
Distributed Control Patterns for Intelligent Mechatronic

Systems
Majid Sorouri

The University of Auckland,

Auckland, New Zealand.

msor021@aucklanduni.ac.nz

Sandeep Patil

The University of Auckland,

Auckland, New Zealand.

spat251@aucklanduni.ac.nz

Valeriy Vyatkin

The University of Auckland,

Auckland, New Zealand.

v.vyatkin@auckland.ac.nz

Abstract—This paper describes a step-by-step approach for

developing modular and reusable logic controllers of mechatronic

systems. Following that, it presents the results of employing three

distributed control methods, including master-slave, peer-to-peer

and independent controllers on a pick-and-place robot as a simple

showcase of implementing a distributed control system on

industrial applications, using the emerged IEC 61499 standard.

Moreover, it addresses possibilities and challenges of using each

approach.

Keywords— Distributed Control logic, plug–and-play control

logic, smart mechatronic components, automation systems,

industrial controllers, cyber-physical systems

I. INTRODUCTION

The design of modular, versatile, and reusable (and ideally

“Plug-and-Play”) control logic systems has been one of the

principal challenges confronted by modern manufacturing

industries. This is due to the fact that the conventional control

paradigms, which are essentially based on case by case design

and centralization of control tasks, lack fundamental

capabilities such as agility, scalability, handling complexity,

re-configurability and fault tolerance [1], which all hinder this

industry to meet the ever increasing expectations of the market.

Some of these abilities have been partially provided by other

influential players to the manufacturing world. For instance,

mechanical engineers’ implementation of modern material

handling systems with prefabricated modular parts has

considerably facilitated assembly, reconfiguration and

portability in various industrial applications, including

manufacturing [2]. Similarly, over the past decades, single-

purpose industrial controllers have been gradually replaced

by robust software components providing more flexibility,

interoperability and reusability to the manufacturing systems

and many hardware vendors are nowadays producing devices

that can be utilized in different systems without much

customization effort (plug-and-play)[3, 4].

In software engineering, over the last decades, a large

amount of research has been devoted to implement and

improve logic control design methods and an extensive review

of such scientific approaches may be found in [5]. However,

in spite of the considerable advances and achievements of all

these academic endeavours, these software methods are still far

from fulfilling modern industrial demands[6, 7].

It is therefore vital that software designers define suitable

design patterns that concentrate on “cross-cutting control logic

functionalities and suitably abstracting from application

specific details”[8] which will make the design of complex

automated systems easier and faster for engineers and

practitioners. In fact, the ideal case would be to have intelligent

software components that have most of their functionalities

“pre-automated by the vendors” [3] and users can conveniently

tailor them to their particular application with the least

integration effort. Furthermore, these software components

would be capable of being distributed throughout the network,

regardless of the size of the application, which can be as small

as a simple drilling machine [9] or as enormous as a smart grid

[10] dominating across a country or even a continent, while

each software component is able to interact with the entire

system and sharing data and information with them.

II. IEC 61499 STANDARD FOR DISTRIBUTED CONTROL

SYSTEMS

Among the current industrial programming standards for

industrial controllers, IEC 61499 [11-13] promises significant

advantages to the users in terms of simplicity of system level

design and more importantly, the possibility of distributing

control programs over variant distributed hardware and

throughout the entire network [14, 15].

According to the IEC 61499, a function block’s interface

comprises a number of data and event inputs and outputs. The

functionality block’s main execution semantics consists of a

finite state machine known as ‘ECC’ (Execution Control

Chart) which is composed of a set of states that are connected

with Boolean transition conditions and each state can contain

one or more actions being defined as algorithms. On an input

event trigger, the associated input values are refreshed and

depending on the ECC, one or more algorithm(s) may be

executed. Finally, after execution of algorithm(s) at each state,

output data are generated and the designated event outputs will

be issued [9].

Despite a number of advantages promised by the IEC

61499 technology, its industrial acceptance are still limited,

which can be partially explained by the lack of proven design

methods and patterns for distributed systems software of

modular mechatronic components. Hence, in order to migrate

sustainably from centralized to distributed control, some

questions and concerns need to be addressed including:

 How could larger and more complex systems be

incrementally derived from simpler controllers in a generic

way [3]?

 How could the controllers’ interfaces be defined in a

standard way so that controller components can be

connected together and reused conveniently [3]?

III. AIMS AND OBJECTIVES

To address some of the aforementioned concerns and to

step toward facilitating distributed control design, this research

proposes a systematic approach toward controller design of

mechatronic components and as an instance, a design process

for a controller block of a cylinder whose instances can be

adapted to different control patterns with the least modification

effort is described. Following that section, it presents three

design approaches using the IEC 61499 function blocks,

namely master-slave, peer-to-peer and independent control as

well as comparing them with the traditional centralized control.

Then, each scenario has been evaluated in terms of design

effort, complexity, modularity and reusability in a simple Pick-

and-Place Robot developed as a case study.

IV. DESIGN OF A REUSABLE CONTROLLER

Function BLOCK (CFB)

In order to design a reusable and application-independent

Controller Function Block (CFB) which is in charge of

managing all the behaviours of the mechatronic components

assigned to it, the following steps must be taken.

A. Specify Functionality:

The first step to design a CFB is to precisely define its

functionalities, which include specifying all the algorithms

needed to utilize its actuators. In the specified example shown

in Fig 1, the only expected functionality of a double-acting

cylinder CFB would be to set two Boolean values associated

with two pneumatic valve switches to either ON or OFF.

Fig 1: A basic single cylinder control system.

Functionalities of a CFB, appear as algorithms in the ECC

states (e.g. GoForward and GoBackward shown in Fig 2) and

in this case, are written in Structured Text which is one of the

IEC 61131-3 [13] compliant languages. It is important to note

that even two mechatronic components which may operate

similarly might have different CFB functionalities. For

instance, a single-acting cylinder (spring-return), compared to

a double-acting cylinder (mentioned above) has a different

functionality, as it only has one output and requires setting one

Boolean value into true or false. Therefore, physical objects

with various functionalities require different controller types.

B. Self-Perception (S):

 The term ‘self-perception’ is used to ascertain the

information a CFB receives as input data from its own sensors.

In the cylinder example, the two end position sensors (Home

and End as depicted in Fig 2), will enable the controller to

perceive its location and find out when the cylinder arrives at

either end positions. These two states are represented in the

ECC as ‘CylAtEnd’ and ‘CylAtHome’ (Fig 2). All sensor

inputs are connected to an input event (‘REQ’) which refreshes

sensors data, whenever their values are changed. Any change

in functionality of a mechatronic device, may also pose some

changes in its self-perceptions. For instance, if in an

application, a cylinder is assumed to stop in the middle

position, then, adding another sensor would be necessary, to

notify when the cylinder has reached its middle point.

C. Initialization(I):

In general, initialization is required for any controller block

which demands pre-set outputs. In a CFB, as soon as the

‘INIT’ event is triggered, the ‘INIT’ algorithm is invoked and

it initializes the CFB by giving initial values to the outputs

before it is normally executed (Fig 2). Then, the output event

(‘INITO’) will be issued to confirm initialization and if

connected to other FBs, trigger their initialization event.

START

INIT

Extend:=FALSE;

Retract:=FALSE;

INITO^

WAIT

GoForward

Extend:=TRUE;

Retract:=FALSE;

CNF^

CylAtEnd

GoBackward

Extend:=FALSE;

Retract:=TRUE;

CNF^;

CylAtHome

1

*

*

Input events

^INIT

^REQ

Input data

Home

End

1

Output events

INITO^

CNF^

Output data

Extend

Retract

Home
End

^INIT

Fig 2: Cylinder controller for the system depicted in Fig 1 (prior to applying

any decision condition)

Following the aforementioned steps, so far, the controller

has acquired its interface with the plant[3], as well as the

required algorithms for its operation . However, it is not yet

capable enough to be utilized in any application, since no task

has been assigned to it, and as well, it is not known when and

under what conditions, these tasks should be performed. This

fact is illustrated in Fig 2 by the missing transition conditions,

denoted with ‘*’. The ECC of the cylinder CFB contains five

states, including ‘INIT’, ‘GoForward’, ‘CylAtEnd’,

‘GoBackward’ and ‘CylAtHome’, along with the three

algorithms ‘INIT’, ‘AlgExtend’ and ‘AlgRetract’. There is one

more state, called ‘Wait’ which is designated for when the

controller is in idling condition. The created states are then

arranged in a logical sequence and characterize the initial form

of the CFB internal part. Such reusable FBs representing

controllers of physical objects may be selected from the

repository of function blocks and tailored to different

applications which will be discussed further in the following

section.

V. ADAPTATION OF A REUSABLE CONTROLLER

TO A SPECIFIC PROBLEM

In order to design a CFB to be fully operational in a

system and able to solve a particular problem, more issues

need to be addressed which are as follows.

A. Environment Perception (E):

The environment where a mechatronic component is

located and being used may impose some boundaries or

limitations on its CFB operation, and the controller must be

aware of those conditions known as ‘environment-perception’

(e.g. information to avoid collision with other objects or

machines).

B. Task Perception(P):

The other term ‘task-perception’, identifies specification of

the tasks to be managed by the controller, so that it knows the

details of the goal intended to be achieved. A CFB can gather

the information needed for these two perceptions, either

through direct access to the sensory data, or by receiving it

from other controller blocks. Obviously, it is also possible for a

controller to pass such information to other blocks. Similar to

self-perception data mentioned in the previous section, all

input data representing task-perception and environment-

perception will be associated with ‘REQ’ events.

C. Decision:

A controller function block needs to analyse the obtained

information (from the plant and other blocks) and based on that

information, make the appropriate decisions. The “If-

statement” conditions represented by arrows in the ECC are

considered as decisions, due to the fact that they identify when

an actuation must take place. For instance, in the ECC

illustrated in Fig 2, if in the empty spaces marked with ‘*’,

number ‘1’ (always true) is written as a transition condition,

the cylinder will continuously move back and forth, or in

another case, if an input event is put in both conditions, each

time it is triggered it will permit the algorithm to be executed

and cause the cylinder to either extend or retract.

D. COMMUNICATION (C):

The last influencing factor in the design of a controller

function block taking part in a distributed system is the way it

interacts with the other existing controllers of the system.

CFBs constantly exchange some events and data between one

another to be able to coordinate their behaviours and

collaborate to achieve their common goal. In general, these

exchanges are of two types: information or command.

“Information” consists of all the perceptions that need to be

processed prior to any decision making. In contrast,

“Command” is obviously what can be immediately followed

and no further processing inside the CFB is required.

Following all these steps will guide the developer through

the design of a proper controller for a mechatronic component.

However, there have always been some difficulties in

identifying how many input/output events should be

considered for a controller interface, how uniformly they can

be named and categorised, so that they can be easily

recognised, and finally, how they must be associated to data

inputs and outputs. Therefore, to resolve this issue, it is

proposed to classify events and consequently their associated

data into the following four groups: Initialisation, Perception,

Follow and Order (Fig 3).

Fig 3: Event classification proposed for the development of a re-usable

controller function block interface

1) Initialization (I): INIT-INITO events are present in

almost all controller blocks and are only connected to the data

which is involved in Initialization (briefly discussed in

previous section). For those exceptional controllers which do

not require any pre-set values, this type of events can be

eliminated.

2) Perception (P): These types of events will be

responsible for exchanging information with other blocks as

well as with the sensors and actuators. A pair of ‘REQ-CNF’

event is proposed for this purpose. It must be noted that the

REQ event only has to refresh the input data (upon trigger) and

must not be used in any ECC transition condition. As for the

‘CNF’, each time an output data value is changed, a ‘CNF’

(Confirmation) event will be triggered. In larger applications

where a great deal of data is being exchanged among numerous

controller blocks, more pairs of ‘REQ-CNF’ events may be

considered, so that each pair can be associated with one cluster

of data which is shared with a limited number of blocks to

avoid an excessive-event trigger of irrelevant controller blocks.

3) Order events (O): ‘IN_FDB’ and ‘OUT_CMD’ events

are employed when a block sends commands to one or more

controller blocks to force them to perform an operation,

followed by receiving feedback from them. For every

independent command (A command is dependent, when it is

used for several operations), issued by a CFB, one state and

one transition condition must be added to its ECC and by

following the process activity planning, be placed between

two intended states(e.g. Fig 10). Moreover, given the fact that

an event happens at an instant, and its value cannot be retained

for a period of time, when a combination of commands is

needed as a condition, or when there are other conditions that

have to be met before the command is issued, single event

command will not suffice and ‘OUT_CMD’ has to be

accompanied with a Boolean data variable which will take part

in transition condition. This is demonstrated in Peer-to-Peer

control design (section VII). Moreover an ‘OUT_CMD’ event

may be associated with more data types to clarify some

particular attributes of the command (e.g. running a motor at

different speeds).

A follower CFB must specify to the sender, the boundary,

where, a command can be issued effectively and this is

normally done by a Boolean feedback signal ‘Ready’ (whose

value is 1, when Ready, and 0 when NotReady). In general, for

each independent command being sent to a follower CFB, one

feedback must be allocated to identify the availability of the

follower to its commander. However, there are exceptions. For

instance, it is possible that one feedback be commonly used for

two or more dependent commands (e.g. slave cylinder shown

in Fig 9), or the case where the follower is always ready to

receive commands and the feedback’s “True” value will not

change (e.g. vacuum CFB in Fig 7). Finally, in commander

CBD, the feedback data received must be included in the

transition condition which goes to the command state (where

the command event is issued).

4) Follow events (F): They are inversions of Order events

and used in a CFB that follows the commands received from

other blocks. They will be represented by ‘IN_CMD’ and

‘OUT_FDB’ events in the FB interface.

VI. CASE STUDY DESCRIPTION

A pick and place robot as shown in

Fig 4(a) is selected as a case study and consists of four

actuators, two double-acting pneumatic cylinders (horizontal),

one single-acting pneumatic cylinder (vertical) and one

vacuum unit. Along with the actuators, this device is equipped

with 11 sensors. Ten of them are position sensors indicating

the availability of work pieces on trays and cylinder end

positions, and the last sensor detects the vacuum On/Off

condition. Each actuator along with its associated sensor/s is

considered as one mechatronic object. Hence, the robot is

basically composed of four mechatronic components, three

cylinder units and one vacuum unit. The following is a list of

requirements, facts, and conditions associated with the robot

operation which is exploited for identifying task

(T)/environment (E) perceptions and of each controller

component:

Fig 4: (a) Reference object: pick and place robot. (b) Activity diagram of the

pick and place robot

A. The role of the device is to pick up work pieces which are

passed from other units into three trays (pp1-pp3), and drop

them on a slider. (T)

B. The robot configuration is as illustrated in Fig 4.(E)

C. PP1 can be reached by extension of C1, pp2 is accessible

by extension of C2, and finally getting to pp3 will require

both cylinders extensions.(E)

D. For safety reasons, and to avoid collision with other

devices, the vertical cylinder must start its movement only

when C1 and C2 are at standstill condition (their end

positions). (E)

E. The precedence and order of picking up pieces from the

trays should be 1-2-3. (T)

F. The robot should start its operation when new work pieces

are added, and stop when no work piece is available. (T)

VII. DIFFERENT CONTROL SCENARIOS

In this section, a centralized solution, along with three

distributed control scenarios are presented, which are

developed by following the proposed methodology of

employing reusable CFBs. Furthermore, the way these

different scenarios will reflect on the interface and internal part

of each CFB is analysed.

A. CONVENTIONAL CENTRALIZED CONTROLLER

In this type of design, a single block controls the entire

plant and the control logic is encapsulated in one CFB (Fig 5).

Two sets of input-output events are required for this method.

The ‘INIT-INITO’ events initialize the output data, while

‘REQ-CNF’ events refresh the sensor-actuator data values

being exchanged with the plant.

In spite of the magnificent benefits of applying the

IEC61499 standard, such as time saving and reduction in

design efforts, using it in a centralized approach, seems to have

no particular advantage over conventional industrial

programming languages, as for any new configuration, such as

the one illustrated in Fig 6, or when task descriptions alter, the

whole design process must be initiated from scratch. In

general, centralized controllers may be suitable for some

applications, in the sense that they acquire a single point of

control as well as easy integration and optimisation, but have

considerable drawbacks, such as having poor scalability, high

communication overhead and low resilience to failure [16].

B. DISTRIBUTED CONTROLLERS

1) Master-Slave Controllers: In this method of distributed

controller design, one controller (master) will take control of

one or more controllers and guide them through their

operations via sending commands (e.g. work piece manager

depicted in Fig 7 and Fig 8). In this case, the slave CFB does

not need to make any decision on such operations, and acts

solely based on the commands being sent to it. Moreover, it is

possible that a controller act as a master with respect to some

controllers, and at the same time, be a slave to others [3]. This

is the case for the vertical cylinder, as it acts as a slave to the

work piece manager and a master to the vacuum unit. (Fig 8

and Fig 10)

START

INIT
c1,c2,vc Extend:=FALSE

c1,c2 Retract:=FALSE

vacuum_on:=FALSE

WAIT

 Piece1

c1Extend:=TRUE;

CNF^
1

Input events

^INIT

^REQ

Input data

c1Home

c1End

c2Home

c2End

vcHome

vcEnd

pp1

pp2

pp3

vac

c1End&c2End

Output events

INITO^

CNF^

Output data

c1Extend

c1Retract

c2Extend

c2Retract

vcExtend

Vacuum_on

^INIT

 pp1 AND vcHome

Retract

c1&c2Extend:=FALSE;

c1&c2Retract:=TRUE;

 CNF^

GoDown
vcExtend:=TRUE;

CNF^

Vacuum On
Vacuum_on:=TRUE;

CNF^

Vacuum Off
Vacuum_on:=FALSE;

CNF^

vac AND c1&c2Home

vac

 NOTpp1 AND pp2 AND vcHome

Piece2

c2Extend:=TRUE;

CNF^

Piece3

c1&c2Extend:=TRUE;

CNF^

 NOTpp1 AND NOT pp2 AND pp3 AND vcHome

GoUp
vcExtend:=FALSE;

CNF^

c1
Endc2End

vcEnd AND c1&c2Home

vcHome AND (NOT c1Home OR NOT c2Home)
NOT vac

vc
En

d
A

N
D

 N
O

T
(c

1&
c2

H
om

e)

vcHome AND c1&c2Home

Fig 5: State diagram of a Centralized Controller

Fig 6: Example of a more complex configuration of a pick and place robot

along with work piece trays positioned at various levels [18]

Fig 7: Distributed control of the robot with Master –Slave relation (connections

with the plant are emitted for simplicity)

Master(wp Manager)

Slave(Cyl1) Slave/Master(vc)

CMD(Extend)

Slave(Cyl2)

Slave(Vaccum)

CMD-Vacuum-On

CMD(vc Extend)

FDB(vc Ready)

FDB(Ready)

CMD(Retract)

FDB(Ready)

CMD(Retract)

FDB(VacuumReady)

CMD(Extend)

FDB(Cyl1Ready)

CMD-Vacuum-Off

FDB(VacuumReady)

CMD(Retract)

FDB(Ready)

FDB(Ready)Time

Command Feedback

Fig 8: An example of event exchange among master-slave controllers to pick

up a work piece from tray one

Fig 9 shows the state diagram for C1 and C2 modelled the

same way as formerly described in section V. Due to their

slavery nature, they do not require any task perception (P)

(‘REQ’, will not be used) and merely follow their master’s

commands (F), (‘IN_CMD1’ to extend, ‘IN_CMD2’ to retract

and ‘OUT_FBD’ to announce their readiness to the master).

Moreover, in contrast with the vertical cylinder, horizontal

cylinders do not command any other CFB, and therefore, do

not require order events (O). Fig 9 and Fig 10 clearly depict the

differences caused between these two cylinder CFBs, which is

derived from their various roles in the control system.

These master and slave controller blocks can be fully re-

used in a new system configuration such as the one shown in

Fig 6. There will be more such CFBs added to the controller

design and the only changes will be involved in the work piece

manager. The changes to this block can also be automated

(created dynamically) using a meta-model representation of the

whole system. Given an input similar to

Fig 4(b), the work piece manager can be dynamically

generated.

Home End

START

WAIT

1

IN_CMD2

Input events

^INIT

^REQ

^IN_CMD1

^IN_CMD2

Input data

Home

End

1

Output events

INITO^

CNF^

OUT_FDB^

Output data

Extend

Retract

Ready

^INIT

GoForward+ NOT Ready

Extend:=TRUE;

Retract:=FALSE; CNF^
Ready:=FALSE; OUT_FDB^

CylAtEnd +Ready

INIT+Ready

Extend:=FALSE;Retract:=FALSE;

 INITO^
Ready:=TRUE; OUT_FDB^

CylAtHome + Ready

GoBackward +NOT Ready
Extend:=FALSE;

Retract:=TRUE; CNF^
Ready:=FALSE; OUT_FDB^

Ready:=TRUE;

OUT_FDB^

I
P
F

I
P
F

IN_CMD1

Ready:=TRUE;

OUT_FDB^

Fig 9: Controller of the horizontal cylinders being implemented as slaves to

work piece manager

Home End

START

WAIT

1

IN_CMD2

Input events

^INIT

^REQ

^IN_CMD1

^IN_CMD2

^IN_FDB

Input data

Home

End

Ready(vacuum)

1

Output events

INITO^

CNF^

OUT_FDB^

OUT_CMD^

Output data

Extend

Retract

Ready(VC)

^INIT

GoForward +NOT Ready

Extend:=TRUE; CNF^
Ready:=FALSE; OUT_FDB^

CylAtEnd + Ready

INIT + Ready
Extend:=FALSE; INITO^

Ready:=TRUE; OUT_FDB^

CylAtHome +Ready

GoBackward + NOT Ready

Extend:=FALSE;CNF^
Ready:=FALSE; OUT_FDB^

Ready:=TRUE; OUT_FDB^

I
P
F

I
P
F

O
O

Command

 OUT_CMD^

R
ea

d
y
(V

ac
u
u
m

)

IN_CMD1

Ready:=TRUE ; OUT_FDB^

Fig 10: Controller of the vertical cylinder implemented as Master for vacuum

unit and slave for work piece manager

2) Peer-to-Peer Controllers: This approach can be

considered as bilaterally apply a Master-Slave relationship for

two CFBs in a way that order (O) and follow (F) events merge

together in a way that CFBs only send commands to each

other, while each command acts simultaneously as a feedback

to the other block’ command, and vice versa, as illustrated in

Fig 11 - Fig 14. This method is very useful, particularly for

objects that are subject to some restrictions by their adjacent

function blocks in a way that one action is permitted or

blocked by other action(s) of an adjacent block and

contrariwise [3].

In the case study, the two horizontal cylinders, ‘C1’ and

‘C2’ permit the vertical cylinder VC to extend; alternatively

the VC allows C1 and C2 to retract. Also, as the VC arrives at

its end position, it orders vacuum unit to either turn ON (pick

up) or OFF (drop) and once its condition is changed, sends a

command to VC to retract.

The controllers for C1 and C2 are slightly different in a

sense that each responds upon the presence of different work

pieces at the trays. For instance, to pick up a work piece from

pp2, C1 bypasses the GoForward state (does not extend) and

just permits the vertical cylinder to extend, whereas cylinder

Two has to extend before permitting the VC to extend.

Therefore, to maintain simplicity and uniformity of controller

function blocks, both task perceptions (P) are provided in one

function block. Following that, C1 and C2 will be instantiated

from the same CFB, and then, distinguished by passing

different ID numbers to them as an input (Fig 11). This method

can be applied conveniently to other applications when one

universal block is designed to be instantiated in various

environment conditions.

START

WAIT

1

vcPermitMove

Input events

^INIT

^REQ

^IN_CMD

Input data

vcPermitMove

PP1

PP2

PP3

Home

End

ID(Cyl1 or 2)

vcPermitM
ove

Output events

INITO^

CNF^

OUT_CMD^

Output data

Extend

Retract

AllowVcDown

Home

End

^INIT

CylAtEnd+ Permit

INIT+Block

Extend:=FALSE;Retract:=FALSE; INITO^
AllowVcDown:=FALSE; OUT_CMD^

CylAtHome+Permit

GoBackward+Block
Extend:=FALSE;

Retract:=TRUE; CNF^
AllowVcDown:=FALSE;

OUT_CMD^

AllowVcDown:=TRUE;

OUT_CMD

I
P
F

I
P
O

(ID=1 AND Home AND PP2

AND NOT PP1) OR

(ID=2 AND Home AND PP1

(ID=1 AND Home AND PP1 OR(PP3 AND NOT PP1

AND NOT PP2)) OR

(ID=2 AND Home AND NOT PP1 AND (PP2 OR PP3))

GoForward+ Block
Extend:=TRUE;

Retract:=FALSE; CNF^
AllowVcDown:=FALSE;

OUT_CMD^

AllowVcDown:=TRUE;

OUT_CMD^

Fig 11: Controller of horizontal cylinder in Peer-to-Peer relationship with

the vertical cylinder

Cylinder1 VerticalCylinderCylinder2 Vacuum

OUTCMD2(PermitCyl)

OUT_CMD(AllowVcDown)

Blocked by others Permit CMD Permitted

OUTCMD2(PermitCyl)

OUT_CMD(AllowVcDown)

OUT_CMD1(PermitVac)

OUT_CMD(PermitVC)

OUTCMD2(PermitCyl)

OUTCMD2(PermitCyl)

OUT_CMD(AllowVcDown)

OUT_CMD(AllowVcDown)

OUT_CMD1(PermitVac)

BB

B P

P
P

B

B
P B

PBBB

P BBB

B BP
P

P

B

B
BP

BBB

P
OUT_CMD(PermitVC)

BBB

OUTCMD2(PermitCyl)

OUTCMD2(PermitCyl)

BP
P

Initialization

After Horizontal Extension

After Vertical Extension

After Vacuum On

After Vertical Retraction

After Horizontall Retraction

After Vertical Extension

After Vacuum Off

After Vertical Retraction

Time

B

Fig 12: An example of event exchange among Peer to Peer controllers when

they aim at picking up a work piece from tray one

Fig 13: Distributed control of the robot in Peer-to-Peer relation

START

WAIT

1

VacPermitUp

Input events

^INIT

^REQ

^IN_CMD1

^IN-CMD2

^IN_CMD3

Input data

Home

End

c1PermitDown

c2PermitDown

vacPermitUp

1

Output events

INITO^

CNF^

OUT_CMD1^

OUT_CMD2^

Output data

Extend

PermitVac

PermitCyl

Home

^INIT

GoForward+BlockCyl
Extend:=TRUE; CNF^
PermitCyl:=FALSE; -

OUT_CMD2^

CylAtEnd+PermitVac

INIT+PermitCyl+BlockVac
Extend:=FALSE; INITO^

PermitCyl:=TRUE; OUT_CMD2^
PermitVac:=FALSE; OUT_CMD1^

CylAtHome+ PermitCyl

GoBackward+BlockVac

Extend:=FALSE; CNF^
PermitVac:=FALSE OUT_CMD1

PermitCyl:=TRUE; OUT_CMD2^

I
P

F

I
P
O

End

c1
P

er
m

it
D

o
w

n
 A

N
D

c2
P

er
m

it
D

o
w

n

PermitVac:=TRUE;

OUT_CMD1^

Fig 14: Controller of the vertical cylinder while having Peer-to-Peer
relationship with other C1 & C2, and master relationship to Vacuum

As it was mentioned in section V, order events (O) can be

associated with a Boolean data variable and in c1 and c2 (Fig

11), ‘AllowVcDown’ is the variable associated with

‘OUT_CMD’ and in the vertical cylinder, “PermitVac” and

“PermitCyl” are the Boolean data associated with the (O) event

‘OUT_CMD1’ and ‘OUT_CMD2’ respectively (Fig 14).

3) Independent and distributed controllers: In this method,

the CFSs are provided with as many sensor data as they require

being able to thoroughly perceive their task and working

environment. In this method, although the control logic is

distributed among several CFBs, they perform independently

and do not communicate with each other. Hence, no (O) and

(F) events are used in such controller blocks and as depicted in

Fig 15 - Fig 16, each CFB has a different structure, and as a

result will not be reusable. Implementation of such design

method in small applications is easier when compared with

centralized approach; however, it would become very complex

for large systems, as the designer should consider all operation

states for designing each controller.

End
Home

START

INIT

Extend:=FALSE;

Retract:=FALSE;

INITO^

WAIT

GoForward

Extend:=TRUE;

Retract:=FALSE;

CNF^

CylAtEnd

GoBackward

Extend:=FALSE;

Retract:=TRUE;

CNF^;

CylAtHome

Input events

^INIT

^REQ

Input data

c1Home

c1End

PP1

PP2

PP3

vcHome

vacuum

1

Output events

INITO^

CNF^

Output data

Extend

Retract

^INIT
I

O
I

O

(c
1H

om
e

A
N

D
 v

cH
om

e
A

N
D

N
O

T
 v

ac
uu

m
)

A
N

D
 (

pp
1

O
R

 (
P
P
3

A
N

D
 N

O
T

 P
P
1

A
N

D
 N

O
T

 P
P
2

1

Vacuum AND vc Home

Fig 15: Independent and distributed controller of cylinder1

End

Home

START

INIT

Extend:=FALSE;

Retract:=FALSE;

INITO^

WAIT
GoForward

Extend:=TRUE;

Retract:=FALSE;

CNF^

CylAtEnd

GoBackward

Extend:=FALSE;

Retract:=TRUE;

CNF^

CylAtHome

1
Input events

^INIT

^REQ

Input data

c1Home

c1End

c2Home

c2End

PP1

PP2

PP3

vcHome

vcEnd

vacuum

1

Output events

INITO^

CNF^

Output data

Extend

Retract

^INIT
I

O
I

O

(((
c1End A

ND c2Home A
ND PP1) O

R

(c1Home A
ND c2End A

ND PP2) O
R

(c1End A
ND c2End A

ND PP3))
AND N

OT vacuum)

OR(c1Home A
ND c2Home A

ND vacuum)

(((c1End AND c2Home)

OR (c1Home AND c2End)

OR (c1End AND c2End))

AND vacuum)OR((c1Home

AND c2Home) AND NOT

vacuum

Fig 16: Independent and distributed vertical cylinder controller

VIII. CONCLUSIONS

 In this paper, a systematic method of designing re-usable

controller function blocks of mechatronic components is

described. Also different approaches were proposed to adapt

CFBs conveniently into distributed control systems. All the

aforementioned control logic approaches were successfully

implemented in NxtStudio®1.5[17] environment. In all

selected methods, the robot had identical performance. Finally,

this study described the challenges and solutions ahead of

implementing plug-and- play control systems. Although the

complexities of most industrial applications are much greater

than the described example, it is highly believed that the same

approach can be pursued to facilitate implementation of

distribution control systems and thereby benefit from its

numerous advantages over centralized systems.

IX. FUTURE WORKS

In continuation of this research these methods will be

examined on more complex applications, with population of

more mechatronic objects having multi communication links,

and also some controllers will be implemented in parallel to

study how fault tolerance should be dealt with in distributed

control logic. We are already in progress for a follow up paper

on how this method of plug-and-play modules may be used for

formal verification of a similar system. The same case study is

being used in that paper as well.

REFERENCES

[1] G. Black and V. Vyatkin, "Intelligent Component-Based Automation of
Baggage Handling Systems With IEC 61499," Automation Science and

Engineering, IEEE Transactions on, vol. 7, pp. 337-351, 2010.

[2] E. Schweikardt and M. D. Gross, "Learning about Complexity with
Modular Robots," presented at the Proceedings of the 2008 Second

IEEE International Conference on Digital Game and Intelligent Toy
Enhanced Learning, 2008.

[3] V. Vyatkin, S. Karras, T. Pfeiffer, and H. M. Hanisch, "Rapid

Engineering and Re-Configuration of Automation Objects Using Formal

Verification," International Journal on Manufacturing Research, vol. 1,

pp. 382-404, 2006.

[4] L. Penebo and B. Hansson. Plug and Play in Control Loop Design-ABB
Automation Technology Products Available:

http://www05.abb.com/global/scot/scot296.nsf/veritydisplay/30d46d3f3

466b41fc1256d43004286ac/$file/3BSE028758_-
_en_PLUG_AND_PLAY_IN_CONTROL_LOOP_DESIGN.pdf

[5] G. Frey and L. Litz, "Formal methods in PLC programming," in

Systems, Man, and Cybernetics, 2000 IEEE International Conference
on, 2000, pp. 2431-2436 vol.4.

[6] M. Bonfe and C. Fantuzzi, "Application of object-oriented modeling

tools to design the logic control system of a packaging machine," in
Industrial Informatics, 2004. INDIN '04. 2004 2nd IEEE International

Conference on, 2004, pp. 569-574.

[7] C. Maffezzoni, L. L. Ferrarini, and E. Carpanzano, "Object-oriented
models for advanced automation engineering - modular modeling in an

object oriented database," Control Engineering Practice, vol. 7, pp. 957-

968, 1999.
[8] E. Faldella, A. Paoli, A. Tilli, M. Sartini, and D. Guidi, "Architectural

design patterns for logic control of manufacturing systems: The

generalized device," in Information, Communication and Automation
Technologies, 2009. ICAT 2009. XXII International Symposium on,

2009, pp. 1-7.

[9] V. Vyatkin, IEC 61499 Function blocks for embedded and distributed
control systems design: OOONEIDA, 2007.

[10] V. Vyatkin, G. Zhabelova, N. Higgins, M. Ulieru, K. Schwarz, and N.

K. C. Nair, "Standards-enabled Smart Grid for the future Energy Web,"
in Innovative Smart Grid Technologies (ISGT), 2010, 2010, pp. 1-9.

[11] International Electrotechnical Commission - IEC61499, "Function

Blocks for Industrial Process Measurement and Control Systems – Part
1: Architecture," ed. Geneva: Tech. Comm. 65, Working group 6, 2005.

[12] V. Vyatkin, IEC 61499 Function Blocks for Embedded and Distributed

Control Systems Design vol. 2: ISA 2007.
[13] T. Schmidberger and A. Fay, "A rule format for industrial plant

information reasoning," in Emerging Technologies and Factory

Automation, 2007. ETFA. IEEE Conference on, 2007, pp. 360-367.
[14] V. Vyatkin, "IEC 61499 as Enabler of Distributed and Intelligent

Automation: State of the Art Review," IEEE Transactions on Industrial

Informatics, 2011 2011.
[15] V. Vyatkin, S. Karras, and T. Pfeiffer, "Architecture for automation

system development based on IEC 61499 standard," in Industrial

Informatics, 2005. INDIN '05. 2005 3rd IEEE International Conference
on, 2005, pp. 13-18.

[16] F. Somers, "Hybrid: unifying centralised and distributed network

management using intelligent agents," in Network Operations and
Management Symposium, 1996., IEEE, 1996, pp. 34-43 vol.1.

[17] nxtControl. ((2010, 10/05). nxtStudio.). Available:
www.nxtcontrol.com

http://www05.abb.com/global/scot/scot296.nsf/veritydisplay/30d46d3f3466b41fc1256d43004286ac/$file/3BSE028758_-_en_PLUG_AND_PLAY_IN_CONTROL_LOOP_DESIGN.pdf
http://www05.abb.com/global/scot/scot296.nsf/veritydisplay/30d46d3f3466b41fc1256d43004286ac/$file/3BSE028758_-_en_PLUG_AND_PLAY_IN_CONTROL_LOOP_DESIGN.pdf
http://www05.abb.com/global/scot/scot296.nsf/veritydisplay/30d46d3f3466b41fc1256d43004286ac/$file/3BSE028758_-_en_PLUG_AND_PLAY_IN_CONTROL_LOOP_DESIGN.pdf
http://www.nxtcontrol.com/

