

Abstract—The main focus of recently presented approaches
regarding the formal description of automation systems based
on the standard IEC 61499 has been focused on the
description of the logical behavior of the control logic. But the
correctness of the behavior of the overall system is strongly
related with the used runtime environment and its processing
capabilities. This paper investigates on this aspect to include
real-time constraints into the verification process. For
instance, the event propagation policy as well as the necessary
execution time for all actions within the automation system
need to be described for a complete model of the automation
system.

I. INTRODUCTION
HE formal description of control logic used in
industrial automation is driven by different factors.

Kropik [1] presented some statistics about startup-phase
errors in automotive manufacturing. The two main sources
for failures are programming errors (24%) and so-called
“blocked and starved” failures (33%). The usage of
analysis as well as verification and validation based on
formal descriptions can be very helpful to decrease these
failure sources.

According to Bani Younis and Frey [2] the approaches
applied on the formalization vary in their range in three
different classes; formalization of parts of the algorithm,
complete programs and whole control configuration. The
first one only addresses the problem of programming
errors. The second range and even more the third range
specially refer to more comprehensive consideration of the

Manuscript received December 24, 2006. This work is partially
supported by the FIT–IT: Embedded Systems program, an initiative of the
Austrian federal ministry of transport, innovation, and technology (bm:vit)
within the εCEDAC–project under contract FFG 809447. The εCEDAC
consortium consists of Bachmann Electronic GmbH, kirchner SOFT
GmbH, SIEMENS VAI, LOYTEC electronics GmbH and the research
institutes PROFACTOR and ACIN. Participation of V. Vyatkin in this
project was supported by the Royal Society of New Zealand by the ISAT
linkages fund grant ISATB05-74.

C. Sünder is with Vienna University of Technology, Automation and
Control Institute (ACIN), Austria (corresponding author to provide phone:
+43 (0)1-58801/37682; fax: +43 (0)1-58801/37698; e-mail:
suender@acin.tuwien.ac.at).

H. Rofner received his master’s degree from Vienna University of
Technology, Austria in 2006. (herman@mail.at)

V. Vyatkin is with the Department of Electrical and Computer
Engineering, The University of Auckland, New Zealand (e-mail:
v.vyatkin@auckland.ac.nz).

B. Favre-Bulle is with Vienna University of Technology, Automation
and Control Institute (ACIN), Austria (favre@acin.tuwien.ac.at).

manufacturing plant. This means the interaction of several
programs using the same or different resources or their
interaction over the network need to be addressed in the
formal description. Another important aspect is additional
information about the process. This enables the verification
of the program with a model of the plant or the
environment.

This paper especially focuses on additional information
about the behavior of the runtime environment. In the case
of classical programmable logic controllers (PLCs) this
execution behavior is the cyclic execution of the control
logic. Hanisch et al. [3] present a model of such a scan-
based execution order, which can be represented in rather
simple models. Further they include a model of the process
for the industrial example of a lifter. Their verification
consists of proofing specifications with respect to the
dynamic behavior.

In the case of event-based systems, and especially for
modeling techniques based on events, the model of the
runtime behavior becomes even more important and
extensive. There is no fixed scan-cycle that can be taken as
general assumption, events may occur at different points in
the control logic and may interact in a way to produce
malfunction of the system. For industrial automation, the
standard IEC 61499 [4] provides the basis for such a
distributed, event-based modeling of control applications.
Another important fact regarding to execution models
based on the standard IEC 61499 has been described by
Sünder et al. [5]. The standard does not define a strict
execution model for function block networks. There exist
different runtime environments compliant to IEC 61499,
but when executing the same function block network on
two different runtime environments, the results may also
differ. Therefore it is even more necessary to include a
detailed model of the execution platform into the formal
description for verification and analysis of the overall
manufacturing plant.

The remainder of the paper is as follows: First we will
give an overview of current approaches regarding to the
verification of IEC 61499 control logic. Afterwards we
present an implementation of an IEC 61499 compliant
runtime environment and static analysis based on its event
propagation policy. The model of this runtime behavior
will be presented in section 4. A typical function block
network and its verification with real-time constraints will

Formal description of IEC 61499 control logic with real-time
constraints

Christoph Sünder, Hermann Rofner, Valeriy Vyatkin, Member, IEEE and Bernard Favre-Bulle

T

be described in section 5. We will summarize our approach
in section 6 and give an outlook to future work.

II. RELATED WORK
There exist several approaches for the formal description

of IEC 61499 control logic that have been described within
the recent years. They can be separated according to one
significant property; whether they include beside the model
for function blocks (FBs) also a model of the runtime
environment (event propagation within the FB network) or
not.

A. Formal description of pure function blocks
The first approach for a formal description of FBs

according to IEC 61499 has been published by Vyatkin and
Hanisch [6]. They use net condition event systems (NCES)
and therefore are able to combine analogies with
IEC 61499. NCES modules can be interconnected by event
and condition arcs to even bigger modules. Event
propagation is modeled directly by event arcs. Therefore,
the runtime behavior is not mentioned. Further work based
on this approach uses closed-loop verification of the
controller and the plant. Appropriate tool support and
automatic generation of the formal model of the system are
further topics presented within this approach.

The work of Vyaktin and Hanisch builds also the basis
for current work from Lüder et al. [9].

Wurmus and Wagner [12] present an approach for the
formal description by use of Petri Nets. An event is
represented by the flow of markings. Event FBs like
E_DELAY are modeled without regard to a concrete
implementation within a runtime environment.

Schnakenbourg et al. [10] propose to model FBs using a
synchronous language called SIGNAL. They use clocks to
assure the synchronization between the Execution Control
Chart (ECC) and the input events. There is no model
included for the propagation of events according to a
concrete runtime implementation. Physical time is also not
included, but the authors claim that this can be overcome
by giving a value to the gap between two instances of a
clock.

A rather new approach has been presented by Dubinin
and Vyaktin [13] using the verification engine of Prolog
language of logic programming, whose implementations
contain a built-in deductive inference engine. Therefore,
the class of properties that can be checked is extended to
more substantial queries providing in return not only “yes”
or “no”, but also the parameters explaining the reasons. For
instance, questions like “at which values of parameter X
parameter Y belongs to an interval [a,b]. This approach is
limited to basic FBs at the moment, but for further
investigations also models of service interface FBs, a
concept of time or distributed configurations are planned.

B. Formal description of function blocks and their
execution behavior
Vyaktin [16] describes especially the modeling of

execution semantics of IEC 61499 function blocks by use
of NCES. These enhancements of [6] concentrate on the
correct order of actions within a FB as well as the
propagation of events over the network by use of a
scheduler, which provides sequential operation of events.
There is no runtime environment available for these
models, further directions mentioned are a software
implementation as well as a hybrid hardware/software
implementation using Field Programmable Gate Arrays
(FPGA).

Stanica [7] provides a very simple model of the runtime
behavior of an IEC 61499 execution platform. His
approach is based on Timed Automata and takes into
consideration the physical time of algorithm execution.
Further the formal description restricts the execution of
algorithms to only one algorithm at the same time. But
there are no models included to describe the propagation of
events and further runtime behavior.

Khaligui et al. [11] propose a state machine model
compliant to the standard IEC 61499. To avoid
unpredictable behavior in the case of simultaneous
occurrences of events they propose to design offline
scheduling of FB execution. They verify the scheduling
correctness using the state machine model. By use of this
scheduler a hard-coded execution model of a runtime
environment can be implemented.

Cengic et al. [8] describe their formal model of the
runtime environment FUBER, which they have developed
based on interacting finite automata in Supremica. In this
case the formal description includes many aspects of the
runtime behavior. For instance, the event execution model
specifies that each FB instance must wait for another
instance to finish its event handling before it can begin its
own event handling. Incoming events of a FB instance are
stored in a queue; all FB instances waiting for execution are
also handled in another queue. By use of such a detailed
formal description of the runtime behavior, they are able to
proof in many details the behavior of the FUBER
implementation. Physical time is not mentioned in their
approach. As the implementation of FUBER is based on
Java, the virtual machine as well as the underlying
operating system need to be included to the models for the
consideration of physical time.

III. THE C++FBRT
As already described in the previous sections, the formal

description of control logic according to IEC 61499 needs
to be based on the principles for event propagation of a
concrete runtime environment. This paper focuses on the
IEC 61499 runtime environment (C++FBRT) developed

during the recent years at the Vienna University of
Technology. A short description of its behavior is given by
Rumpl et al. [14]. The C++FBRT targets at resource-
limited embedded systems and does not need an underlying
operating system. It has been implemented in C++.

A. The behavior of the C++FBRT
There are very different ways of executing function

block networks according to IEC 61499 available. Sünder
et al. [5] gives a short overview on the variety available at
the moment. The basic idea of propagating events within
the C++FBRT is the usage of a so-called event dispatcher.
If any event occurs within the runtime environment, the
event source registers this event to the event dispatcher.
The event dispatcher is a first-in first-out (FIFO) queue. If
the runtime environment is able to execute a FB instance,
the eldest event registered within the event dispatcher is
removed and executed. This means, the runtime
environment executes all function blocks that are connected
to this output event. The order of execution of connected
FB instances is the same as in the eXtendable Markup
Language (XML)-description of the function block
network. The standard IEC 61499 defines, that there are
only one-to-one event connections possible. If a one-to-
many connection is necessary, the E_SPLIT FB has to be
used. As a shorthand notation the order of the connections
within the XML-description is considered. The E_SPLIT
FB is not mentioned explicitly as FB instance, but the
behavior of the E_SPLIT FB is modeled within the FB
output as a list of connected event inputs of FB instances.
The standard also defines an E_MERGE FB to model
many-to-one event connections for an event input. As there
is only one event occurring at the same time, this FB
instance can be neglected in this implementation.

Figure 1 depicts the situation of event propagation within
the C++FBRT in more detail. Let’s assume that there is no
FB instance executing within the C++FBRT. The runtime
environment is idle. This means it is trying to remove an
event from the event dispatcher. As there is no event within
the event dispatcher, it tries again. If the output event EO1
occurs, it will be registered to the event dispatcher. When
execution of FB1 has finished, the runtime environment
will remove EO1 from the event dispatcher and then goes
to the corresponding output event. Within there, a list of
connected event inputs is registered. In the case of EO1,
only one event input (EI1) is registered and FB2 is
executed by the occurrence of EI1. In this example, FB2
sends the output event EO2. Therefore, EO2 is put into the
event dispatcher (Please note, that Figure 1 shows two
events within the event dispatcher. But at this time, only
EO2 is registered the event dispatcher). After execution of
FB2 has finished, the runtime environment removes EO2
from the event dispatcher. The list of connected event
inputs of EO2 includes two event inputs. Therefore, first

FB3 is executed by the occurrence of EI2, afterwards FB4
is executed by the occurrence of EI3. Now no more events
are within the event dispatcher and the runtime
environment is idle again.

Figure 1: Event propagation within the C++FBRT

During registration of an event to the event dispatcher an
important mechanism has to be mentioned. Due to the fact,
that data inputs are implemented as direct pointers to data
outputs of FBs, data inconsistencies occur if an event is put
twice into the event dispatcher. This means, the first event
occurrence has not been executed until this event occurs
again (see [14] for more details). Therefore, if an event is
registered to the event dispatcher, it will be checked
whether this event is already registered to the event
dispatcher. If yes, it will not be registered.

Besides this procedure of event propagation, the
mechanism of event occurrence due to external interrupts is
an essential part of the runtime environment. We have to
distinguish between two sources of interrupts; the timing
interrupt and all other kinds of interrupts. The standard
IEC 61499 defines a list of event FBs that are responsible
for timing behavior. For instance, if the E_DELAY FB
receives an input event, a certain time afterwards the output
event occurs. Another example is the E_CYCLE FB,
capable of providing cyclic occurrences of output events.
To handle these event FBs, the C++FBRT uses a timer
interrupt occurring every millisecond. If for instance an
E_DELAY FB instance receives an event, it registers itself
to the timer. If the time duration has elapsed, the timer
interrupt invokes the FB instance which puts its output
event into the event dispatcher.

Any other external event sources can invoke the
appropriate FB instance from the context of their interrupt
and put the output event into the event dispatcher.

To completely describe the behavior of the C++FBRT,
also the internals of FB instances have to be described. As
it will not be used within the following descriptions, we
leave out a detailed description of FB instance execution.
Composite FBs are executed the same way as FB networks,
basic FBs and service interface FBs according to the
requester primitive are executed by invocation of one event
input. Within the C++FBRT it is not possible that two

events can occur simultaneously. Service interface FBs
concerning to the responder primitive have been already
described above, as they are invoked by an external
interrupt source.

B. Static timing analysis of event propagation
If we consider the timing behavior of the C++FBRT by

itself, we can find a simple description of this behavior. As
soon as an event is registered to the event dispatcher, the
runtime environment behaves in a deterministic manner. Of
course, the execution of such a function block network can
be interrupted by event occurrences due to external
interrupts. Within the following, we neglect such external
event sources. The starting point of this static timing
analysis is that an output event has been registered to the
event dispatcher. The following execution the FB network
will not be disturbed by external interrupts.

Based on these preconditions, the timing behavior of the
FB network can be described with a rather small set of
parameters and simple formulas. The main parameter for a
function block itself is its execution time tFB. This
parameter gives the time from the invocation of an FB
(generally speaking the concrete input event has to be
mentioned) until he has finished execution. This includes
also registration of output events to the event dispatcher.
This time is constant in case of the C++FBRT, if we
assume an empty event dispatcher. Therefore it can be
assigned to tFB. If there are already events registered to the
event dispatcher, the C++FBRT checks if this event is
already included in the dispatcher (as described in section
III.A). The time necessary for this check is application
dependent and is constant for each event within the event
dispatcher. Therefore we can model this time tEvFB by the
product of the current number of events within the event
dispatcher NEv and the constant time for checking one event
tEv, as in (1).

EvEvEvFB Ntt ⋅= (1)

If the execution of a FB has finished, the C++FBRT

takes the next event from the event dispatcher. This takes
place in constant time, described by the parameter tWs. This
exactly describes all actions from fetching an event from
the event dispatcher, looking at the list of connected input
events within the output event, and taking the first input
event for invocation. Therefore this parameter characterizes
the execution of a serial path within the FB network. Each
output event is connected to only one input event, all FBs
are executed sequentially. The upper part of Figure 2
depicts exactly this situation. (2) gives the appropriate
formula to calculate the execution time of this serial path
within the C++FBRT, tpath_s.

EvFBsnFBsnWs

EvFBsFBsWsEvFBsFBsspath

ttt

tttttt

+++

+++++= ...2211_ (2)

If there are several input events connected to an output

event, the list within the output event includes two or more
entries. The parameter tWs characterizes the time for
fetching the first element of this queue, all further events
can be fetched from the list. This again happens in constant
time, but since the event dispatcher is not involved it takes
place faster. The appropriate parameter is tWbr. Therefore
the execution time for a so-called branching path (all
execution from the second to the last connection of one
output event to any other events) can be calculated
according to (3). The lower part of Figure 2 depicts the
situation of a branching path. (3) includes all FBs and the
fetching of the input event from the list beneath the serial
path.

EvFBbmFBbmWbr

EvFBbFBbWbrEvFBbFBbWbrbrpath

ttt

ttttttt

+++

++++++= ...2211_ (3)

Figure 2: Description of (1) and (2)

To summarize the static analysis of the C++FBRT, all

mentioned parameters and their description are collected in
Table 1.

Parameter Description
tFB Execution time of a FB
tEvFB Time for evaluation of events within the

event dispatcher
tWs Waiting time for fetching the next event

from the event dispatcher
tWbr Waiting time for fetching the next event

within the list of connected event inputs
NEv Current number of events within the event

dispatcher
tEv Time for checking one event within the

event dispatcher
tpath_s Execution time of a serial path

tpath_br Execution time of a branching path
Table 1: Parameters for static analysis of event propagation within the
C++FBRT

IV. FORMAL DESCRIPTION OF THE C++ FBRT
The C++FBRT is modeled by use of Net

Condition/Event Systems (NCES). A brief overview of
NCES is available in Vyaktin [16].

Description of the modeling of the Queue within the
event dispatcher for 3 events and 5 places (including a
figure)

• What happens during registration to the event
dispatcher

• What happens during fetching from the event
dispatcher

Description of the model for a list of connected FBs
within an output event. (figure ?)

Description of the operation of the C++FBRT, the

“control” model always fetching events (figure ?)

Description of the Timing interfaces within the

C++FBRT (including a figure)
• Mutual exclusion for access to the event

dispatcher

A. Implementation of physical time in the NCES models
Interruption of the operation of a NCES-model

• General behavior of NCES – doing things in
steps (Is [16] sufficient as reference for that?)

• Use a special condition for the sake of blocking
execution (connected to all transitions within
the relevant part of the model)

• Blocking of timed conditions (including a
figure)

V. COMPARISON OF RESULTS
According to the methologies presented in this paper, we

have compared our approaches by use of a simple function
block network depicted in Figure 3. The test environment
was a Infineon C167CS microcontroller (µC), mounted on
a development board phyCORE-167-HS/E. This simple 16
bit µC is sufficient to execute the C++FBRT. More details
about the µC as well as the measurement procedure can be
found in Rofner [15].

This example can be analyzed by three different test
cases. The first one (TC 1) is direct measurement of the
execution behavior of the overall runtime environment.
Therefore the method of setting and reseting Boolean
outputs is used, the measurements can be applied by use of

a digital oscilloscope. You can find our results concerning
to this test case in Table 3 within the second column.

The second test case (TC 2) consists of the measurement
of the parameters defined in Table 1 and applying the
method of static timing analysis. The results of this method
are presented in Table 3, third column. To give an example
for the calculation of these results, we provide the
algorithm for the measurement from the fetching of event
Clock.EO to the finishing of the execution of FB3. The
values of the parameters for the test environment are
presented in Table 2. The formula for the calculation of the
mentioned execution path is mentioned in (4).

Parameter Value for test environment
tFB 15,45 µs (for instances of simpleFB)
tWs 31,34 µs
tWbr 25,91 µs
tEv 1,35 µs

Table 2: Time values for the parameters from the test environment

???? (4)

Description of formula (4).

Figure 3: Example Function Block Network

The third test case (TC 3) is the formal verification of
this example and extraction of the timing information from
the possible paths within the state space of this system. The
system that is modeled consists of the µC (timing interrupt
and physical execution time), the C++FBRT and the
application depicted in Figure 3. The verification is
provided by the tool iMATCh (Integrated Model
Assembler Translator and Checker) from Valeriy Vyaktin.
A brief description of the tool is available in [3].

Description of the state space of the system and the
extraction of the timing information from the model
checker.

End point TC 1 TC 2 TC 3
FB3
finished

137,79 µs 137,64 µs ?

FB4
finished

181,79 µs 181,7 µs ?

FB5
finished

231,29 µs 231,19 µs ?

FB6
finished

276,29µs 275,6 µs ?

Table 3: Comparison of the results of the three test cases. The starting
point of all values is fetching of event Clock.EO from the event dispatcher

VI. CONCLUSION AND OUTLOOK
To be written in January!

ACKNOWLEDGMENT
The authors want to thank Alois Zoitl for his previous

work on the implementation of the C++FBRT as well as
fruitful discussions during the construction of our formal
description of this runtime environment.

REFERENCES
[1] M. Kropik, “Distributed Automation in Automotive

Manufacturing—Current Status and Strategies”, 18th Internatinal
cooperation symposium industry-research, 13th September 2005,
Vienna, Austria

[2] M. Bani Younis, G. Frey, G, “Formalization of Existing PLC
Programs: A Survey”, Proceedings of the IEEE/IMACS
Multiconference on Computational Engineering in Systems
Applications (CESA 2003), 2003

[3] H.-M. Hanisch, A. Lobov, J.L. Martinez Lastra, R. Tuokko, V.
Vyatkin, “Formal validation of intelligent-automated production
systems: towards industrial applications”, Int. Journal Manufacturing
Technology and Management, Vol. 8, No. 1/2/3, 2006

[4] International Electrotechnical Commission, “IEC 61499-1: Function
Blocks - Part 1 Architecture”, International Standard, First Edition,
Geneva, 2005-01

[5] C. Sünder, A. Zoitl, J.H. Christensen, V. Vyatkin, R.W. Brennan, A.
Valentini, L. Ferrarini, T. Strasser, J.L. Martinez-Lastra, F. Auinger,
“Interoperability and Useablity of IEC 61499”, Proceedings of the
IEEE Int. Conference on Industrial Informatics (INDIN’06), pp. 31-
37, 2006

[6] V. Vyatkin, H.-M. Hanisch, “ A modeling approach for verification
of IEC61499 function blocks using net condition/event systems”,
Proceedings of IEEE Int. Conference on Emerging Technologies and
Factory Automation (ETFA’99), pp. 261-270, 1999

[7] M. Stanica, “Behavioral Modeling of IEC 61499 Control
Applications”, PhD report, Universite de Rennes, 2005

[8] G. Cengic, O. Ljungkrantz, K. Akesson, “Formal Modeling of
Function Block Applications Running in IEC 61499 Execution
Runtime”, Proceedings of IEEE Int. Conference on Emerging
Technologies and Factory Automation (ETFA’06), pp. 1269-1276,
2006

[9] A. Lüder, C. Schwab, M. Tangermann, J. Peschke, „Formal models
for the verification of IEC 61499 function block based control
applications”, Proceedings of IEEE Int. Conference on Emerging
Technologies in Factory Automation (ETFA’05), pp. 105-112, 2005

[10] C. Schnakenbourg, J.-M. Faure, J.-J.Lesage, “Towards IEC 61499
function blocks diagrams verification”, Proceedings of the IEEE
International Conference on Systems, Man and Cybernetics, vol. 3,
2002

[11] M. Khaligui, X. Rebeuf, F. Simonot-Lion, “A behavior model for
IEC 61499 function blocks”, Proceedings of the 3rd Workshop on
Modelling of Objects, Components, and Agents, pp. 71-88, 2004

[12] H. Wurmus, B. Wagner, “IEC 61499 konforme Beschreibung
verteilter Steuerungen mit Petri-Netzen“, Fachtagung Verteilte
Automatisierung, 2000

[13] V. Dubinin, V. Vyatkin, H.-M. Hanisch, „Modelling and Verification
of IEC 61499 Applications using Prolog“, Proceedings of IEEE Int.
Conference on Emerging Technologies and Factory Automation
(ETFA’06). pp. 774-781, 2006

[14] W. Rumpl, F. Auinger, C. Dutzler, A. Zoitl, „Platforms for scalable
flexible automation considering the concepts of IEC 61499”,
BASYS’02, Cancun, Mexico, 2002

[15] H. Rofner, “Abarbeitung von IEC 61499 Funktionsblock-
netzwerken—Charakterisierung einer Laufzeitumgebung”, Master
thesis, Vienna University of Technology, 2006

[16] V. Vyatkin, „Execution Semantic of Function Blocks based on the
Model of Net Condition/Event Systems“, Proceedings of the IEEE
Int. Conference on Industrial Informatics (INDIN’06), pp.874-879,
2006

