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Abstract—IEC 61499 has been endorsed as the standardtools for PLC design typically only offer simulation and
for modelling and implementing distributed mdustrlal-pr_ ocess code generation capability, but do not provide any means for
measurement and control systems. The standard prescribesie analysis based on formal models.

f function blocks for ignin ms in mponent- .

gfiin?ed uagt)?oa(?hc.)ch]eoexdeiztgiJon gm?(/isetle ofs a bac}is?(c:) fl?r?ct?org To me_et these challeng_es, IEC 6;499 has def_lne_d a new
block and the manner for event/data connections between bis €vent-drivermodel for function blocks intended for distributed
are described therein. Unfortunately, the standard does no execution, while incorporating advanced software enginge
provide exhaustive_specifications for f_uncti_on block exedfwn. principles for component-based design to facilitate relise
Consequently, multiple standard-compliant implementatons ex- contrast to the cyclic-scan model that executes a seqlentia

hibiting different behaviours are possible. This not only defeats . - . .
the purpose of having a standard, but makes verification of portion of code in each cycle, the event-driven model relies

function block systems difficult. To overcome this, we propse 0N the occurrence of asynchronous events to trigger program
synchronous semantics for function blocks, and show its febil-  execution. This model makes it more natural to describe

ity by translating function blocks into a subset of Esterel,a well-  control software that may need to react to multiple events
known synchronous language. The proposed semantics avoidsgqncyrrently. At the same time, IEC 61499 is also pracjcall
causal cycles common in Esterel, and is proven to be reactive . . : .
and deterministic under any composition. Moreover, verifiation appeallng as it allows the programming 'anganGS prestribe
techniques developed for synchronous systems can now be sipd N the former standard to be encapsulated within the new
to function blocks. function blocks to support legacy algorithms.

Index Terms— Compilation, Esterel, function blocks, IEC At present, function block implementations typically make
61499, synchronous semantics. use of a run-time environment to dispatch events among the
blocks in a network to mimic the execution model given in
the standard. The run-time environment provides the means t
) ) ) . schedule function blocks for execution in response to avent
I EC 61499 [1] is an international standard that defines @& acutable code is produced by compiling function blocks

component-oriented approach, based fonction blocks ¢ appropriate objects that can be instantiated in the run
for modelling and implementing distributed industriabpess time environment.

measurement and control systems. A function block abstract | \vever the IEC 61499 standard does not provide

a functional unit of software by encapsulating local datgy, ma| semantics for the execution of function blocksin-
state transitions, and algorithmic behaviour within a We'%tead, the standard contains a verbose description fotiémnc
defined event-data interface. Fully executable systemsbeany,,.\ execution, which has resulted in multiple interptietas.
described through a network of function blocks at a high”evéonsequently, function block designs may potentially beha
of abstraction, independent of the implementation platior yigerently when executed on the various existing run-time
The standard, thus, paves the way for sophisticated Sdtw@hvironments, such as FBRT [4], RTSJ-AXE [5], FORTE [6],
methodologies to b(_a applied_in the development _of industrig per [7] and ISaGRAF [8]. Since no rigorous semantics
control systems, which has hitherto, been done using loetle g 4\ ailable, many semantic ambiguities (see Section Il for
techniques for programmable logic controllers (PLC). examples) and behavioural differences in various impleeen

In fact, the IEC 61499 standard has emerged in responge,s have been reported in literature [9]-[11]. This nolyon
to the technological limitations encountered in the cuiyen hampers portability (defeating the purpose of a standénd),

dominating standard, IEC 61131 [2]. IEC 61131 prescribegs, complicates any attempts towards the automated formal
the use of various languages, such as Sequential Funcfi@iisication of function block programs.

Charts (SFC), Structured Text, and Ladder Diagrams, fof pro rq fj| this lacuna, we have developed formal semantics
gramming a centralized PLC that adopts a sequenyielic- o fnction blocks based on the synchronous paradigm [12].
scanmodel. In this model, a scan cycle typically involvesyis semantics view function block instances within a
reading all inputs, performing some computation based QRuyork as concurrently executing modules of a system.
the buffered inputs, and updating all outputs at the end ¢f¢ formal semantics proposed here will avoid the problem
the cycle. This model of computation, as described in [3], | myltiple interpretations plaguing the current standdre
s_eve_rely madeq_uate to meet_ the current industry demar_"dsgfbnificantly, it will open the pathway for powerful compite
distributed, flexible automation systems. Moreover, @5t 5,4 yerification tools already developed for synchronous sy

The authors are with the Department of Electrical and Coepingineer-  (€MS, like Esterel Studio [13], to be used by function block
ing at the University of Auckland, New Zealand. de5|gners.

I. INTRODUCTION
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We show the feasibility of this approach by describing
new compiler, FBtoStrl, that will map function block degeri
tions to a subset of Esterel [14], a well-known synchronol
language. We give the semantic foundation for our mod[Resumecci—[Resumecclsetesiredspeed]
using operational semantic rules [15], and prove that gnogr _ , _

. . . . Fig. 3. The execution control chart for ti@ruiseControlLever function
constructed with this semantics are guaranteed teehetive | 5c,
anddeterministid16].> As a consequence, the approach taken
in this work yields the following benefits:

. It avoids the need for costly causality analysis [16]stant is memorized. This desired speed will be forwarded t

required in the general compilation of Esterel. the cruise controller, which in turn will attempt to maintai
« Esterel programs can be compiled directly for executiotllis speed by appropriately adjusting the throttle positia
removing the need for run-time environments, and henggparate subsystem calculates the current speed at@veky
avoiding issues of portability altogether. tick and updates the cruise controller. This cruising mode w

« The executable code generated with the synchrondﬂg deactivated when theff button on the lever is pressed.
approach is 2 to 3 times faster compared to existing The function blocks in Fig.1 are known #&ssic function
function block run-time environments, as the overheddocks Besides basic function blocks, the IEC 61499 standard
for the run-time is removed. also defines two other kinds of function blocks, namely:

The remainder of this paper is structured as follows. Sec-« composite function blocksvhich are simply a syntactic
tion 1l introduces the nature of function block execution feature to encapsulate a network of function blocks within
through an example. Then, in Section Ill, we give an inteitiv another block; and
outline for the synchronous function block model that we are « Service interface function blockwhich serve as device
proposing. Section 1V is devoted to the internal detailshef t drivers to bind the function block application to a specific
new compiler. Section V presents our proposed semantids, an hardware target. These have been omitted in Fig. 1 for
demonstrates that all programs constructed with this séosan brevity.
will be reactive and deterministic. Following that, Seatdl  Moreover, the standard allows a network of function bloaks t
gives the results of our work and benchmarks it against-exigle grouped within an independent unit of software known as
ing function block implementations. Section VII compares o0 a resource and a complete system may be described using a
work with previous attempts to introduce execution modeits fcollection of resources.
function blocks. Finally, the paper concludes with an @&li  Every function block has an interface, which consists of
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for future extensions to this work. a set of event and data inputs, and a set of event and
data outputs, on both of its sides as illustrated through the
[I. 1TEC 61499 FUNCTION BLOCKS CruiseControlLever function block in Fig. 2. Event lines are

Fig. 1 shows a function block model of a simplified cruisérawn on the upper part of the block, while data lines are
control system in a car. It consists of four function blockg;onnected to the lower part. Event-data associations may be
each modelling a component of the system. created at the interface to update the values of variabkgsaan

The cruise control system is activated by a lever, congjstifroduce new output data together with the associated eyent(
of theAccel andOff buttons. Whenever theccel button is held ~ The execution logic of a basic function block is determined
down, a sequence diccelHold events will be generated toby its execution control chart (ECC), as illustrated in F3g.
incrementally accelerate the car. When the button is retgasand 4 for theCruiseControlLever andCruiseController function
the AccelRelease event will be generated and the speed at thatocks respectively. An ECC consistsi€ (execution control)

states EC transitions and EC actions These elements are

Lintuitively, we refer to reactivity as the property that eres that a program |gpelled in the ECC of Fig. 3. The initial state of an ECC is
never enters a deadlocking state, and determinism as thEenyowhich . .

represented with a double-box by convention.

ensures that a program will always behave in the same mannargiven g ) o
state for a given input. These notions are formally defineSeation V-B. An ECC basically describes a Moore-type finite state
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Ambiguities in state transitions of execution cohharts

been suggested in literature [11].

These complications are illustrated in the following subse

machine. Transition conditions between states are ewaluaf*: State transitions within function blocks

whenever the function block receives an input event. Suchgig
conditions are expressed using an input event and/or a&ole; g

ure 5 shows an ECC fragment of a function block, where
an input event, and€1, C2 and C3 are boolean guard

guard condition. Each state can be associated with zeroghditions. Transitions in an ECC are only evaluated with th

more actions, which may consist of an algorithm and a poggcyrrence of an input event, and are done in the order in
sible output event to be issued at the algorithm’s compietiayhich they have been declared in their textual syntax. Let us
The action(s) associated to a given state will be executed 0ssyme here that transitions in the figure are evaluated from

upon entry to the state.

Whenever an ECC is triggered by an input event, a sequengge
of transitions may take place within the ECC in response to
that event. We refer to such a sequence of transitionsras a 1)
following the definition in [17]. As an example, consider the
ECC in Fig. 4, and assume the current stat8T8RT. If the
SpeedChange event occurs and th€urrentSpeed equals the
DesiredSpeed, a run involving the sequence of transitions from
START to ControlThrottle, and back, will constitute a run. The
elements involved in this run have been shaded for illusimat

While the ECC is reminiscent of Statecharts [18], function
blocks do have significant advantages over Statechart-Fun
tion blocks provide a graphical approach to model a physical
or logical entity within a single component with a well-defith
input/output interface to the environment. This allows leip
point-to-point connections to be made between different-co
ponents in a distributed system that captures the actuat-eve
data flow between the components. This is in contrast to Stat-
echarts’ abstract model of broadcast communication, which
does not map well to real-life distributed systems. Morepve
the component-oriented approach of function blocks makes
the modelling of plant-controller behaviour in control ®ms
much easier compared to doing so in Statecharts.

Despite these benefits, designers have not yet been able
to exploit the full potential of function blocks due to the
incomplete execution semantics given in the standard. Whe t
main problems relate to the following:

1) Lack of any notion of timerunction blocks do not have
any explicit notion of time. Hence, the lifetime of an
event within an ECC is not clear.

Lack of any notion of compositionhile individual
function blocks may be connected within a network like

2)

2)

left to right, and the current state $ at e1. Two ambiguities

here:

Consider the case whe@ andC2 are both true when
E1 occurs. Consequently, the transitionSoat e2 will
occur, but whether or not a subsequent transition to
St at e4 will take place is not clear. This is because the
lifetime of an event is undefined in the standard.
Consider the case wher is true, whileCl and C3

are both false wheiEl occurs. Then, the transition to
St at e3 will occur and control will remain there. In this
scenario, two different interpretations are possible from
the standard:

« Transitions consisting of pure data conditions will
only be evaluatedbnce upon the completion of
the action in the state. Thus, the application must
guarantee that “eventless” transitions have at least
one guard condition that will be true upon the
completion of the preceding state (e.gL and/or

C3 should be true at the end &f at e3). Otherwise,
the ECC will freeze in the culpable state. This is the
approach adopted by FBDK [4], a widely-accepted
function block development/run-time environment.
“Eventless” transitions will be evaluated whenever
an input event is fed to the function block. This
implies a dependence on input events for the eval-
uation of pure boolean guard conditions. In this
case, shouldCl and/orC3 eventually become true,
the transition out ofSt at e3 will occur when the
function block receives an input event.

We have chosen to adopt the second interpretation, as
the first will potentially lead to a deadlock.

Fig. 1, the standard does not define the composite be-With synchronous semantics, the lifetime of an event is
haviour of such a network. The standard does not specijways well-defined at every instant, while the evaluatién o
the product state when multiple ECCs are connected gmard conditions in conjunction with input events can be
this manner. Hence, a variety of ad hoc approaches hawslicitly dealt with.
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Fig. 6. Ambiguities in execution behaviour of a function ¢kanetwork.
1: nodul e Sinple:
2: input I; output Q O: bool init false;
3: trap T in
4: | oop
5: emit ?0 <= not pre(?0;
6: if I then exit T end; pause
7: end | oop
8: [
9: | oop
10: await inmrediate pre(O;
11: emt Q pause
12: end | oop
13: end trap

14: end nodul e

Fig. 7. Example of an Esterel program

B. Compositions of function blocks in a network

TABLE |
TIMING DIAGRAM FOR THE EXECUTION OF THE PROGRAM INFIG. 7.

Tick | Inputs Outputs
0 - O (true)
1 - O (false), Q
2 | O (true), Q(program exits)

of the next. This can be thought of as an abstraction of a
PLC’s scan cycle. We highlight key features of the language
through the example in Fig. 7, and depict the output trace for
a particular input sequence in Table |I.

The basic programming unit in Esterel isngodule Each
module consists of an interface declaration (line 2), foéd
by a body of executable statements (lines 3—13). Signals in
Esterel may consist of atatusand/or avalue component.
Signals with only a status component are known pase
signals (e.g., signal), while those with a value component
are known asaluedsignals (e.g., signad, which has status
and a boolean value component).

The ‘|| operator denotes synchronous concurrency of both
its branches. Here, both the branches consist of the non-
terminating oop statement. In the first branch, thei t state-
ment (line 5) is used to perform two simultaneous functidéns:
sets the value ob as its toggled value in the previous instant,
and makes the status ofpresent. Ther e operator is used
to obtain information about a signal in the previous instént

The standard does not define the composite behaviour fotan be used to obtain either the value (line 5), or the status
network of function blocks. This results in different belwaws (line 10) of a given signal in the last instant. When emitted,
for a given application depending on the scheduling schertie signal’s status is made present for the current instent,
chosen by a particular implementation. becomes absent again in the next. However, the value of the

Consider the network in Figure 6. BofiB2 andFB3 need signal persists. Signal emissions agschronously broadcast
to be invoked as a result of the executiorF8fL. The decision and may be tested concurrently (see line 10).
of when to executeB2 and FB3 is not fully clear. This  Theif statement (line 6) performs an instantaneous pres-
ambiguity can be further compounded when there is an evemice test for the input. If 1 is absent, execution on this
feedback, like that betweeRrB2 and FB1. With ambiguous branch will pause for the current instant. Tésuse statement
block scheduling times, such scenarios may not only resultbehaves as &ck delimiter in Esterel. Otherwise, ther ap
different system behaviours, but may lead to: construct (lines 3-13) will be terminated by thexit T

. race conditionsasFB1 may be triggered again by2 statement, causing both branches of the parallel statement

before it can complete its current execution; and to terminate in the same instant. Such lock-step prognessio

« starvation asFB3 may be left unattended, whiks1 and ©of concurrent threads at eatick is known assynchronous

FB2 monopolise the computational resources. parallel execution

With synchronous semantics, the issues of composite beMeéanwhile, in the second branch, theai t statement in

haviour and execution order are completely defined owing 8¢ 10 pauses execution until its delay predicate becomes
synchronous parallel execution. true. The predicate can be specified by an arbitrary signal

expression, likepre(O) in this example. When used with
the i nmedi at e modifier, the await statement terminates

instantaneously if the signal expression is true in thetiatar

The synchronous programming paradigm [19] asSUm@Riant. Due to ther e operator, the emission @ (line 11)
an idealized reactive system that produces its output syRgi always be lagging that ob by onetick.
chronously with its input by executing infinitely fast. This

model treats time as a sequence of discriesgants with )

nothing happening between the completion of the currefit Synchronous Model for Function Blocks

instant and the start of the next. Our idea for synchronous function blocks has been inspired
This idea is adopted by Esterel, where every prograby Esterel's synchronous model. Intuitively, in our apmina

reaction occurs with respect to a logical instant of timepwn  each function block will be mapped to an Esterel module.

as atick. A new reaction is triggered at the start of edtk Then, at the top-level, a main module will be created to

by taking a shapshot of the input signals, performing soneennect all other modules in parallel to achieve the sameteve

computation, and generating the output signals beforetéite sand data connections as in the function block network.

IIl. THE SYNCHRONOUSAPPROACH



TABLE I

The key idea to achieve seamless composition is the fol-
FUNCTION BLOCK TO ESTEREL TRANSLATION MAP

lowing: whenever there is a producer-consumer relatignshi
between two or more blocks, we ensure in our semantics thafunction block element  Esterel feature

the producer will emit the event/data in the current instantEU”Ciion blocks F')ESfefe,' mold“'es
. . . . . vents ure signals

yvhlle the consumer will only read what is emltted “ln_ the_ NeXtpata Value-only signals

instant of the synchronous program. This simple “pipelifiin  Event-data binding Explicitly done in Esterel code

of the producer-consumer blocks guarantees that theitiplara 'mce”gai variables EL)OCﬁ' Vaft'ag'%; in EStf"t?' t
- . . . . states emarcate use statements

composition will always be acyclic. This, in fact, weakehe t 50, ihms Procedure calls in host language

synchrony requirements for communications between @iffer Transition conditions awai t andi f statements

blocks. Note that this behaviour can be obtained by reactingunction block network  Top-level module, whereby each fiamc
0n|y to thepr e of signals in Esterel block is a concurrent sub-module in it
While Esterel’'s synchronous model allows for very powerful

expressions through instantaneous signal reactions, Ie‘Jﬂmpblocks in true component-oriented fashion. Beside this, we

adherence to the synchrony hypothesis makes the compilatio . :
: ve also extended our semantics to deal with data as well,
of Esterel complex. Every Esterel program would first need; . ; :
hich was not at all discussed in [21].

to be checked that it is deadlock-free before code can ue to the weakening of the synchrony hypothesis, it is

generated for it. This checking is known @ausality analysis Eossible to derive a set of kernel statements for function

and involves ensuring that constraints arising from cdntr ; o . . .
; . ocks that will make itimpossible to write non-reactive
and data dependencies will never lead to deadlocks [1

This possibility of writing non-causal (deadlocking) prags
makes composition difficult. For example, consider the ahu
programsP1 consisting of,

of' non-deterministic programsThis avoids the need for

causality analysis during compilation; thus, greatly difgimg

3he compiler construction. Moreover, this approach ersble

synchronous programming methodologies to be encapsulated
emit U if Sthen enmt T end within function blocks so that they can be easily understood

and P2 consisting of, and applied by industrial engineers who may not be familiar

if Sthen enit T end: emit U with synchronous languages.

Both P1 and P2 have identical input/output behaviour. How- .
. ) . B. Postulates for Function Blocks
ever, when each is placed in parallel with another program;

P3, consisting of, In proposing a synchronous model for function blocks, it is
desirable that the proposed semantics does not contralatt w
has been specified in the standard. The postulates usedefor th
P1 || P3 remains causal, while2 || P3 does not. In fact, Huiz- synchronous implementation of function blocks are listeteh

ing et al. [20] have shown that no semantics canrégponsive 1) A function block run can only be activated with the

if Uthen emt S end

(obey the synchrony hypothesisgusalandmodular(notions occurrence of some input event.

related to compositonality) at the same time. 2) An event has a lifetime of only a single transition,
The closest work related to this idea was proposed for the  regardless of whether or not the event was actually used

prototype language, SL [21]. However, there are key differ-  in the evaluation of the transition.

ences. SL allows instantaneous reactions to signal presenc3) |f more than one transition condition is true, they will

but delays reactions to signal absence till the next instant be evaluated in the order in which they are declared.

forbids any assumptions on signal statuses: a signal can onl4) The execution in EC states conceptually occur instanta-
be determined to be present if it is emitted, while its absenc neouslywith the EC actions executed in the order in
can only be decided at the end of the current instant. Thus, which they have been declaredThis effectively treats
SL programs resolve signal dependencies during run-tifte. T each EC state as a synchronous state.

execution of threads containing a test of an unresolvedsign  The standard is not clear on whether it allows function

suspended, until the signal is emitted, or until all othewflél ks 10 react to more than one event simultaneously (e [2
threads pause, terminate, or become suspended as wels Infl} 5 giscussion on this). However, Esterel is able to handle
case, all unresolved signals will be recognised as absent. m jiiple incoming events in the same instant. We have chosen
In contrast, reactions in our approach always occur wif§ gjiow this in our implementation, and to leave the reioic
respect to registered signalsThis avoids the need for slow ¢ only a single event as an environment constraint.
run-time resolution of signal dependencies, and results ity following section will show how function blocks can
delayed reactions to both signal presence and absence.bngapped to Esterel.
programs may avoid the run-time overhead by compiling
to automata, but at the cost of an exponential increase in
code size, and compilation complexity. Moreover, automata
generation hinders modular compilation, while our sentanti Table Il shows the basic translation map from function

model makes possible the modular compilation of functioffocks to Esterel. The mapping of function blocks and their
event and data interfaces to Esterel modules and signals is

2The pre of signals in Esterel serve as registered signals. straightforward. The encapsulation of algorithms withimsth

IV. TRANSLATING FUNCTION BLOCKS TOESTEREL



module CruiseControl:
input INIT, FootBrake, AccelHold, AccelRelease, CCOff;
input Resume, Clock, RUN, Distance : value integer;
output ThrottleChange, ThrottleValue : value integer;
output SpeedChange, CurrentSpeed : value integer;
signal Lever SetDesiredSpeed, Lever INITO,
Lever DesiredSpeed :
run CruiseController [...]

cruise control system of Fig. 1. The event and data connextio
between function blocks are accomplished through appateori
signal binding at the module interfaces. Local signals ireEes
are declared to perform this binding.

The crux of the compilation actually lies in the mapping
of basic function blocks to Esterel modules. This will be
elaborated in the following subsection.

value integer, ... in

run CruiseControlLever [...]

run SpeedMeasure [...]

A. Translating the Basic Function Block

The translation steps in this stage proceed as follows:
1) Create a new module for each basic function block type.
2) Declare all input/output events of the function block as
pure input/output signals at the module interface, and
input/output data as value-only signals.
3) Declare all algorithms as host language procedures in
n Esterel.
4) Declare all internal variables in the function block as
local variables in the Esterel module.

|
run Throttle [...]
end signal
end module

Fig. 8. The top-level Esterel module that instantiates the-modules for
the cruise control system.

language procedure calls follows the same principle used i
function blocks for specifying algorithms.

The key point to note here is the use of flraise statement L .
to demarcate states in an ECC. This provides the synchronoug) Extract state and transition information from the ECC
interpretation for function block execution. As a consete to ggnerate !Esterel code. o )
the computation of any procedure occurring in a state must fit' '€ Main work in these steps lie in extracting the state and
within a tick. transition information from the ECC. Each node in the ECC

We assume here that thiek is sufficiently fast to observe will be parsed to cre_at_e a synchronous state_ representation
every event occurring in each state. This assumption is fuffilled SyncStateconsisting of the quadruplé¢tions, Tran-
damental to every Esterel program, amdstbe valid for the sitions, Children, Paren)s where:
synchrony hypothesis to hold [16]. Then, instead of eviaigat ~ * Actionsis the list of algorithms and output events to be

transitions in an ECC with respect to an input event, traomsst
will now be evaluated at the occurrence of evéck. If the
transition condition does not evaluate to true in a gitieky no

issued;
« Transitionsis the list of transition conditions leading to
a successor state;

state transition will take place. With this approach, lifetime ~ « Childrenis the list of successor states; and
of any event is explicitly bounded by the duration of tise =~ Parentsis the list of predecessor states.
in which it occurred As an example, theccel state in Fig. 3 will be described
The code generated by FBtoStrl conforms to Esterel's Wy the quadruple{[Accel, SetDesiredSpeed], Off, Disable,
textual syntax [14]. The Esterel Studio tool also has a gcabh START}.
counterpart, called Safe State Machines (SSM). This allowsOnce each EC state has been converted to a corresponding
state machines to be visualised in a manner similar to EC&yincStateeachSyncStatevill be connected in a control-flow
However, we have chosen to stick to Esterel’'s textual syntgaph (CFG) that adheres to the transition dependenciéof t
as we found it to be more easily debug-able during thiginal ECC. Using this CFG, the ECC can be converted to
development stages of FBtoStrl, compared to the terse fornisterel using the algorithm in Fig. 9-11.
required to represent SSMs. Moreover, the use of SSMs doedhe Tr ans| at eECC procedure initiates the conversion of
not simplify the key algorithms of FBtoStrl in any way, agin ECC to Esterel by invoking two recursive functions: the
the same state and transition information would need to figst function makes the ECC amenable to Esterel, while the
extracted from a given ECC. second function generates actual code from it. The threa mai
FBtoStrl begins the translation process by taking as inpi@sks performed by this algorithm involve:
a function block network, created by a function block editor « Generating different types of transitionghe event-
(e.g. FBDK [4]) in the XML format. It performs a depth-first triggered nature of ECCs can be neatly accomplished by
traversal of the network, recursively entering each corit@os awaiting on signals in Esterel. However, transitions in-
function block it encounters, to perform a bottom-up compi-  volving pure data conditions need to be specially handled
lation of every block in the network. Each network will be  to create explicit dependence on incoming events.
instantiated within a top-level module in Esterel. If the@un « Handling unstructured transitions in an ECCransitions
XML file contains networks for different resources, FBtdStr in an ECC can take place between any arbitrary EC state.
will generate the network for each resource as a separate However, Esterel code is highly structured, with no prim-
module. itives like “goto” for handling unstructured branching.
Once every function block type in a network has been This complicates code generation as “goto” behaviour
mapped into an equivalent module, the resulting modules wil  must be simulated.
be composed in parallel in the top-level module createdfart « Generating the RUN signalAn Esterel program is trig-
network. Fig. 8 shows a skeleton of how this is done for the gered by atick (clock-driven), and then pauses until the



1 procedure Tr ansl at eECC() 1 procedure Gener at eCode( s, N)
2 m := new module for given function block; 2 if state s has been visiteten
3 s :=initial state for given ECC; 3 return;
4 N := set for storing top-level states; 4 end
5 Format ECC(s, m, N); 5 mark s as visited and generate new state boundary;
6 if N.size()> 1 then 6 foreach Action a of sdo
7 foreach n in N do 7 if a has alg algorithnthen
8 if n # sthen 8 generate call to procedure[alg];
9 generate if-case for n; // simulates gototon 9 end
10 Gener at eCode(n, N); 10 if s has eo event outptihen
11 end 11 forall data output dout associated with €@
12 end 12 generate emission of signal[dout];
13 end 13 end
14 if N.size()> 1 then 14 generate emission of signal[eo];
15 generate default-case for s; 15 end
16 end 16 end
17 Cener at eCode(s, N); 17 if any transition from s is of type pureDataen
18 end procedure 18 foreach pureData transition, dt, in slo
19 generate test for dt;
Fig. 9. Initiates the process for translating an ECC intaeEedt 20 end
21 generate emission of RUN signal;
22 end
L prgcedure For mat ECC( s m N) 23 foreach transition t of sdo
2 if shas b(.aen visitethen 24 if N.size()> 1 and t leads to child, n, in Nthen
3 return; 25 synthesize “goto” statement to n;
4 end . 26 return;
5 mark s as visited; 27 else
6 foregch.transmon t of sdo 28 if t is of type pureEventhen
7 if tis of type pureDatahen 29 generate code to await t;
8 if RUN input has not been created forthen 30 else '
9 create RUN input signal in m; 31 if t is of type pureDatahen
10 end 32 generate await on RUN signal or any input;
11 end 33 end
12 end ; .
13 if s has> 1 parentsthen 2;1 endgenerate looping test for t;
14 add s to N; 36 end
15 end . 37 end
16 foreach child c of sdo 38 foreach child ¢ of s do
17 For mat ECC(c, m) ; 39 Gener at eCode(c, m) ;
18 end 40 end

19 end procedure 41 end procedure

Fig. 10. Prepares an ECC for structured code generation terdts

Fig. 11. Generates Esterel code for a given ECC.

arrival of the nexttick. In contrast, an ECC is triggered . - .
. : . In lines 28-35, each transition proceeding from the current
by an event (event-driven), and continues to evolve i

: . e . srlate will be converted into an explicit test condition. We
a singlerun until no further transition is possible, as’,. . " -
; : . . . : differentiate between transitions consisting only of égd¢rom
described in Section Il. An addition&®UN signal is thus L " . .
: : . those containing data conditions. Transitions consigtingly
required to emulate this behaviour. 2 . T
_ of event conditions are implemented usiagait - cases
These tasks are described next. (lines 28-29). For instance, the transition conditionglileg
out from theSTART state in Fig. 3 have been translated to the

B. Generating different transition types following form in the equivalent Esterel code in Fig. 12:

awai t

Fig. 11 provides the basic code generation algorithm. The case

Esterel code produced from this algorithm for theiiseCon-
trolLever and theCruiseController function blocks are shown

in Fig. 12 and 13 respectively. Tt@ner at eCode procedure
performs a depth-first traversal of the CFG to generate code
for each state. Line 5 demarcates the start of each new state
with the pause statement. Subsequently, code is generated
for each action in that state in lines 6-16. If the output ¢ven
issued by a given action has any associated data output, codgleanwhile, transitions involving data conditions are impl
to emit those data outputs will be generated together wigh tiented using f - cases, enclosed within a loop (lines 30—
output event (lines 11-13). 35). For example, the transition conditions leading outhaf t

i mredi ate pre(INIT) do

ca-s-e- i mredi ate pre(Accel Hol d) do
ca-s-e- i mredi ate pre(Accel Rel ease) do
case

i mredi ate pre(ResuneCC) do

end await



module CruiseControlLever:

host
host
host
host
host
input INIT, AccelHold, AccelRelease,
input CurrentSpeed :
output INITO,

var SpeedSet :

loop

procedure
procedure
procedure
procedure
procedure

INITProc (in integer, inout integer, inout integer);
Accel (inout integer, inout integer);

Disable (in integer, inout integer, inout integer);
ResumeCC (inout integer, inout integer);

AccelHolding (in integer, inout integer, inout integer);
Off, Resume,
value integer;
SetDesiredSpeed, DesiredSpeed : value integer;

integer, DesiredSpeed var : integer in

pause;
await
case immediate pre (INIT) do
call INITProc (pre(?CurrentSpeed), DesiredSpeed var, SpeedSet);
emit ?DesiredSpeed <= DesiredSpeed var;
emit INITO; pause;
case immediate pre(AccelHold) do
call AccelHolding (pre(?CurrentSpeed),DesiredSpeed_var, SpeedSet) ;
emit ?DesiredSpeed <= DesiredSpeed var;
emit SetDesiredSpeed; pause;
case immediate pre (AccelRelease) do
call Accel (DesiredSpeed_var, SpeedSet);
emit ?DesiredSpeed <= DesiredSpeed var;
emit SetDesiredSpeed; pause;
await immediate pre (Off);
call Disable(pre(?CurrentSpeed), DesiredSpeed_var,
emit ?DesiredSpeed <= DesiredSpeed_var;
emit SetDesiredSpeed; pause;
case immediate pre(Resume) do
call ResumeCC (DesiredSpeed var, SpeedSet);
emit ?DesiredSpeed <= DesiredSpeed_var;
emit SetDesiredSpeed; pause;
end await;

SpeedSet) ;

end loop;

end var
end module

Fig. 12. Esterel code generated for BeuiseControlLever function block.
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34
35
36
37
38

module CruiseController:
input INIT, SpeedChange, DesiredSpeedChange, RUN;
input CurrentSpeed: value integer, DesiredSpeed: value integer;
output INITO, ThrottleUP, ThrottleDown, ThrottleOff;
var state : integer := 0, CurrentSpeedINT : integer in
loop
if state = 1 then
trap T2 in loop
await immediate (pre(RUN) or pre(INIT) or pre (SpeedChange)
or pre (DesiredSpeedChange)) ;
if
case pre (?CurrentSpeed)<pre (?DesiredSpeed) do
emit ThrottleUP; pause; state = 0; exit T2;
case pre (?CurrentSpeed)>pre (?DesiredSpeed) do
emit ThrottleDown; pause; state = 0; exit T2;
case pre (?CurrentSpeed)=pre (?DesiredSpeed) do
state = 0; exit T2;
end if;
pause;
end loop end trap;
else
pause;
trap TO in loop
if
case pre (INIT) do
emit INITO; pause; exit TO;
case pre (SpeedChange) do
if (pre(?CurrentSpeed)<pre (?DesiredSpeed) or
pre (?CurrentSpeed)=pre (?DesiredSpeed) or
pre (?CurrentSpeed) >pre (?DesiredSpeed)) then
emit RUN;
end if;
pause; state = 1; exit TO;
// Rest of the code is omitted
end if;
pause;
end loop end trap;
end if
end loop
end var
end module

Fig. 13. A fragment of the Esterel code generated forGhaiseController
function block.

START state in Fig. 4 will result in the following form of code:

trap TO in | oop

if
case pre(INIT) do

., exit TO;

pr e( SpeedChange) do

., exit TO;

pre(Desi redSpeedChange) and

pre(?Desi redSpeed) >-1 do

., exit TO;

pre(Desi redSpeedChange) and

pre(?Desi redSpeed)=-1 do

., exit TO;

case
case
case

end |f

end | oop end trap

Esterel does not have constructs to wait for a data expressio
to become true; hence, this has to be explicitly done within
a loop. Thet rap construct enclosing the loop is required to
break out of the loop should any of thé cases succeed.

In both theawai t andif statements, the ordering of test
cases are done following the sequence of their declaration i
the XML file. Therefore, if more than one condition evaluates
to true at the same time, Esterel's semantics for dhei t
andif statements will ensure that the transition priority is
correctly ordered, thus ensuring that all state transitimappen
deterministically.

An important aspect in this translation is the use of the
pr e operator in all the test conditions. This idea to postpone
all reactions to inputs to a function block is the key feature
of our synchronous model that enables function blocks to be
composed in a network without any causal problems. This
effectively implements the idea of seamless composition of
function blocks as described earlier in Section IlI-A.

C. Handling unstructured transitions

The control-flow among states in an ECC are, in general,
unstructured. Transitions can take place between anyampit
pair of states, making it impossible to generate structocet®
without excessive duplication of nodes. However, sinceiest
is a highly structured language with no “goto” primitive,
“goto” behaviour would need to be simulated using additiona
conditional statements and loops to avoid node duplication

FBtoStrl will attempt to generate structured code whenever
possible. For states with only a single predecessor, siredt
code will always be generated by nesting the successor state
under a conditional statement in its predecessor, as exeadpl
in Fig. 12. However, for states with multiple predecessors
(e.g.,ControlThrottle in Fig. 4), a state variable will be used
to encode the next state to go to (see line 30 in Fig. 13).

The algorithm accomplishes this by adding all states with
multiple predecessors to some set N (see lines 13-15 in the
For mat ECC procedure of Fig. 10). Nodes in this set will be
assigned with distinct indices to encode their “goto” posit
Code will then be generated to test for these indices soltleat t
appropriate state can be entered (lines 6-13 of Fig. 9).,Then
whenever a transition is encountered that leads to a stade in
a “goto” to that state will be synthesize by setting the néates
variable to the appropriate state index. This is accomgtish
during code generation in lines 24-26 of Fig. 11.



D. Generating theRUN signal procedure of Fig. 11. Then, in th@ontrolThrottle state, code

In our synchronous model, state transitions are now evii-9enerated to await teUN signal (line 9 of Fig. 13) before
uated with the occurrence of tick, rather than an input performing the tests on the various data conditions (lirkes 1

event. However, the execution model of ECCs, as describedlif- !f_ the Rl_JN signal was not previously emitted, the data

Section II, requires that state transitions only happennadre conditions will only be tested with the occurrence of some
input event occurs. Handling this requirement is not proble INPUt event. The explicit dependence on either@N signal

atic for transitions that explicitly depend on some inputrety ©" input events fqr the evaluation of pure data conditions is
as shown already in Section IV-B. However, when transitio@c0mPplished in lines 31-33 of tigener at eCode procedure.

are guarded only by pure data conditions, the dependence 0{) geyaNTICS OF SYNCHRONOUSFUNCTION BLOCKS
input events for the transition evaluation must now be madeSO far. we have demonstrated the feasibilit of implement
explicit in the Esterel code. Moreover, to keep with the ooti . ' y P

of arun, a new input event should not be presented to trllf?grs \?vﬁn\(/:vr:)rl?lrc]iol?kz rtrc]JOdreeIsf;r:tZlagcgg;:r:(t)i(c:zsfoursén%cﬁfct)?\rcilj.s
Esterel module until that pure data transition is evaluatezk. function block executio?m without directly relvin oz Estbr
Otherwise, it is possible that fresh events will be fed irte t . : ctly relying :

: We will formally define the semantics for weakening the
module before the curremtin is complete.

Thus, to preserve this notion of mn, our algorithm synchrony hypothesis in Esterel, that was already inelifiv

. . T outlined earlier in Section IlI-A. This is done in order taope
automatically generatesRIUN input at the module’s interface . o . ;
. . .- that our proposed semantics makes it impossible to write non
whenever it detects that an ECC contains pure data tr Itlcr)eactive and non-deterministic function block programisisT
(refer to lines 6-12 of Fig. 10). Th&®UN signal will be brog

emitted whenever aun needs to be sustained across a IOL“%uarantee simplifies the compiler implementation, and make

data transition. This is not required for states that areaaly possm!e the quular compilation of function blocks, since
. : . causality analysis would no longer need to be performed over
dependent on some input event. Having RigN as an input,

Lo . " .~ the whole program before generating code.
which is emitted from within the module and tested again in This section will thus introduce the set kdrnel statements

the nextinstant, effectively makes it a delayed feedbagtei that forms the core of the proposed semantics (following the

New inputs will not to be fed into the module in the immediatg roach in [16]). Their syntax and intuitive semantics are
instant following the emission of thRUN signal. bp ' y

. I . iven in Table Ill, while the formal semantics are presented
To implement this, it is necessary to first understand how tl.ge . . P
in the following subsection.

reactive function generated by the Esterel compiler commun
cates with its physical environment. Typicallyreactive i_nter- A. Formal semantics
face[23] is required to match the asynchronous environment
with the synchronous model of Esterel. Concretely, thetieac " . . )
: . ; - g as program transitions using Structural Operational Séiman
interface accomplishes this by building a new input vect?éos) rules [15] of the following form:
from the environment, feeding it to the reactive functionda '
emitting a new output vector, before generating a tiel to t,D Ok, t', D'
the module. w

Therefore, to ensure that min of the function block is Where,
atomic, theRUN signal is defined to benutually exclusive < t is any arbitrary composition of kernel statements;
with all other inputs to the module. The reactive interfaga ¢ * D is the set of values of data variables before the
enforce this requirement by ensuring that a new input tuple transition;
from the environment is never built in the immediate instant « O is the set of signals produced by the transition;

The formal semantics for the kernel statements are presente

following the emission of th&UN signal. « k is the completion code of the transition;
Our idea of theRUN signal is similar to theSTEPsignal « I7 is the set of signals registered in the previous instant;
used in [24] to implement the behaviour off8EMATE « t'is the residual ot after the transition; and,

Statecharts [18] in Esterel. However, in [24], tBEEPsignal « D’ is the set of values of data variables after the transi-
is directly mapped to Estereltick. Consequently, the reactive tion.
interface must provide th& TEP signal not only for every ~ The notation above describes a program’s transition fram th
triggering event that is internally generated, but alsonever Statet, D to ', D', in response to the set of signals registered
there is an input from the external environment. in the previous instant}”. For the initial instant/? is defined

We illustrate the purpose of thRUN signal using the to be an empty set. This transition will produce the set of
CruiseController ECC in Fig. 4, and its corresponding transsignalsO, and finish with the completion code &f(if any).
lation in Fig. 13. To emulate the behaviour of then from We say that the term, D has been rewritten intd, D".
Start to ControlThrottle, and back tcstart, as explained earlier In any such transition, the resultant state and output may
in Section II, our compiler generates code to test for theepuiepend on the way some subterms are rewritten, or on the
data conditions while still in thetart state (see lines 27-29status of certain signals id?. Dependencies are express
of Fig. 13). This is done in lines 17-22 in tkeener at eCode  through deduction rules of the form

SEsterel allows exclusion relations to be specified betwegntisignals in O,k
’ !/ !/
its syntax. t,D Ip t',D
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TABLE Il
KERNEL STATEMENTS FOR SYNCHRONOUS FUNCTION BLOCKS

not hi ng do nothing and terminate instantaneously
pause pause execution till the next instant

t;u runt, and thenu in sequence

tfju runt andu concurrently

| oop t end repeatt forever

emt S emit signalS

present SP then t else u end runt if the status ofS in the previous instant (denoted ISf) is present; otherwisa
trap Tint end declare and catch exceptidnin t

exit T raise exception fofl

v:i= f(...) compute the value of and assign it ta

if e..)thent else u end runt if boolean functionc is true; otherwiseu

where the predicate above the bar-§ must hold in order for  All other statements executing within a given instant will
the transition below it to happen. When no such dependermyentually be rewritten into one of these base statememts. |
exists, the bar is omitted. other words, a statement executing in an instant will either
Completion codes are used to encode a given conttefminate pause or be preempted(exited from some trap).
thread’s status after completing its execution, borrowting Transitions of base statements are cafiaished transitions
idea from Esterel [16]. Theot hi ng, pause, andexit T while other transitions are referred to@sfinished transitions
statements are the only ones that generate completion.codegrogram’sreactionin an instant will be denoted by,
The not hi ng statement is encoded with Pause with 1, Bk
andexit T with an integer> 2. The completion code for t, D ? t', D'
statements that do not produce it will be represented by . i
Completion codes provide a simple way to synchronize tigtN€re exists a transition sequence such that,
execution of parallel threads. For instance, consider ¢hallel 01,k O3,k2 0 ki 0.k 1 1y
statement |ju. If t finishes with the completion code @f LD ==t Dy == b Dy T 1, D
andl_J with [, the parallel statement itself will finish Wit_h_thewhere,k >0, andE =J,, 0, VYm € [L,i].
maximum betweerk and!. If either branch does not fl_n|sh, 2) Signal emissionTheeni t S statement emits the signal
neither dges t.he pa_rallel statement. Thus, the completide C g ¢5, the current instant.
synchronizer is defined as:

. t S,D ——noth D 4

1L ifk=Llorl=1 em ’ o norning “)

syn(k,l) = ¢ ki k=1 3) Signal test:If the signalS was present in the previous
Lo k<l instant, thepresent statement simply gets rewritten to its

This effectively ensures that all branches of the paratites £ hen branch (rule 5). Otherwise, it is rewritten to ie$ se

ment will terminate, pause, or exit some trap synchronousR}’anCh (rule 6).
The rewrite rules for all the kernel statements are presente SPe [P

i i ®)
next adopting the approach usgd in [16], [21]. . present S* then t else u end, D 0,1 t.D
1) Base statementsfhe not hi ng statement does nothing I»
and terminates instantaneously.
SP ¢ IP
(6)

. 0,0 .
not hi ng, D I not hi ng, D (1) present S? then t else u end,D (DI—L» u,D
P

The pause statement pauses control over itself for the 4y pata assignmentvariables can be assigned with values
current instant and resumes from there in the next. from an arbitrary data function. The values of variables are
globally persistent. However, only the values registerethe
previous instant can be read. Variable values for the curren
Exceptions are declared and lexically scoped bytthep |r}stan_t (t:)zlinnotl be mﬁtangly acgessed. I_n rule!dDT_,|s r:he set.

T in p end statement. Within the body, the exception is O' Variable values that have been registered in the previous
thrown by theexit T statement. It provokes immediate terinstant.
mination of thet rap T statement, killing all other statements df,...,d € D?
within its scope. The completion code generatedbiyt T is D D 0,1 . D D

) ; v:= f(dy,...,d;),D —— nothing, Dlv«— f(di,...,d;
d+ 2, whered is the number of trap declarations that have to J(d; 0 v 9. Dl J(d; g)

be traversed before reaching thatfofFor semantic purposes,Wh_I i ict . q . It(7)
the depth of the exit statement is explicitly encodecksist e no semantic restrictions are Imposed on simultaneous
T, assignments of a variable in an instant, write-write concur

_ 0.d+2 _ rency is prohibited at the syntactic level. For examplehbot
exit Tq, D —— nothing, D (3)  the statements below will be rejected:

pause, D (DTL not hi ng, D (2)
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x:=1 1] x:=2 8) Loop: The loop simply rewrites into a sequence of its

body with the loop itself.
present S then x:=1 end

[ [
present S else x:=2 end loop t end,D - t;loop t end,D (15)

The second statement illustrates the syntactic aspecti®f th As a consequence, loop bodies that finish with the comple-
restriction. While the assignment to will never happen tion code of O will result in the undesired rewriting into an
simultaneously, such programs are still, neverthelegsctel. infinite sequence of unfinished transitions. Such instatdas

5) Data test: Conditional branching can be performedoops can be rejected by insisting that the body’s reactewen

based on boolean data expressions. terminates instantaneously, as required by rule 16.
P P c Dp » Py —
&,...,d& €D e(dy,....dY) t;@ie ®) t.D E,kt1’D/ k>0
if c(d],...,d”) thent else u end, D —=1t,D L (16)
P

E.k
| oop t end,D?t‘;Ioopt end, D’
P P p P Py _
dy,....,d; €D e(dy,...,d7}) = false

m 9) 9) Exception declaration:Rule 17 expresses the fact that
if c(d,...,d”)thent else u end,D I—p» u,D the trap statement does not terminate if its body performs an

. unfinished transition.
6) Sequential statemenRule 10 expresses the fact that the

L o,
sequence does not finish, if its left branch,does not. t,D I—j> t', D’
o,L _,
t,D— =t , D' trap Tint end,D Z trap Tint’ end, D
(10) I
tiu,D 25t u, D (17)
T I» T If the trap body pauses, the whole trap statement pauses as
If the left branch pauses, so does the sequence. well.
.0 %Lt D t.D 25D
) 3 P
Ir (11) (18)

. 0,1 .
t:u,D 2N ¢ uD trap Tint end, D —>trap Tint' end,D
; ot .

Moreover, if the left branch raises an exception, its right If the trap body terminates, or exits the trap, then the trap

branch will never get executed. itself terminates.
t DY p k> 9 t,D%k—»t‘,D k=0ork>2
’ Ir ’ - P

(19)

, (12) 0L
tu.D X ¢ D trap Tin t end, D — nothing, D
’ ) I 9 D
Otherwise, control will be immediately transferred to theé Definiti q ¢
right branchu, whent finishes. - Definitions and proofs
Two properties that are of interest in synchronous function

0,0 ., - >
t,D o t', D block programs areeactivity and determinism
i1 (13)  Definition 1: A program is reactive if, for any statement
tiu,D-"u,D and data seD, there exists at least one reaction for the set of

7) Parallel statement:Rule 14 uses the completion codeignals registered in the previous instar,
synchronizer to specify the overall behaviour of the patall n€orem L:All synchronous function block programs are
statement. During unfinished transitions, the execution of€active, that is:
andu may possibly be interleaved. When they both perform Vi.D. 3k>0 suchthat t.D <5 ¢ D
finished transitions, the parallel statement synchronikes o - ’ ’

Ir 3 i
execution using their completion codes. Proof: The proof can be shown by a structural induction

ont. The base statements are easily verified, since rules 1, 2,

t,D Ok ¢ Dy u,D L Dy and 3 imply that the following reactions are valid:
Ip Ip
: 0,0 :
t|lu, D OVQsyn(kD) lu”, D" whereD’ = Dy, s(..).4(.) not hi ng, D < not hi ng, D
Ir ’ Ip
(14) 0,1
As already mentioned in Section V-A.4, write-write concur- pause, D T not hi ng, D
rency on variables is disallowed, while read-write conenay
is semantically forbidden by rule 7. This means that the exit Ta, D (@’j” not hi ng, D
P

functionsf andg in rule 14 cannot operate on any of the same

variables in the same instant. Hend#, can be treated as a Subsequently, only the sequential, parallel, and trapg-stat
single data store of, consisting of the possibly interleavedments are of interest, since all other statements comptete a
store order off andg. unfinished transitions. For the trap statement, rule 18 és th
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only one that performs a finished transition. However, sthee and t2, Do will both yield the same resultant of

trap body can only pause if it consists of twuse statement, t', D', 0,k.
or a sequential or parallel statement containiagise, only b) Otherwiset; = ¢i;7, D1 = Dg1, andty = go;7,
two cases remain of interest: Dy = Dg. Then, using lemma 2 as the induc-
1) Consider first,t = ¢;r. Then, assume the induction tion hypothesis, we gef:, Dg1 ok, ¢, D, and
Ip

hypothesis, that there always exigtandr’ such that Ok ) .
g2, Dg2 - ¢, D,. Then, we obtain the rewrite
p

E(Iakq / /
¢,D——4d,D kg =0 (20) rules for t;, Dy and ty, Dy as: qi;7, Dy %
and, o q';7, Dy andga; 7, Do % q';r, D, respectively.
ey P
D w0 D kr 20 (21) 2) Next, consider the case whefre- ¢|r. Suppose that,
Then, Ok, QL
q,D -4 ;Dyc.y and r,D T s Dg(..

Eqk
o if k, > 2, we simply getg;r, D — ¢/, D’;
= ply getg; r w4 Then, from rule 14, we get

E, 1
o if k, =1, we haveg;r, D % q;r, D 0UQ,syn(k,l)
P —_—

/ / /
o B OB,k qllr’, Dy(...) e a7’ Drri.ya.))
« otherwise ifk, = 0, we have,q;r,D ——
' D I» and
" . . . ’ ouQ,syn(k,l) ,,
Thus, anysequential composition of kernel statements q'llr, Dy(...) -, 1 17" Dhs(.).9(..)-

will always be reactive

2) ';%Xt’ C(()jnS|2dler th? ciize Q?I‘;:ﬂ‘]lHT' Due to tr;ypothe.ﬁes Theorem 2:All synchronous function block programs are
(20) and (21), rule 14 will then ensure thatr will o0 inistic. that is:

eventually finish, since both its branches will eventually

perform finished transitions. Thus, apgrallel compo- vt,D, VE,kt,D', VF,t",D",
sition of kernel statements will also always be reactive DNy D and 6D D =
Ir P
_ o u E=F, k=1,¢=¢ andD = D".
Definition 2: A program is deterministic if for any state- Proof: Suppose we have the situation where
mentt¢ and data seD, there exists at most one reaction for o1 L o1 ok
. . . . . 1, i ) / !
the set of signals registered in the previous instéht, t,D T T t;, D;, andt;, D; 7 t, D,
) 01,1 .
Lemma 1:If t, D 0 t1, D1, then there exists nt,, Do wherek > 0, as well as
OQ,kQ .
> 0. L )
such thatt, D ¥ ta, Do, Whereky, > 0. Conversely, if t.D Q;,L Q; t,,D;, andt;, D, %t”,D”,
p p P
t,D Dz:ka, to, Do, Whereks, > 0, then there exists no, D, .
Ir oL wherel > 0. Then, by lemma 2, we either have
such thatt, D ;—> ti1, D1. Moreover, there is only one way Oii1,L OsgmsL
P . . 3 E . it+my . .
to finish a reaction: ti, D I I tj» D
t, D M tl, D1 and t, D % tQ, DQ = or Qj+1,L Qjtn,L
Ipr Ip tj,Dj le,DZ
tl - tQ, Dl - DQ, 01 - 02, Ir I
andk, = ko, wherekq, ks > 0. Lemma 1 then requires that=t¢;, D; = D;, andO; = @,
Proof: The proof can be shown by a structural inductioand hencet’ =t”, D' = D", k=1, andO = Q. n
ont. This is easily verified for the base statements, since they
each only have one rewrite rule. Therefdirished transitions VI. RESULTS
are always distinct, and mutually exclusive with unfinished e o experiments to evaluate the performance of the func-
traCsmonsZ.Th | | " s tion block programs obtained from the Esterel code genérate
emma 2:The rules are strongly confluent. UPPOSKy FBtoStrl. Since there are no other synchronous imple-

01,k 02,k . ) : )
t, D -}——5 t1, Dy and¢, D '% t2, D2. Then, there exists mentations of function blocks available, we benchmarked

¢ D’,0, k such that,, D, Ok, ¢ D' andty, Dy Ok, a the generated _Code against FBDK [4], a free and widely-
P P accepted function block development kit.

FBDK relies on a function block run-time (FBRT) envi-
!<ernel statements for the sequence and parallel operam}farronmem in order to dispatch events among various function
Interest: blocks. The code from FBtoStrl was compiled using the V7

1) Consider first{ = ¢;r. Lemma 1 provides two inductive Esterel compiler in Esterel Studio [13]. The suite of progsa

cases: used for benchmarking range from small examples (about
a) If g terminatest; =t =r, D1 = Dy, O1 = O2, a hundred lines of code) to real life models (consisting of
andk; = ko. Consequently, the rewriting of, D;  thousands of lines of code). The baggage conveyor program

Proof: Proof by structural induction oh As before, only
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TABLE IV

intended for distributed systems. However, an even greater
EXECUTION TIME FOR ONE MILLION CYCLES(IN MILLISECONDS)

drawback of a sequential model is that it provides no means

Programs FBRT _ Esterel Speedup factor for compositional properties of function blocks to be sagti
LED flasher 285 118 241 Without a notion of a product state for a combination of ECCs
Speed regulator 255 129 1.98 ; it ; ; ;
Drill station 310 170 182 in a_network, compqsmor_] problems like that discussed in
Cruise control 961 318 3.02 Section II-B may easily arise.

Distributed mutex 4786 1768 271 While all these methods mentioned so far are useful for
Baggage conveyor 25400874 7720630 3.29

verifying certain properties over a given model, it is sfgraint

to note that none of these approaches are able to autorhatical

, . L , transfer the verified model to actual executable code. This i
in Table 1V is a realistic model of part of an airport baggag\%here a formal model that adopts the synchronous approach is

handling system. advantageous, as they can readily exploit powerful comgpile

For this experiment, a set of pseudorandom input vectqys already exists for synchronous languages.
were generated for each benchmark program. Separate tesic previous work [30] did attempt to map function blocks
benches were created to feed these input vectors in FB T4 synchronous framework as well, but use¢\\L [31]
and to the reactive function generated by the Esterel C@m']p'linstead. We translate function blocks to a subset of Esterel

The measured times do not include the time t0 run Mgqteqring its imperative syntax overi®AL's declarative
testbench, so that the use of different testbenches in the yle for describing event-oriented reactive systems, fiknc-
environments would not influence the results in any way. Thﬁ%n blocks. More significantly, our choice to delay all sign
was accomplished by running the testbenches separately, fhctions in Esterel guarantees the reactivity and determi
subtracting their execution time from the experiment rssul ism of all function block programs, without requiring cgstl

Table IV shows the average time taken to execute oE‘fiusality analysis. This is comparable to the semantics of

million cycles of the benchmark programs. These times WeES \ T EMATE Statecharts [18], where outputs in the current

measured on an AMD Turion 64 ML-32 processor with 1GIétep are sensed only in the next step. Delayed reactions also
of RAM. The Esterel code from FBtoStrl consistenly ran faSt‘?nake it potentially easier for distributed implementations

compare.d t(_)_'ts counterpart in FBRT. , suggested in [32], since it effectively makes communicatio
The significant speedup factor of 2 to 3 times clearly "= o nioneous.
demonstrates the viability_ of translating function blodkto One consequence of delayed reactions is that it makes pos-
our synchronous modeThis m_odel allows function block sible the separate compilation of Esterel programs. Separa
programs to be executed W'th(_)Ut the_ r_1eed of a run- compilation of synchronous programs has been known, in
time environment, as all schedullng d_eC|S|0ns would have general, to be difficult [19]. However, by delaying all signa
already peen determined at compllg-tlme. The- remqval _Of reactions to the next instant, the control-flow of a giver#u
the run-ume consequeptly results in substantial gains in can no longer be affected by other threads running in paralle
the exec_ut_|c_)n speedThis qpproach, MOTEOVET, NOW OPENS URarefore, complete knowledge of the system would no longer
the pos_s|bll|ty for performing Qb_server-based vgrlflcat[QS] be required during compilation, as threads can be arbitrari
of function block programs within Esterel Studio. scheduled in each instant. Such modularity in compilat®n i
of practical importance to industrial engineers, who wangd
VII. RELATED WORK inclined to treat function blocks simply as opaque reusable
Earlier attempts for a formal model of IEC 61499 funceomponents in their designs.
tion blocks have advocated the use of Net Condition/Eventin fact, the SOS rules presented in Section V may be
Systems (NCES) [17]. NCES is a formalism based on Pettiewed as a slightly more fundamental work that contributes
nets that was originally intended for modelling discretergv to earlier proposals for weakening the synchrony hyposhesi
systems. While there exists tools capable of verifying NCESong the lines of what has been done in [21]. By trading
[26], the NCES model itself is limited by its inability to off the compositional expressivity afforded by instantaune
handle data computation. Other models that use stateitteems reactions, we are able to achieve separate compilation and
formalisms, like interacting automata [10] and timed awuten guaranteed acyclicity. We believe that the inability toctet®
[27], do not provide adequate support for handling datignals instantaneously is a minor limitation in the fuonti
as well. The automata model in [10] is restricted to statdock domain, which has hitherto, not even had a formal
transitions that do not involve data conditions, while tivat notion of composition. Moreover, while our work here has
[27] is even more limited by requiring that all data variablebeen presented in the context of function blocks, the saosant
and their processing be abstracted out. itself may find application in other domains requiring simil
Others, like Dubininet al. [28], have proposed a newfeatures.
semantics dedicated to function blocks, independent afroth There have also been previous attempts to introduce the
formalisms. The model adopted here allows function blodynchronous approach in the industrial control systemsailom
networks to be subsequently verified as closed-loop systefos the programming languages of the earlier IEC 61131
using Prolog [29]. We have not followed the semantics herstandard [33]. The work in [34] proposed a mapping for
however, as this model assumes a sequential executionS&Cs to Esterel. While some simple translation rules were
blocks in a network. This limitation is awkward for a stardiarsketched out in [34], that work did not seem to have any
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automated means for converting an arbitrary SFC to EsterelFuture work combining a mixture of synchronous and asyn-
The faithfulness of the Esterel translation to the origiBBIC chronous implementations of function blocks seems highly
description was also not thoroughly treated. We have prxgbodikely, as it will provide the flexibility for distribution aer

a synchronous model for the IEC 61499 function blocks, aradvariety of networks. Challenges in the verification of such

have developed a prototype compiler that can automaticaflystems will be a key research area for future investigation

generate Esterel code from function blocks, while guaeintge

their causal correctness in an arbitrary network.
(1]

VIIl. CONCLUSION AND FUTURE DIRECTIONS 2
This paper has presented a synchronous approach for im-

plementing IEC 61499 function blocks. This approach give%]
precise execution semantics to function blocks. Consdtyien
various ambiguities that has plagued function block imgam [4]
tations, and the need for a run-time environment to execu}g]
them, have been avoided.

For the first time, Esterel code can be automatically gen-
erated from a function block description using our proto-
type compiler. The execution times using this approach has
achieved asignificant speedupover the current approach for
executing function blocks. Moreover, we have also intraalic [
a synchronous semantics that will guarantee the reactivify
and determinism of function block programs, irrespecti¥e o
their composition. This has been achieved by restrictirg th
ability for instantaneous signal reactions in exchangeé&sier
compositionality.

This proposed approach greatly simplifies the compila-
tion of synchronous programs, as costly causality analysis [10]
would no longer be required. In fact, we intend to apply
this semantics to create a variant of FBtoStrl that can
generate C code directly from function block descriptions, [11]
by-passing Esterel altogether. Consequently, this will en
able us to produce code that is reactive and deterministic
by construction.

The proposed synchronous model also paves the way for
observer-based verification of function block programs, as
mentioned in Section VI. We are at the moment investigat- [13]
ing this possibility using a combination of assertions and

; - : . 14]
observers in Esterel Studio for a large industrial model
that we are developing as a case study. [15]

Our compiler is currently only capable of generating fully
synchronous code with Esterel. However, another potentf'ﬁg]
approach for implementing function block systems would be
to adopt the Globally Asynchronous Locally Synchronous
(GALS) model [35]. The work in [35] provides a method tgt”!
automatically derive distributed code for a GALS implemen-
tation directly from a synchronous program, like Esterel.  [18]

Alternatively, a GALS model can be directly generated by
our compiler using a GALS language, like SystemJ [36]. Th{s9]
can be done as a simple maodification to the back-end code
generated by our compiler. SystemJ adopts the GALS model[gj]
computation and allows synchronous programs to be destribe
in an imperative manner similar to Esterel. At the same timei
it also provides constructs to abstractly model asynchusné2 ]
communication, which Esterel does not. Communication be-
tween distributed function blocks may potentially be donlé?l
through asynchronous channels, while execution within a
single resource can be kept synchronous.

El

[12]
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