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This paper describes an implementation of a new IEC 61499 
execution environment based on the generic Cyclic Execution 
model, outlined within the draft IEC 61499 Compliance Profile for 
Execution models. The proposed model further adds more details to 
the generic Cyclic model via an abstract implementation 
independent way. 

I. INTRODUCTION 

The IEC61131 PLC standard [2]  has been widely adopted 

by the industrial automation industry, as a standard to organize, 

design and execute program logic within control devices[3]. 

However it has been believed that the standard is reaching the 

end of its technological life cycle [3, 4] particularly because it 

cannot meet the requirement of new innovations within the 

automation industry calling for the new requirement of ‘agile’ 

manufacturing, i.e. automation systems that are de-centralized 

and distributed and flexible enough to be reconfigured with 

ease. The IEC 61499 Function block standard [1] has emerged 

as the future methodology for programming industrial process 

and measurement control systems (IPMCS) ever since it has 

been standardized in 2005. Via the use of reusable software 

components (i.e. function blocks (FB)), it allows developers to 

model and organize the embedded code, logic and other IP 

using a component based approach and also lays the 

foundation for distributed communication between those 

components. This allows complex embedded systems to 

benefit from the advantages of the concepts of Component-

Based Software Development and Object technology, as well 

as allowing for Model-Driven Engineering [4]. Current 

implementations of IEC 61499 run-time platforms have 

primarily been academic research-based prototypes, created to 

investigate the application and feasibility of the standard, 

executed either directly  on PC’s or programmable controllers 

with networking capabilities[5]. Some of these include 

FBDK/FBRT [6], one of the first JAVA based 

implementations. Others include the 4DIAC-RTE 

(FORTE)[7], the CORFU framework part of the Archimedes 

development framework for embedded control applications 

[8]. ISaGRAF, a software environment for control systems, is 

the first successful commercial tool to support the Function 

Block standard [9]. However a common problem that has beset 

the standard since its inception is that while all the 

aforementioned tools/environments are IEC 61499 compliant, 

ambiguities within the standard have allowed for multiple 

interpretations with regard to how FB applications should be 

executed. This has resulted in incompatibility between various 

tools[8], a practice which if allowed to continue will prevent 

the full potential/intent of IEC 61499 from being realized. A 

recent initiative undertaken by the O3NEIDA workgroup[3] 

was to establish a draft compliance profile [10] for varying 

IEC61499 architectures and establish a means of ensuring 

compatibility in execution for future implementations of the 

standard [10]. On researching many of the aforementioned 

platforms, the profile has acknowledged a number of different 

types of FB execution models/semantics. The main 

contributions of this paper is to propose a novel run-time 

framework based on the Cyclic execution model, as defined in 

section 5 of the compliance profile. The aim behind this 

implementation is to adopt a deterministic approach, i.e. the 

concepts and rules of execution are clearly outlined to the 

developer in a platform independent approach with the 

algorithms explained using pseudo code. 

II. BACKGROUND RESEARCH 

A. Function Blocks 

The concept of the function block (FB) was first introduced 

within IEC 61131 as a programming construct to facilitate 

logic re-usability, by providing a well defined-interface (i.e. 

data inputs/outputs) and hidden internals (i.e. algorithms, state 

etc) and hence activated either periodically or upon the 

occurrence of a specific trigger. Once defined, a FB can be 

reused. Within the IEC 61499, the concept has been extended 

to use a Event Driven Invocation (EDI) approach [9]. Within 

IEC 61499, the visual representation of a FB’s interface, as 

shown in fig 1, is divided into 2 parts, the head which declares 

all event inputs and outputs to the FB, and the body which 

declares all the data inputs and data outputs. The Execution 

Control Chart (ECC), consisting of EC states, transitions and 

actions associated with states, is a state machine that is 

responsible for regulating the behavior of the FB, and is 

invoked when an input event occurs at the FB’s interface [1], 

at which stage it evaluates all possible outgoing transitions (in 

some order) from its current state. The first transition (i.e. its 

associated Boolean transition-condition) that evaluates to 

TRUE, results in the ECC transitioning from its current state to 

the next state connected by that transition. Upon transitioning 

to the next state, the ECC executes all the actions associated 

with that state. An action is in turn comprised of a single 

algorithm (i.e. a procedure which contains control logic for 

manipulating/updating data variables) and an associated event 

output signaled at the FB’s interface upon completion of the 
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algorithm execution. Each state can be associated with 

multiple actions, each of which is executed (in some order) 

upon the ECC transitioning to that state.  

A control application can in turn be specified as a Function 

Block Network (FBN), compose of FB instances 

interconnected via Event/Data-connections. Each FB instance 

within a FBN is of some pre-defined FB type. As mentioned, 

the lack of a concrete specification within the IEC 61499 

standard, has allowed for multiple interpretations with regard 

to the execution of a FBN [11]. By modifying various aspects 

of execution such as order of FB invocation, event-passing, 

order of ECC execution and block invocation etc have resulted 

in the conception of many varying models of execution 

(currently acknowledged within the compliance profile) such 

as Sequential [12], Parallel (synchronous, asynchronous) [13], 

Cyclic [9, 10] have been conceived. 

B. Overview of the Cyclic Execution Semantics and current 

implementations 

This section aims to provide an introduction to the Cyclic 

Execution Semantics via outlining 2 current implementations, 

i.e. ISaGRAF [14] and the IEC 61499 application generator for 

the Nematron Pointe Controller [5]. 

 

ISaGraf - ICS Triplex 

ISaGRAF is the first fully commercial IEC 61499 compliant 

automation platform. Research conducted to analyze its 

implementation, likened its FB execution model to combine 

the scan-based logic execution of its predecessor, the IEC 

61131 PLC standard with the EDI concept of 61499, known as 

the Cyclic Execution Semantics. The tool enforces a clear 

hierarchy in design to allow executing applications in a 

distributed environment. Utilizing the various containment 

constructs within the standard, the tool [15] recognizes a 

Device to be a self contained hardware capable of executing a 

sequential control loop (similar to a PLC) composed of 

multiple Resources, while also providing communication 

interfaces to the physical environment/other devices 

distributed over a network. Resources are considered to be the 

functional unit of a device, housing and executing the control 

logic via a FBN and are responsible for accepting inputs from 

the physical/communication interface and processing the data 

(via its FBN). For our purpose, it is important to analyze how 

a resource controls the execution of a FBN during a devices 

control loop. 

An analysis on its execution of FBN [9], finds that the tool 

invokes all the FB’s within a resource’s contained FBN in a 

fixed order (schedule) also known as a scan of the network. 

This order is determined prior to deployment and remains 

unchanged for the duration of a resources execution. Assuming 

the FBN in fig 2 has the following scan order: Start, Split, A, 

B, C; when invoked by its containing device, a resource ‘begins 

the scan’ of its FBN by invoking each FB sequentially in this 

same order. Each FB when invoked, in turn performs the 

following steps: 

▪ Update its input event and data variables at its interface 

▪ Execute the control logic, i.e. activate the ECC 

▪ Update all event/data output variables at its interface 

 

Hence with respect to the scan order, after the invocation of 

FB C has finished, this signals the ‘end of the scan’, after which 

a new scan cycle is to begin, repeating the previous scan order. 

Section 5.1 of the compliance profile has identified the concept 

of using a scan-schedule (i.e. a predetermined fixed schedule) 

to execute a FBN as the key requirement within the Cyclic 

execution model. Section 5.2 of the profile also identifies a 

need for the programmer to be able to define/specify this order 

during the design stage. During a scan, if an invoked FB emits 

an event whose destination is a FB at the lower order of the 

scan (i.e. the FB has not been invoked within the scan cycle 

yet), then that event may be delivered at the destination FB’s 

interface and acknowledged as having occurred during the 

current scan. For example, assume at the start of a scan, the 

event B.INIT is absent while the event A.INIT has been 

signaled. Hence when the ECC of A is invoked, if the event 

A.INITO is output as a result of activation, B.INIT is then 

signaled, hence activating FB B, its ECC would evaluate the 

event B.INIT to being present, within any transitions from the 

current state. This is only possible if FB A was invoked before 

FB B during every scan. If the invocation sequence was 

reversed, B may only recognize the event in the next scan-

cycle as it would have already been invoked during the current 

scan-cycle. This mode of event delivery (within section 5.3 of 

the CP) has been referred to as event-delivery within the same 

scan and requires an ordering to be established for the 

sequence in which FB instances should be scanned during 

every scan cycle, which can influence if events signaled by a 

FB instance can be delivered in the current scan cycle or the 

next scan cycle. 

Fig 1.  An example of a basic FB type and its corresponding ECC  

 
Fig 2.  An example of a Function block network (FBN) 
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IEC 61499 Application generator for the Pointe Controller 

The second implementation of interest is the application 

generator introduced within [5, 16]. Similar to ISaGRAF, the 

approach utilizes an execution model that combines the 

concept of a Scan-Cycle with the EDI approach. The difference 

here is that the scan-cycle is executed by the intended control 

hardware, i.e. the Nematron Pointe Controller, whose design 

implements a true scan cycle found within PLC architectures 

and allows specifying the control logic (to be executed within 

the scan) via a series of languages, including the execution of 

Java applications. Hence to specify a FBN, the approach has 

implemented an application generator which compiles FB 

specifications down to java class files, implementing the event 

delivery model within. Hence each FB instance within the FBN 

is specified as an individual java program, implemented with 

its own event handler routines (for event detection) designed 

to be invoked sequentially during the course of a scan. The 

controller enforces a priority to be specified for each individual 

piece of code, which outlines the FB scan order. Via using 

constructs within the java language and design of the compiled 

code, i.e. the use of event-handling mechanisms, the approach 

implements the EDI concept allowing FB instances to signal 

events/sample data from each other. FB instances are only 

invoked if signaled during the current scan. Both the above 

implementations were pioneer works aiming at combining the 

benefits of IEC 61131-3 and IEC 61499 and naturally have a 

number of compliance issues. Thus, in ISaGRAF, each FB 

within the scan is invoked regardless of the presence/absence 

of input events at its interface. The tool then, via its 

implementation of using Sequential Function Charts (SFC) 

[9]as the ECC, relies on the developer to make the appropriate 

calls to sense for events and allows the freedom to re-use 

events (even if they have been used in a successful transition) 

as well as clear the input events in an arbitrary manner. While 

it has been proved that given proper design, the tool is still IEC 

61499 compliant, the very fact of determining event 

occurrence after the ECC invocation violates the standard, so 

we have attempted to avoid this. It was also impossible to adopt 

the other approach, since its execution semantics is not fully 

documented and the corresponding application generator 

implementation is very tightly bound to the particular hardware 

of the Pointe Controller. The hardware provided to support our 

research, the cell modem, does not contain the hardware 

specific firmware/embedded control to execute uploaded 

control logic within a PLC like scan cycle. The compliance 

profile also recommends that compliant implementations also 

provide the option for an alternate event delivery mode, 

allowing all events signaled during a scan to be delivered only 

in the next scan. This is done to reduce the impact on a FB’s 

ECC execution if the order of block invocation was changed 

(see Sec-5 in [9] for complete explanation, example). At 

present, it is unknown if this mode can be explicitly specified 

within the above implementations, and is also a major 

motivation to create a new execution model supporting it. 

III. PROPOSED CYCLIC EXECUTION MODEL 

In this section, we provide an alternative execution model 

designed to ensure that block activation within a FBN is in line 

with the EDI concept. FB’s that have no events signaled at their 

interface during the course of a scan are not invoked for 

execution. To enforce the EDI concept of block execution, it is 

our view that event detection, usage and clearance should be 

handled by the runtime/tool side as opposed to allowing the 

developer from having the freedom to influence the Event 

delivery within the network. Our main objective is to produce 

a model which facilitates determinism, the rules of the runtime 

are clearly known and details of execution are clearly visible. 

We will begin by outlining our FB model, followed by an 

overview of executing a scan cycle within a FBN. 

A. Model of a Function Block 

Further review of the reference implementation model in 

ISaGRAF has outlined the fact that a FB executing within a 

scan is capable of being signaled more than 1 input event at its 

interface. Using the FBN in fig 2 as an example, assume that 

the FB instance SPLIT is activated and in turn emits the output 

events SPLIT.EO1 and SPLIT.EO2. If the execution model in 

FBRT [11] was used, the signaling of the output event 

SPLIT.EO1, would have resulted in the immediate activation 

of FB A (via A.INIT). Within the Cyclic execution model, FB 

A has a lower priority than SPLIT and can only be invoked 

after the invocation of SPLIT has completed within the scan 

cycle indicating that the events A.INIT and A.REQ would need 

to be buffered. Hence within our model, we define an input 

event as a Boolean flag, which on being set to TRUE, before 

the blocks invocation, indicates the occurrence of the event. 

The pseudo code in fig 3 outlines how an input event would be 

procedure SIGNAL-EVENT(fb, eventName) 

get the array of input events; 

events[ ] = fb.inputEvents 

 

foreach 𝑒 ∈ 𝑒𝑣𝑒𝑛𝑡𝑠 do 

 if (e.eventName == eventName) then 

 e.eventSignal = True 

 fb.eventsSignaled = True 

 end 

end 

end procedure 

 
procedure ACTIVATE (fb) 

check if any input events have been signaled at interface of fb; 

if (fb.eventsSignaled) then 

 Update the data input variables for fb; 

 ACTIVATE-ECC(fb) or execute equivalent logic 

 clear the signal for all event input variables; 

end 

end procedure 

 
Fig 3.  Pseudo code showing how an event would be signaled (above) 

and the invoke method of a FB (below) 
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signaled within a FB via the procedure SIGNAL-EVENT. The 

ACTIVATE procedure, indicates that when a FB is invoked 

for execution, if there are no events signaled, the ECC is not to 

be invoked (i.e. the procedure in fig 5). The code also enforces 

that an input event signaled at a FB’s interface, can only be 

TRUE up-to the next time the FB is invoked, after which it is 

cleared (set to FALSE) regardless of its use in evaluating 

transition conditions. 

B. ECC Model 

The ECC within our execution model has been derived from 

the model of the ECC found in FBRT. The Cyclic execution 

model allows multiple events to be signaled at the interface, 

the ECC model has to be able to account for this. A transition-

condition within our model is composed of an event-part 

which tests the signaling of only one event input variable and 

a Boolean guard condition, which traditionally tests 

input/internal data variables. The state machine in fig 12 of the 

FB standard [1] (reproduced in fig 4), outlines the behavior of 

the ECC upon being activated (i.e. transition from s0 to s1). 

The transition from state s1 to s2 occurs when the ECC 

evaluates all transitions from its current state and comes across 

the first transition-condition which evaluates to true. The order 

of evaluating all transitions from a current state within our 

model will be the same order in which the transitions are 

declared within the textual/XML syntax defining the FB. Event 

inputs used within a transition condition are only cleared if the 

transition condition evaluates to true, otherwise this would lead 

to an unnecessary loss of events, since multiple events can be 

signaled at a FB’s interface. Using the ECC shown in fig 4, 

assume the ECC is currently in the START state and input 

events INIT and REQ have been signaled and the 3 transitions 

from the start state are evaluated in order from left to right. On 

activating the ECC, if the guard condition QI (a Boolean input 

data variable) is true then the event INIT is cleared and the 

ECC would transition to S1 and no further since INIT is now 

false. For the case where QI is false, then event INIT is still 

TRUE and the next transition is evaluated. If the condition 

REQ & DI1<2 is true then the event REQ is cleared and the 

ECC transitions to S2 and in this case INIT is still signaled and 

the transition to S3 occurs and event INIT is now cleared. 

C. Executing a network of Function Blocks 

Section 5.1 of the compliance profile, identifies the need to 

have a predefined order before execution, such that during the 

course of a scan, all FB’s within a FBN will always be invoked 

in the same order. Hence, the concept of assigning each 

individual FB within a FBN a priority value has been adopted. 

The main properties that should be ensured when assigning a 

priority to a FB are that the value must be unique, i.e. no other 

FB executed within the same scan cycle should have a similar 

priority, as the FB’s are to be invoked sequentially within a 

scan. The type of the priority value should be easily 

comparable to allow a schedule of FB activation to be defined. 

Hence, using the FBN in Fig6, during execution, the scan cycle 

would invoke the FB’s in the order: Start, A, B, C, and D. 

As mentioned earlier, our main aim is to stay consistent with 

the Cyclic approach introduced earlier, while maintaining the 

EDI concept of executing a FBN. This implies that the Cyclic 

execution model needs to rely on the occurrence of events to 

activate a FB during a scan cycle. Section 5.3 of the 

compliance profile identifies 2 different modes of event 

delivery. Adapting these within our execution model, results in 

2 different ways to execute FBN’s using a scan cycle. 

 

Allowing event delivery within the same scan: 

The first mode of event delivery (fig 7) refers to the concept 

of allowing an event output during a single run of a FB A 

(referred to as an event-producer), within the course of a scan 

cycle, to be signaled at the interface of another FB A′ (i.e. the 

event-consumer) connected to the event-producer via an event 

connection during the same scan cycle. The algorithm outlined 

 
Fig 4. Example ECC representation (left) ECC state machine [1] (Right) 

procedure ACTIVATE-ECC(fb) 

Set the current State of the ECC; 

currentState = fb.currentECCState 

Get all possible transitions from the current state; 

transitions [ ] = currentState.transitionList 

 

foreach 𝑡 ∈ 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 do 

Determine if the event specified has been signaled; 

eventPart = t.isEventPartTrue 

Evaluate the outcome of the Boolean guard condition; 

booleanGuard = t.isGuardConditionTrue 

 

Note: if either of its respective parts (event/guard) are not 

specified for any transition condition t, when evaluated those 

respective parts are automatically set to TRUE; 

 

if (eventPart && booleanGuard) then 

  Set the new ECC state; 

  fb.currentECCState = t.nextECCState 

  Execute all actions associated with the new state; 

  Clear the signal for the input event variable used 

within t (if specified); 

  ACTIVATE-ECC(fb) evaluate the new ECC state  

  Break out of for loop; 

end 

end 

end procedure 
Fig 5. Pseudo-code for activating the ECC of a basic FB 
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in fig 7, shows how a scan cycle of a FBN would be executed 

using this mode of event delivery. As mentioned, the FB-

schedule is pre-determined and remains constant over the 

execution of a device’s control-loop. Hence the scheduler has 

only to iterate over this schedule activating each FB for 

execution. The activate procedure (fig 3), only invokes the 

respective FB if there are any input events signaled at its 

interface, thus complying with the EDI concept. On being 

invoked, a block may execute and emit several output-events, 

which are then delivered to their respective event-consumers. 

The rules of event delivery for this mode are: 

 

▪ If an event-consumer has a lower priority than the event-

producer (implying that it has not been considered for 

invocation within the scan cycle yet), then upon invocation, 

it may recognize the occurrence of any event signaled. 

Similarly, an event-consumer with a higher-priority will 

recognize the occurrence of the event in the next scan cycle 

(as it would already have been considered for invocation), 

hence the need to buffer and deliver the event in the next 

scan cycle. 

▪ Consider the case where C is invoked during a scan, via the 

event C.INIT. The ECC in fig 8 shows a loop within 2 

states of its ECC with transitions to either state having the 

condition REQ. An event connection between C.CNF and 

C.REQ, makes it quite possible for C to continually signal 

itself. If this event was to be delivered within the current 

scan, would result in an infinite loop. To prevent this, it is 

required that cases where event-consumers are also the 

event-producers; the event should again be buffered for 

delivery in the next scan.  

▪ To preserve determinism, each event can only be signaled 

once at a FB’s interface, up-to the point of the blocks next-

invocation after which they may be signaled again. An 

equivalent implementation of this rule is the representation 

of the event inputs as Boolean flags, which if set to true, 

repeated signaling of the same event is equivalent to 

signaling the event only once, implying that events are 

signaled logically within this execution model. 

However, developers need to account for the increased 

dependency of this execution mode on the order (specified by 

the FB priorities) in which the FB’s within the FBN are 

invoked during every scan-cycle, as if changed, may result in 

a different execution output as outlined in [9].  

 

Allowing event delivery within the next scan: 

The second mode of event delivery refers to allowing events 

output during the single run of a FB A (i.e. the event-producer), 

within the course of a scan cycle, to be signaled at the interface 

of another FB A′ (i.e. event-consumer) connected to the event-

producer via an event connection in the next scan cycle only. 

Fig 9 outlines the algorithm for supporting this mode of event 

delivery. The primary difference behind this mode of 

execution is the fact that any event signaled by a producer FB 

is always consumed in the next scan cycle. Although this may 

result in an increased number of scan cycles to execute the 

FBN, the benefit behind this mode of event delivery removes 

the dependence on the schedule order, if there was a change in 

the schedule of block invocation (via a reconfiguration), as 

outlined in [9]. As before, the rules for buffering an event still 

require that events are not repeated in the buffer (i.e. signaled 

twice which may lead to loops in execution). The novelty also 

exists to be able to switch between these aforementioned 

 
Fig 6. An Example FBN with its priorities explicitly specified as 

integers 

 
Fig 8. Example ECC showing a loop between 2 states 

procedure NEXT-CYCLE (resource){ 

 Signal any buffered events to respective FB instances; 

 schedule[ ] = resource.fbSchedule 

 foreach 𝑓𝑏 ∈ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 do 

  outputEvents[ ] = activate(fb) 

  foreach 𝑒 ∈ 𝑜𝑢𝑡𝑝𝑢𝑡𝐸𝑣𝑒𝑛𝑡𝑠 

   Buffer e for delivery in next scan; 

  end 

 end 

end procedure 

Fig 9. Scheduling algorithm for allowing Event delivery in next scan cycle 

procedure NEXT-CYCLE (resource) 

 Signal any buffered events to respective FB instances; 

 Get the scan-schedule for invoking FB instances 

 schedule[ ] = resource.fbSchedule 

 Invoke the fb instances in the order specified by the 

schedule; 

 foreach 𝑓𝑏 ∈ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 do 

  outputEvents[ ] = activate(fb) 

  foreach 𝑒 ∈ 𝑜𝑢𝑡𝑝𝑢𝑡𝐸𝑣𝑒𝑛𝑡𝑠 

   if e complies with rules of event delivery within 

current scan cycle; 

   then signal e in current scan cycle; 

   else  buffer e for delivery in next scan; 

   end 

  end  

 end 

end procedure 
Fig 7. Scheduling algorithm for allowing Event delivery in same scan 

cycle 
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modes of event delivery within any implementation of this 

Cyclic execution model. 

 

IV. IMPLEMENTATION AND FUTURE WORK 

The other intent behind establishing this model is to serve as 

the execution semantics for a new IEC 61499 compliant 

runtime currently under design. Industrial interest in the 

research has outlined the requirement for the runtime to 

execute using the Java Micro Edition (J2ME) as its 

implementation platform, in order to execute on the provided 

target hardware, i.e. the Cell Modem provided by iMonitor NZ 

[17] using the Information Module Profile (IMP-NG). Hence 

via using Java, we hope to create a runtime which can be 

designed to leverage the use of OO design to create the IEC 

61499 compliant runtime constructs (i.e. a FB, Resource, 

Device etc). The design of the new runtime will utilize a 

similar hierarchy as the ISaGRAF tool, with applications 

organized using the device and resource constructs. Each 

device will be recognized as an independent unit of execution 

composed of a number of resources. Each resource in turn will 

be composed of a function block network, managed and 

executed by the resource, via a scheduler, using the new Cyclic 

execution model outlined in the previous section. In order to 

adopt an approach which facilitates re-configuration, the 

design for representing the FBN, i.e. the event and data 

connections within a resource is to adopt a ‘disjoint’ approach, 

i.e. the set of FB instances during the course of a scan cannot 

directly signal each other, having to rely on the resource to 

coordinate event signaling and data sampling. The intention 

behind the device is to encapsulate and coordinate the 

execution of the resources using what may be termed as its 

‘Control-Loop’, i.e. sequentially activating each resource, 

allowing it to execute a single scan-cycle before activating the 

next. At present the road map for our implementation also 

intends on modifying the FBench platform [18] to be used as 

our tool to interact with our designed runtime for tasks such as 

compiling Basic, Composite or SIFB, and inserting them into 

the runtime’s ‘Library of Function Blocks’, as well as to 

initialize a system configuration organized using the device/ 

resource constructs on the runtime via a set of custom 

management commands. 

V. CONCLUSION   

Being part of the O3Neida workgroup, our intention behind 

specifying the Cyclic execution model is to contribute and help 

better define, what is termed as the Cyclic Execution 

Semantics, within the Compliance Profile for IEC 61499 

execution models (currently in its draft stages). It is our vision 

that the planned runtime designed to implement this execution 

model, will serve as a guide to other vendors aiming to create 

IEC 61499 compliant execution tools, and explain what is 

required to implement and execute applications using the 

Cyclic Execution Semantics such that future implementations 

will be semantically compatible. 
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