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Abstract— IEC 61499 has been endorsed as the standard
for modelling and implementing distributed industrial-pr ocess
measurement and control systems. The standard prescribes the
use of function blocks for designing systems in a component-
oriented approach. The execution model of a basic function
block and the manner for event/data connections between blocks
are described therein. Unfortunately, the standard does not
provide exhaustive specifications for function block execution.
Consequently, multiple standard-compliant implementations ex-
hibiting different behaviours are possible. This not only defeats
the purpose of having a standard, but makes verification of
function block systems difficult. To overcome this, we propose
synchronous semantics for function blocks, and show its feasibil-
ity by translating function blocks into a subset of Esterel,a well-
known synchronous language. The proposed semantics avoids
causal cycles common in Esterel, and is proven to be reactive
and deterministic under any composition. Moreover, verification
techniques developed for synchronous systems can now be applied
to function blocks.

Index Terms— Compilation, Esterel, function blocks, IEC
61499, synchronous semantics.

I. I NTRODUCTION

I EC 61499 [1] is an international standard that defines a
component-oriented approach, based onfunction blocks,

for modelling and implementing distributed industrial-process
measurement and control systems. A function block abstracts
a functional unit of software by encapsulating local data,
state transitions, and algorithmic behaviour within a well-
defined event-data interface. Fully executable systems canbe
described through a network of function blocks at a high level
of abstraction, independent of the implementation platform.
The standard, thus, paves the way for sophisticated software
methodologies to be applied in the development of industrial
control systems, which has hitherto, been done using low-level
techniques for programmable logic controllers (PLC).

In fact, the IEC 61499 standard has emerged in response
to the technological limitations encountered in the currently
dominating standard, IEC 61131 [2]. IEC 61131 prescribes
the use of various languages, such as Sequential Function
Charts (SFC), Structured Text, and Ladder Diagrams, for pro-
gramming a centralized PLC that adopts a sequentialcyclic-
scan model. In this model, a scan cycle typically involves
reading all inputs, performing some computation based on
the buffered inputs, and updating all outputs at the end of
the cycle. This model of computation, as described in [3], is
severely inadequate to meet the current industry demands for
distributed, flexible automation systems. Moreover, existing
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tools for PLC design typically only offer simulation and
code generation capability, but do not provide any means for
analysis based on formal models.

To meet these challenges, IEC 61499 has defined a new
event-drivenmodel for function blocks intended for distributed
execution, while incorporating advanced software engineering
principles for component-based design to facilitate reuse. In
contrast to the cyclic-scan model that executes a sequential
portion of code in each cycle, the event-driven model relies
on the occurrence of asynchronous events to trigger program
execution. This model makes it more natural to describe
control software that may need to react to multiple events
concurrently. At the same time, IEC 61499 is also practically
appealing as it allows the programming languages prescribed
in the former standard to be encapsulated within the new
function blocks to support legacy algorithms.

At present, function block implementations typically make
use of a run-time environment to dispatch events among the
blocks in a network to mimic the execution model given in
the standard. The run-time environment provides the means to
schedule function blocks for execution in response to events.
Executable code is produced by compiling function blocks
into appropriate objects that can be instantiated in the run-
time environment.

However, the IEC 61499 standard does not provide
formal semantics for the execution of function blocks.In-
stead, the standard contains a verbose description for function
block execution, which has resulted in multiple interpretations.
Consequently, function block designs may potentially behave
differently when executed on the various existing run-time
environments, such as FBRT [4], RTSJ-AXE [5], FORTE [6],
Fuber [7] and ISaGRAF [8]. Since no rigorous semantics
is available, many semantic ambiguities (see Section II for
examples) and behavioural differences in various implementa-
tions have been reported in literature [9]–[11]. This not only
hampers portability (defeating the purpose of a standard),but
also complicates any attempts towards the automated formal
verification of function block programs.

To fill this lacuna, we have developed formal semantics
for function blocks based on the synchronous paradigm [12].
This semantics view function block instances within a
network as concurrently executing modules of a system.
The formal semantics proposed here will avoid the problem
of multiple interpretations plaguing the current standard. More
significantly, it will open the pathway for powerful compilers
and verification tools already developed for synchronous sys-
tems, like Esterel Studio [13], to be used by function block
designers.
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Fig. 1. A simplified function block model of a cruise control system.

We show the feasibility of this approach by describing a
new compiler, FBtoStrl, that will map function block descrip-
tions to a subset of Esterel [14], a well-known synchronous
language. We give the semantic foundation for our model
using operational semantic rules [15], and prove that programs
constructed with this semantics are guaranteed to bereactive
anddeterministic[16].1 As a consequence, the approach taken
in this work yields the following benefits:

• It avoids the need for costly causality analysis [16]
required in the general compilation of Esterel.

• Esterel programs can be compiled directly for execution,
removing the need for run-time environments, and hence,
avoiding issues of portability altogether.

• The executable code generated with the synchronous
approach is 2 to 3 times faster compared to existing
function block run-time environments, as the overhead
for the run-time is removed.

The remainder of this paper is structured as follows. Sec-
tion II introduces the nature of function block execution
through an example. Then, in Section III, we give an intuitive
outline for the synchronous function block model that we are
proposing. Section IV is devoted to the internal details of the
new compiler. Section V presents our proposed semantics, and
demonstrates that all programs constructed with this semantics
will be reactive and deterministic. Following that, Section VI
gives the results of our work and benchmarks it against exist-
ing function block implementations. Section VII compares our
work with previous attempts to introduce execution models for
function blocks. Finally, the paper concludes with an outline
for future extensions to this work.

II. IEC 61499 FUNCTION BLOCKS

Fig. 1 shows a function block model of a simplified cruise
control system in a car. It consists of four function blocks,
each modelling a component of the system.

The cruise control system is activated by a lever, consisting
of theAccel andOff buttons. Whenever theAccel button is held
down, a sequence ofAccelHold events will be generated to
incrementally accelerate the car. When the button is released,
theAccelRelease event will be generated and the speed at that

1Intuitively, we refer to reactivity as the property that ensures that a program
never enters a deadlocking state, and determinism as the property which
ensures that a program will always behave in the same manner in a given
state for a given input. These notions are formally defined inSection V-B.

Fig. 2. The interface of theLever function block.

Fig. 3. The execution control chart for theCruiseControlLever function
block.

instant is memorized. This desired speed will be forwarded to
the cruise controller, which in turn will attempt to maintain
this speed by appropriately adjusting the throttle position. A
separate subsystem calculates the current speed at everyClock
tick and updates the cruise controller. This cruising mode will
be deactivated when theOff button on the lever is pressed.

The function blocks in Fig.1 are known asbasic function
blocks. Besides basic function blocks, the IEC 61499 standard
also defines two other kinds of function blocks, namely:

• composite function blocks, which are simply a syntactic
feature to encapsulate a network of function blocks within
another block; and

• service interface function blocks, which serve as device
drivers to bind the function block application to a specific
hardware target. These have been omitted in Fig. 1 for
brevity.

Moreover, the standard allows a network of function blocks to
be grouped within an independent unit of software known as
a resource, and a complete system may be described using a
collection of resources.

Every function block has an interface, which consists of
a set of event and data inputs, and a set of event and
data outputs, on both of its sides as illustrated through the
CruiseControlLever function block in Fig. 2. Event lines are
drawn on the upper part of the block, while data lines are
connected to the lower part. Event-data associations may be
created at the interface to update the values of variables and to
produce new output data together with the associated event(s).

The execution logic of a basic function block is determined
by its execution control chart (ECC), as illustrated in Fig.3
and 4 for theCruiseControlLever andCruiseController function
blocks respectively. An ECC consists ofEC (execution control)
states, EC transitions, and EC actions. These elements are
labelled in the ECC of Fig. 3. The initial state of an ECC is
represented with a double-box by convention.

An ECC basically describes a Moore-type finite state
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Fig. 4. The execution control chart for theCruiseController function block.

machine. Transition conditions between states are evaluated
whenever the function block receives an input event. Such
conditions are expressed using an input event and/or a boolean
guard condition. Each state can be associated with zero or
more actions, which may consist of an algorithm and a pos-
sible output event to be issued at the algorithm’s completion.
The action(s) associated to a given state will be executed once
upon entry to the state.

Whenever an ECC is triggered by an input event, a sequence
of transitions may take place within the ECC in response to
that event. We refer to such a sequence of transitions as arun
following the definition in [17]. As an example, consider the
ECC in Fig. 4, and assume the current state isSTART. If the
SpeedChange event occurs and theCurrentSpeed equals the
DesiredSpeed, a run involving the sequence of transitions from
START to ControlThrottle, and back, will constitute a run. The
elements involved in this run have been shaded for illustration.

While the ECC is reminiscent of Statecharts [18], function
blocks do have significant advantages over Statecharts. Func-
tion blocks provide a graphical approach to model a physical
or logical entity within a single component with a well-defined
input/output interface to the environment. This allows explicit
point-to-point connections to be made between different com-
ponents in a distributed system that captures the actual event-
data flow between the components. This is in contrast to Stat-
echarts’ abstract model of broadcast communication, which
does not map well to real-life distributed systems. Moreover,
the component-oriented approach of function blocks makes
the modelling of plant-controller behaviour in control systems
much easier compared to doing so in Statecharts.

Despite these benefits, designers have not yet been able
to exploit the full potential of function blocks due to the
incomplete execution semantics given in the standard. The two
main problems relate to the following:

1) Lack of any notion of time.Function blocks do not have
any explicit notion of time. Hence, the lifetime of an
event within an ECC is not clear.

2) Lack of any notion of composition.While individual
function blocks may be connected within a network like
Fig. 1, the standard does not define the composite be-
haviour of such a network. The standard does not specify
the product state when multiple ECCs are connected in
this manner. Hence, a variety of ad hoc approaches have

Fig. 5. Ambiguities in state transitions of execution control charts

been suggested in literature [11].

These complications are illustrated in the following subsec-
tions.

A. State transitions within function blocks

Figure 5 shows an ECC fragment of a function block, where
E1 is an input event, andC1, C2 and C3 are boolean guard
conditions. Transitions in an ECC are only evaluated with the
occurrence of an input event, and are done in the order in
which they have been declared in their textual syntax. Let us
assume here that transitions in the figure are evaluated from
left to right, and the current state isState1. Two ambiguities
arise here:

1) Consider the case whereC1 andC2 are both true when
E1 occurs. Consequently, the transition toState2 will
occur, but whether or not a subsequent transition to
State4 will take place is not clear. This is because the
lifetime of an event is undefined in the standard.

2) Consider the case whereC2 is true, whileC1 and C3

are both false whenE1 occurs. Then, the transition to
State3 will occur and control will remain there. In this
scenario, two different interpretations are possible from
the standard:

• Transitions consisting of pure data conditions will
only be evaluatedonce, upon the completion of
the action in the state. Thus, the application must
guarantee that “eventless” transitions have at least
one guard condition that will be true upon the
completion of the preceding state (e.g.,C1 and/or
C3 should be true at the end ofState3). Otherwise,
the ECC will freeze in the culpable state. This is the
approach adopted by FBDK [4], a widely-accepted
function block development/run-time environment.

• “Eventless” transitions will be evaluated whenever
an input event is fed to the function block. This
implies a dependence on input events for the eval-
uation of pure boolean guard conditions. In this
case, shouldC1 and/orC3 eventually become true,
the transition out ofState3 will occur when the
function block receives an input event.

We have chosen to adopt the second interpretation, as
the first will potentially lead to a deadlock.

With synchronous semantics, the lifetime of an event is
always well-defined at every instant, while the evaluation of
guard conditions in conjunction with input events can be
explicitly dealt with.
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Fig. 6. Ambiguities in execution behaviour of a function block network.

1: module Simple:
2: input I; output Q, O : bool init false;
3: trap T in
4: loop
5: emit ?O <= not pre(?O);
6: if I then exit T end; pause
7: end loop
8: ||
9: loop

10: await immediate pre(O);
11: emit Q; pause
12: end loop
13: end trap
14: end module

Fig. 7. Example of an Esterel program

B. Compositions of function blocks in a network

The standard does not define the composite behaviour for a
network of function blocks. This results in different behaviours
for a given application depending on the scheduling scheme
chosen by a particular implementation.

Consider the network in Figure 6. BothFB2 andFB3 need
to be invoked as a result of the execution ofFB1. The decision
of when to executeFB2 and FB3 is not fully clear. This
ambiguity can be further compounded when there is an event
feedback, like that betweenFB2 and FB1. With ambiguous
block scheduling times, such scenarios may not only result in
different system behaviours, but may lead to:

• race conditions, asFB1 may be triggered again byFB2
before it can complete its current execution; and

• starvation, asFB3 may be left unattended, whileFB1 and
FB2 monopolise the computational resources.

With synchronous semantics, the issues of composite be-
haviour and execution order are completely defined owing to
synchronous parallel execution.

III. T HE SYNCHRONOUSAPPROACH

The synchronous programming paradigm [19] assumes
an idealized reactive system that produces its output syn-
chronously with its input by executing infinitely fast. This
model treats time as a sequence of discreteinstants with
nothing happening between the completion of the current
instant and the start of the next.

This idea is adopted by Esterel, where every program
reaction occurs with respect to a logical instant of time, known
as atick. A new reaction is triggered at the start of eachtick
by taking a snapshot of the input signals, performing some
computation, and generating the output signals before the start

TABLE I

T IMING DIAGRAM FOR THE EXECUTION OF THE PROGRAM INFIG. 7.

Tick Inputs Outputs
0 - O (true)
1 - O (false), Q
2 I O (true), Q(program exits)

of the next. This can be thought of as an abstraction of a
PLC’s scan cycle. We highlight key features of the language
through the example in Fig. 7, and depict the output trace for
a particular input sequence in Table I.

The basic programming unit in Esterel is amodule. Each
module consists of an interface declaration (line 2), followed
by a body of executable statements (lines 3–13). Signals in
Esterel may consist of astatus and/or avalue component.
Signals with only a status component are known aspure
signals (e.g., signalI), while those with a value component
are known asvaluedsignals (e.g., signalO, which has status
and a boolean value component).

The ‘‖’ operator denotes synchronous concurrency of both
its branches. Here, both the branches consist of the non-
terminatingloop statement. In the first branch, theemit state-
ment (line 5) is used to perform two simultaneous functions:it
sets the value ofO as its toggled value in the previous instant,
and makes the status ofO present. Thepre operator is used
to obtain information about a signal in the previous instant. It
can be used to obtain either the value (line 5), or the status
(line 10) of a given signal in the last instant. When emitted,
the signal’s status is made present for the current instant,and
becomes absent again in the next. However, the value of the
signal persists. Signal emissions aresynchronously broadcast
and may be tested concurrently (see line 10).

The if statement (line 6) performs an instantaneous pres-
ence test for the inputI. If I is absent, execution on this
branch will pause for the current instant. Thepause statement
behaves as atick delimiter in Esterel. Otherwise, thetrap
construct (lines 3–13) will be terminated by theexit T

statement, causing both branches of the parallel statement
to terminate in the same instant. Such lock-step progression
of concurrent threads at eachtick is known assynchronous
parallel execution.

Meanwhile, in the second branch, theawait statement in
line 10 pauses execution until its delay predicate becomes
true. The predicate can be specified by an arbitrary signal
expression, likepre(O) in this example. When used with
the immediate modifier, the await statement terminates
instantaneously if the signal expression is true in the starting
instant. Due to thepre operator, the emission ofQ (line 11)
will always be lagging that ofO by onetick.

A. Synchronous Model for Function Blocks

Our idea for synchronous function blocks has been inspired
by Esterel’s synchronous model. Intuitively, in our approach,
each function block will be mapped to an Esterel module.
Then, at the top-level, a main module will be created to
connect all other modules in parallel to achieve the same event
and data connections as in the function block network.
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The key idea to achieve seamless composition is the fol-
lowing: whenever there is a producer-consumer relationship
between two or more blocks, we ensure in our semantics that
the producer will emit the event/data in the current instant,
while the consumer will only read what is emitted in the next
instant of the synchronous program. This simple “pipelining”
of the producer-consumer blocks guarantees that their parallel
composition will always be acyclic. This, in fact, weakens the
synchrony requirements for communications between different
blocks. Note that this behaviour can be obtained by reacting
only to thepre of signals in Esterel.

While Esterel’s synchronous model allows for very powerful
expressions through instantaneous signal reactions, complete
adherence to the synchrony hypothesis makes the compilation
of Esterel complex. Every Esterel program would first need
to be checked that it is deadlock-free before code can be
generated for it. This checking is known ascausality analysis,
and involves ensuring that constraints arising from control
and data dependencies will never lead to deadlocks [19].
This possibility of writing non-causal (deadlocking) programs
makes composition difficult. For example, consider the causal
programsP1 consisting of,

emit U; if S then emit T end

andP2 consisting of,

if S then emit T end; emit U

Both P1 andP2 have identical input/output behaviour. How-
ever, when each is placed in parallel with another program,
P3, consisting of,

if U then emit S end

P1 ‖ P3 remains causal, whileP2 ‖ P3 does not. In fact, Huiz-
ing et al. [20] have shown that no semantics can beresponsive
(obey the synchrony hypothesis),causalandmodular(notions
related to compositonality) at the same time.

The closest work related to this idea was proposed for the
prototype language, SL [21]. However, there are key differ-
ences. SL allows instantaneous reactions to signal presence,
but delays reactions to signal absence till the next instant. It
forbids any assumptions on signal statuses: a signal can only
be determined to be present if it is emitted, while its absence
can only be decided at the end of the current instant. Thus,
SL programs resolve signal dependencies during run-time. The
execution of threads containing a test of an unresolved signal is
suspended, until the signal is emitted, or until all other parallel
threads pause, terminate, or become suspended as well. In this
case, all unresolved signals will be recognised as absent.

In contrast, reactions in our approach always occur with
respect to registered signals2. This avoids the need for slow
run-time resolution of signal dependencies, and results in
delayed reactions to both signal presence and absence. SL
programs may avoid the run-time overhead by compiling
to automata, but at the cost of an exponential increase in
code size, and compilation complexity. Moreover, automata
generation hinders modular compilation, while our semantic
model makes possible the modular compilation of function

2The pre of signals in Esterel serve as registered signals.

TABLE II

FUNCTION BLOCK TO ESTEREL TRANSLATION MAP

Function block element Esterel feature
Function blocks Esterel modules
Events Pure signals
Data Value-only signals
Event-data binding Explicitly done in Esterel code
Internal variables Local variables in Esterel
EC states Demarcated bypause statements
Algorithms Procedure calls in host language
Transition conditions await andif statements
Function block network Top-level module, whereby each function

block is a concurrent sub-module in it

blocks in true component-oriented fashion. Beside this, we
have also extended our semantics to deal with data as well,
which was not at all discussed in [21].

Due to the weakening of the synchrony hypothesis, it is
possible to derive a set of kernel statements for function
blocks that will make it impossible to write non-reactive
or non-deterministic programs. This avoids the need for
causality analysis during compilation; thus, greatly simplifying
the compiler construction. Moreover, this approach enables
synchronous programming methodologies to be encapsulated
within function blocks so that they can be easily understood
and applied by industrial engineers who may not be familiar
with synchronous languages.

B. Postulates for Function Blocks

In proposing a synchronous model for function blocks, it is
desirable that the proposed semantics does not contradict what
has been specified in the standard. The postulates used for the
synchronous implementation of function blocks are listed here:

1) A function block run can only be activated with the
occurrence of some input event.

2) An event has a lifetime of only a single transition,
regardless of whether or not the event was actually used
in the evaluation of the transition.

3) If more than one transition condition is true, they will
be evaluated in the order in which they are declared.

4) The execution in EC states conceptually occur instanta-
neously,with the EC actions executed in the order in
which they have been declared. This effectively treats
each EC state as a synchronous state.

The standard is not clear on whether it allows function
blocks to react to more than one event simultaneously (see [22]
for a discussion on this). However, Esterel is able to handle
multiple incoming events in the same instant. We have chosen
to allow this in our implementation, and to leave the restriction
to only a single event as an environment constraint.

The following section will show how function blocks can
be mapped to Esterel.

IV. T RANSLATING FUNCTION BLOCKS TO ESTEREL

Table II shows the basic translation map from function
blocks to Esterel. The mapping of function blocks and their
event and data interfaces to Esterel modules and signals is
straightforward. The encapsulation of algorithms within host
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Fig. 8. The top-level Esterel module that instantiates the sub-modules for
the cruise control system.

language procedure calls follows the same principle used in
function blocks for specifying algorithms.

The key point to note here is the use of thepause statement
to demarcate states in an ECC. This provides the synchronous
interpretation for function block execution. As a consequence,
the computation of any procedure occurring in a state must fit
within a tick.

We assume here that thetick is sufficiently fast to observe
every event occurring in each state. This assumption is fun-
damental to every Esterel program, andmustbe valid for the
synchrony hypothesis to hold [16]. Then, instead of evaluating
transitions in an ECC with respect to an input event, transitions
will now be evaluated at the occurrence of everytick. If the
transition condition does not evaluate to true in a giventick, no
state transition will take place. With this approach, thelifetime
of any event is explicitly bounded by the duration of thetick
in which it occurred.

The code generated by FBtoStrl conforms to Esterel’s V7
textual syntax [14]. The Esterel Studio tool also has a graphical
counterpart, called Safe State Machines (SSM). This allows
state machines to be visualised in a manner similar to ECCs.
However, we have chosen to stick to Esterel’s textual syntax,
as we found it to be more easily debug-able during the
development stages of FBtoStrl, compared to the terse format
required to represent SSMs. Moreover, the use of SSMs does
not simplify the key algorithms of FBtoStrl in any way, as
the same state and transition information would need to be
extracted from a given ECC.

FBtoStrl begins the translation process by taking as input
a function block network, created by a function block editor
(e.g. FBDK [4]) in the XML format. It performs a depth-first
traversal of the network, recursively entering each composite
function block it encounters, to perform a bottom-up compi-
lation of every block in the network. Each network will be
instantiated within a top-level module in Esterel. If the input
XML file contains networks for different resources, FBtoStrl
will generate the network for each resource as a separate
module.

Once every function block type in a network has been
mapped into an equivalent module, the resulting modules will
be composed in parallel in the top-level module created for that
network. Fig. 8 shows a skeleton of how this is done for the

cruise control system of Fig. 1. The event and data connections
between function blocks are accomplished through appropriate
signal binding at the module interfaces. Local signals in Esterel
are declared to perform this binding.

The crux of the compilation actually lies in the mapping
of basic function blocks to Esterel modules. This will be
elaborated in the following subsection.

A. Translating the Basic Function Block

The translation steps in this stage proceed as follows:
1) Create a new module for each basic function block type.
2) Declare all input/output events of the function block as

pure input/output signals at the module interface, and
input/output data as value-only signals.

3) Declare all algorithms as host language procedures in
Esterel.

4) Declare all internal variables in the function block as
local variables in the Esterel module.

5) Extract state and transition information from the ECC
to generate Esterel code.

The main work in these steps lie in extracting the state and
transition information from the ECC. Each node in the ECC
will be parsed to create a synchronous state representation,
called SyncState, consisting of the quadruple (Actions, Tran-
sitions, Children, Parents), where:

• Actions is the list of algorithms and output events to be
issued;

• Transitionsis the list of transition conditions leading to
a successor state;

• Children is the list of successor states; and
• Parentsis the list of predecessor states.

As an example, theAccel state in Fig. 3 will be described
by the quadruple{[Accel, SetDesiredSpeed], Off, Disable,
START}.

Once each EC state has been converted to a corresponding
SyncState, eachSyncStatewill be connected in a control-flow
graph (CFG) that adheres to the transition dependencies of the
original ECC. Using this CFG, the ECC can be converted to
Esterel using the algorithm in Fig. 9–11.

The TranslateECC procedure initiates the conversion of
an ECC to Esterel by invoking two recursive functions: the
first function makes the ECC amenable to Esterel, while the
second function generates actual code from it. The three main
tasks performed by this algorithm involve:

• Generating different types of transitions:The event-
triggered nature of ECCs can be neatly accomplished by
awaiting on signals in Esterel. However, transitions in-
volving pure data conditions need to be specially handled
to create explicit dependence on incoming events.

• Handling unstructured transitions in an ECC:Transitions
in an ECC can take place between any arbitrary EC state.
However, Esterel code is highly structured, with no prim-
itives like “goto” for handling unstructured branching.
This complicates code generation as “goto” behaviour
must be simulated.

• Generating the RUN signal:An Esterel program is trig-
gered by atick (clock-driven), and then pauses until the
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procedure TranslateECC()1
m := new module for given function block;2
s := initial state for given ECC;3
N := set for storing top-level states;4
FormatECC(s,m,N);5
if N.size()> 1 then6

foreach n in N do7
if n 6= s then8

generate if-case for n; // simulates goto to n;9
GenerateCode(n,N);10

end11
end12

end13
if N.size()> 1 then14

generate default-case for s;15
end16
GenerateCode(s,N);17

end procedure18

Fig. 9. Initiates the process for translating an ECC into Esterel.

procedure FormatECC(s,m,N)1
if s has been visitedthen2

return ;3
end4
mark s as visited;5
foreach transition t of sdo6

if t is of type pureDatathen7
if RUN input has not been created for mthen8

create RUN input signal in m;9
end10

end11
end12
if s has> 1 parentsthen13

add s to N;14
end15
foreach child c of sdo16

FormatECC(c,m);17
end18

end procedure19

Fig. 10. Prepares an ECC for structured code generation in Esterel.

arrival of the nexttick. In contrast, an ECC is triggered
by an event (event-driven), and continues to evolve in
a single run until no further transition is possible, as
described in Section II. An additionalRUN signal is thus
required to emulate this behaviour.

These tasks are described next.

B. Generating different transition types

Fig. 11 provides the basic code generation algorithm. The
Esterel code produced from this algorithm for theCruiseCon-
trolLever and theCruiseController function blocks are shown
in Fig. 12 and 13 respectively. TheGenerateCode procedure
performs a depth-first traversal of the CFG to generate code
for each state. Line 5 demarcates the start of each new state
with the pause statement. Subsequently, code is generated
for each action in that state in lines 6–16. If the output event
issued by a given action has any associated data output, code
to emit those data outputs will be generated together with the
output event (lines 11–13).

procedure GenerateCode(s,N)1
if state s has been visitedthen2

return ;3
end4
mark s as visited and generate new state boundary;5
foreach Action a of sdo6

if a has alg algorithmthen7
generate call to procedure[alg];8

end9
if s has eo event outputthen10

forall data output dout associated with eodo11
generate emission of signal[dout];12

end13
generate emission of signal[eo];14

end15
end16
if any transition from s is of type pureDatathen17

foreach pureData transition, dt, in sdo18
generate test for dt;19

end20
generate emission of RUN signal;21

end22
foreach transition t of sdo23

if N.size()> 1 and t leads to child, n, in Nthen24
synthesize “goto” statement to n;25
return ;26

else27
if t is of type pureEventthen28

generate code to await t;29
else30

if t is of type pureDatathen31
generate await on RUN signal or any input;32

end33
generate looping test for t;34

end35
end36

end37
foreach child c of s do38

GenerateCode(c,m);39
end40

end procedure41

Fig. 11. Generates Esterel code for a given ECC.

In lines 28–35, each transition proceeding from the current
state will be converted into an explicit test condition. We
differentiate between transitions consisting only of events from
those containing data conditions. Transitions consistingpurely
of event conditions are implemented usingawait-cases
(lines 28–29). For instance, the transition conditions leading
out from theSTART state in Fig. 3 have been translated to the
following form in the equivalent Esterel code in Fig. 12:

await
case immediate pre(INIT) do

...
case immediate pre(AccelHold) do

...
case immediate pre(AccelRelease) do
...

case immediate pre(ResumeCC) do
...

end await

Meanwhile, transitions involving data conditions are imple-
mented usingif-cases, enclosed within a loop (lines 30–
35). For example, the transition conditions leading out of the
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Fig. 12. Esterel code generated for theCruiseControlLever function block.

Fig. 13. A fragment of the Esterel code generated for theCruiseController
function block.

START state in Fig. 4 will result in the following form of code:

trap T0 in loop
if

case pre(INIT) do
...; exit T0;

case pre(SpeedChange) do
...; exit T0;

case pre(DesiredSpeedChange) and
pre(?DesiredSpeed)>-1 do

...; exit T0;
case pre(DesiredSpeedChange) and

pre(?DesiredSpeed)=-1 do
...; exit T0;

end if
end loop end trap

Esterel does not have constructs to wait for a data expression
to become true; hence, this has to be explicitly done within
a loop. Thetrap construct enclosing the loop is required to
break out of the loop should any of theif cases succeed.

In both theawait andif statements, the ordering of test
cases are done following the sequence of their declaration in
the XML file. Therefore, if more than one condition evaluates
to true at the same time, Esterel’s semantics for theawait

and if statements will ensure that the transition priority is
correctly ordered, thus ensuring that all state transitions happen
deterministically.

An important aspect in this translation is the use of the
pre operator in all the test conditions. This idea to postpone
all reactions to inputs to a function block is the key feature
of our synchronous model that enables function blocks to be
composed in a network without any causal problems. This
effectively implements the idea of seamless composition of
function blocks as described earlier in Section III-A.

C. Handling unstructured transitions

The control-flow among states in an ECC are, in general,
unstructured. Transitions can take place between any arbitrary
pair of states, making it impossible to generate structuredcode
without excessive duplication of nodes. However, since Esterel
is a highly structured language with no “goto” primitive,
“goto” behaviour would need to be simulated using additional
conditional statements and loops to avoid node duplication.

FBtoStrl will attempt to generate structured code whenever
possible. For states with only a single predecessor, structured
code will always be generated by nesting the successor state
under a conditional statement in its predecessor, as exemplified
in Fig. 12. However, for states with multiple predecessors
(e.g.,ControlThrottle in Fig. 4), a state variable will be used
to encode the next state to go to (see line 30 in Fig. 13).

The algorithm accomplishes this by adding all states with
multiple predecessors to some set N (see lines 13–15 in the
FormatECC procedure of Fig. 10). Nodes in this set will be
assigned with distinct indices to encode their “goto” position.
Code will then be generated to test for these indices so that the
appropriate state can be entered (lines 6–13 of Fig. 9). Then,
whenever a transition is encountered that leads to a state inN,
a “goto” to that state will be synthesize by setting the next state
variable to the appropriate state index. This is accomplished
during code generation in lines 24–26 of Fig. 11.
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D. Generating theRUN signal

In our synchronous model, state transitions are now eval-
uated with the occurrence of atick, rather than an input
event. However, the execution model of ECCs, as described in
Section II, requires that state transitions only happen when an
input event occurs. Handling this requirement is not problem-
atic for transitions that explicitly depend on some input event,
as shown already in Section IV-B. However, when transitions
are guarded only by pure data conditions, the dependence on
input events for the transition evaluation must now be made
explicit in the Esterel code. Moreover, to keep with the notion
of a run, a new input event should not be presented to the
Esterel module until that pure data transition is evaluatedonce.
Otherwise, it is possible that fresh events will be fed into the
module before the currentrun is complete.

Thus, to preserve this notion of arun, our algorithm
automatically generates aRUN input at the module’s interface
whenever it detects that an ECC contains pure data transitions
(refer to lines 6–12 of Fig. 10). TheRUN signal will be
emitted whenever arun needs to be sustained across a pure
data transition. This is not required for states that are already
dependent on some input event. Having theRUN as an input,
which is emitted from within the module and tested again in
the next instant, effectively makes it a delayed feedback signal.
New inputs will not to be fed into the module in the immediate
instant following the emission of theRUN signal.

To implement this, it is necessary to first understand how the
reactive function generated by the Esterel compiler communi-
cates with its physical environment. Typically, areactive inter-
face [23] is required to match the asynchronous environment
with the synchronous model of Esterel. Concretely, the reactive
interface accomplishes this by building a new input vector
from the environment, feeding it to the reactive function, and
emitting a new output vector, before generating a newtick to
the module.

Therefore, to ensure that arun of the function block is
atomic, theRUN signal is defined to bemutually exclusive3

with all other inputs to the module. The reactive interface can
enforce this requirement by ensuring that a new input tuple
from the environment is never built in the immediate instant
following the emission of theRUN signal.

Our idea of theRUN signal is similar to theSTEPsignal
used in [24] to implement the behaviour of STATEMATE

Statecharts [18] in Esterel. However, in [24], theSTEPsignal
is directly mapped to Esterel’stick. Consequently, the reactive
interface must provide theSTEP signal not only for every
triggering event that is internally generated, but also whenever
there is an input from the external environment.

We illustrate the purpose of theRUN signal using the
CruiseController ECC in Fig. 4, and its corresponding trans-
lation in Fig. 13. To emulate the behaviour of therun from
Start to ControlThrottle, and back toStart, as explained earlier
in Section II, our compiler generates code to test for the pure
data conditions while still in theStart state (see lines 27–29
of Fig. 13). This is done in lines 17–22 in theGenerateCode

3Esterel allows exclusion relations to be specified between input signals in
its syntax.

procedure of Fig. 11. Then, in theControlThrottle state, code
is generated to await theRUN signal (line 9 of Fig. 13) before
performing the tests on the various data conditions (lines 10–
17). If the RUN signal was not previously emitted, the data
conditions will only be tested with the occurrence of some
input event. The explicit dependence on either theRUN signal
or input events for the evaluation of pure data conditions is
accomplished in lines 31–33 of theGenerateCode procedure.

V. SEMANTICS OF SYNCHRONOUSFUNCTION BLOCKS

So far, we have demonstrated the feasibility of implement-
ing a synchronous model for function blocks using Esterel.
Here, we would like to present the semantics for synchronous
function block execution without directly relying on Esterel.
We will formally define the semantics for weakening the
synchrony hypothesis in Esterel, that was already intuitively
outlined earlier in Section III-A. This is done in order to prove
that our proposed semantics makes it impossible to write non-
reactive and non-deterministic function block programs. This
guarantee simplifies the compiler implementation, and makes
possible the modular compilation of function blocks, since
causality analysis would no longer need to be performed over
the whole program before generating code.

This section will thus introduce the set ofkernel statements
that forms the core of the proposed semantics (following the
approach in [16]). Their syntax and intuitive semantics are
given in Table III, while the formal semantics are presented
in the following subsection.

A. Formal semantics

The formal semantics for the kernel statements are presented
as program transitions using Structural Operational Semantic
(SOS) rules [15] of the following form:

t, D
O,k
−−→

Ip
t′, D′

where,
• t is any arbitrary composition of kernel statements;
• D is the set of values of data variables before the

transition;
• O is the set of signals produced by the transition;
• k is the completion code of the transition;
• Ip is the set of signals registered in the previous instant;
• t′ is the residual oft after the transition; and,
• D′ is the set of values of data variables after the transi-

tion.
The notation above describes a program’s transition from the

statet, D to t′, D′, in response to the set of signals registered
in the previous instant,Ip. For the initial instant,Ip is defined
to be an empty set. This transition will produce the set of
signalsO, and finish with the completion code ofk (if any).
We say that the termt, D has been rewritten intot′, D′.

In any such transition, the resultant state and output may
depend on the way some subterms are rewritten, or on the
status of certain signals inIp. Dependencies are express
through deduction rules of the form

· · ·

t, D
O,k
−−→

Ip
t′, D′
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TABLE III

KERNEL STATEMENTS FOR SYNCHRONOUS FUNCTION BLOCKS

nothing do nothing and terminate instantaneously
pause pause execution till the next instant
t;u run t, and thenu in sequence
t‖u run t andu concurrently
loop t end repeatt forever
emit S emit signalS
present Sp then t else u end run t if the status ofS in the previous instant (denoted bySp) is present; otherwiseu
trap T in t end declare and catch exceptionT in t
exit T raise exception forT
v := f(...) compute the value off and assign it tov
if c(...) then t else u end run t if boolean functionc is true; otherwiseu

where the predicate above the bar (· · · ) must hold in order for
the transition below it to happen. When no such dependency
exists, the bar is omitted.

Completion codes are used to encode a given control
thread’s status after completing its execution, borrowingthe
idea from Esterel [16]. Thenothing, pause, and exit T

statements are the only ones that generate completion codes.
The nothing statement is encoded with 0,pause with 1,
and exit T with an integer≥ 2. The completion code for
statements that do not produce it will be represented by⊥.

Completion codes provide a simple way to synchronize the
execution of parallel threads. For instance, consider the parallel
statementt‖u. If t finishes with the completion code ofk,
andu with l, the parallel statement itself will finish with the
maximum betweenk and l. If either branch does not finish,
neither does the parallel statement. Thus, the completion code
synchronizer is defined as:

syn(k, l) =







⊥ if k =⊥ or l =⊥
k if k ≥ l
l if k < l

This effectively ensures that all branches of the parallel state-
ment will terminate, pause, or exit some trap synchronously.
The rewrite rules for all the kernel statements are presented
next adopting the approach used in [16], [21].

1) Base statements:The nothing statement does nothing
and terminates instantaneously.

nothing, D
∅,0
−−→
Ip

nothing, D (1)

The pause statement pauses control over itself for the
current instant and resumes from there in the next.

pause, D
∅,1
−−→
Ip

nothing, D (2)

Exceptions are declared and lexically scoped by thetrap

T in p end statement. Within the bodyp, the exception is
thrown by theexit T statement. It provokes immediate ter-
mination of thetrap T statement, killing all other statements
within its scope. The completion code generated byexit T is
d + 2, whered is the number of trap declarations that have to
be traversed before reaching that ofT. For semantic purposes,
the depth of the exit statement is explicitly encoded asexit

Td.

exit Td, D
∅,d+2
−−−−→

Ip
nothing, D (3)

All other statements executing within a given instant will
eventually be rewritten into one of these base statements. In
other words, a statement executing in an instant will either
terminate, pause, or be preempted(exited from some trap).
Transitions of base statements are calledfinished transitions,
while other transitions are referred to asunfinished transitions.
A program’sreaction in an instant will be denoted by,

t, D
E,k
−֒−→

Ip
t′, D′

if there exists a transition sequence such that,

t, D
O1,k1
−−−−→

Ip
t1, D1

O2,k2
−−−−→

Ip
· · ·

Oi,ki
−−−→

Ip
ti, Di

∅,k
−−→
Ip

t′, D′

where,k ≥ 0, andE =
⋃

m Om ∀m ∈ [1, i].
2) Signal emission:Theemit S statement emits the signal

S for the current instant.

emit S, D
{S},⊥
−−−−→

Ip
nothing, D (4)

3) Signal test: If the signalS was present in the previous
instant, thepresent statement simply gets rewritten to its
then branch (rule 5). Otherwise, it is rewritten to itselse
branch (rule 6).

Sp ∈ Ip

present Sp then t else u end, D
∅,⊥
−−→

Ip
t, D

(5)

Sp /∈ Ip

present Sp then t else u end, D
∅,⊥
−−→

Ip
u, D

(6)

4) Data assignment:Variables can be assigned with values
from an arbitrary data function. The values of variables are
globally persistent. However, only the values registered in the
previous instant can be read. Variable values for the current
instant cannot be instantly accessed. In rule 7,Dp is the set
of variable values that have been registered in the previous
instant.

dp
1, . . . , d

p
i ∈ Dp

v := f(dp
1, . . . , d

p
i ), D

∅,⊥
−−→

Ip
nothing, D[v ← f(dp

1, . . . , d
p
i )]

(7)
While no semantic restrictions are imposed on simultaneous
assignments of a variable in an instant, write-write concur-
rency is prohibited at the syntactic level. For example, both
the statements below will be rejected:
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x:=1 || x:=2

present S then x:=1 end
||
present S else x:=2 end

The second statement illustrates the syntactic aspect of this
restriction. While the assignment tox will never happen
simultaneously, such programs are still, nevertheless, rejected.

5) Data test: Conditional branching can be performed
based on boolean data expressions.

dp
1, . . . , d

p
i ∈ Dp c(dp

1, . . . , d
p
i ) = true

if c(dp
1, . . . , d

p
i ) then t else u end, D

∅,⊥
−−→

Ip
t, D

(8)

dp
1, . . . , d

p
i ∈ Dp c(dp

1, . . . , d
p
i ) = false

if c(dp
1, . . . , d

p
i ) then t else u end, D

∅,⊥
−−→

Ip
u, D

(9)

6) Sequential statement:Rule 10 expresses the fact that the
sequence does not finish, if its left branch,t, does not.

t, D
O,⊥
−−−→

Ip
t’, D′

t;u, D
O,⊥
−−−→

Ip
t’;u, D′

(10)

If the left branch pauses, so does the sequence.

t, D
∅,1
−−→
Ip

t’, D

t;u, D
∅,1
−−→
Ip

t’;u, D
(11)

Moreover, if the left branch raises an exception, its right
branch will never get executed.

t, D
∅,k
−−→
Ip

t’, D k ≥ 2

t;u, D
∅,k
−−→
Ip

t’, D
(12)

Otherwise, control will be immediately transferred to the
right branch,u, whent finishes.

t, D
∅,0
−−→
Ip

t’, D

t;u, D
∅,⊥
−−→

Ip
u, D

(13)

7) Parallel statement:Rule 14 uses the completion code
synchronizer to specify the overall behaviour of the parallel
statement. During unfinished transitions, the execution oft

andu may possibly be interleaved. When they both perform
finished transitions, the parallel statement synchronizestheir
execution using their completion codes.

t, D
O,k
−−→

Ip
t’, Df(...) u, D

Q,l
−−→
Ip

u’, Dg(...)

t‖u, D
O∪Q,syn(k,l)
−−−−−−−−−→

Ip
t’‖u’, D′ whereD′ = Dh(f(...),g(...))

(14)
As already mentioned in Section V-A.4, write-write concur-

rency on variables is disallowed, while read-write concurrency
is semantically forbidden by rule 7. This means that the
functionsf andg in rule 14 cannot operate on any of the same
variables in the same instant. Hence,D′ can be treated as a
single data store ofh, consisting of the possibly interleaved
store order off andg.

8) Loop: The loop simply rewrites into a sequence of its
body with the loop itself.

loop t end, D
∅,⊥
−−→

Ip
t;loop t end, D (15)

As a consequence, loop bodies that finish with the comple-
tion code of 0 will result in the undesired rewriting into an
infinite sequence of unfinished transitions. Such instantaneous
loops can be rejected by insisting that the body’s reaction never
terminates instantaneously, as required by rule 16.

t, D
E,k
−֒−→

Ip
t’, D′ k > 0

loop t end, D
E,k
−֒−→

Ip
t’;loop t end, D′

(16)

9) Exception declaration:Rule 17 expresses the fact that
the trap statement does not terminate if its body performs an
unfinished transition.

t, D
O,⊥
−−−→

Ip
t’, D′

trap T in t end, D
O,⊥
−−−→

Ip
trap T in t’ end, D′

(17)
If the trap body pauses, the whole trap statement pauses as

well.

t, D
∅,1
−−→
Ip

t’, D

trap T in t end, D
∅,1
−−→
Ip

trap T in t’ end, D
(18)

If the trap body terminates, or exits the trap, then the trap
itself terminates.

t, D
∅,k
−−→
Ip

t’, D k = 0 or k ≥ 2

trap T in t end, D
∅,⊥
−−→

Ip
nothing, D

(19)

B. Definitions and proofs

Two properties that are of interest in synchronous function
block programs arereactivity anddeterminism.

Definition 1: A program is reactive if, for any statementt
and data setD, there exists at least one reaction for the set of
signals registered in the previous instant,Ip.

Theorem 1:All synchronous function block programs are
reactive, that is:

∀t, D, ∃k ≥ 0 such that t, D
E,k
−֒−→

Ip
t′, D′

Proof: The proof can be shown by a structural induction
on t. The base statements are easily verified, since rules 1, 2,
and 3 imply that the following reactions are valid:

nothing, D
∅,0
−֒−→
Ip

nothing, D

pause, D
∅,1
−֒−→
Ip

nothing, D

exit Td, D
∅,d+2
−֒−−→

Ip
nothing, D

Subsequently, only the sequential, parallel, and trap state-
ments are of interest, since all other statements complete as
unfinished transitions. For the trap statement, rule 18 is the
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only one that performs a finished transition. However, sincethe
trap body can only pause if it consists of thepause statement,
or a sequential or parallel statement containingpause, only
two cases remain of interest:

1) Consider first,t = q; r. Then, assume the induction
hypothesis, that there always existq′ andr′ such that

q, D
Eq,kq

−֒−−→
Ip

q′, D′ kq ≥ 0 (20)

and,

r, D
Er,kr

−֒−−→
Ip

r′, D′ kr ≥ 0 (21)

Then,

• if kq ≥ 2, we simply getq; r, D
Eq,kq

−֒−−→
Ip

q′, D′;

• if kq = 1, we have,q; r, D
Eq,1
−֒−−→

Ip
q′; r, D′;

• otherwise if kq = 0, we have,q; r, D
Eq∪Er,kr

−֒−−−−−→
Ip

r′, D′.

Thus, anysequential composition of kernel statements
will always be reactive.

2) Next, consider the case oft = q‖r. Due to hypotheses
(20) and (21), rule 14 will then ensure thatq‖r will
eventually finish, since both its branches will eventually
perform finished transitions. Thus, anyparallel compo-
sition of kernel statements will also always be reactive.

Definition 2: A program is deterministic if for any state-
ment t and data setD, there exists at most one reaction for
the set of signals registered in the previous instant,Ip.

Lemma 1: If t, D
O1,⊥
−−−→

Ip
t1, D1, then there exists not2, D2

such thatt, D
O2,k2
−−−−→

Ip
t2, D2, wherek2 ≥ 0. Conversely, if

t, D
O2,k2
−−−−→

Ip
t2, D2, wherek2 ≥ 0, then there exists not1, D1

such thatt, D
O1,⊥
−−−→

Ip
t1, D1. Moreover, there is only one way

to finish a reaction:

t, D
O1,k1
−−−−→

Ip
t1, D1 and t, D

O2,k2
−−−−→

Ip
t2, D2 ⇒

t1 = t2, D1 = D2, O1 = O2,
andk1 = k2, wherek1, k2 ≥ 0.

Proof: The proof can be shown by a structural induction
on t. This is easily verified for the base statements, since they
each only have one rewrite rule. Therefore,finished transitions
are always distinct, and mutually exclusive with unfinished
transitions.

Lemma 2:The rules are strongly confluent. Suppose

t, D
O1,k1
−−−−→

Ip
t1, D1 and t, D

O2,k2
−−−−→

Ip
t2, D2. Then, there exists

t′, D′, O, k such thatt1, D1
O,k
−−→

Ip
t′, D′ andt2, D2

O,k
−−→

Ip
t′, D′.

Proof: Proof by structural induction ont. As before, only
kernel statements for the sequence and parallel operator are of
interest:

1) Consider first,t = q; r. Lemma 1 provides two inductive
cases:

a) If q terminates,t1 = t2 = r, D1 = D2, O1 = O2,
andk1 = k2. Consequently, the rewriting oft1, D1

and t2, D2 will both yield the same resultant of
t′, D′, O, k.

b) Otherwise,t1 = q1; r, D1 = Dq1, and t2 = q2; r,
D2 = Dq2. Then, using lemma 2 as the induc-

tion hypothesis, we getq1, Dq1
O,k
−−→

Ip
q′, Dq and

q2, Dq2
O,k
−−→

Ip
q′, Dq. Then, we obtain the rewrite

rules for t1, D1 and t2, D2 as: q1; r, Dq1
O,k
−−→

Ip

q′; r, Dq andq2; r, Dq2
O,k
−−→

Ip
q′; r, Dq respectively.

2) Next, consider the case wheret = q‖r. Suppose that,

q, D
O,k
−−→

Ip
q′, Df(...) and r, D

Q,l
−−→
Ip

r′, Dg(...)

Then, from rule 14, we get

q‖r′, Df(...)
O∪Q,syn(k,l)
−−−−−−−−−→

Ip
q′‖r′, Dh(f(...),g(...))

and

q′‖r, Dg(...)
O∪Q,syn(k,l)
−−−−−−−−−→

Ip
q′‖r′, Dh(f(...),g(...)).

Theorem 2:All synchronous function block programs are
deterministic, that is:

∀t, D, ∀E, k, t′, D′, ∀F, l, t′′, D′′,

t, D
E,k
−֒−→

Ip
t′, D′ and t, D

F,l
−֒→
Ip

t′′, D′′ ⇒

E = F, k = l, t′ = t′′, and D′ = D′′.
Proof: Suppose we have the situation where

t, D
O1,⊥
−−−→

Ip
· · ·

Oi,⊥
−−−→

Ip
ti, Di, and ti, Di

O,k
−−→

Ip
t′, D′,

wherek ≥ 0, as well as

t, D
Q1,⊥
−−−→

Ip
· · ·

Qj ,⊥
−−−→

Ip
tj , Dj, and tj , Dj

Q,l
−−→
Ip

t′′, D′′,

wherel ≥ 0. Then, by lemma 2, we either have

ti, Di

Oi+1,⊥
−−−−−→

Ip
· · ·

Oi+m,⊥
−−−−−→

Ip
tj , Dj ,

or
tj , Dj

Qj+1,⊥
−−−−−→

Ip
· · ·

Qj+n,⊥
−−−−−→

Ip
ti, Di.

Lemma 1 then requires thatti = tj , Di = Dj , andOi = Qj,
and hence,t′ = t′′, D′ = D′′, k = l, andO = Q.

VI. RESULTS

We ran experiments to evaluate the performance of the func-
tion block programs obtained from the Esterel code generated
by FBtoStrl.Since there are no other synchronous imple-
mentations of function blocks available, we benchmarked
the generated code against FBDK [4], a free and widely-
accepted function block development kit.

FBDK relies on a function block run-time (FBRT) envi-
ronment in order to dispatch events among various function
blocks. The code from FBtoStrl was compiled using the V7
Esterel compiler in Esterel Studio [13]. The suite of programs
used for benchmarking range from small examples (about
a hundred lines of code) to real life models (consisting of
thousands of lines of code). The baggage conveyor program
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TABLE IV

EXECUTION TIME FOR ONE MILLION CYCLES(IN MILLISECONDS)

Programs FBRT Esterel Speedup factor
LED flasher 285 118 2.41
Speed regulator 255 129 1.98
Drill station 310 170 1.82
Cruise control 961 318 3.02
Distributed mutex 4786 1768 2.71
Baggage conveyor 25400874 7720630 3.29

in Table IV is a realistic model of part of an airport baggage
handling system.

For this experiment, a set of pseudorandom input vectors
were generated for each benchmark program. Separate test-
benches were created to feed these input vectors in FBRT
and to the reactive function generated by the Esterel compiler.
The measured times do not include the time to run the
testbench, so that the use of different testbenches in the two
environments would not influence the results in any way. This
was accomplished by running the testbenches separately, and
subtracting their execution time from the experiment results.

Table IV shows the average time taken to execute one
million cycles of the benchmark programs. These times were
measured on an AMD Turion 64 ML-32 processor with 1GB
of RAM. The Esterel code from FBtoStrl consistenly ran faster
compared to its counterpart in FBRT.

The significant speedup factor of 2 to 3 times clearly
demonstrates the viability of translating function blocksinto
our synchronous model.This model allows function block
programs to be executed without the need of a run-
time environment, as all scheduling decisions would have
already been determined at compile-time. The removal of
the run-time consequently results in substantial gains in
the execution speed.This approach, moreover, now opens up
the possibility for performing observer-based verification [25]
of function block programs within Esterel Studio.

VII. R ELATED WORK

Earlier attempts for a formal model of IEC 61499 func-
tion blocks have advocated the use of Net Condition/Event
Systems (NCES) [17]. NCES is a formalism based on Petri
nets that was originally intended for modelling discrete event
systems. While there exists tools capable of verifying NCES
[26], the NCES model itself is limited by its inability to
handle data computation. Other models that use state-transition
formalisms, like interacting automata [10] and timed automata
[27], do not provide adequate support for handling data
as well. The automata model in [10] is restricted to state
transitions that do not involve data conditions, while thatin
[27] is even more limited by requiring that all data variables
and their processing be abstracted out.

Others, like Dubininet al. [28], have proposed a new
semantics dedicated to function blocks, independent of other
formalisms. The model adopted here allows function block
networks to be subsequently verified as closed-loop systems
using Prolog [29]. We have not followed the semantics here,
however, as this model assumes a sequential execution of
blocks in a network. This limitation is awkward for a standard

intended for distributed systems. However, an even greater
drawback of a sequential model is that it provides no means
for compositional properties of function blocks to be studied.
Without a notion of a product state for a combination of ECCs
in a network, composition problems like that discussed in
Section II-B may easily arise.

While all these methods mentioned so far are useful for
verifying certain properties over a given model, it is significant
to note that none of these approaches are able to automatically
transfer the verified model to actual executable code. This is
where a formal model that adopts the synchronous approach is
advantageous, as they can readily exploit powerful compilers
that already exists for synchronous languages.

A previous work [30] did attempt to map function blocks
to a synchronous framework as well, but used SIGNAL [31]
instead. We translate function blocks to a subset of Esterel,
preferring its imperative syntax over SIGNAL ’s declarative
style for describing event-oriented reactive systems, like func-
tion blocks. More significantly, our choice to delay all signal
reactions in Esterel guarantees the reactivity and determin-
ism of all function block programs, without requiring costly
causality analysis. This is comparable to the semantics of
STATEMATE Statecharts [18], where outputs in the current
step are sensed only in the next step. Delayed reactions also
make it potentially easier for distributed implementations, as
suggested in [32], since it effectively makes communication
non-instantaneous.

One consequence of delayed reactions is that it makes pos-
sible the separate compilation of Esterel programs. Separate
compilation of synchronous programs has been known, in
general, to be difficult [19]. However, by delaying all signal
reactions to the next instant, the control-flow of a given thread
can no longer be affected by other threads running in parallel.
Therefore, complete knowledge of the system would no longer
be required during compilation, as threads can be arbitrarily
scheduled in each instant. Such modularity in compilation is
of practical importance to industrial engineers, who wouldbe
inclined to treat function blocks simply as opaque reusable
components in their designs.

In fact, the SOS rules presented in Section V may be
viewed as a slightly more fundamental work that contributes
to earlier proposals for weakening the synchrony hypothesis,
along the lines of what has been done in [21]. By trading
off the compositional expressivity afforded by instantaneous
reactions, we are able to achieve separate compilation and
guaranteed acyclicity. We believe that the inability to react to
signals instantaneously is a minor limitation in the function
block domain, which has hitherto, not even had a formal
notion of composition. Moreover, while our work here has
been presented in the context of function blocks, the semantics
itself may find application in other domains requiring similar
features.

There have also been previous attempts to introduce the
synchronous approach in the industrial control systems domain
for the programming languages of the earlier IEC 61131
standard [33]. The work in [34] proposed a mapping for
SFCs to Esterel. While some simple translation rules were
sketched out in [34], that work did not seem to have any
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automated means for converting an arbitrary SFC to Esterel.
The faithfulness of the Esterel translation to the originalSFC
description was also not thoroughly treated. We have proposed
a synchronous model for the IEC 61499 function blocks, and
have developed a prototype compiler that can automatically
generate Esterel code from function blocks, while guaranteeing
their causal correctness in an arbitrary network.

VIII. C ONCLUSION AND FUTURE DIRECTIONS

This paper has presented a synchronous approach for im-
plementing IEC 61499 function blocks. This approach gives
precise execution semantics to function blocks. Consequently,
various ambiguities that has plagued function block implemen-
tations, and the need for a run-time environment to execute
them, have been avoided.

For the first time, Esterel code can be automatically gen-
erated from a function block description using our proto-
type compiler. The execution times using this approach has
achieved asignificant speedupover the current approach for
executing function blocks. Moreover, we have also introduced
a synchronous semantics that will guarantee the reactivity
and determinism of function block programs, irrespective of
their composition. This has been achieved by restricting the
ability for instantaneous signal reactions in exchange foreasier
compositionality.

This proposed approach greatly simplifies the compila-
tion of synchronous programs, as costly causality analysis
would no longer be required. In fact, we intend to apply
this semantics to create a variant of FBtoStrl that can
generate C code directly from function block descriptions,
by-passing Esterel altogether. Consequently, this will en-
able us to produce code that is reactive and deterministic
by construction.

The proposed synchronous model also paves the way for
observer-based verification of function block programs, as
mentioned in Section VI. We are at the moment investigat-
ing this possibility using a combination of assertions and
observers in Esterel Studio for a large industrial model
that we are developing as a case study.

Our compiler is currently only capable of generating fully
synchronous code with Esterel. However, another potential
approach for implementing function block systems would be
to adopt the Globally Asynchronous Locally Synchronous
(GALS) model [35]. The work in [35] provides a method to
automatically derive distributed code for a GALS implemen-
tation directly from a synchronous program, like Esterel.

Alternatively, a GALS model can be directly generated by
our compiler using a GALS language, like SystemJ [36]. This
can be done as a simple modification to the back-end code
generated by our compiler. SystemJ adopts the GALS model of
computation and allows synchronous programs to be described
in an imperative manner similar to Esterel. At the same time,
it also provides constructs to abstractly model asynchronous
communication, which Esterel does not. Communication be-
tween distributed function blocks may potentially be done
through asynchronous channels, while execution within a
single resource can be kept synchronous.

Future work combining a mixture of synchronous and asyn-
chronous implementations of function blocks seems highly
likely, as it will provide the flexibility for distribution over
a variety of networks. Challenges in the verification of such
systems will be a key research area for future investigation.
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