
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 1

Time-Complemented Event-Driven Architecture
for Distributed Automation Systems

Cheng Pang, Member, IEEE, Jeffrey Yan, Student Member, IEEE, and Valeriy Vyatkin, Senior Member, IEEE

Abstract—Time-driven and event-driven control models are
two fundamental design paradigms applied in distributed con-
trol systems for synchronizing decentralized activities. This paper
proposes a unified architecture for combining both approaches.
The combination offers the best of both worlds’ properties, such
as the expressiveness of event-driven programming and the deter-
minism of time-driven logic. The foundations of this symbiosis are
the IEC 61499 Function Block standard providing event-driven
distributed control architecture and the IEEE 1588 Precision
Time Protocol establishing the basis for highly-accurate time
synchronization. The proposed time-complemented event-driven
distributed control model aims at improving the modularity
and flexibility of automation software with satisfactory control
performance. The new control model has been compared with
conventional centralized and distributed control approaches ana-
lytically and by simulation. The comparison results reveal that
the proposed control model is efficient and flexible. Finally, a
reference example has been used to demonstrate merits of the
new approach.

Index Terms—Distributed automation systems, distributed con-
trol, distributed time synchronization, IEC 61499, IEEE 1588.

I. INTRODUCTION

TRADITIONALLY, control software has been executed in
a cyclic way, recalculating control output after updating

input. This stems from the computational implementation of
continuous and discrete control systems. This can be clearly
observed, for example, in programmable logic controllers
(PLCs), which follow the classic cyclic scan paradigm of the
IEC 61131-3 standard [1]. To improve a controller’s reactive
characteristics, the cycle duration, in general, should be as
short as possible. Increasing the performance of computer-
based control devices provides an opportunity to implement
many independent control loops within the same control
device. Based on dynamic characteristics of processes in a
plant, it is possible to develop a time schedule of control loop
invocations. Such a time-driven execution of control loops is a
common solution in process control systems using time-driven
tasks of PLCs.

Manuscript received October 25, 2013; accepted March 9, 2014. This paper
was recommended by Associate Editor Z. Li.

C. Pang is with Luleå University of Technology, 971 87 Luleå, Sweden
(e-mail: cheng.pang.phd@ieee.org).

J. Yan is with the University of Auckland, Auckland 1142, New Zealand
(e-mail: jyan110@aucklanduni.ac.nz).

V. Vyatkin is with Luleå University of Technology, 971 87 Luleå,
Sweden, and also with Aalto University, FI-00076 Aalto, Finland (e-mail:
vyatkin@ieee.org).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMC.2014.2326837

The development of networked control systems motivated
the need for distributed process synchronization. Along with
signal-based synchronization, time can also be used for syn-
chronizing distributed processes. The implementation of this
requires tight synchronization of clocks in distributed devices.
This has been implemented in time-triggered networking pro-
tocols, such as TTP [2] for scheduling of communication
sessions. However, these protocols are not commonly used
at the application level. This is because not all the needs of a
distributed control system can be fulfilled with prescheduling.
Some processes may need to be synchronized dynamically by
passing messages between distributed controllers. This mes-
sage exchange is often modeled using event abstraction, which
has given rise to the event-driven model of computation.

The IEC 61499 distributed automation architecture [3] is a
well-known effort to introduce modern component-based soft-
ware design into automation practice. Over the past decade, the
effectiveness of the IEC 61499 standard in distributed control
systems has been extensively studied in various applications,
such as airport baggage handling systems [4], [5], manu-
facturing control [6] with closed-loop verification [7], [8],
mechatronics [9], [10], building automation systems [11],
machining [12], [13], process control [14], [15], and smart
grids [16], [17]. These case studies have confirmed many
advantages of IEC 61499 in terms of design and redesign
efficiency and better interoperability and reusability [18]. The
IEC 61499 architecture relies on the concept of an event-driven
function block (FB), where control applications are repre-
sented as networks of FBs connected by event and data flows.
The event-related nature of IEC 61499 explains why until
recently time-based synchronization had not been properly
addressed in that context. This limits developers of distributed
systems who have chosen IEC 61499 as their development
architecture.

This paper aims at providing designers of distributed sys-
tems a flexible design architecture that can compose time-
driven and event-driven logics in reusable components. It takes
advantage of the IEC 61499 distributed control architecture
and the IEEE 1588 precision time protocol (PTP) [19]. The
proposed approach is strongly motivated by the industrial trend
of developing the intelligent mechatronic component (IMC)
concept [20]–[22], which can include other IMCs in com-
plex hierarchical assemblies. Some control actions in IMCs
are purely reactive (i.e., event-driven) while others constitute
sequences of actions that are best described by time-schedules.
Lower-level actions can be triggered by commands from
higher levels of the control hierarchy.

2168-2216 c© 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:cheng.pang.phd@ieee.org
mailto:jyan110@aucklanduni.ac.nz
mailto:vyatkin@ieee.org
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html


2 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

This paper is organized as follows. Section II reviews
related works and defines the scope of this research. Then in
Section III, a simplified sorting machine is used to illustrate the
time-complemented event-driven (TCED) control model pro-
posed in Section IV. In particular, a Petri net model is used
to define and elaborate the dynamic semantics of the TCED
control model. Performance metrics of the TCED control
model are introduced in Section V. The qualitative compar-
ison of different control models is presented in Section VI.
The implementations of the TCED control model following the
IEC 61499 standard are elaborated in Section VII. To confirm
the benefits of the TCED control architecture, simulation trials
have been conducted. The simulation framework and results
are summarized in Section VIII. The paper is finally concluded
in Section IX with future research perspectives.

II. CONTROL PARADIGMS: TIME-DRIVEN

AND EVENT-DRIVEN

The time-driven and event-driven models are two funda-
mental design paradigms of control systems. In general, with
a time-driven model, autonomous progression of time triggers
the execution of prescheduled control computations or periodic
actions. In contrast, in an event-driven model, control compu-
tations or actions are triggered by occurrences of events. The
temporal and synchronous nature of a time-driven model helps
to guarantee deterministic behavior and required performance
of control applications. On the other hand, the sporadic and
adaptive nature of an event-driven model can more efficiently
handle asynchronous external stimuli. Event-driven control is
considered having better overall system performance than tra-
ditional cyclic scan-based control [23]–[25] due to its ability to
react immediately to events that change the state of the con-
trolled system. In other words, an event-driven model saves
time and resources spent on communication and computation
when no significant change in the system has occurred.

In the industrial automation domain, the time-triggered
model has been partially reflected in PLC programming as
the periodic task construct. The IEC 61499 standard, on the
other hand, is based on an event-driven control model. While
several studies reintroduced scan-based PLC semantics back
to the IEC 61499 event-driven architecture for the purpose of
backward compatibility [26], [27] and the migration of exist-
ing PLC code to IEC 61499 [28]–[30], no work is known to
the authors on the implementation of time-driven controls in
the IEC 61499 context. This paper attempts to fill this gap by
combining event-driven and time-driven control models into a
unified architecture.

The combination of generic time-driven and event-driven
control models has been previously studied by Paoli and
Tisato [31], where they proposed a unified control model. The
core concepts of the unified control model are as follows.

1) Decoupling control model from controlled actions by
introducing the concepts called reactive agent and con-
trol machine.

2) The integration of event-driven and time-driven control
models using a planning machine and control machine.

A reactive agent (or agent for short) is an encapsulation of
atomic control actions that it can execute. The actions to be

Fig. 1. Centralized control configuration of a generic sorting machine.

executed depend on an agent’s status and the commands it
has received. The commands are generated and dispatched to
agents by a time-driven control machine (TDCM) based on
a command timeline. This timeline is scheduled by an event-
driven planning machine (EDPM) according to the external
events received, for example, from the environment or other
agents. This unified control model illustrated the complemen-
tary nature of event-driven and time-driven control semantics
in a centralized configuration.

This paper proposed a TCED control architecture that
extended Paoli’s model to the case of component-based dis-
tributed control. Implementation of the TCED control archi-
tecture was based on the IEC 61499 framework with the
clock synchronization realized by the IEEE 1588 PTP. The
applications of the IEEE 1588 PTP to industrial automation
systems were first introduced by Harris [32], where general
comparisons between scan-based control and time-based con-
trol were theoretically discussed through a schematic example.
The comparison results conformed to the claim of this paper
that time-driven control has much better performance than
scan-based control and can be used to reduce the necessity of
event transmissions in event-driven control. However, Harris
did not provide a concrete implementation of the control exam-
ple and realization of the proposed time-driven control was
unclear. In this paper, effects of control models on control
performance were compared analytically. Moreover, concrete
implementations of the IEEE 1588 PTP were provided with
an illustrative control example.

III. REFERENCE EXAMPLE

The control architecture of an automation system can
significantly affect its performance. An efficient control con-
figuration can improve system performance, reduce costs, and
simplify logic design. Impacts of control configuration on sys-
tem performance will be illustrated using the generic sorting
machine shown in Fig. 1. This machine can be used to sort
items such as parcels, fruit, or baggage. In this machine, items
are first scanned by a scanner and then transferred to corre-
sponding sorters. Within each sorter, the items are labeled and
diverted. Depending on the sorting criteria such as weight,
size, and color, different label patterns and labeling processes
can be applied and the number of sorters along the conveyor
can also vary. The mechanical design of this sorting machine
is highly modularized. For example, sorters can use different
types of labelers such as cold-glue and self-adhesive labelers,



PANG et al.: TIME-COMPLEMENTED EVENT-DRIVEN ARCHITECTURE FOR DISTRIBUTED AUTOMATION SYSTEMS 3

Fig. 2. Distributed control configuration.

for different labeling processes. Labelers can again use vari-
ous types of printers. Moreover, each sorter may include an
encoder for adjusting action times based on actual conveyor
speed. Thus, this sorting machine can be easily reconfigured
to meet various sorting criteria.

The centralized control with PLC and remote I/O devices
shown in Fig. 1 is common in material handling sys-
tems. In this configuration, a single controller and scanner
are installed at the beginning of the conveyor with remote I/O
devices attached to the sorters alongside. Based on the sensors’
detection signals, the main controller can actuate the corre-
sponding sorters to divert items. In other words, the main
controller must monitor and manage operations of all sorters.

For comparison purposes, an idealized distributed control
configuration was envisaged that would have performance
close to perfect. In this configuration, it was assumed that each
sorter could have its own scanner and controller as illustrated
in Fig. 2. Each sorter’s controller could make its sorting deci-
sion based on readings from its own scanner. Therefore, no
communication between sorter controllers would be required.

IV. TIME-COMPLEMENTED EVENT-DRIVEN

CONTROL MODEL

A. Overall Concept

The centralized control architecture shown above constrains
the sorting machine’s scalability. The distributed control con-
figuration on the opposite extreme, eliminates the commu-
nication delays between the central controller and remote
I/O devices. It thereby removes scalability constraints but
at the cost of having a dedicated scanner and controller
at each sorting point. The extra hardware increases costs
that potentially go beyond practical limits. The TCED con-
trol configuration shown in Fig. 3 is a synergy of the two
configurations above. It aims to achieve comparable control
performance as the distributed control configuration while pre-
serving similar costs as the centralized configuration. In the
TCED control configuration, instead of having a dedicated
sensor, each sorter now has a lightweight controller. The
operations of sorter controllers are coordinated by the main
controller based on a common notion of time.

The first target characteristic of the proposed hybrid control
architecture is the modularity of control software that reflects
its mechanical structure. Fig. 4 exemplifies such a modular
and hierarchical control structure for the TCED configuration.
In general, the control logic of each mechanical component is

Fig. 3. TCED control configuration.

Fig. 4. Hierarchical control architecture of the sorting machine.

encapsulated into a control module. Simpler control modules
can be composed to form more complex ones. For instance,
the composition of the labeler and diverter control modules
forms the sorter control module that again forms part of the
final control system. With this hierarchical control pattern, to
design the control for a sorter with a new labeling process,
only the existing labeler control module must be substituted.
This hierarchical composition of control modules can improve
reconfigurability and reusability of control logic. However, in
order to support time-driven logics located at differing levels
of control hierarchy, a source of a real-time clock and a mech-
anism for conveying the clock readings across the hierarchies
are required.

In the case of the sorting machine, the scanner and sorters
operate asynchronously as conceptually depicted in Fig. 5. The
main controller is responsible for analyzing scan results and
making sorting decisions. Once a decision has been made, a
time-stamped message will be dispatched to the corresponding
sorter’s controller. This message will inform the sorter con-
troller of the scanned item’s estimated time of arrival (ETA).
There are two threads running on the sorter side and are as
follows.

1) Thread A, with unit execution time D1, receives mes-
sages from the main controller and adds ETA to its local
timetable.

2) Thread B, with unit execution time D2, repeatedly com-
pares the sorter’s current local time with the earliest time
entry in its timetable. Once the time is reached, the sorter
controller will actuate its labeler and diverter.

As a result, in this configuration the network traffic between
the main controller and the sorter controllers is minimized to



4 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Fig. 5. Algorithms of main controller and sorter.

timestamp transmission and clock synchronization. One lim-
itation of the proposed method is the assumption that ETA
can be calculated based on plant dimensions, weight of the
work piece, and motion speed. In reality, these factors may
vary and impact the calculated ETA. To compensate for the
possible physical impacts, the ETA can be repeatedly adjusted
based on extensive measurements taken across the system such
as encoder readings and other tracing information available in
the system. The business practicality of this may vary from
case-to-case. However, in principle it is a possible solution.
By knowing the update rate of the ETA, limits of physical
tolerance can be identified. At the current level of technology,
the application of this TCED control approach may not be
justified in many industrial applications. However, there are
compelling examples, such as power plant control [33] and
high-speed printing [34], where this time-stamped event-driven
control approach is preferred and demonstrated [33], [35].

To give a better understanding of the TCED control model,
its formal definition and dynamic behavior will be elabo-
rated next. Performance metrics of centralized, distributed,
and TCED control configurations will then be compared
analytically in the following sections.

B. Formal Model of TCED Control Architecture

The formal model of the TCED control architecture is
defined following a top–down approach. The basic construc-
tion unit in the TCED architecture is called a module.

Definition 1 (TCED Module):

m = 〈p, c, A, T, l, v〉
where

p is an EDPM;
c is an optional TDCM;
A is a set of reactive agents;
T is a set of constituent TCED modules, and m /∈ T;
l is a synchronized local clock;
v is an optional action schedule.

An EDPM is a software component that reacts to asyn-
chronous events. These events are represented as either module
commands or action commands, which will be defined later
in this section.

Definition 2 (EDPM): Given a TCED module, m, an
EDPM, p, is a five-tuple defined as

p = 〈IMC, OMC, IAC, θ, τ 〉
where

IMC is a set of module commands this EDPM can
receive;

OMC is a set of module commands this EDPM can issue;
IAC is a set of action commands this EDPM can

receive;
θ is a function that updates the action sched-

ule v of m based on the received commands,
θ : 〈IMC ∪ IAC, v〉 �→ v;

τ is a function that schedules the executions
of constituent TCED modules based on the
received module commands and current local time,
τ : 〈IMC, l〉 → OMC.

An action command, ac, is used to specify the action to be
executed by an agent or to indicate execution results.

Definition 3 (Action Command):

ac = 〈e, R〉
where

e is the action to be executed;
R is a set of action parameters or execution results.

A module command, mc, is used to enable intermod-
ule interactions and hierarchal propagation of commands,
where upper-level action commands are further scheduled in
lower-level modules.

Definition 4 (Module Command):

mc = 〈ac, ts〉
where

ac is an action command;
ts is a timestamp indicating the action’s scheduled exe-

cution time.

A TDCM is used to dispatch action commands to trigger
the actuations of corresponding agents based on the action
schedule.

Definition 5 (TDCM): Given a TCED module, m, a TDCM,
c, is a pair defined as

c = 〈OAC, μ〉
where

OAC is a set of action commands this TDCM can issue;
μ is a function that dispatches action commands

scheduled in v of m, based on the local time l of
m, μ: 〈v, l〉 �→ 2OAC.

A reactive agent (or agent for short), a, is an encapsulation
of atomic control actions that it can execute. The actions to be
executed depend on the agent’s status and the commands it has
received. During the execution, an action cannot be interrupted



PANG et al.: TIME-COMPLEMENTED EVENT-DRIVEN ARCHITECTURE FOR DISTRIBUTED AUTOMATION SYSTEMS 5

Fig. 6. TCED control module of sorter.

or preempted. Upon completion, the action’s execution results
can be observed.

Definition 6 (Reactive Agent):

a = 〈IAC, OAC, F, S, δ〉
where

IAC is a set of action commands this agent can receive;
OAC is a set of action commands this agent can issue;
F is a set of atomic actions this agent can perform;
S is a set of possible states of this agent, which

defines the agent’s status;
δ is a function that decides the action to be executed

by this agent and the action command to be issued
after the execution δ:S × IAC → F × OAC.

Finally, an action schedule, v, is a set of chronologically
ordered module commands.

Definition 7 (Action Schedule):

v = {mc0, mc1, mc2, . . . , mcn}
where:

1) mc0, mc1, mc2, . . . , mcn are module commands;
2) tsmc0 ≤ tsmc1 ≤ tsmc2 ≤ · · · ≤ tsmcn : the timestamp of

mc0 is the earliest and timestamp of mcn is the latest.
Fig. 6 presents the schematic composition of the TCED

module for the sorting machine’s first sorter, Sorter1. The
formal model of this Sorter1 module, ms1, can be specified as

ms1 =
〈
ps1,

{
mdi, mla

}
, ls1

〉

where
mdi =

〈
pdi, cdi,

{
aextend, aretract

}
, ldi, vdi

〉
is the TCED

module for the diverter;
mla =

〈
pla, cla,

{
aglue, acutter

}
, {mpr} , lla, vla

〉
is the

TCED module for the labeler.
The TCED module for the printer, mpr, can be again

specified as

mpr =
〈
ppr, cpr,

{
asm1, asm2

}
, lpr, vpr

〉
.

The overall dynamic behavior of a sorter is further illus-
trated using the place/transition Petri net model shown in

Fig. 7. In particular, this Petri net model demonstrates the
control flow of Sorter1. The meanings of places and transi-
tions are listed in Table I. The control flow is initiated after an
item is scanned (T1). Firstly, the EDPM of the main controller
as a central scheduler analyzes the received scan result (P2).
Then, module commands are dispatched to the corresponding
sorter modules to schedule their actuations. In this particular
case, the item is assigned to Sorter1 (T3), whose EDPM con-
sequently analyzes the received module command (P4) and
dispatches actuation schedules to its diverter and labeler mod-
ules (P5). Once the diverter EDPM has analyzed the received
command (P6), it updates its action schedule (P7). Depending
on the commands stored in the action schedule (P8), the
diverter TDCM decides when to actuate the extend and retract
agents (P9). As actions are scheduled based on synchronous
clocks, actuations of the extend (P10) and retract (P12) agents
are synchronized to the item’s movement. P11 and P13 denote
availability of the extend and retract agents, respectively.
While the diverter module is processing its module com-
mand, the labeler module concurrently handles the module
command it received. After the labeler EDPM analyzes the
command (P14), it updates its action schedule (P15) and dis-
patches the action schedule to its printer module (P22). Similar
to the diverter module, the labeler TDCM (P17) decides what
its cutter (P18) and glue dispenser (P20) agents will do based
on scheduled actions (P16). At last, the printer module’s con-
trol flow exhibits the same pattern as that of the diverter
module.

C. Implementation Considerations

The event-driven distributed automation architecture of IEC
61499 is considered in this paper as the main implementation
environment for TCED. It is expected to be more efficient than
traditional PLCs for the following reasons.

1) Message passing between PLCs is associated with sub-
stantial time overhead. As a result, events are delivered
only in the next scan cycle. IEC 61499 applications are
free from this overhead.

2) As the number of time-driven tasks in PLCs is lim-
ited and vendor-dependent, it is impossible to develop
reusable software components that are clock-driven and
can be placed in different levels of hierarchy as needed.

3) Reusability and reconfigurability of PLC programs are
constrained due to the cyclic execution semantics as
discussed in [36].

In contrast, the IEC 61499 architecture establishes a mod-
ular encapsulation of control logic in the form of a FB
network, where control flows and data flows are identified
by event and data connections respectively. The hierarchical
structure and event-driven execution semantics of FB provide
the fundamentals to develop the aforementioned TCED control
model.

Moreover, the overall performance of event-driven con-
trol systems depends on event transmission time and event
scheduling mechanisms. Thus, network congestion, packet
loss, and runtime performance are the main factors causing
response delays, which are proportional to the rate of event



6 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Fig. 7. Petri net model of the sorting machine’s control system behavior.

TABLE I
INTERPRETATIONS OF PLACES AND TRANSITIONS

signal generation in the system. As control logic becomes
complicated and more event signals must be transmitted and
processed per time unit, the impact of these delays will be
significant for applications demanding highly efficient real-
time performance and accuracy. Time-driven logic can be
used to reduce the necessity of event generation by simul-
taneously coordinating operations of distributed controllers in
a synchronous way without frequently exchanging event-based
messages. The IEC 61499 implementation of time-driven
logic based on hierarchical timestamp passage will be further
discussed in Section VII.

V. PERFORMANCE METRICS

In order to analytically compare the performance met-
rics of different control configurations, a set of notions are
defined. For each control configuration, a simplified math-
ematical performance model of the sorting machine is then
built.

The sorting machine is considered in steady-state operation,
which is defined as when the change in output throughput has
reached equilibrium. In addition, an assumption is made that
when an item enters the system, the travel time from scanner
to target sorter is greater than the time that the scanner needs
to scan an item. The following parameters will be utilized in
the performance model.

1) Tscan is the scan time per item.
2) W is the sortation delay: the minimum time between two

successful sorting actions including the time for detec-
tion, computation, labeling, and diverting, which will be
further elaborated for each configuration described later
in this section.

3) R is the steady-state throughput rate in items per second.
It can be assumed that the system functions correctly

when W ≤ 1

R
and R = v

dobj + dspa
(1)

where
v is the velocity of conveyor belt;
dobj is the length of one item;
dspa is the spacing between two items.
From (1), the upper bound on speed of the conveyor belt

can be derived as follows:

v ≤ dobj + dspa

W + Tscan
. (2)

W can be represented as a sum of the following components
reflecting hardware properties.

1) Tact is the physical actuation time a sorter takes to push
an object to an output tray.



PANG et al.: TIME-COMPLEMENTED EVENT-DRIVEN ARCHITECTURE FOR DISTRIBUTED AUTOMATION SYSTEMS 7

2) Tc
alg, Td

alg, Tt
alg are the respective execution times of

sortation algorithms for the centralized, distributed, and
TCED configurations.

3) Tio is the update time of I/O configuration (i.e., I/O scan
cycle).

4) Tnet is the worst-case delay time for a message to
travel between the controller and the furthest remote I/O
device.

Assuming that scanning is sufficiently fast, i.e., Tscan 
 W,
then (2) transforms to v ≤ dobj+dspa

W .

A. Centralized Control With Remote I/O Devices

In the centralized scan-based architecture as shown in Fig. 1,
the sortation delay is calculated as

Wc_sb = Tio + Tc
alg + Tio + Tact + 2Tnet

= 2 (Tio + Tnet) + Tc
alg + Tact. (3)

It is notable that Wc_sb includes elements dependent on the
computational performance of PLC and fieldbus. In general,
the communication time Tnet in a fieldbus increases with the
length of cable and more remote I/O devices added. Therefore,
for a sorting system it is reasonable to assume Tnet = O(n),
where n is the number of sorters as adding more sorters would
also mean extending the fieldbus cable.

In an event-driven system, the corresponding sortation time
will be

Wc_ed = Tnet + Tc
alg + Tnet + Tact

= 2Tnet + Tc
alg + Tact. (4)

The two systems above have the same algorithm execution
time, Tc

alg, as they execute the same sortation algorithm. The
best-case steady-state throughput rates that the centralized con-
trol configuration can achieve are: Rc_sb = 1/Wc_sb for a scan-
based system and Rc_ed = 1/Wc_ed for an event-driven system.

B. Distributed Control

The sortation delay of the distributed control configuration
in Fig. 2 is mainly determined by the same factors as that of
the centralized control configuration. For a scan-based system,
the sortation delay is

Wd_sb = Tio + Td
alg + Tio + Tact

= 2Tio + Td
alg + Tact . (5)

And for an event-driven system, the delay is reduced to

Wd_ed = Td
alg + Tact. (6)

It can be noted that now the item scan time explicitly influ-
ences the system’s throughput as being a part of the sortation
delay. Similarly, the algorithm execution time, Td

alg, for both
systems is identical.

C. Time-Complemented Event-Driven Control

The sortation delay for the TCED control configuration is

Wtced ≥ Tt
alg + Tact (7)

where Tt
alg, in the worst case, is the sum of both threads’ unit

execution time indicated in Fig. 5, i.e., Tt
alg = D1 + D2.

VI. PERFORMANCE ANALYSIS

The throughputs of the above configurations are compared
in this section to determine the potential performance gains of
using a particular configuration over another. There are five
configurations to be compared.

1) Centralized scan-based (c_sb), where

Rc_sb = 1

Wc_sb
= 1

2(Tio+Tnet) + Tc
alg + Tact

. (8)

2) Centralized event-driven (c_ed), where

Rc_ed = 1

Wc_ed
= 1

2Tnet + Tc
alg + Tact

. (9)

3) Distributed scan-based (d_sb), where

Rd_sb = 1

Wd_sb
= 1

2Tio + Td
alg + Tact

. (10)

4) Distributed event-driven (d_ed), where

Rd_ed = 1

Wd_ed
= 1

Td
alg + Tact

. (11)

5) TCED, where

Rtced = 1

Wtced
= 1

Tt
alg + Tact

. (12)

A. Performance Comparisons

Firstly, centralized scenarios are compared. As indicated
in (8) and (9), given the same fieldbus length and the trans-
mission time, Tnet, the event-driven scenario offers a higher
throughput rate due to the elimination of the I/O scan. This
also applies when comparing the distributed scenarios as indi-
cated in (10) and (11). It can be concluded that event-driven
systems have greater throughput rates than that of scan-based
systems.

As indicated in (9) and (11), the main factors differentiat-
ing the centralized and distributed scenarios are Tnet and Talg.
As Tnet is eliminated in the distributed scenario, to evaluate the
throughput rates, Tc

alg and Td
alg must be analyzed by comparing

their control algorithms. The execution of control algorithms
depends on the sequence of events that occurs during a sor-
tation delay. This event sequence will be referred to as the
critical path. By examining the critical path, the reactions to
changes in system size and complexity for each configuration
scenario can be determined.

A sample control algorithm for the centralized event-driven
configuration is described as follows.

1) The scanner processes the passing item upon its entry
to the conveyor and captures the destination data. The
item’s data are placed into a first-in-first-out (FIFO)
queue along with subsequent items.

2) When the first sorter’s sensor detects an item, the first
entry of this FIFO queue is compared to determine if
the item must be sorted at the current location. If it
does, then its data entry is removed from the queue.
Otherwise, its data entry will be passed to another FIFO
queue representing the space between the first and the
second sorters.



8 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

TABLE II
CRITICAL PATH FOR CENTRALIZED EVENT-DRIVEN CONFIGURATION

TABLE III
CRITICAL PATH FOR DISTRIBUTED EVENT-DRIVEN CONFIGURATION

The critical path for this configuration occurs when an
item has reached a sensor and requires sortation. If there are
assumed to be k sorters in the system, then there are also
k FIFO queues with item data. The decomposition of events
within the centralized configuration is detailed in Table II.

For the distributed event-driven configuration, an item
arrives at the scanner and is processed. If it is to be sorted
at this sorter, then it is immediately sorted; otherwise it is
passed along to the next sorter’s scanner. The critical path for
this configuration occurs just after an item is scanned and is
required to be sorted at the current sorter. The decomposi-
tion of events within the distributed configuration is detailed
in Table III.

It is important to highlight that the centralized controller
contains an algorithmic component, which is dependent on
the number of sorters in the system when it iterates through a
lookup table. Contrarily, the distributed controller has no such
dependency. Thus, Tc

alg has an algorithmic efficiency of O (k),
whereas Td

alg remains constant as the system scales. Thus, for
larger systems, Td

alg<Tc
alg and similarly Rc_ed<Rd_ed.

For the TCED configuration, the scanner initially processes
an item and calculates a timestamp for when it will arrive at
its destination sorter. This timestamp is sent to the destination
sorter controller and is stored within a FIFO queue. Within
the sorter controller, two processes run simultaneously.

1) The first entry in the timestamp queue is repeatedly
compared with the current time provided by the synchro-
nized time source. When these times match, the sorter
is actuated.

2) Another process listens for the incoming messages to
add new entries into the timestamp queue.

Only the first process affects the critical path when an item
arrives at the sorter. Thus, the decomposition of events within
the TCED critical path is detailed in Table IV.

TABLE IV
CRITICAL PATH FOR TCED CONFIGURATION

Comparing the distributed event-driven and TCED configu-
rations, neither of them has algorithmic efficiency that scales
with system size. Therefore, Tt

alg approximates Td
alg.

B. Influence of Clock Skew

Clock skew in this paper is defined as the phase-shift
between clocks generated in separate distributed controllers
throughout a control system. As PLC and I/O scan times
reduce to sub-millisecond ranges, the clock skew from applica-
tions that are not time-synchronized will have a greater effect
on overall system performance. For the TCED control model,
the steady-state throughput is directly affected by the sortation
delay as follows Rtced = 1

Wtced
. The clock skew (Tskew) can

be introduced into this formula and affects the sortation delay.
Also, depending on the number of time-scheduled actions (n)
in the current reaction, the clock skew would affect each of
these independently

Rtced = 1

Wtced + nTskew
. (13)

The effects of clock skew on throughput can be analyzed
using as listed below.

1) Rtced: The steady-state throughput with synchronized
clocks.

2) Rtced(skew): The steady-state throughput with addition of
some clock skew.

The performance difference can therefore be found as

�R =
∣∣∣∣1 − Rtced

Rtced(skew)

∣∣∣∣ =
∣∣∣∣∣1 −

1
Wtced

1
Wtced+ nTskew

∣∣∣∣∣ = nTskew

Wtced
.

(14)

This results in a simple linear relationship between clock
skew and sortation delay. By using IEEE 1588 PTP, distributed
clocks can be synchronized with an accuracy of less than 1 μs.
Since current PLC scan times and I/O scans range in the order
of milliseconds, these times are already an order of magni-
tude greater and should result in mostly insignificant effects
of clock skew in a system.

VII. TCED CONTROL IMPLEMENTATION

FOLLOWING IEC 61499

This section presents the TCED control implementation for
a labeler in the reference sorting machine following the IEC
61499 standard. First of all, the IEC 61499 realization of IEEE
PTP is presented, which provides synchronized time for time-
driven logics. Then, mappings of TCED components, such



PANG et al.: TIME-COMPLEMENTED EVENT-DRIVEN ARCHITECTURE FOR DISTRIBUTED AUTOMATION SYSTEMS 9

Fig. 8. 1588_PTP SIFB. (a) Interface. (b) State diagram.

as commands, planning machines, and control machines, to
IEC 61499 constructs are elaborated. Finally, the deployment
configuration of the full control system is detailed.

A. Time Synchronization in IEC 61499

The IEC 61499 FB implementations of IEEE 1588 PTP have
been investigated and discussed in previous works, where several
service interface function blocks (SIFBs) were used to access
the synchronous time. Both software-only [37] and hardware-
supported [38] approaches were developed. The main reason
of implementing the PTP as SIFBs is to have standalone and
standard-compliant FBs providing synchronous time to trigger
other FBs at the application level. In such a way, PTP SIFBs
can be easily adapted into existing designs without affecting the
event-driven execution model. Fig. 8 presents the 1588_PTP
SIFB used to access hardware-supported PTP time.

This SIFBs main function is to periodically retrieve current
PTP time and provide it to downstream FBs, where:

1) INIT initializes the PTP time synchronization process;
2) RESET restarts the synchronization process;
3) TickInterval specifies frequency of the UPDATE event;
4) PTP_State indicates whether local clock is synchronized

or not;
5) PTP_Time_S and PTP_Time_NS hold the local time in

seconds and nanoseconds since 1970, respectively.

Upon the INIT event, the 1588_PTP SIFB starts the PTP
synchronization process. Once synchronized, the 1588_PTP
SIFB will periodically emit UPDATE events based on its inter-
nal timer signal, TimeUp, and the frequency specified by the
TickInterval input. This 1588_PTP SIFB is used as a pure
time source for other FBs. On the other hand, the 1588_REG
SIFB in Fig. 9 is used to provide the PTP time in a native
event-driven way to the control logic.

The 1588_REG SIFB manages the PTP time synchroniza-
tion process in the same way as the 1588_PTP SIFB. However,
instead of periodically producing time signals, it registers the
ScheduleTime on REQ events. Whenever a registered time
matches current PTP time, the IND event will be emitted along
with the updated PTP_Time_S and PTP_Time_NS to trigger
the time-driven control logic in downstream FBs. The two
SIFBs discussed in this section establish the basis for design-
ing time-driven logic in FBs, which will be exemplified in the
following sections.

Fig. 9. 1588_REG SIFB. (a) Interface. (b) State diagram.

B. TCED Commands

In the TCED control model, agents, EDPM, and TDCM
interact with each other using one of two command types:
module commands or action commands. In the FB imple-
mentation, each command type is represented as a specific
combination of event and data signals.

The action commands realize TDCM-to-Agent and Agent-
to-EDPM interactions. The IEC 61499 implementation of an
action command consists of two parts.

1) An event signal identifies the action to be executed.
2) A set of optional data signals specifies the action

parameters or execution results.

For example, in Fig. 10, for the Labeler_TDCM FB, the
CUT and DISPENSE events implement the action commands
for the cutter and dispenser agents.

The module command is used for EDPM-to-EDPM and
EDPM-to-TCED interactions. Each module command is
implemented as a signal combination as follows.

1) An event signal, which triggers the recipient EDPM and
specifies the action to be executed.

2) A set of optional data signals specify the parameters.
3) A ScheduledTime data signal sets the scheduled time.

For instance, the Labeler_EDPM FB in Fig. 10 receives the
module command for the labeling action through the signal
interface LABEL+ScheduledTime, while the Pritner_TCED
FB receives the module command for the printing action
through the signal interface PRINT+ScheduledTime.

C. TCED Agent

An agent can be natively implemented as a basic FB, where:

1) the action commands that an agent can receive and issue
are mapped to the basic FBs interface;

2) atomic actions are mapped to EC Actions;
3) possible states of an agent and action execution function

are mapped to basic FBs ECC.

For example, in Fig. 10, the CutterAgent FB implements the
cutter agent of the labeler, which receives an action command,
CUT. Upon the action completion, it issues the DONE action
command back to the Labeler_EDPM FB. This CutterAgent
FB interacts with the sensors and actuators through its data
signals, such as extended, extend, and so on.



10 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Fig. 10. Labeler TCED function block.

Fig. 11. Action schedule array.

D. Action Schedule, TDCM, and EDPM

The action schedule is realized as duplicated data in both
of the TDCM FB and the EDPM FB due to the lack of global
variables in IEC 61499. There are many data structures that
can be used to store the action schedule, such as arrays, maps,
and lists depending on the IEC 61499 runtime. Fig. 11 exem-
plifies a simple array data structure used to store the action
schedule.

Each TDCM is implemented as a composite FB, whose
event and data outputs specify the action commands that can
be issued. The TDCM FB is composed as follows.

1) A command register (CR) SIFB that registers action
schedule entries from the EDPM FB.

2) A command implementer (CI) basic FB that issues
action commands to the corresponding agents according
to the action schedule.

As exemplified by the Labeler_TDCM FB in Fig. 10, the
signal interface REQ+PlanEntry+Mode forms the channel to
receive action schedule entries from the EDPM FB. The Mode
data signal can have four values: add, delete, replace, and reset
indicating how to update the action schedule. The PlanEntry
data signal uses a predefined syntax to specify actions and their
scheduled times. For example, the plant entry below specifies
that a Dispense action is scheduled at Unix time 1340083613
followed by a Cut action at 1342183613

“dispense@1340083613|cut@1342183613.”

The received action schedule entries are passed to the
1588_CR SIFB. This SIFB is functionally similar to the
1588_REG SIFB shown in Fig. 9. In addition to the PTP
time registration (as specified in the PlanEntry data input),
this 1588_CR SIFB also manages the action schedule inter-
nally. At the time instances stored in the schedule, it triggers
the CI FB to dispatch the corresponding action commands. For

example, in the case of the Labeler_TDCM FB, when current
PTP time matches the first schedule entry, the 1588_CR SIFB
extracts the scheduled action’s details for the Labeler_CI FB,
where action name and parameters are specified in the action
and the parameters data outputs, respectively. The Labeler_CI
FB accordingly issues the DISPENSE or CUT event signals
based on these details. The decoupling of command regis-
tration and implementation frees developers from repeatedly
developing new SIFBs implementing the PTP time registration
for every TDCM FB.

The EDPM FB is responsible for updating the action sched-
ule based on the received commands. Fig. 12(a) illustrates
the operation flow of EDPM FB. The action scheduling is
demonstrated in Fig. 12(b). Upon receipt of a command at
time t0, the Labeler_EDPM FB calculates actuation times for
the printer, cutter, and dispenser based on the estimated item
arrival time (t6), which is embedded in the received mod-
ule command. Due to the synchronized local clock, it is able
to precisely schedule the start and completion of each action
and thereby optimize the overall operations. The EDPM FB
interacts with the TDCM FB and TCED FB using two sig-
nal interfaces. As shown in Fig. 10, the Labeler_EDPM FB
updates the action schedule stored in the Labeler_TDCM FB
using the signal interface IND+PlantEntry+Mode, while the
signal interface PRINT+OScheduledTime is used to schedule
the actuation of the Printer_TCED FB.

E. TCED Module

Finally, the TCED module is implemented as the compo-
sition of the corresponding EDPM, TDCM, Agent, and other
TCED FBs. For example, the Labeler_TCED FB shown in
Fig. 10, and the Diverter_TCED FB are connected to form
the Sorter_TCED FB as presented in Fig. 13.

F. Deployment Configuration of Sorting Machine

Fig. 14 illustrates the top-level deployment configuration
of the FB control system for the sorting machine following
its mechanical structure. The FB application is deployed to
three control devices communicating over an Ethernet net-
work. Within each control device, there is a 1588_PTP SIFB



PANG et al.: TIME-COMPLEMENTED EVENT-DRIVEN ARCHITECTURE FOR DISTRIBUTED AUTOMATION SYSTEMS 11

Fig. 12. EDPM FB. (a) Operation sequence. (b) Command scheduling.

Fig. 13. Sorter module FB composition.

Fig. 14. FB control system for the sorting machine.

synchronizing its local clock and providing PTP time to the
time-driven control logic. The MainControl_TCED FB ana-
lyzes scan results and decides at which sorter a scanned
item must be diverted. Then a sortation module command
will be issued to the target Sorter_TCED FB to instruct its
actuation.

TABLE V
DIVERSION FAILURE RATES AT VARYING CONVEYOR SPEEDS

VIII. SIMULATION

The performance of the proposed TCED control architecture
has been evaluated using simulation. An extended Model-
View-Controller (MVC) approach [39] was utilized in order to
examine the performance benefits of the TCED control model.
An extra emulation layer was added between the plant model
and controller to simulate timing delays. An example applica-
tion was developed for the reference sorting machine as shown
in Fig. 15. This architecture can be scaled up with multiple
sorters by replicating the corresponding FBs. The emulation
layer consists of FBs representing physical controllers and I/O
network topology of a control system. These controller FBs
have been designed to be parameterized with metrics such as
I/O scan time, PLC cycle time, network delay, and so on.

A simulation to compare the centralized event-driven con-
trol configuration with the TCED control configuration was
deployed to the nxtControl IEC 61499 runtime [40]. The speed
of the conveyor was ramped up and the numbers of diver-
sion failures were recorded. The simulation metrics for the
centralized control configuration were as follows: the sorta-
tion algorithm’s (as discussed in Section VI) execution time
of 25 ms, the network propagation time of 5 ms, the sorter
actuation time of 300 ms, the conveyor load rate of 50%, and
the item size of 0.3 m. The same metrics were also used for the
TCED control configuration with the corresponding omissions.
Some failure rate results are listed in Table V. The TCED con-
figuration shows a much lower failure rate when the conveyor
speed is ramped up. A lower failure rate at the same speed
is a consequence of better reaction time of the control system
for the same plant configuration.

A second test was conducted by fixing all metrics except
the execution time of the centralized sortation algorithm. This
is because, as discussed in Table II, execution time would
increase based on system size. The conveyor speed was then
ramped up until diversion failure. The TCED algorithm exe-
cution time was fixed at 25 ms due to the independence
from system size as discussed in Table IV. These results
were compared to theoretical conveyor speeds provided by
the analytical models. The simulation results presented in
Fig. 16 shows that the TCED configuration performs consis-
tently better than a centralized configuration as the algorithm
execution time increases. The discrepancies compared to the
analytical model may arise from overheads in the simulation,
such as the performance of the target runtime and simulation
hardware.

IX. CONCLUSION

This paper presented the TCED architecture for designing
distributed controls in complex systems composed of modu-
lar objects. The architecture provides application developers a



12 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Fig. 15. TCED simulation model for the sorting machine.

Fig. 16. Analytical performance comparison based on simulation results.

practical mechanism to combine time-driven and event-driven
logic in distributed control systems. The semantics of the
TCED control model have been illustrated using a Petri net
model as applied to a sample material sorting system. Such a
model can be used in formal methods, such as model-checking.
To confirm the performance benefits of the proposed model,
analytic models of performance have been developed. These
models have been respectively derived for the centralized,
distributed, and TCED control architectures.

A simulation architecture was proposed to integrate tim-
ing characteristics into simulation as an extension of the
popular MVC architecture. The performance advantage of
TCED control configuration over the centralized event-driven
configuration has been confirmed in simulation using this
architecture. At last, guidelines for practical implementation
of the TCED control architecture have been given by present-
ing a complete implementation of the control system of the
example sorting machine using IEC 61499 FB.

The proposed method can be applied to domains requiring
distributed precision time control. In the future, the claimed
benefits of the TCED control model will be experimented in
other domains, such as the distributed automation of smart
grids that has been modeled in IEC 61499 [16].

REFERENCES

[1] IEC, Programmable Controllers—Part 3: Programming Languages, IEC
Standard 61131-3, 2013.

[2] H. Kopetz and G. Grunsteidl, “TTP—A protocol for fault-tolerant real-
time systems,” Computer, vol. 27, no. 1, pp. 14–23, Jan. 1994.

[3] IEC, Function Blocks—Part 1: Architecture, IEC Standard 61499-1,
2012.

[4] G. Black and V. Vyatkin, “Intelligent component-based automation of
baggage handling systems with IEC 61499,” IEEE Trans. Autom. Sci.
Eng., vol. 7, no. 2, pp. 337–351, Apr. 2010.

[5] J. Yan and V. V. Vyatkin, “Distributed execution and cyber-physical
design of baggage handling automation with IEC 61499,” in Proc. 9th
IEEE INDIN, Lisbon, Portugal, 2011, pp. 573–578.

[6] M. Colla, A. Brusaferri, and E. Carpanzano, “Applying the IEC-61499
model to the shoe manufacturing sector,” in Proc. 11th IEEE ETFA,
Prague, Czech Republic, 2006, pp. 1301–1308.

[7] S. Preuße, D. Missal, C. Gerber, M. Hirsch, and H.-M. Hanisch, “On
the use of model-based IEC 61499 controller design,” IJDECS, vol. 1,
pp. 115–128, Mar. 2010.

[8] H.-M. Hanisch, M. Hirsch, D. Missal, S. Preusse, and C. Gerber,
“One decade of IEC 61499 modeling and verification—Results and
open issues,” in Proc. IFAC Symp. INCOM, Moscow, Russia, 2009,
pp. 211–216.

[9] C. Sünder, A. Zoitl, F. Mehofer, and B. Favre-Bulle, “Advanced use of
PLCopen motion control library for autonomous servo drives in IEC
61499 based automation and control systems,” Elektrotech. Inf. Tech.,
vol. 123, no. 5, pp. 191–196, 2006.

[10] M. Sorouri, V. Vyatkin, and S. Xie, “Distributed control design of med-
ical devices using plug-and-play IEC 61499 function blocks,” in Proc.
19th M2VIP, Auckland, New Zealand, 2012, pp. 450–455.

[11] C. Pang, V. Vyatkin, Y. Deng, and M. Sorouri, “Virtual smart metering
in automation and simulation of energy-efficient lighting system,” in
Proc. 18th IEEE ETFA, Cagliari, Italy, 2013, pp. 1–8.

[12] L. Wang, G. Adamson, M. Holm, and P. Moore, “A review of function
blocks for process planning and control of manufacturing equipment,”
J. Manuf. Syst., vol. 31, no. 3, pp. 269–279, 2012.

[13] M. Minhat, V. Vyatkin, X. Xu, S. Wong, and Z. Al-Bayaa, “A novel open
CNC architecture based on STEP-NC data model and IEC 61499 func-
tion blocks,” Robot. Comput. Integr. Manuf., vol. 25, no. 3, pp. 560–569,
2009.

[14] P. Tait, “A path to industrial adoption of distributed control technology,”
in Proc. 3rd IEEE INDIN, Perth, WA, Australia, 2005, pp. 86–91.

[15] M. Merdan, W. Lepuschitz, B. Šahović, and M. Vallée, “Failure detection
and recovery in the batch process automation domain using automation
agents,” in Proc. 2nd ACT, Jakarta, Indonesia, 2010, pp. 113–117.

[16] G. Zhabelova and V. Vyatkin, “Multiagent Smart Grid automation archi-
tecture based on IEC 61850/61499 intelligent logical nodes,” IEEE
Trans. Ind. Electron., vol. 59, no. 5, pp. 2351–2362, May 2012.



PANG et al.: TIME-COMPLEMENTED EVENT-DRIVEN ARCHITECTURE FOR DISTRIBUTED AUTOMATION SYSTEMS 13

[17] C. H. Yang, G. Zhabelova, C. W. Yang, and V. Vyatkin, “Co-simulation
environment for event-driven distributed controls of SmartGrid,” IEEE
Trans. Ind. Inf., vol. 9, no. 3, pp. 1423–1435, Aug. 2013.

[18] V. Vyatkin, “IEC 61499 as enabler of distributed and intelligent automa-
tion: State-of-the-art review,” IEEE Trans. Ind. Inf., vol. 7, no. 4,
pp. 768–781, Nov. 2011.

[19] IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems, IEEE Standard 1588-
2008.

[20] V. Vyatkin, “Intelligent mechatronic components: Control system engi-
neering using an open distributed architecture,” in Proc. 9th IEEE ETFA,
Lisbon, Portugal, 2003, pp. 277–284.

[21] S. Patil, V. Vyatkin, and M. Sorouri, “Formal verification of intelligent
mechatronic systems with decentralized control logic,” in Proc. 17th
IEEE ETFA, Krakow, Poland, 2012, pp. 1–7.

[22] M. Sorouri, S. Patil, and V. Vyatkin, “Distributed control patterns for
intelligent mechatronic systems,” in Proc. 10th IEEE INDIN, Beijing,
China, 2012, pp. 259–264.

[23] M. Mazo, Jr., and M. Cao, “Decentralized event-triggered control with
asynchronous updates,” in Proc. 50th CDC, Orlando, FL, USA, 2011.

[24] J. H. Sandee, W. P. M. H. Heemels, and P. P. J. Van Den Bosch, “Event-
driven control as an opportunity in the multidisciplinary development
of embedded controllers,” in Proc. ACC, Portland, OR, USA, 2005,
pp. 1776–1781.

[25] W. Heemels, J. H. Sandee, and P. P. J. Van Den Bosch, “Analysis of
event-driven controllers for linear systems,” Int. J. Control, vol. 81, no. 4,
pp. 571–590, 2008.

[26] J. L. M. Lastra, A. Lobov, and L. Godinho, “Closed loop control using
an IEC 61499 application generator for scan-based controllers,” in Proc.
10th IEEE ETFA, Catania, Italy, 2005, pp. 323–330.

[27] L. H. Yoong, P. S. Roop, V. Vyatkin, and Z. Salcic, “A synchronous
approach for IEC 61499 function block implementation,” IEEE Trans.
Comput., vol. 58, no. 12, pp. 1599–1614, Dec. 2009.

[28] W. Dai and V. Vyatkin, “Redesign distributed PLC control systems using
IEC 61499 function blocks,” IEEE Trans. Autom. Sci. Eng., vol. 9, no. 2,
pp. 390–401, Apr. 2012.

[29] S. Campanelli, P. Foglia, and C. A. Prete, “Integration of existing IEC
61131-3 systems in an IEC 61499 distributed solution,” in Proc. 17th
IEEE ETFA, Krakow, Poland, 2012, pp. 1–8.

[30] W. Dai, V. N. Dubinin, and V. Vyatkin, “Migration from PLC to
IEC 61499 using semantic web technologies,” IEEE Trans. Syst., Man,
Cybern., Syst., vol. 44, no. 3, pp. 277–291, Mar. 2014.

[31] F. De Paoli and F. Tisato, “On the complementary nature of event-driven
and time-driven models,” Control Eng. Pract., vol. 4, no. 6, pp. 847–854,
1996.

[32] K. Harris, “An application of IEEE 1588 to industrial automation,” in
Proc. ISPCS, Ann Arbor, MI, USA, 2008, pp. 71–76.

[33] J. C. Eidson, E. A. Lee, S. Matic, S. A. Seshia, and Z. Jia, “Distributed
real-time software for cyber-physical systems,” Proc. IEEE, vol. 100,
no. 1, pp. 45–59, Jan. 2012.

[34] The Offset Pressman. (2011, Mar.). How a Flying Paster Works [Online].
Available: http://offsetpressman.blogspot.se/2011/03/how-flying-paster-
works.html

[35] P. Derler, J. Eidson, S. Goose, E. A. Lee, and M. Zimmer, “Deterministic
execution of Ptides programs,” EECS Dept., UCB/EECS, Berkeley, CA,
USA, Tech. Rep. UCB/EECS-2013-65, May 2013.

[36] V. Vyatkin, Z. Salcic, P. S. Roop, and J. Fitzgerald, “Now that’s smart!”
IEEE Ind. Electron. Mag., vol. 1, no. 9, pp. 17–29, Dec. 2007.

[37] C. Pang and V. Vyatkin, “Time-complemented event-driven control
framework for distributed motion control systems,” in Proc. 9th IEEE
INDIN, Lisbon, Portugal, 2011.

[38] C. Pang, J. Yan, V. Vyatkin, and S. Jennings, “Distributed IEC 61499
material handling control based on time synchronization with IEEE
1588,” in Proc. IEEE ISPCS, Munich, Germany, 2011, pp. 126–131.

[39] J. Christensen, “IEC 61499 architecture, engineering methodologies and
software tools,” in Knowledge and Technology Integration in Production
and Services, V. Mařík, L. Camarinha-Matos, and H. Afsarmanesh, Eds.
New York, NY, USA: Springer, 2002, pp. 221–228.

[40] nxtControl. (2014). nxtSTUDIO—Engineering Software for All
Tasks [Online]. Available: http://www.nxtcontrol.com/en/products/
nxtstudio.html

Cheng Pang (S’08–M’13) received the B.E. (Hons.)
and M.E. (Hons.) degrees in computer systems engi-
neering and the Ph.D. degree in electrical and elec-
tronic engineering from the University of Auckland,
Auckland, New Zealand, in 2005, 2007, and 2013,
respectively.

He is currently a Post-Doctoral Research Fellow
with the Laboratory of Advanced Computing and
Communications for Industrial Applications, Luleå
University of Technology, Luleå, Sweden. His cur-
rent research interests include model-driven engi-

neering for industrial automation systems, building automation and control
systems, and distributed control for the Internet of things.

Jeffrey Yan (S’13) received the B.E. (Hons.)
and M.E. (Hons.) degrees from the University of
Auckland, Auckland, New Zealand, in 2009 and
2010, respectively, where he is currently pursuing
the Ph.D. degree from the Department of Electrical
and Computer Systems Engineering.

His current research interests include the applica-
tion of distributed, intelligent control in the field of
large-scale cyber physical systems.

Valeriy Vyatkin (M’03–SM’04) received the
Engineering degree in applied mathematics, and
the Ph.D. and Dr. Sci. degrees from the Taganrog
State University of Radio Engineering (TSURE),
Taganrog, Russia, and the Dr. Eng. degree from the
Nagoya Institute of Technology, Nagoya, Japan, in
1988, 1992, 1998, and 1999, respectively.

He is on joint appointment as a Chaired Professor
(Åmnesprofessor) of dependable computation and
communication systems at Luleå University of
Technology, Luleå, Sweden, and a Professor of infor-

mation and computer engineering in automation, Aalto University, Aalto,
Finland. Previously, he served as a Visiting Scholar at the Cambridge
University, Cambridge, U.K., and on permanent appointments with the
University of Auckland, Auckland, New Zealand, Martin Luther University of
Halle-Wittenberg, Halle, Germany, and with TSURE as an Associate Professor
and Professor from 1991 to 2002. His current research interests include the
area of dependable distributed automation and industrial informatics, including
software engineering for industrial automation systems, distributed architec-
tures, and multiagent systems applied in various industry sectors, including
smart grids, material handling, building management systems, and reconfig-
urable manufacturing. He is also active in research on dependability provisions
for industrial automation systems, such as methods of formal verification and
validation, and theoretical algorithms for improving their performance.

Dr. Vyatkin was the recipient of the Andrew P. Sage Award for the Best
IEEE SMC TRANSACTIONS Paper in 2012.

http://offsetpressman.blogspot.se/2011/03/how-flying-paster-works.html
http://offsetpressman.blogspot.se/2011/03/how-flying-paster-works.html
http://www.nxtcontrol.com/en/products/nxtstudio.html
http://www.nxtcontrol.com/en/products/nxtstudio.html

