
 
 

 

  

Abstract—The main focus of recently presented approaches 
regarding the formal description of automation systems based 
on the standard IEC 61499 has been focused on the 
description of the logical behavior of the control logic. But the 
correctness of the behavior of the overall system is strongly 
related with the used runtime environment and its processing 
capabilities. This paper investigates on this aspect to include 
real-time constraints into the verification process. For 
instance, the event propagation policy as well as the necessary 
execution time for all actions within the automation system 
need to be described for a complete model of the automation 
system. 

I. INTRODUCTION 
HE formal description of control logic used in 
industrial automation is driven by different factors. 

Kropik [1] presented some statistics about startup-phase 
errors in automotive manufacturing. The two main sources 
for failures are programming errors (24%) and so-called 
“blocked and starved” failures (33%). The usage of 
analysis as well as verification and validation based on 
formal descriptions can be very helpful to decrease these 
failure sources.  

According to Bani Younis and Frey [2] the approaches 
applied on the formalization vary in their range in three 
different classes; formalization of parts of the algorithm, 
complete programs and whole control configuration. The 
first one only addresses the problem of programming 
errors. The second range and even more the third range 
specially refer to more comprehensive consideration of the 
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manufacturing plant. This means the interaction of several 
programs using the same or different resources or their 
interaction over the network need to be addressed in the 
formal description. Another important aspect is additional 
information about the process. This enables the verification 
of the program with a model of the plant or the 
environment.  

This paper especially focuses on additional information 
about the behavior of the runtime environment. In the case 
of classical programmable logic controllers (PLCs) this 
execution behavior is the cyclic execution of the control 
logic. Hanisch et al. [3] present a model of such a scan-
based execution order, which can be represented in rather 
simple models. Further they include a model of the process 
for the industrial example of a lifter. Their verification 
consists of proofing specifications with respect to the 
dynamic behavior.  

In the case of event-based systems, and especially for 
modeling techniques based on events, the model of the 
runtime behavior becomes even more important and 
extensive. There is no fixed scan-cycle that can be taken as 
general assumption, events may occur at different points in 
the control logic and may interact in a way to produce 
malfunction of the system. For industrial automation, the 
standard IEC 61499 [4] provides the basis for such a 
distributed, event-based modeling of control applications. 
Another important fact regarding to execution models 
based on the standard IEC 61499 has been described by 
Sünder et al. [5]. The standard does not define a strict 
execution model for function block networks. There exist 
different runtime environments compliant to IEC 61499, 
but when executing the same function block network on 
two different runtime environments, the results may also 
differ. Therefore it is even more necessary to include a 
detailed model of the execution platform into the formal 
description for verification and analysis of the overall 
manufacturing plant. 

The remainder of the paper is as follows: First we will 
give an overview of current approaches regarding to the 
verification of IEC 61499 control logic. Afterwards we 
present an implementation of an IEC 61499 compliant 
runtime environment and static analysis based on its event 
propagation policy. The model of this runtime behavior 
will be presented in section 4. A typical function block 
network and its verification with real-time constraints will 
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be described in section 5. We will summarize our approach 
in section 6 and give an outlook to future work. 

II. RELATED WORK 
There exist several approaches for the formal description 

of IEC 61499 control logic that have been described within 
the recent years. They can be separated according to one 
significant property; whether they include beside the model 
for function blocks (FBs) also a model of the runtime 
environment (event propagation within the FB network) or 
not.  

A. Formal description of pure function blocks 
The first approach for a formal description of FBs 

according to IEC 61499 has been published by Vyatkin and 
Hanisch [6]. They use net condition event systems (NCES) 
and therefore are able to combine analogies with 
IEC 61499. NCES modules can be interconnected by event 
and condition arcs to even bigger modules. Event 
propagation is modeled directly by event arcs. Therefore, 
the runtime behavior is not mentioned. Further work based 
on this approach uses closed-loop verification of the 
controller and the plant. Appropriate tool support and 
automatic generation of the formal model of the system are 
further topics presented within this approach.  

The work of Vyaktin and Hanisch builds also the basis 
for current work from Lüder et al. [9]. 

Wurmus and Wagner [12] present an approach for the 
formal description by use of Petri Nets. An event is 
represented by the flow of markings. Event FBs like 
E_DELAY are modeled without regard to a concrete 
implementation within a runtime environment. 

Schnakenbourg et al. [10] propose to model FBs using a 
synchronous language called SIGNAL. They use clocks to 
assure the synchronization between the Execution Control 
Chart (ECC) and the input events. There is no model 
included for the propagation of events according to a 
concrete runtime implementation. Physical time is also not 
included, but the authors claim that this can be overcome 
by giving a value to the gap between two instances of a 
clock. 

A rather new approach has been presented by Dubinin 
and Vyaktin [13] using the verification engine of Prolog 
language of logic programming, whose implementations 
contain a built-in deductive inference engine. Therefore, 
the class of properties that can be checked is extended to 
more substantial queries providing in return not only “yes” 
or “no”, but also the parameters explaining the reasons. For 
instance, questions like “at which values of parameter X 
parameter Y belongs to an interval [a,b]. This approach is 
limited to basic FBs at the moment, but for further 
investigations also models of service interface FBs, a 
concept of time or distributed configurations are planned. 

B. Formal description of function blocks and their 
execution behavior 
Vyaktin [16] describes especially the modeling of 

execution semantics of IEC 61499 function blocks by use 
of NCES. These enhancements of [6] concentrate on the 
correct order of actions within a FB as well as the 
propagation of events over the network by use of a 
scheduler, which provides sequential operation of events. 
There is no runtime environment available for these 
models, further directions mentioned are a software 
implementation as well as a hybrid hardware/software 
implementation using Field Programmable Gate Arrays 
(FPGA). 

Stanica [7] provides a very simple model of the runtime 
behavior of an IEC 61499 execution platform. His 
approach is based on Timed Automata and takes into 
consideration the physical time of algorithm execution. 
Further the formal description restricts the execution of 
algorithms to only one algorithm at the same time. But 
there are no models included to describe the propagation of 
events and further runtime behavior. 

Khaligui et al. [11] propose a state machine model 
compliant to the standard IEC 61499. To avoid 
unpredictable behavior in the case of simultaneous 
occurrences of events they propose to design offline 
scheduling of FB execution. They verify the scheduling 
correctness using the state machine model. By use of this 
scheduler a hard-coded execution model of a runtime 
environment can be implemented. 

Cengic et al. [8] describe their formal model of the 
runtime environment FUBER, which they have developed 
based on interacting finite automata in Supremica. In this 
case the formal description includes many aspects of the 
runtime behavior. For instance, the event execution model 
specifies that each FB instance must wait for another 
instance to finish its event handling before it can begin its 
own event handling. Incoming events of a FB instance are 
stored in a queue; all FB instances waiting for execution are 
also handled in another queue. By use of such a detailed 
formal description of the runtime behavior, they are able to 
proof in many details the behavior of the FUBER 
implementation. Physical time is not mentioned in their 
approach. As the implementation of FUBER is based on 
Java, the virtual machine as well as the underlying 
operating system need to be included to the models for the 
consideration of physical time. 

III. THE C++FBRT 
As already described in the previous sections, the formal 

description of control logic according to IEC 61499 needs 
to be based on the principles for event propagation of a 
concrete runtime environment. This paper focuses on the 
IEC 61499 runtime environment (C++FBRT) developed 



 
 

 

during the recent years at the Vienna University of 
Technology. A short description of its behavior is given by 
Rumpl et al. [14]. The C++FBRT targets at resource-
limited embedded systems and does not need an underlying 
operating system. It has been implemented in C++. 

A. The behavior of the C++FBRT 
There are very different ways of executing function 

block networks according to IEC 61499 available. Sünder 
et al. [5] gives a short overview on the variety available at 
the moment. The basic idea of propagating events within 
the C++FBRT is the usage of a so-called event dispatcher. 
If any event occurs within the runtime environment, the 
event source registers this event to the event dispatcher. 
The event dispatcher is a first-in first-out (FIFO) queue. If 
the runtime environment is able to execute a FB instance, 
the eldest event registered within the event dispatcher is 
removed and executed. This means, the runtime 
environment executes all function blocks that are connected 
to this output event. The order of execution of connected 
FB instances is the same as in the eXtendable Markup 
Language (XML)-description of the function block 
network. The standard IEC 61499 defines, that there are 
only one-to-one event connections possible. If a one-to-
many connection is necessary, the E_SPLIT FB has to be 
used. As a shorthand notation the order of the connections 
within the XML-description is considered. The E_SPLIT 
FB is not mentioned explicitly as FB instance, but the 
behavior of the E_SPLIT FB is modeled within the FB 
output as a list of connected event inputs of FB instances. 
The standard also defines an E_MERGE FB to model 
many-to-one event connections for an event input. As there 
is only one event occurring at the same time, this FB 
instance can be neglected in this implementation. 

Figure 1 depicts the situation of event propagation within 
the C++FBRT in more detail. Let’s assume that there is no 
FB instance executing within the C++FBRT. The runtime 
environment is idle. This means it is trying to remove an 
event from the event dispatcher. As there is no event within 
the event dispatcher, it tries again. If the output event EO1 
occurs, it will be registered to the event dispatcher. When 
execution of FB1 has finished, the runtime environment 
will remove EO1 from the event dispatcher and then goes 
to the corresponding output event. Within there, a list of 
connected event inputs is registered. In the case of EO1, 
only one event input (EI1) is registered and FB2 is 
executed by the occurrence of EI1. In this example, FB2 
sends the output event EO2. Therefore, EO2 is put into the 
event dispatcher (Please note, that Figure 1 shows two 
events within the event dispatcher. But at this time, only 
EO2 is registered the event dispatcher). After execution of 
FB2 has finished, the runtime environment removes EO2 
from the event dispatcher. The list of connected event 
inputs of EO2 includes two event inputs. Therefore, first 

FB3 is executed by the occurrence of EI2, afterwards FB4 
is executed by the occurrence of EI3. Now no more events 
are within the event dispatcher and the runtime 
environment is idle again. 

 
Figure 1: Event propagation within the C++FBRT 

During registration of an event to the event dispatcher an 
important mechanism has to be mentioned. Due to the fact, 
that data inputs are implemented as direct pointers to data 
outputs of FBs, data inconsistencies occur if an event is put 
twice into the event dispatcher. This means, the first event 
occurrence has not been executed until this event occurs 
again (see [14] for more details). Therefore, if an event is 
registered to the event dispatcher, it will be checked 
whether this event is already registered to the event 
dispatcher. If yes, it will not be registered. 

Besides this procedure of event propagation, the 
mechanism of event occurrence due to external interrupts is 
an essential part of the runtime environment. We have to 
distinguish between two sources of interrupts; the timing 
interrupt and all other kinds of interrupts. The standard 
IEC 61499 defines a list of event FBs that are responsible 
for timing behavior. For instance, if the E_DELAY FB 
receives an input event, a certain time afterwards the output 
event occurs. Another example is the E_CYCLE FB, 
capable of providing cyclic occurrences of output events. 
To handle these event FBs, the C++FBRT uses a timer 
interrupt occurring every millisecond. If for instance an 
E_DELAY FB instance receives an event, it registers itself 
to the timer. If the time duration has elapsed, the timer 
interrupt invokes the FB instance which puts its output 
event into the event dispatcher. 

Any other external event sources can invoke the 
appropriate FB instance from the context of their interrupt 
and put the output event into the event dispatcher. 

To completely describe the behavior of the C++FBRT, 
also the internals of FB instances have to be described. As 
it will not be used within the following descriptions, we 
leave out a detailed description of FB instance execution. 
Composite FBs are executed the same way as FB networks, 
basic FBs and service interface FBs according to the 
requester primitive are executed by invocation of one event 
input. Within the C++FBRT it is not possible that two 



 
 

 

events can occur simultaneously. Service interface FBs 
concerning to the responder primitive have been already 
described above, as they are invoked by an external 
interrupt source. 

B. Static timing analysis of event propagation 
If we consider the timing behavior of the C++FBRT by 

itself, we can find a simple description of this behavior. As 
soon as an event is registered to the event dispatcher, the 
runtime environment behaves in a deterministic manner. Of 
course, the execution of such a function block network can 
be interrupted by event occurrences due to external 
interrupts. Within the following, we neglect such external 
event sources. The starting point of this static timing 
analysis is that an output event has been registered to the 
event dispatcher. The following execution the FB network 
will not be disturbed by external interrupts. 

Based on these preconditions, the timing behavior of the 
FB network can be described with a rather small set of 
parameters and simple formulas. The main parameter for a 
function block itself is its execution time tFB. This 
parameter gives the time from the invocation of an FB 
(generally speaking the concrete input event has to be 
mentioned) until he has finished execution. This includes 
also registration of output events to the event dispatcher. 
This time is constant in case of the C++FBRT, if we 
assume an empty event dispatcher. Therefore it can be 
assigned to tFB. If there are already events registered to the 
event dispatcher, the C++FBRT checks if this event is 
already included in the dispatcher (as described in section 
III.A). The time necessary for this check is application 
dependent and is constant for each event within the event 
dispatcher. Therefore we can model this time tEvFB by the 
product of the current number of events within the event 
dispatcher NEv and the constant time for checking one event 
tEv, as in (1).  

 
EvEvEvFB Ntt ⋅=  (1) 

 
If the execution of a FB has finished, the C++FBRT 

takes the next event from the event dispatcher. This takes 
place in constant time, described by the parameter tWs. This 
exactly describes all actions from fetching an event from 
the event dispatcher, looking at the list of connected input 
events within the output event, and taking the first input 
event for invocation. Therefore this parameter characterizes 
the execution of a serial path within the FB network. Each 
output event is connected to only one input event, all FBs 
are executed sequentially. The upper part of Figure 2 
depicts exactly this situation. (2) gives the appropriate 
formula to calculate the execution time of this serial path 
within the C++FBRT, tpath_s. 

 

EvFBsnFBsnWs

EvFBsFBsWsEvFBsFBsspath

ttt

tttttt

+++

+++++= ...2211_  (2) 

 
If there are several input events connected to an output 

event, the list within the output event includes two or more 
entries. The parameter tWs characterizes the time for 
fetching the first element of this queue, all further events 
can be fetched from the list. This again happens in constant 
time, but since the event dispatcher is not involved it takes 
place faster. The appropriate parameter is tWbr. Therefore 
the execution time for a so-called branching path (all 
execution from the second to the last connection of one 
output event to any other events) can be calculated 
according to (3). The lower part of Figure 2 depicts the 
situation of a branching path. (3) includes all FBs and the 
fetching of the input event from the list beneath the serial 
path. 
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Figure 2: Description of (1) and (2) 

 
To summarize the static analysis of the C++FBRT, all 

mentioned parameters and their description are collected in 
Table 1. 

Parameter Description 
tFB Execution time of a FB 
tEvFB Time for evaluation of events within the 

event dispatcher 
tWs Waiting time for fetching the next event 

from the event dispatcher 
tWbr Waiting time for fetching the next event 

within the list of connected event inputs 
NEv Current number of events within the event 

dispatcher 
tEv Time for checking one event within the 

event dispatcher 
tpath_s Execution time of a serial path 



 
 

 

tpath_br Execution time of a branching path 
Table 1: Parameters for static analysis of event propagation within the 
C++FBRT 

IV. FORMAL DESCRIPTION OF THE C++ FBRT 
The C++FBRT is modeled by use of Net 

Condition/Event Systems (NCES). A brief overview of 
NCES is available in Vyaktin [16]. 

Description of the modeling of the Queue within the 
event dispatcher for 3 events and 5 places (including a 
figure) 

• What happens during registration to the event 
dispatcher 

• What happens during fetching from the event 
dispatcher 

 
Description of the model for a list of connected FBs 
within an output event. (figure ?) 
 
Description of the operation of the C++FBRT, the 

“control” model always fetching events (figure ?) 
 
Description of the Timing interfaces within the 

C++FBRT (including a figure) 
• Mutual exclusion for access to the event 

dispatcher 
 

A. Implementation of physical time in the NCES models 
Interruption of the operation of a NCES-model 

• General behavior of NCES – doing things in 
steps (Is [16] sufficient as reference for that?) 

• Use a special condition for the sake of blocking 
execution (connected to all transitions within 
the relevant part of the model) 

• Blocking of timed conditions (including a 
figure) 

 

V. COMPARISON OF RESULTS 
According to the methologies presented in this paper, we 

have compared our approaches by use of a simple function 
block network depicted in Figure 3. The test environment 
was a Infineon C167CS microcontroller (µC), mounted on 
a development board phyCORE-167-HS/E. This simple 16 
bit µC is sufficient to execute the C++FBRT. More details 
about the µC as well as the measurement procedure can be 
found in Rofner [15].  

This example can be analyzed by three different test 
cases. The first one (TC 1) is direct measurement of the 
execution behavior of the overall runtime environment. 
Therefore the method of setting and reseting Boolean 
outputs is used, the measurements can be applied by use of 

a digital oscilloscope. You can find our results concerning 
to this test case in Table 3 within the second column. 

The second test case (TC 2) consists of the measurement 
of the parameters defined in Table 1 and applying the 
method of static timing analysis. The results of this method 
are presented in Table 3, third column. To give an example 
for the calculation of these results, we provide the 
algorithm for the measurement from the fetching of event 
Clock.EO to the finishing of the execution of FB3. The 
values of the parameters for the test environment are 
presented in Table 2. The formula for the calculation of the 
mentioned execution path is mentioned in (4). 

Parameter Value for test environment 
tFB 15,45 µs (for instances of simpleFB) 
tWs 31,34 µs 
tWbr 25,91 µs 
tEv 1,35 µs 

Table 2: Time values for the parameters from the test environment 
 

????  (4) 
 
Description of formula (4). 

 
Figure 3: Example Function Block Network 

The third test case (TC 3) is the formal verification of 
this example and extraction of the timing information from 
the possible paths within the state space of this system. The 
system that is modeled consists of the µC (timing interrupt 
and physical execution time), the C++FBRT and the 
application depicted in Figure 3. The verification is 
provided by the tool iMATCh (Integrated Model 
Assembler Translator and Checker) from Valeriy Vyaktin. 
A brief description of the tool is available in [3]. 

Description of the state space of the system and the 
extraction of the timing information from the model 
checker. 

 
End point TC 1 TC 2 TC 3 
FB3 
finished 

137,79 µs 137,64 µs ? 

FB4 
finished 

181,79 µs 181,7 µs ? 



 
 

 

FB5 
finished 

231,29 µs 231,19 µs ? 

FB6 
finished 

276,29µs 275,6 µs ? 

Table 3: Comparison of the results of the three test cases. The starting 
point of all values is fetching of event Clock.EO from the event dispatcher 

 

VI. CONCLUSION AND OUTLOOK 
To be written in January! 
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