome’, along with the three 

algorithms ‘INIT’, ‘AlgExtend’ and ‘AlgRetract’. There is one 

more state, called ‘Wait’ which is designated for when the 

controller is in idling condition. The created states are then 

arranged in a logical sequence and characterize the initial form 

of the CFB internal part. Such reusable FBs representing 

controllers of physical objects may be selected from the 

repository of function blocks and tailored to different 

applications which will be discussed further in the following 

section.  

V. ADAPTATION OF A REUSABLE   CONTROLLER 

TO A SPECIFIC PROBLEM  

In order to design a CFB to be fully operational in a 

system and able to solve a particular problem, more issues 

need to be addressed which are as follows. 

A. Environment Perception (E): 

The environment where a mechatronic component is 

located and being used may impose some boundaries or 

limitations on its CFB operation, and the controller must be 

aware of those conditions known as ‘environment-perception’ 

(e.g. information to avoid collision with other objects or 

machines).  

B. Task Perception(P): 

The other term ‘task-perception’, identifies specification of 

the tasks to be managed by the controller, so that it knows the 

details of the goal intended to be achieved. A CFB can gather 

the information needed for these two perceptions, either 

through direct access to the sensory data, or by receiving it 

from other controller blocks. Obviously, it is also possible for a 

controller to pass such information to other blocks. Similar to 

self-perception data mentioned in the previous section, all 

input data representing task-perception and environment-

perception will be associated with ‘REQ’ events.  

C. Decision: 



A controller function block needs to analyse the obtained 

information (from the plant and other blocks) and based on that 

information, make the appropriate decisions. The “If- 

statement” conditions represented by arrows in the ECC are 

considered as decisions, due to the fact that they identify when 

an actuation must take place. For instance, in the ECC 

illustrated in Fig 2, if in the empty spaces marked with ‘*’, 

number ‘1’ (always true) is written as a transition condition, 

the cylinder will continuously move back and forth, or in 

another case, if an input event is put in both conditions, each 

time it is triggered it will permit the algorithm to be executed 

and cause the cylinder to either extend or retract. 

D. COMMUNICATION (C): 

The last influencing factor in the design of a controller 

function block taking part in a distributed system is the way it 

interacts with the other existing controllers of the system. 

CFBs constantly exchange some events and data between one 

another to be able to coordinate their behaviours and 

collaborate to achieve their common goal.  In general, these 

exchanges are of two types: information or command. 

“Information” consists of all the perceptions that need to be 

processed prior to any decision making. In contrast, 

“Command” is obviously what can be immediately followed 

and no further processing inside the CFB is required.  

Following all these steps will guide the developer through 

the design of a proper controller for a mechatronic component.  

However, there have always been some difficulties in 

identifying how many input/output events should be 

considered for a controller interface, how uniformly they can 

be named and categorised, so that they can be easily 

recognised, and finally, how they must be associated to data 

inputs and outputs. Therefore, to resolve this issue, it is 

proposed to classify events and consequently their associated 

data into the following four groups: Initialisation, Perception, 

Follow and Order (Fig 3).  

      
Fig 3: Event classification proposed for the development of a re-usable 

controller function block interface 

1) Initialization (I): INIT-INITO events are present in 

almost all controller blocks and are only connected to the data 

which is involved in Initialization (briefly discussed in 

previous section). For those exceptional controllers which do 

not require any pre-set values, this type of events can be 

eliminated. 

2) Perception (P): These types of events will be 

responsible for exchanging information with other blocks as 

well as with the sensors and actuators. A pair of ‘REQ-CNF’ 

event is proposed for this purpose. It must be noted that the 

REQ event only has to refresh the input data (upon trigger) and 

must not be used in any ECC transition condition. As for the 

‘CNF’, each time an output data value is changed, a ‘CNF’ 

(Confirmation) event will be triggered. In larger applications 

where a great deal of data is being exchanged among numerous 

controller blocks, more pairs of ‘REQ-CNF’ events may be 

considered, so that each pair can be associated with one cluster 

of data which is shared with a limited number of blocks to  

avoid an excessive-event trigger of irrelevant controller blocks. 

3) Order events (O): ‘IN_FDB’ and ‘OUT_CMD’ events 

are employed when a block sends commands to one or more 

controller blocks to force them to perform an operation, 

followed by receiving feedback from them. For every 

independent command (A command is dependent, when it is 

used for several operations), issued by a CFB, one state and 

one transition condition must be added to its ECC and by 

following  the process activity planning, be placed between 

two intended states(e.g. Fig 10). Moreover, given the fact that 

an event happens at an instant, and its value cannot be retained 

for a period of time, when a combination of commands is 

needed as a condition, or when there are other conditions that 

have to be met before the command is issued, single event 

command will not suffice and ‘OUT_CMD’ has to be 

accompanied with a Boolean data variable which will take part 

in transition condition. This is demonstrated in Peer-to-Peer 

control design (section VII). Moreover an ‘OUT_CMD’ event 

may be associated with more data types to clarify some 

particular attributes of the command (e.g. running a motor at 

different speeds).   

A follower CFB must specify to the sender, the boundary, 

where, a command can be issued effectively and this is 

normally done by a Boolean feedback signal ‘Ready’ (whose 

value is 1, when Ready, and 0 when NotReady). In general, for 

each independent command being sent to a follower CFB, one 

feedback must be allocated to identify the availability of the 

follower to its commander. However, there are exceptions. For 

instance, it is possible that one feedback be commonly used for 

two or more dependent commands (e.g. slave cylinder shown 

in Fig 9), or the case where the follower is always ready to 

receive commands and the feedback’s “True” value will not 

change (e.g. vacuum CFB in Fig 7). Finally, in commander 

CBD, the feedback data received must be included in the 

transition condition which goes to the command state (where 

the command event is issued). 

4) Follow events (F): They are inversions of Order events 

and used in a CFB that follows the commands received from 

other blocks. They will be represented by ‘IN_CMD’ and 

‘OUT_FDB’ events in the FB interface.  

VI. CASE STUDY DESCRIPTION 

A pick and place robot as shown in  

Fig 4(a) is selected as a case study and consists of four 

actuators, two double-acting pneumatic cylinders (horizontal), 

one single-acting pneumatic cylinder (vertical) and one 

vacuum unit. Along with the actuators, this device is equipped 

with 11 sensors. Ten of them are position sensors indicating 

the availability of work pieces on trays and cylinder end 

positions, and the last sensor detects the vacuum On/Off 

condition. Each actuator along with its associated sensor/s is 

considered as one mechatronic object. Hence, the robot is 

basically composed of four mechatronic components, three 

cylinder units and one vacuum unit. The following is a list of 

requirements, facts, and conditions associated with the robot 

operation which is exploited for identifying task 

(T)/environment (E) perceptions and of each controller 

component:  



       
Fig 4: (a) Reference object: pick and place robot. (b) Activity diagram of the 

pick and place robot 

A. The role of the device is to pick up work pieces which are 

passed from other units into three trays (pp1-pp3), and drop 

them on a slider. (T)  

B. The robot configuration is as illustrated in Fig 4.( E) 

C. PP1 can be reached by extension of C1, pp2 is accessible 

by extension of C2, and finally getting to pp3 will require 

both cylinders extensions.(E) 

D. For safety reasons, and to avoid collision with other 

devices, the vertical cylinder must start its movement only 

when C1 and C2 are at standstill condition (their end 

positions). (E) 

E. The precedence and order of picking up pieces from the 

trays should be 1-2-3. (T) 

F. The robot should start its operation when new work pieces 

are added, and stop when no work piece is available. (T) 

VII. DIFFERENT CONTROL SCENARIOS 

In this section, a centralized solution, along with three 

distributed control scenarios are presented, which are 

developed by following the proposed methodology of 

employing reusable CFBs. Furthermore, the way these 

different scenarios will reflect on the interface and internal part 

of each CFB is analysed.  

A. CONVENTIONAL CENTRALIZED CONTROLLER 

In this type of design, a single block controls the entire 

plant and the control logic is encapsulated in one CFB (Fig 5). 

Two sets of input-output events are required for this method. 

The ‘INIT-INITO’ events initialize the output data, while 

‘REQ-CNF’ events refresh the sensor-actuator data values 

being exchanged with the plant.   

In spite of the magnificent benefits of applying the 

IEC61499 standard, such as time saving and reduction in 

design efforts, using it in a centralized approach, seems to have 

no particular advantage over conventional industrial 

programming languages, as for any new configuration, such as 

the one illustrated in Fig 6, or when task descriptions alter, the 

whole design process must be initiated from scratch. In 

general, centralized controllers may be suitable for some 

applications, in the sense that they acquire a single point of 

control as well as easy integration and optimisation, but have 

considerable  drawbacks, such as having poor scalability, high 

communication overhead and low resilience to failure [16]. 

B. DISTRIBUTED CONTROLLERS 

1) Master-Slave Controllers: In this method of distributed 

controller design, one controller (master) will take control of 

one or more controllers and guide them through their 

operations via sending commands (e.g. work piece manager 

depicted in Fig 7 and  Fig 8). In this case, the slave CFB does 

not need to make any decision on such operations, and acts 

solely based on the commands being sent to it. Moreover, it is 

possible that a controller act as a master with respect to some 

controllers, and at the same time, be a slave to others [3]. This 

is the case for the vertical cylinder, as it acts as a slave to the 

work piece manager and a master to the vacuum unit. (Fig 8 

and Fig 10) 
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Fig 5: State diagram of a Centralized Controller 

 
Fig 6: Example of a more complex configuration of a pick and place robot 

along with  work piece trays positioned  at various levels [18] 

 
Fig 7: Distributed control of the robot with Master –Slave relation (connections 

with the plant are emitted for simplicity) 
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Fig 8: An example of event exchange among master-slave controllers to pick 

up a work piece from tray one 



 

Fig 9 shows the state diagram for C1 and C2 modelled the 

same way as formerly described in section  V. Due to their 

slavery nature, they do not require any task perception (P) 

(‘REQ’, will not be used) and merely follow their master’s 

commands (F), (‘IN_CMD1’ to extend, ‘IN_CMD2’ to retract 

and ‘OUT_FBD’ to announce their readiness to the master). 

Moreover, in contrast with the vertical cylinder, horizontal 

cylinders do not command any other CFB, and therefore, do 

not require order events (O). Fig 9 and Fig 10 clearly depict the 

differences caused between these two cylinder CFBs, which is 

derived from their various roles in the control system. 

These master and slave controller blocks can be fully re-

used in a new system configuration such as the one shown in 

Fig 6. There will be more such CFBs added to the controller 

design and the only changes will be involved in the work piece 

manager. The changes to this block can also be automated 

(created dynamically) using a meta-model representation of the 

whole system. Given an input similar to  

Fig 4(b), the work piece manager can be dynamically 

generated. 
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Fig 9: Controller of the horizontal cylinders being implemented as slaves to 

work piece manager 
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Fig 10: Controller of the vertical cylinder implemented as Master for vacuum 

unit and slave for work piece manager 

 

2) Peer-to-Peer Controllers: This approach can be 

considered as bilaterally apply a Master-Slave relationship for 

two CFBs in a way that order (O) and follow (F) events merge 

together in a way that CFBs only send commands to each 

other, while each command acts simultaneously as a feedback 

to the other block’ command, and vice versa, as illustrated in 

Fig 11 - Fig 14. This method is very useful, particularly for 

objects that are subject to some restrictions by their adjacent 

function blocks in a way that one action is permitted or 

blocked by other action(s) of an adjacent block and 

contrariwise [3]. 

In the case study, the two horizontal cylinders, ‘C1’ and 

‘C2’ permit the vertical cylinder VC to extend; alternatively 

the VC allows C1 and C2 to retract. Also, as the VC arrives at 

its end position, it orders vacuum unit to either turn ON (pick 

up) or OFF (drop) and once its condition is changed, sends a 

command to VC to retract.  

The controllers for C1 and C2 are slightly different in a 

sense that each responds upon the presence of different work 

pieces at the trays. For instance, to pick up a work piece from 

pp2, C1 bypasses the GoForward state (does not extend) and 

just permits the vertical cylinder to extend, whereas cylinder 

Two has to extend before permitting the VC to extend. 

Therefore, to maintain simplicity and uniformity of controller 

function blocks, both task perceptions (P) are provided in one 

function block. Following that, C1 and C2 will be instantiated 

from the same CFB, and then, distinguished by passing 

different ID numbers to them as an input (Fig 11). This method 

can be applied conveniently to other applications when one 

universal block is designed to be instantiated in various 

environment conditions. 
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Fig 11: Controller of horizontal cylinder in Peer-to-Peer relationship with 

the vertical cylinder 
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Fig 12: An example of event exchange among Peer to Peer controllers when 

they aim at picking up a work piece from tray one 

 
Fig 13: Distributed control of the robot in Peer-to-Peer relation 
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Fig 14: Controller of the vertical cylinder while having Peer-to-Peer 
relationship with other C1 & C2, and master relationship to Vacuum 



As it was mentioned in section  V, order events (O) can be 

associated with a Boolean data variable and in c1 and c2 (Fig 

11), ‘AllowVcDown’ is the variable associated with 

‘OUT_CMD’ and in the vertical cylinder,  “PermitVac” and 

“PermitCyl” are the Boolean data associated with the (O) event 

‘OUT_CMD1’ and ‘OUT_CMD2’ respectively (Fig 14). 

3) Independent and distributed controllers: In this method, 

the CFSs are provided with as many sensor data as they require 

being able to thoroughly perceive their task and working 

environment. In this method, although the control logic is 

distributed among several CFBs, they perform independently 

and do not communicate with each other. Hence, no (O) and 

(F) events are used in such controller blocks and as depicted in 

Fig 15 - Fig 16, each CFB has a different structure, and as a 

result will not be  reusable. Implementation of such design 

method in small applications is easier when compared with 

centralized approach; however, it would become very complex 

for large systems, as the designer should consider all operation 

states for designing each controller.  
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Fig 15: Independent and distributed controller of cylinder1 
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Fig 16: Independent and distributed vertical cylinder controller 

VIII. CONCLUSIONS 

 In this paper, a systematic method of designing re-usable 

controller function blocks of mechatronic components is 

described. Also different approaches were proposed to adapt 

CFBs conveniently into distributed control systems. All the 

aforementioned control logic approaches were successfully 

implemented in NxtStudio®1.5[17] environment. In all 

selected methods, the robot had identical performance. Finally, 

this study described the challenges and solutions ahead of 

implementing plug-and- play control systems. Although the 

complexities of most industrial applications are much greater 

than the described example, it is highly believed that the same 

approach can be pursued to facilitate implementation of 

distribution control systems and thereby benefit from its 

numerous advantages over centralized systems. 

IX. FUTURE WORKS 

In continuation of this research these methods will be 

examined on more complex applications, with population of 

more mechatronic objects having multi communication links, 

and also some controllers will be implemented in parallel to 

study how fault tolerance should be dealt with in distributed 

control logic. We are already in progress for a follow up paper 

on how this method of plug-and-play modules may be used for 

formal verification of a similar system. The same case study is 

being used in that paper as well. 
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