
P. Tata, V. Vyatkin, “Proposing a novel IEC61499 Runtime Framework implementing the Cyclic Execution Semantics”, 7th

International IEEE Conference on Industrial Informatics, (INDIN’09), Cardiff, June 2009

Proposing a novel IEC61499 Runtime Framework

implementing the Cyclic Execution Semantics

Piran Tata and Valeriy Vyatkin

University of Auckland

ptat004@aucklanduni.ac.nz, v.vyatkin@auckland.ac.nz

This paper describes an implementation of a new IEC 61499
execution environment based on the generic Cyclic Execution
model, outlined within the draft IEC 61499 Compliance Profile for
Execution models. The proposed model further adds more details to
the generic Cyclic model via an abstract implementation
independent way.

I. INTRODUCTION

The IEC61131 PLC standard [2] has been widely adopted

by the industrial automation industry, as a standard to organize,

design and execute program logic within control devices[3].

However it has been believed that the standard is reaching the

end of its technological life cycle [3, 4] particularly because it

cannot meet the requirement of new innovations within the

automation industry calling for the new requirement of ‘agile’

manufacturing, i.e. automation systems that are de-centralized

and distributed and flexible enough to be reconfigured with

ease. The IEC 61499 Function block standard [1] has emerged

as the future methodology for programming industrial process

and measurement control systems (IPMCS) ever since it has

been standardized in 2005. Via the use of reusable software

components (i.e. function blocks (FB)), it allows developers to

model and organize the embedded code, logic and other IP

using a component based approach and also lays the

foundation for distributed communication between those

components. This allows complex embedded systems to

benefit from the advantages of the concepts of Component-

Based Software Development and Object technology, as well

as allowing for Model-Driven Engineering [4]. Current

implementations of IEC 61499 run-time platforms have

primarily been academic research-based prototypes, created to

investigate the application and feasibility of the standard,

executed either directly on PC’s or programmable controllers

with networking capabilities[5]. Some of these include

FBDK/FBRT [6], one of the first JAVA based

implementations. Others include the 4DIAC-RTE

(FORTE)[7], the CORFU framework part of the Archimedes

development framework for embedded control applications

[8]. ISaGRAF, a software environment for control systems, is

the first successful commercial tool to support the Function

Block standard [9]. However a common problem that has beset

the standard since its inception is that while all the

aforementioned tools/environments are IEC 61499 compliant,

ambiguities within the standard have allowed for multiple

interpretations with regard to how FB applications should be

executed. This has resulted in incompatibility between various

tools[8], a practice which if allowed to continue will prevent

the full potential/intent of IEC 61499 from being realized. A

recent initiative undertaken by the O3NEIDA workgroup[3]

was to establish a draft compliance profile [10] for varying

IEC61499 architectures and establish a means of ensuring

compatibility in execution for future implementations of the

standard [10]. On researching many of the aforementioned

platforms, the profile has acknowledged a number of different

types of FB execution models/semantics. The main

contributions of this paper is to propose a novel run-time

framework based on the Cyclic execution model, as defined in

section 5 of the compliance profile. The aim behind this

implementation is to adopt a deterministic approach, i.e. the

concepts and rules of execution are clearly outlined to the

developer in a platform independent approach with the

algorithms explained using pseudo code.

II. BACKGROUND RESEARCH

A. Function Blocks

The concept of the function block (FB) was first introduced

within IEC 61131 as a programming construct to facilitate

logic re-usability, by providing a well defined-interface (i.e.

data inputs/outputs) and hidden internals (i.e. algorithms, state

etc) and hence activated either periodically or upon the

occurrence of a specific trigger. Once defined, a FB can be

reused. Within the IEC 61499, the concept has been extended

to use a Event Driven Invocation (EDI) approach [9]. Within

IEC 61499, the visual representation of a FB’s interface, as

shown in fig 1, is divided into 2 parts, the head which declares

all event inputs and outputs to the FB, and the body which

declares all the data inputs and data outputs. The Execution

Control Chart (ECC), consisting of EC states, transitions and

actions associated with states, is a state machine that is

responsible for regulating the behavior of the FB, and is

invoked when an input event occurs at the FB’s interface [1],

at which stage it evaluates all possible outgoing transitions (in

some order) from its current state. The first transition (i.e. its

associated Boolean transition-condition) that evaluates to

TRUE, results in the ECC transitioning from its current state to

the next state connected by that transition. Upon transitioning

to the next state, the ECC executes all the actions associated

with that state. An action is in turn comprised of a single

algorithm (i.e. a procedure which contains control logic for

manipulating/updating data variables) and an associated event

output signaled at the FB’s interface upon completion of the

P. Tata, V. Vyatkin, “Proposing a novel IEC61499 Runtime Framework implementing the Cyclic Execution Semantics”, 7th

International IEEE Conference on Industrial Informatics, (INDIN’09), Cardiff, June 2009

algorithm execution. Each state can be associated with

multiple actions, each of which is executed (in some order)

upon the ECC transitioning to that state.

A control application can in turn be specified as a Function

Block Network (FBN), compose of FB instances

interconnected via Event/Data-connections. Each FB instance

within a FBN is of some pre-defined FB type. As mentioned,

the lack of a concrete specification within the IEC 61499

standard, has allowed for multiple interpretations with regard

to the execution of a FBN [11]. By modifying various aspects

of execution such as order of FB invocation, event-passing,

order of ECC execution and block invocation etc have resulted

in the conception of many varying models of execution

(currently acknowledged within the compliance profile) such

as Sequential [12], Parallel (synchronous, asynchronous) [13],

Cyclic [9, 10] have been conceived.

B. Overview of the Cyclic Execution Semantics and current

implementations

This section aims to provide an introduction to the Cyclic

Execution Semantics via outlining 2 current implementations,

i.e. ISaGRAF [14] and the IEC 61499 application generator for

the Nematron Pointe Controller [5].

ISaGraf - ICS Triplex

ISaGRAF is the first fully commercial IEC 61499 compliant

automation platform. Research conducted to analyze its

implementation, likened its FB execution model to combine

the scan-based logic execution of its predecessor, the IEC

61131 PLC standard with the EDI concept of 61499, known as

the Cyclic Execution Semantics. The tool enforces a clear

hierarchy in design to allow executing applications in a

distributed environment. Utilizing the various containment

constructs within the standard, the tool [15] recognizes a

Device to be a self contained hardware capable of executing a

sequential control loop (similar to a PLC) composed of

multiple Resources, while also providing communication

interfaces to the physical environment/other devices

distributed over a network. Resources are considered to be the

functional unit of a device, housing and executing the control

logic via a FBN and are responsible for accepting inputs from

the physical/communication interface and processing the data

(via its FBN). For our purpose, it is important to analyze how

a resource controls the execution of a FBN during a devices

control loop.

An analysis on its execution of FBN [9], finds that the tool

invokes all the FB’s within a resource’s contained FBN in a

fixed order (schedule) also known as a scan of the network.

This order is determined prior to deployment and remains

unchanged for the duration of a resources execution. Assuming

the FBN in fig 2 has the following scan order: Start, Split, A,

B, C; when invoked by its containing device, a resource ‘begins

the scan’ of its FBN by invoking each FB sequentially in this

same order. Each FB when invoked, in turn performs the

following steps:

▪ Update its input event and data variables at its interface

▪ Execute the control logic, i.e. activate the ECC

▪ Update all event/data output variables at its interface

Hence with respect to the scan order, after the invocation of

FB C has finished, this signals the ‘end of the scan’, after which

a new scan cycle is to begin, repeating the previous scan order.

Section 5.1 of the compliance profile has identified the concept

of using a scan-schedule (i.e. a predetermined fixed schedule)

to execute a FBN as the key requirement within the Cyclic

execution model. Section 5.2 of the profile also identifies a

need for the programmer to be able to define/specify this order

during the design stage. During a scan, if an invoked FB emits

an event whose destination is a FB at the lower order of the

scan (i.e. the FB has not been invoked within the scan cycle

yet), then that event may be delivered at the destination FB’s

interface and acknowledged as having occurred during the

current scan. For example, assume at the start of a scan, the

event B.INIT is absent while the event A.INIT has been

signaled. Hence when the ECC of A is invoked, if the event

A.INITO is output as a result of activation, B.INIT is then

signaled, hence activating FB B, its ECC would evaluate the

event B.INIT to being present, within any transitions from the

current state. This is only possible if FB A was invoked before

FB B during every scan. If the invocation sequence was

reversed, B may only recognize the event in the next scan-

cycle as it would have already been invoked during the current

scan-cycle. This mode of event delivery (within section 5.3 of

the CP) has been referred to as event-delivery within the same

scan and requires an ordering to be established for the

sequence in which FB instances should be scanned during

every scan cycle, which can influence if events signaled by a

FB instance can be delivered in the current scan cycle or the

next scan cycle.

Fig 1. An example of a basic FB type and its corresponding ECC

Fig 2. An example of a Function block network (FBN)

P. Tata, V. Vyatkin, “Proposing a novel IEC61499 Runtime Framework implementing the Cyclic Execution Semantics”, 7th

International IEEE Conference on Industrial Informatics, (INDIN’09), Cardiff, June 2009

IEC 61499 Application generator for the Pointe Controller

The second implementation of interest is the application

generator introduced within [5, 16]. Similar to ISaGRAF, the

approach utilizes an execution model that combines the

concept of a Scan-Cycle with the EDI approach. The difference

here is that the scan-cycle is executed by the intended control

hardware, i.e. the Nematron Pointe Controller, whose design

implements a true scan cycle found within PLC architectures

and allows specifying the control logic (to be executed within

the scan) via a series of languages, including the execution of

Java applications. Hence to specify a FBN, the approach has

implemented an application generator which compiles FB

specifications down to java class files, implementing the event

delivery model within. Hence each FB instance within the FBN

is specified as an individual java program, implemented with

its own event handler routines (for event detection) designed

to be invoked sequentially during the course of a scan. The

controller enforces a priority to be specified for each individual

piece of code, which outlines the FB scan order. Via using

constructs within the java language and design of the compiled

code, i.e. the use of event-handling mechanisms, the approach

implements the EDI concept allowing FB instances to signal

events/sample data from each other. FB instances are only

invoked if signaled during the current scan. Both the above

implementations were pioneer works aiming at combining the

benefits of IEC 61131-3 and IEC 61499 and naturally have a

number of compliance issues. Thus, in ISaGRAF, each FB

within the scan is invoked regardless of the presence/absence

of input events at its interface. The tool then, via its

implementation of using Sequential Function Charts (SFC)

[9]as the ECC, relies on the developer to make the appropriate

calls to sense for events and allows the freedom to re-use

events (even if they have been used in a successful transition)

as well as clear the input events in an arbitrary manner. While

it has been proved that given proper design, the tool is still IEC

61499 compliant, the very fact of determining event

occurrence after the ECC invocation violates the standard, so

we have attempted to avoid this. It was also impossible to adopt

the other approach, since its execution semantics is not fully

documented and the corresponding application generator

implementation is very tightly bound to the particular hardware

of the Pointe Controller. The hardware provided to support our

research, the cell modem, does not contain the hardware

specific firmware/embedded control to execute uploaded

control logic within a PLC like scan cycle. The compliance

profile also recommends that compliant implementations also

provide the option for an alternate event delivery mode,

allowing all events signaled during a scan to be delivered only

in the next scan. This is done to reduce the impact on a FB’s

ECC execution if the order of block invocation was changed

(see Sec-5 in [9] for complete explanation, example). At

present, it is unknown if this mode can be explicitly specified

within the above implementations, and is also a major

motivation to create a new execution model supporting it.

III. PROPOSED CYCLIC EXECUTION MODEL

In this section, we provide an alternative execution model

designed to ensure that block activation within a FBN is in line

with the EDI concept. FB’s that have no events signaled at their

interface during the course of a scan are not invoked for

execution. To enforce the EDI concept of block execution, it is

our view that event detection, usage and clearance should be

handled by the runtime/tool side as opposed to allowing the

developer from having the freedom to influence the Event

delivery within the network. Our main objective is to produce

a model which facilitates determinism, the rules of the runtime

are clearly known and details of execution are clearly visible.

We will begin by outlining our FB model, followed by an

overview of executing a scan cycle within a FBN.

A. Model of a Function Block

Further review of the reference implementation model in

ISaGRAF has outlined the fact that a FB executing within a

scan is capable of being signaled more than 1 input event at its

interface. Using the FBN in fig 2 as an example, assume that

the FB instance SPLIT is activated and in turn emits the output

events SPLIT.EO1 and SPLIT.EO2. If the execution model in

FBRT [11] was used, the signaling of the output event

SPLIT.EO1, would have resulted in the immediate activation

of FB A (via A.INIT). Within the Cyclic execution model, FB

A has a lower priority than SPLIT and can only be invoked

after the invocation of SPLIT has completed within the scan

cycle indicating that the events A.INIT and A.REQ would need

to be buffered. Hence within our model, we define an input

event as a Boolean flag, which on being set to TRUE, before

the blocks invocation, indicates the occurrence of the event.

The pseudo code in fig 3 outlines how an input event would be

procedure SIGNAL-EVENT(fb, eventName)

get the array of input events;

events[] = fb.inputEvents

foreach 𝑒 ∈ 𝑒𝑣𝑒𝑛𝑡𝑠 do

 if (e.eventName == eventName) then

 e.eventSignal = True

 fb.eventsSignaled = True

 end

end

end procedure

procedure ACTIVATE (fb)

check if any input events have been signaled at interface of fb;

if (fb.eventsSignaled) then

 Update the data input variables for fb;

 ACTIVATE-ECC(fb) or execute equivalent logic

 clear the signal for all event input variables;

end

end procedure

Fig 3. Pseudo code showing how an event would be signaled (above)

and the invoke method of a FB (below)

P. Tata, V. Vyatkin, “Proposing a novel IEC61499 Runtime Framework implementing the Cyclic Execution Semantics”, 7th

International IEEE Conference on Industrial Informatics, (INDIN’09), Cardiff, June 2009

signaled within a FB via the procedure SIGNAL-EVENT. The

ACTIVATE procedure, indicates that when a FB is invoked

for execution, if there are no events signaled, the ECC is not to

be invoked (i.e. the procedure in fig 5). The code also enforces

that an input event signaled at a FB’s interface, can only be

TRUE up-to the next time the FB is invoked, after which it is

cleared (set to FALSE) regardless of its use in evaluating

transition conditions.

B. ECC Model

The ECC within our execution model has been derived from

the model of the ECC found in FBRT. The Cyclic execution

model allows multiple events to be signaled at the interface,

the ECC model has to be able to account for this. A transition-

condition within our model is composed of an event-part

which tests the signaling of only one event input variable and

a Boolean guard condition, which traditionally tests

input/internal data variables. The state machine in fig 12 of the

FB standard [1] (reproduced in fig 4), outlines the behavior of

the ECC upon being activated (i.e. transition from s0 to s1).

The transition from state s1 to s2 occurs when the ECC

evaluates all transitions from its current state and comes across

the first transition-condition which evaluates to true. The order

of evaluating all transitions from a current state within our

model will be the same order in which the transitions are

declared within the textual/XML syntax defining the FB. Event

inputs used within a transition condition are only cleared if the

transition condition evaluates to true, otherwise this would lead

to an unnecessary loss of events, since multiple events can be

signaled at a FB’s interface. Using the ECC shown in fig 4,

assume the ECC is currently in the START state and input

events INIT and REQ have been signaled and the 3 transitions

from the start state are evaluated in order from left to right. On

activating the ECC, if the guard condition QI (a Boolean input

data variable) is true then the event INIT is cleared and the

ECC would transition to S1 and no further since INIT is now

false. For the case where QI is false, then event INIT is still

TRUE and the next transition is evaluated. If the condition

REQ & DI1<2 is true then the event REQ is cleared and the

ECC transitions to S2 and in this case INIT is still signaled and

the transition to S3 occurs and event INIT is now cleared.

C. Executing a network of Function Blocks

Section 5.1 of the compliance profile, identifies the need to

have a predefined order before execution, such that during the

course of a scan, all FB’s within a FBN will always be invoked

in the same order. Hence, the concept of assigning each

individual FB within a FBN a priority value has been adopted.

The main properties that should be ensured when assigning a

priority to a FB are that the value must be unique, i.e. no other

FB executed within the same scan cycle should have a similar

priority, as the FB’s are to be invoked sequentially within a

scan. The type of the priority value should be easily

comparable to allow a schedule of FB activation to be defined.

Hence, using the FBN in Fig6, during execution, the scan cycle

would invoke the FB’s in the order: Start, A, B, C, and D.

As mentioned earlier, our main aim is to stay consistent with

the Cyclic approach introduced earlier, while maintaining the

EDI concept of executing a FBN. This implies that the Cyclic

execution model needs to rely on the occurrence of events to

activate a FB during a scan cycle. Section 5.3 of the

compliance profile identifies 2 different modes of event

delivery. Adapting these within our execution model, results in

2 different ways to execute FBN’s using a scan cycle.

Allowing event delivery within the same scan:

The first mode of event delivery (fig 7) refers to the concept

of allowing an event output during a single run of a FB A

(referred to as an event-producer), within the course of a scan

cycle, to be signaled at the interface of another FB A′ (i.e. the

event-consumer) connected to the event-producer via an event

connection during the same scan cycle. The algorithm outlined

Fig 4. Example ECC representation (left) ECC state machine [1] (Right)

procedure ACTIVATE-ECC(fb)

Set the current State of the ECC;

currentState = fb.currentECCState

Get all possible transitions from the current state;

transitions [] = currentState.transitionList

foreach 𝑡 ∈ 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 do

Determine if the event specified has been signaled;

eventPart = t.isEventPartTrue

Evaluate the outcome of the Boolean guard condition;

booleanGuard = t.isGuardConditionTrue

Note: if either of its respective parts (event/guard) are not

specified for any transition condition t, when evaluated those

respective parts are automatically set to TRUE;

if (eventPart && booleanGuard) then

 Set the new ECC state;

 fb.currentECCState = t.nextECCState

 Execute all actions associated with the new state;

 Clear the signal for the input event variable used

within t (if specified);

 ACTIVATE-ECC(fb) evaluate the new ECC state

 Break out of for loop;

end

end

end procedure
Fig 5. Pseudo-code for activating the ECC of a basic FB

P. Tata, V. Vyatkin, “Proposing a novel IEC61499 Runtime Framework implementing the Cyclic Execution Semantics”, 7th

International IEEE Conference on Industrial Informatics, (INDIN’09), Cardiff, June 2009

in fig 7, shows how a scan cycle of a FBN would be executed

using this mode of event delivery. As mentioned, the FB-

schedule is pre-determined and remains constant over the

execution of a device’s control-loop. Hence the scheduler has

only to iterate over this schedule activating each FB for

execution. The activate procedure (fig 3), only invokes the

respective FB if there are any input events signaled at its

interface, thus complying with the EDI concept. On being

invoked, a block may execute and emit several output-events,

which are then delivered to their respective event-consumers.

The rules of event delivery for this mode are:

▪ If an event-consumer has a lower priority than the event-

producer (implying that it has not been considered for

invocation within the scan cycle yet), then upon invocation,

it may recognize the occurrence of any event signaled.

Similarly, an event-consumer with a higher-priority will

recognize the occurrence of the event in the next scan cycle

(as it would already have been considered for invocation),

hence the need to buffer and deliver the event in the next

scan cycle.

▪ Consider the case where C is invoked during a scan, via the

event C.INIT. The ECC in fig 8 shows a loop within 2

states of its ECC with transitions to either state having the

condition REQ. An event connection between C.CNF and

C.REQ, makes it quite possible for C to continually signal

itself. If this event was to be delivered within the current

scan, would result in an infinite loop. To prevent this, it is

required that cases where event-consumers are also the

event-producers; the event should again be buffered for

delivery in the next scan.

▪ To preserve determinism, each event can only be signaled

once at a FB’s interface, up-to the point of the blocks next-

invocation after which they may be signaled again. An

equivalent implementation of this rule is the representation

of the event inputs as Boolean flags, which if set to true,

repeated signaling of the same event is equivalent to

signaling the event only once, implying that events are

signaled logically within this execution model.

However, developers need to account for the increased

dependency of this execution mode on the order (specified by

the FB priorities) in which the FB’s within the FBN are

invoked during every scan-cycle, as if changed, may result in

a different execution output as outlined in [9].

Allowing event delivery within the next scan:

The second mode of event delivery refers to allowing events

output during the single run of a FB A (i.e. the event-producer),

within the course of a scan cycle, to be signaled at the interface

of another FB A′ (i.e. event-consumer) connected to the event-

producer via an event connection in the next scan cycle only.

Fig 9 outlines the algorithm for supporting this mode of event

delivery. The primary difference behind this mode of

execution is the fact that any event signaled by a producer FB

is always consumed in the next scan cycle. Although this may

result in an increased number of scan cycles to execute the

FBN, the benefit behind this mode of event delivery removes

the dependence on the schedule order, if there was a change in

the schedule of block invocation (via a reconfiguration), as

outlined in [9]. As before, the rules for buffering an event still

require that events are not repeated in the buffer (i.e. signaled

twice which may lead to loops in execution). The novelty also

exists to be able to switch between these aforementioned

Fig 6. An Example FBN with its priorities explicitly specified as

integers

Fig 8. Example ECC showing a loop between 2 states

procedure NEXT-CYCLE (resource){

 Signal any buffered events to respective FB instances;

 schedule[] = resource.fbSchedule

 foreach 𝑓𝑏 ∈ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 do

 outputEvents[] = activate(fb)

 foreach 𝑒 ∈ 𝑜𝑢𝑡𝑝𝑢𝑡𝐸𝑣𝑒𝑛𝑡𝑠

 Buffer e for delivery in next scan;

 end

 end

end procedure

Fig 9. Scheduling algorithm for allowing Event delivery in next scan cycle

procedure NEXT-CYCLE (resource)

 Signal any buffered events to respective FB instances;

 Get the scan-schedule for invoking FB instances

 schedule[] = resource.fbSchedule

 Invoke the fb instances in the order specified by the

schedule;

 foreach 𝑓𝑏 ∈ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 do

 outputEvents[] = activate(fb)

 foreach 𝑒 ∈ 𝑜𝑢𝑡𝑝𝑢𝑡𝐸𝑣𝑒𝑛𝑡𝑠

 if e complies with rules of event delivery within

current scan cycle;

 then signal e in current scan cycle;

 else buffer e for delivery in next scan;

 end

 end

 end

end procedure
Fig 7. Scheduling algorithm for allowing Event delivery in same scan

cycle

P. Tata, V. Vyatkin, “Proposing a novel IEC61499 Runtime Framework implementing the Cyclic Execution Semantics”, 7th

International IEEE Conference on Industrial Informatics, (INDIN’09), Cardiff, June 2009

modes of event delivery within any implementation of this

Cyclic execution model.

IV. IMPLEMENTATION AND FUTURE WORK

The other intent behind establishing this model is to serve as

the execution semantics for a new IEC 61499 compliant

runtime currently under design. Industrial interest in the

research has outlined the requirement for the runtime to

execute using the Java Micro Edition (J2ME) as its

implementation platform, in order to execute on the provided

target hardware, i.e. the Cell Modem provided by iMonitor NZ

[17] using the Information Module Profile (IMP-NG). Hence

via using Java, we hope to create a runtime which can be

designed to leverage the use of OO design to create the IEC

61499 compliant runtime constructs (i.e. a FB, Resource,

Device etc). The design of the new runtime will utilize a

similar hierarchy as the ISaGRAF tool, with applications

organized using the device and resource constructs. Each

device will be recognized as an independent unit of execution

composed of a number of resources. Each resource in turn will

be composed of a function block network, managed and

executed by the resource, via a scheduler, using the new Cyclic

execution model outlined in the previous section. In order to

adopt an approach which facilitates re-configuration, the

design for representing the FBN, i.e. the event and data

connections within a resource is to adopt a ‘disjoint’ approach,

i.e. the set of FB instances during the course of a scan cannot

directly signal each other, having to rely on the resource to

coordinate event signaling and data sampling. The intention

behind the device is to encapsulate and coordinate the

execution of the resources using what may be termed as its

‘Control-Loop’, i.e. sequentially activating each resource,

allowing it to execute a single scan-cycle before activating the

next. At present the road map for our implementation also

intends on modifying the FBench platform [18] to be used as

our tool to interact with our designed runtime for tasks such as

compiling Basic, Composite or SIFB, and inserting them into

the runtime’s ‘Library of Function Blocks’, as well as to

initialize a system configuration organized using the device/

resource constructs on the runtime via a set of custom

management commands.

V. CONCLUSION

Being part of the O3Neida workgroup, our intention behind

specifying the Cyclic execution model is to contribute and help

better define, what is termed as the Cyclic Execution

Semantics, within the Compliance Profile for IEC 61499

execution models (currently in its draft stages). It is our vision

that the planned runtime designed to implement this execution

model, will serve as a guide to other vendors aiming to create

IEC 61499 compliant execution tools, and explain what is

required to implement and execute applications using the

Cyclic Execution Semantics such that future implementations

will be semantically compatible.

REFERENCES

[1] International Electrotechnical Commission, Function Blocks for

Industrial-process measurement and control systems - Part 1:

Architecture, 2005 ed. Geneva: International Electrotechnical

Commission.

[2] International Electrotechnical Commission, IEC 61131-3 International

Standard, Programmable Controllers - Part 1: General information, 2.0

ed. Geneva: International Electrotechnical Commission, 2003.

[3] V. V. Vyatkin, J. H. Christensen, and J. L. M. Lastra, "OOONEIDA: an

open, object-oriented knowledge economy for intelligent industrial

automation,", IEEE Transactions on Industrial Informatics, vol. 1, pp. 4-

17, 2005.

[4] G. S. Doukas and K. C. Thramboulidis, "A real-time Linux execution

environment for function-block based distributed control applications,"

INDIN '05. 2005, pp. 56-61.

[5] J. L. M. Lastra, A. Lobov, L. Godinho, and A. Nunes, "Function Blocks

for Industrial-Process Measurement and Control Systems: IEC-61499

Introduction and Run-time Platforms," Tampere University of

Technology, Finland 2004 2004.

[6] Holobloc, "FBDK – Function Block Development Kit," cited from

http://www.holobloc.com, 2008.

[7] T. Strasser, M. Rooker, G. Ebenhofer, A. Zoitl, C. Sunder, A. Valentini,

and A. Martel, "Framework for Distributed Industrial Automation and

Control (4DIAC)," in Industrial Informatics, 2008. INDIN 2008, pp.

283-288.

[8] G. Cengic and K. Akesson, "Definition of the execution model used in

the Fuber IEC 61499 runtime environment," in Industrial Informatics,

2008. INDIN 2008, pp. 301-306.

[9] V. Vyatkin and J. Chouinard, "On comparisons of the ISaGRAF

implementation of IEC 61499 with FBDK and other implementations",

in INDIN 2008. 6th IEEE International Conference on Industrial

Informatics, 2008, pp. 289-294.

[10] o3neida, "IEC 61499 Compliance Profile -- Execution Models,", draft in

progress, [confidential], 2008.

[11] C. Sunder, A. Zoitl, J. H. Christensen, V. Vyatkin, R. W. Brennan, A.

Valentini, L. Ferrarini, T. Strasser, J. L. Martinez-Lastra, and F. Auinger,

"Usability and Interoperability of IEC 61499 based distributed

automation systems," in 2006 IEEE International Conference on

Industrial Informatics, 2006, pp. 31-37.

[12] V. Vyatkin and V. Dubinin, "Sequential Axiomatic Model for Execution

of Basic Function Blocks in IEC61499", 5th IEEE International

Conference on Industrial Informatics, 2007, pp. 1183-1188.

[13] V. Vyatkin, V. Dubinin, C. Veber, and L. Ferrarini, "Alternatives for

Execution Semantics of IEC61499," in 5th IEEE International

Conference on Industrial Informatics, 2007, pp. 1151-1156.

[14] ICS-Triplex, "ISaGraf - IEC 61131 and IEC 61499 software," cited

from www.isagraf.com/, 2008.

[15] ICS-Triplex, "IEC 61499 System Model - Application Note," cited from

www.isagraf.com/pages/products/iec61499technotes/IEC61499_system_

model.pdf, 2008.

[16] J. L. M. Lastra, L. Godinho, A. Lobov, and R. Tuokko, "An IEC 61499

application generator for scan-based industrial controllers," in INDIN

'05, 2005, pp. 80-85.

[17] iMonitor, "Cell Modem Specs," cited from

www.imonitor.co.nz/specs/cellmodem.htm, 2008.

P. Tata, V. Vyatkin, “Proposing a novel IEC61499 Runtime Framework implementing the Cyclic Execution Semantics”, 7th

International IEEE Conference on Industrial Informatics, (INDIN’09), Cardiff, June 2009

[18] W. Dai, A. Shih, and V. Vyatkin, "Development of distributed industrial

automation systems and debugging functionality based on the Open

Source OOONEIDA Workbench," in Australasian Conference on

Robotics and Industrial Automation Auckland, 2006.

	A. Function Blocks
	B. Overview of the Cyclic Execution Semantics and current implementations
	A. Model of a Function Block
	B. ECC Model
	C. Executing a network of Function Blocks
	Fig 8. Example ECC showing a loop between 2 states

