

On Definition of a Formal Model
for IEC 61499 Function Blocks

Victor Dubinin and Valeriy Vyatkin

University of Penza, Russia
University of Auckland, New Zealand

Received 29.01.2007

Formal model of IEC61499 syntax and its unambiguous execution semantics are important for adoption of this international
standard in industry. This paper proposes some elements of such a model. Elements of IEC61499 architecture are defined in a
formal way following set theory notation. Based on this description formal semantics of IEC 61499 can be defined. An example is
shown in this paper for execution of basic function blocks. The paper also provides a solution for flattening hierarchical function
block networks.

Copyright © 2007 Victor Dubinin and Valeriy Vyatkin. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1 INTRODUCTION

In this paper we discuss some challenges of computational
implementation of systems composed according to the IEC
61499 standard [1]. The IEC61499 standard is intended to
provide an architectural model for distributed process
measuring and control systems, primarily in factory
automation. The IEC 61499 model is based on the concept
of function block (FB) that is a capsule of intellectual
property (IP) captured by means of state machines and
algorithms. Activated by an input event the encapsulated
process evolves through several states and emits events,
passed then to other blocks according to the event
connections. An application is defined in IEC 61499 as a
network of function blocks connected via event and data
connection arcs.

 The model of IEC 61499 better suits the needs of
distributed automation systems than other, more universal
models, for example Unified Modelling Language (UML),
which is widely used to model various classes of computer
applications – from embedded networking systems to
business applications. There are few features giving
advantage to IEC 61499 in industrial automation
applications as compared to UML. First, the scope of IEC
61499 is much narrower. While UML is a very broad
design framework, the IEC61499 is a lean executable
architecture for distributed automation systems. On the
other hand, IEC 61499 incorporated many relevant ideas
from UML. In particular it combines in one the dataflow
model, the component model, and the deployment model.
Ideally, the IEC 61499 was meant to provide a complete
and unambiguous semantics for any distributed application.

In the reality, however, many semantic loopholes of
IEC 61499 have been revealed and reported, e.g. in [2, 3,
4]. Due to these loopholes the actual semantics of a

function block application is not obvious and requires
investigation through its representation in terms of more
traditional semantic description mechanisms. The
semantics shall unambiguously define the sequence of
function block activation for any input from the
environment.

So far there have been different semantic ideas tried
in research implementations. The NPMTR model (“Non-
Preemptive Multi-Threaded Resource”) is implemented in
FBDK/FBRT [10]. Sequential semantics was discussed in
[2, 5, 7], and was implemented in run-time platforms
μCrons and FUBER respectively. The model used in the
Archimedes run-time environment [8] is different from
NPTMR in several features, for example, allowing
independent event queues for each function block.
Semantics based on PLC-like scan of inputs followed by
subsequent re-evaluation of FB – network was developed
in [8, 9]. The essential difference of these approaches is in
the way how blocks in the network are activated which
depends on the way of passing event signals between
functional blocks.

The execution models mentioned above were never
described in any formal way. On the other hand, formal
models proposed in [11, 12, 13, 14] largely aimed at
formal verification of function block-based applications
rather than at the function block execution. All those
works were using some existing formalisms for defining
the function block semantics. However, referring to other
formalisms brings all sorts of overheads, from
implementation to understanding issues.

A common and comprehensive execution model is
crucial for industrial adoption of IEC61499. The issue
however is quite complex. In 2006 o3neida
(www.oooneida.org) has started the development activity
[15] aiming at a compliance profile - a document

2 EURASIP Journal of Embedded Systems

extending the standard by defining such a model. The
process is ongoing, and there are already a few papers
published, providing ‘bits and pieces’ of the future model,
for example [7].

The goal of this paper is to propose a “stand alone”
way of describing syntax of such a model using the
standard notation of the set theory, and its semantics using
the state-transition approach. The paper assembles together
elements of such a model, partially presented in [19] and
fills some gaps between them. The main application area of
the introduced syntactic and semantic models is the
development of efficient execution platforms for function
blocks. The model, proposed in this paper does not
comprehensively cover all the issues of IEC61499
execution semantics. However, it is rather intended to be
used as a description means of such a comprehensive
model. Indeed, one cannot define formal rules of function
block execution unless all the artefacts of the architecture
are defined using mathematical notation.

The paper also illustrates one possible way of using the
proposed description language for defining basic block
semantic. Particular issues considered in this paper are:
• Implementation of event-data associations in composite

function blocks, and
• Transition from hierarchical FB networks to a flat FB

network.
The paper is structured in the following way. In Section 2
we briefly discuss the main features of the IEC61499
architecture providing simple examples, and in Section 3
some challenges for the execution semantic of IEC61499
are listed for basic and composite function blocks
respectively. In Section 4 we introduce basic notation for
the types used in definition of function blocks-based
applications. Section 5 presents formal model notation for
function block networks. In Section 6 the problem of
generating system of FB instances is addressed. Section 7
presents general remarks on the function block model, and
Section 8 provides semantic model of function block
interfaces. Application of this model to flattening of
hierarchical FB networks is presented in Section 9. Section
10 presents a more detailed semantic model of basic
function block functioning. The paper is concluded with an
outlook of problems and future work plans.

2 FUNCTION BLOCKS

The IEC61499 architecture is based on several pillars, the
most important of which is the concept of a function block.
The concept is analogous to the ideas of component, such
as software component from software engineering and IP
capsule used in hardware design and embedded systems.
IEC61499 is a high level architecture not relying on a
particular programming language, operating systems, etc.
The same time it is precise enough to capture the desired
function unambiguously. The architecture provides the
following main features:

2.1 Component with event and data interfaces

The original desire of the IEC61499 developers was to
encapsulate the behavior inside a function block with clear
interfaces between the block and its environment. The idea
is illustrated in Figure 1 (left side) on example of a function

block type X2Y2_ST computing on request OUT=X2-Y2.
Interface of the block consists of event input REQ, data
inputs X and Y, event output CNF, and data output OUT.

Figure 1. A basic function block type description: interface,
ECC and algorithm REQ.

Note the vertical lines, one connecting REQ with X
and Y, and the other connecting CNF and OUT. These
lines represent association of events and data. The
meaning of the association is: only those data associated
with a certain event will be updated when the event
arrives.

2.2 A state machine to define the component’s logic

State machine is a simple visual yet mathematically
rigorous way of capturing behavior. It is widely used in
computer applications. In basic function blocks of
IEC61499 a state machine (called Execution Control
Chart, ECC for short) defines the reaction of the block on
input events in a given state. The reaction can consist in
execution of algorithms computing some values as
functions of input and internal variable, followed by
emitting of one or several output events. In Figure 1 the
ECC and algorithm are shown in the right side. State REQ
has one associated action that consists of an algorithm
REQ and emitting of output event CNF afterwards. The
algorithm computes OUT:= X2-Y2.

2.3 Model of a distributed system

Networks of function blocks are used in IEC61499 as the
main enabler of distributed systems modeling.

Figure 2. Implementing X2-Y2 as a network of function blocks.

An example is given in Figure 2. Here the same X2-Y2
function is implemented as a network of three function
blocks, doing addition, subtraction and multiplication.
This network can be encapsulated in a composite function
block with the same interface as X2Y2_ST from Figure 1.

The network could also be executed in a distributed
way. The IEC61499 architecture implies two stage design
process supported by the corresponding artifacts of the
architecture: applications and system configurations. An
application is a network of function block instances
interconnected by event and data links. It completely
captures the desired functionality but does not include any
knowledge of the devices and their interconnections.
Potentially it can be mapped to many possible
configurations of devices. A system configuration adds
these fine details, representing the full picture of devices,

V. Dubinin and V. Vyatkin 3

connected by networks and with function blocks allocated
to them.

3 CHALLENGES OF FUNCTION BLOCKS EXECUTION

3.1 Basic function blocks

The Standard [1] (Section 4.5.3) defines the execution of a
basic function block as a sequence of eight (internal) events
t1-t8 as follows:
t1: Relevant input variable values (i.e., those associated with the event

input by the WITH qualifier defined in 5.2.12) are made available.
t2: The event at the event input occurs.
t3: The execution control function notifies the resource scheduling

function to schedule an algorithm for execution.
t4: Algorithm execution begins.
t5: The algorithm completes the establishment of values for the output

variables associated with the event output by the WITH qualifier
defined in 5.2.1.2.

t6: The resource scheduling function is notified that algorithm
execution has ended.

t7: The scheduling function invokes the execution control function.
t8: The execution control function signals an event at the event output.
As pointed out in several publications, for example in [3,
7], the semantic definitions of the IEC 61499 standard are
not sufficient for creating an execution model of function
block. Thus, for basic function blocks the following issues
(among many others) are defined quite ambiguously:
• How long an input event lives and how many transitions

may trigger with a single input event? Options are: it can
be used in a single transition and if unused clears; it can
be stored until used at least once, etc.

• When output events are issued? Options are: after each
action is completed, after all actions in the state are
completed, after the function block run is completed.

The latter issue is connected to the scheduling problem
within a network of function blocks. Indeed, the ECC of
one block can continue its evaluation, while another block
shall be activated by an event issued in one of previous
states. Some problems related to networks of function
blocks are listed in the next Section and addressed further
in the paper.

3.2 Associations of events and data in composite FBs

As it was mentioned in Section 2, data inputs and outputs of
function blocks must be associated with their event inputs
and outputs. However, interconnection between blocks may
not follow these associations. An example is shown in
Figure 3. The event dispatching mechanism has to take in
account this case. For example, the FBDK/FBRT
implementation [10] does not care about data sampling at
all.

Figure 3. “Cross” connection of event and data.

3.3 Hierarchy of composite function blocks

Composite function blocks can be nested one to another,
thus forming hierarchical structures. To define a
consistent execution model of function block networks
the hierarchical structures can be reduced to the “flat”
ones consisting of only basic function blocks. This issue
will be addressed in Section 9.

4 BASIC FUNCTION BLOCK TYPE DEFINITION

In this section we present the mathematical notation of
function blocks. It is not intended to be known by
function block users, but without such a notation it would
be impossible to define rigorously execution models of
function blocks. We start with some definitions describing
basic function blocks and networks of function blocks.

A Basic Function Block type is determined by a
tuple (Interface, ECC, Alg, V), where Interface and ECC
– Execution Control Chart are self explanatory.
Interface is defined by tuple (EI0, EO0, VI0, VO0, IW,OW),
where:
EI0 = {ei1

0,ei2
0,…,eik0

0} is a set of event inputs;
EO0 = {eo1

0,eoi2
0,…,eol0

0} is a set of event outputs;
VI0 = {vi1

0,vi2
0,…,vim0

0} is a set of data inputs;
VO0 = {vo1

0,vo2
0,…,von0

0} is a set of data outputs;
IW⊆ EI0 × VI0 is a set of WITH- (event-data) associations
for inputs;
OW⊆ EO0 ×VO0 is a set of WITH-associations for outputs.

For correctness of an interface the following
conditions have to be fulfilled: VI0 \ Pr2 IW= ∅ and
VO0 \ Pr2 OW= ∅ (where Pr2 C ⊆ A×B is second
projection, i.e. subset of B containing all y such that
(x,y)∈ C), meaning that each data input and output has to
be associated with at least one event.
Alg={alg1, alg2,…, algf} is a set of algorithm identifiers,
can be Alg = ∅; V={v1,v2,…,vp} – set of internal
variables, can be V = ∅;

For each algorithm identifier algi there exist a
function falgi, determining the algorithm’s behaviour:

0 0 0

: () () () () ()i
v V v Vvi VI vo VO vo VO

falg Dom vi Dom vo Dom v Dom vo Dom v
∈ ∈∈ ∈ ∈

× × → ×∏ ∏ ∏ ∏ ∏
 As one sees from the definition, algorithms can
change only internal and output variables of the function
block.
 For ECC definition we will use the following notation.
The set of all functions mapping set A to set B will be
denoted as [A→B]. In unambiguous cases some indices of
set element can be omitted. Dom(x) denotes the set of
values of a variable x.

The ECC diagram is determined as a tuple
ECC=(ECState, ECTran, ECTCond, ECAction, PriorT,
s0), where ECState={s0,s1,s2,…,sr} is a set of EC states;
ECTran⊆ECState×ECState is a set of EC transitions;

0 0

0

: [() ()

() () { , }]
ei EI vi VI

v Vvo VO

ECTCond ECTran Dom ei Dom vi

Dom vo Dom v true false
∈ ∈

∈∈

→ × ×

× →

∏ ∏

∏ ∏

is a function, assigning the EC transitions conditions in
the form of Boolean formulas defined over domain of
input, output and internal variables, and input event
variables According to the standard, the EC condition can
contain no more than one EI variable.

4 EURASIP Journal of Embedded Systems

0[() { , }]ei EI Dom ei true false∀ ∈ = - all EI variables are
Boolean variables;
ECAction: ECState\{s0}→ECA* is a function, assigning EC
actions to EC states, where ECA= Alg×EO0∪ Alg∪ EO0 is
a set of syntactically correct EC actions. The symbol * is
here used to denote a set of all possible chains built using a
base set. Each EC state can have zero or more EC actions.
Each action may include an algorithm and one output event
reference, or just either of them. According to the standard
the order of actions’ execution is determined by the location
of actions in the chain defined by function ECAction;
PriorT: ECTran → {1, 2, …} is an enumerating function
assigning priorities to EC transitions. According to the IEC
61499 standard the transition’s priority is defined by the
location of the ECC transition in FB type definition. The
nearer an ECC transition to the top of the list of ECC
transitions in FB definition, the larger its priority;
s0∈State is the initial state, which is not assigned any
actions.

It is said an ECC is in canonical form if each state has
no more than one associated action. An arbitrary ECC can
be easily transformed to the canonical form substituting
states with several associated actions by chains of states
with “always TRUE” transitions between them.
5 FUNCTION BLOCK NETWORKS

Types of a composite function block and subapplication are
defined as tuple:
(Interface, FBI, FBIType, EventConn, DataConn), where
Interface is an interface as defined above. The specific part
of subapplication interface is the absence of WITH-
associations, i.e. IW=OW=∅;
FBI ={fbi1, fbi2,…, fbin} is a set of reference instances
of other function block types. Each instance fbij∈ FBI is
determined by a tuple of following four sets:
EIj ={ei1

j,ei2
j,…,eikj

j} is a set of event inputs;
EOj ={eo1

j,eoi2
j…,eolj

j} is a set of event outputs;
VIj ={vi1,

jvi2
j…,vimj

j} is a set of data inputs;
VOj ={vo1

j,vo2
j…,vonj

j }is a set of data outputs.
FBIType: FBI→ FBType is a function assigning type to
reference instance. Interface of a function block instance is
identical to the interface of its respective function block
type. It should be noted that sometimes in process of top-
down design a function block instance can be assigned to a
non existing function block type.
More specifically, the value domain of FBIType for a
composite function block type is the set BFBType ∪
CFBType ∪ SIFBType. For a subapplication type this set is
appended by the set SubApplType, as a subapplication can
be mapped onto several resources while a composite
function block resides in one.

U U
n1j n1j

0j0j EOEIEIEOEventConn
, ,

)()(
∈ ∈

∪×∪⊆ is a set of

event connections;
U UU UU

n1j

0

n1j

j

n1j

jj0 VOVIVOVIVIDataConn
, ,,

))(()(
∈ ∈∈

××⊆

is a set of data connections;
For the data connections the following condition must hold:

)]()[(),(),,(qputDataConnuqtp =→=∈∀ that says

no more than one connection can be attached to one data
input. There is no such constraint for event connections as
an implicit use of E_SPLIT and E_MERGE function
blocks is presumed.

6 TRANSITION FROM A SYSTEM OF TYPES TO A SYSTEM OF

INSTANCES

Networks of function blocks consist of instances referring
to predefined function block types. To define execution
semantic of a network we need to get rid of the types and
deal only with instances. Transition from a system of
types to the system of instances is done by substitution of
the corresponding reference instances by the
corresponding real object instances. Real instances are
obtained by cloning of the type description corresponding
to the reference object.

Syntactically an instance is a copy of its
corresponding type. Hence we will use the notation
introduced for the corresponding types. The hierarchy of
instances can be determined by the corresponding
hierarchy tree denoted by the following tuple:
(F, Aggr, FBITypeA, FBIdA), where:
F is a set of (real) instances of FBs and subapplications;
Agg r⊆ F×F is a relation of aggregation;
FBITypeA: F→FBType is a function associating real
instances with FB types;
FBIdA: F→Id is a function marking the tree nodes by
unique identifiers from the Id domain.
The recursive algorithm expand(f) instantiates all
reference instances included in a real instance f and builds
in this way a sub-system of instances and the
corresponding hierarchy sub-tree.
procedure expand(f)
 if KindOf(f)∈{cfb,subappl,appl} then
 do forall fbi∈FBIA(FBITypeA(f))
 newF=InstanceOf(FBITypeA(f))
 Substitute fbi by newF
 F=F ∪ {newF}
 Aggr=Aggr ∪ {(f, newF)}
 FBITypeA= FBITypeA ∪ {(newF, FBIType(fbi)}
 FBIdA=FBIdA ∪ {(newF, NewId())}
 expand(newF)
 end_forall
 end_if
end_procedure

Figure 4. Recursive algorithm expand(f)

The algorithm is using the following auxiliary functions:
InstanceOf forms an instance of a given type. The
function KindOf determines the kind of the type for given
instance (bfb – basic FB, cfb - composite FB, subappl –
subapplication, appl – application), the function FBIA
determines the set of reference instances for a given type.
The function NewId creates new unique identifier for a
created real instance.

Substitution of a reference instance by the real
instance is performed in three steps:
1) add real instance;
2) embed real instance;
3) remove reference instance;

 The embedding of real instance is done be re-wiring
of all connections from the reference instance to the real

V. Dubinin and V. Vyatkin 5

instance. Certainly, the interfaces of the reference instance
and of the real instance have to be identical.
Construction of the tree of instances starts from some initial
type fbt0:

f0=InstanceOf(fbt0); F={f0}; Aggr=∅;
FBITypeA={(f0, fbt0)};FBId={(f0, NewId())};
expand(f0)

It should be noted that transition from a system of types to
the system of instances can be sufficiently described by
means of graph grammars [17].

7 SOME ASSUMPTIONS ON THE FUNCTION BLOCK SEMANTICS

In the following we present elements of a function block
semantic model. The formal model belongs to the state-
transition class models. This class of models includes finite
automata, formal grammars, Petri nets, etc.

The model is rich enough to represent the behavior of a
real function block system. However we use some
abstractions simplifying the model analysis, in particular
reducing model’s state space. Main model’s features are as
follows:
1) A model is FB instance rather than FB type oriented.
2) A model is flat, and the ECCs of basic function blocks

are in canonical form. Thus, main elements of the model
are basic FBs and data valves (the latter mechanism will
be introduced in Section 9).

3) Timing aspects of are not considered, the model is
purely discrete state.

4) There is ЕСС interpreter (called “ECC operation state
machine” in the standard [1], Section 5.2.2) that can be
in either idle or busy state.

5) Evens and data are reliably delivered from block to
block without losses.

6) Model transitions are implemented as transactions. A
transaction is an indivisible action. All operations in a
single transaction are performed simultaneously
accordingly operation order. As a result, a signal from
an event output of function block is delivered to all
recipients simultaneously.

The model uses several implementation artefacts not
directly mentioned in the standard, for example: data
buffers and data valves.

8 SEMANTIC MODEL OF INTERFACES

We are using the following semantic interpretation of
interface elements:
1) For each event input of a basic function block there is a

corresponding event variable.
2) For each data input of basic or composite FB there is a

variable of the corresponding type;
3) For each data output of a basic function block there is

an output variable and associated data buffer.
4) For each data output of composite block there is data

buffer;
5) No variables are introduced for data inputs and outputs

of subapplications;
6) Each constant at an input of a FB is implemented by a

data buffer;
In our interpretation, data buffers (of unit capacity)

serve for storing the data that emitted by function blocks
using the associated event output.

For representation of semantic models of interfaces
we suggest the following graphical notation (Figure 5, a).
The data buffers of size 1 are represented by circles
standing next to the corresponding outputs and inputs. A
black dot shown inside the circle related to event input
variables indicates the incoming signal. The circles
corresponding to input and output variables contain
values of the variables.

One can note that the values of buffered data are
included in the state of their respective function blocks or
data valves instead of being directly included to the global
network state. This is justified by the fact that a data
buffer is associated with an output variable of function
blocks.

a) b)

Figure 5. a) Semantic model of function block’s interface and of a
composite function block; and b) Buffers on the data connections.

Figure 5, b shows the solution of the problem from Figure
3. The solution uses “buffer” variables for each data
connection. The working is as follows. At the event
output EO of FB1 the output variable DO of FB1 is
copied to the buffer B1. At the event output EO of FB2
buffer B1 is copied to DI of FB3 and FB3 starts.

9 FLATTENING OF HIERARCHICAL FUNCTION BLOCK

APPLICATIONS

The considered networks are assumed to be “flat”, that is
not to include hierarchically other composite function
blocks. Hierarchical structures of function blocks have to
be transformed to the “flat” ones. For that the composite
blocks have to be substituted by their content appended
by data valves implementing data transfer through their
interfaces.

The idea of data valves is explained as follows.
Composite function blocks consist of a network of
function blocks. However its inputs and outputs are not
directly passed to the members of the network. They are
subject to the “data sampling on event” rule. When
translation of hierarchical composite blocks to a flat
network is done, the data cannot just flow between the
blocks of different hierarchical levels without taking into
account the buffers. Illustration is provided in Figure 6.
One may think that the nested network of blocks in the
upper part of Figure 6 is equivalent to the network
obtained by ‘dissolving’ boundaries of the blocks FB6
and FB7. This is not true and the reason is explained as
follows. As illustrated in Figure 7, the composite function
blocks FB6 and FB7 have event/data associations that
determine sampling of the data while they are passed
from block to block.
The event/data association, that can be arbitrary and not
following the associations within the composite block,

6 EURASIP Journal of Embedded Systems

need special treatment when borders of the composite block
are dissolved in the process of flattening.

Figure 6. Nested composite blocks cannot be “flattened”
without taking into account inputs and outputs associations

Figure 7. Interconnection between composite function blocks FB6 and

FB7 with event-data associations shown.

For dealing with this problem we use the concept of data
valves with buffers was, illustrated in Figure 8, a) and b)
respectively.

a) b)
Figure 8. a) Input is copied to the output of the valve when the event
input arrives; b) compact notation of data valves.

A data valve is functional element having one input and one
output event and more than zero data inputs and outputs.
Number of data inputs has to be equal to the number of data
outputs. The syntactic model of subapplication’s interface
can be taken to represent the data valves.

Figure 9. The function block obtained as a result of one step of

‘flattening’ with data valves

Each outgoing and incoming event input (with their
respective data associations) of a composite function block
is resulted in a data valve. For the example presented in
Figure 6 the result of one step of “flattening” with data
valves implementing the “border issues” is presented in

Figure 9. We do not represent the valves in the function
block notation as we regard them to be a step towards
lower level implementation of function blocks.

10 SEMANTIC FUNCTION BLOCK MODEL

10.1 Common information

A state of a flat function block network is determined by a
tuple S=(S1,S2,…,Sn), where Si – is the state of i-th (basic)
FB or data valve. As can be derived from Section V, the
state of the i-th FB is determined as Si=(csi, osmi, ZEIi,
ZVIi ,ZVOi, ZVVi, ZBUFi), where csi is a current state of
ECC diagram, osmi is a current state of ECC operation
state machine (ECC interpreter), ZEIi – is a function
indicating values of event inputs, ZVIi, ZVOi and ZVVi –
functions of values of input, output and internal variables
correspondingly, ZBUFi- function of data buffers’ values
(of unit capacity). The state of the j-th data valve is
determined only by the function ZBUFj.

One can note that the values of buffered data are
included in the state of their respective function blocks or
data valves instead of being directly included to the global
network state. This is justified by the fact that a data
buffer is associated with an output variable of function
blocks.

In the following part of this Section we make some
assumptions about the execution semantic of function
blocks. We are not specifically considering distributed
configurations. Thus, modelling of resources and devices
is beyond the scope of this paper.

For the time being, we limit our consideration to
"closed" networks of function blocks that do not receive
events from the environment through the service interface
function blocks (SIFB). Later on we show how the
proposed model can be extended to cover the case of
execution initiation from the environment.

This interpretation of the function block semantic is
quite consistent and relies on the assumptions that a)
function block is activated by an external event; b)
execution of every algorithm is "short".

Although, real interpreters of function blocks may
have slightly different behaviour, the assumptions made
above considerably reduce the number of intermediate
states and determine the details of a legitimate
implementation. Execution of a network of function
blocks is activated by the start event that is issued only
once. The start event leads to the action op6 as described
below.

So, we can assume that a FB network transitions
from state to state as a result of model transitions:

S0[tp→S1[tq→… [tm→Sn
Note that the proposed FB model can be combined

with another state transition models such as Petri nets,
NCES [2], etc. For this purpose it would be necessary to
develop an interface for two kinds of models and rules of
its functioning.

10.2 Types of model transitions

In the context of this paper, an ЕСC transition is said to
be primary if its condition includes an event input (EI)
variable. Otherwise, if it includes only a guard condition,
it is said to be secondary.

V. Dubinin and V. Vyatkin 7

The proposed model is a state-transition model. The
model has five types of its state transitions (of the model,
not of a function block’s ECC!):
tran1 – firing of a primary ЕС transition;
tran2 – firing of a secondary EC transition;
tran3 – special processing of input event in an unreceptive

state of FB;
tran4 – transition of the ЕСС interpreter to initial (idle)

state;
tran5 – working of a data valve;

The basic transitions determining the functioning of
function block systems are the transitions of types 1 and 2.
Transitions of the first type correspond to the almost
complete cycle of ECC interpreter work (except the
interpreter transition to the initial state s0), namely the
chain s0→t1→s1→t3→s2→t4→s1 (in terms of the ECC
operation state machine in Section 5.2.2). Transitions of the
second type represent the cycle s1→t3→s2→t4→s1.
Transitions of the third type correspond to the reaction on
an incoming event and the corresponding sampling of the
associated data variable in case when the ECC interpreter is
idle, but the arrived event won't force any ECC transition.
This type of transitions corresponds to the chain
s0→t1→s1→t2→s0. Transition of the fourth type models
transition of the ECC interpreter from state s1 to the initial
state s0. Transition of the type tran5 models data sampling
in a composite function block.

10.3 Transition enabling rules

The transition enabling rules are summarized in Table 1.

Type of
transition

ECC
interpreter

state

Other conditions Priority

tran1 Idle 1) The source state of the EC
transition is the current state of
the (parent) function block;

2) The EC transition condition
evaluates to TRUE;

3 tran2 Busy

tran3 Idle There is a signal at the event
input (having WITH
association(-s))

4

tran4 busy There are no enabled EC
transitions

2

tran5 n/a This transition is enabled if
there is a signal at the event
input of the data valve

1
(highest)

Table 1. Conditions enabling the model transitions

10.4 Compatibility and mutual exclusion of model
transitions

Within the model of one function block some transitions are
compatible (can be enabled simultaneously) and some are
mutually exclusive. Based on the introduced above
transition enabling rules, we can build the relation of their
compatibility/exclusion, presented in Table 2.

 tran1 tran2 tran3 tran4
tran1 + - + -
tran2 - + -
tran3 + - + -
tran4 - - - -

Table 2. Table of model transitions’ compatibility.

In Table 2 the "+" symbol designates that the transitions
are compatible, while "-" shows that they are mutually
exclusive. Thus, transitions of the tran2 type are
incompatible with tran1 and tran3 as they occur in
mutually excluding states of the ECC interpreter. The
tran4 excludes any other transition by definition, and
since data sampling in the "busy" interpreter state is
impossible.

10.5 Firing transition selection rules

Firing transition selection rules define the order of
enabled transition firing. Varying the firing transition
selection rules it is possible to obtain different execute
semantics of FBs. In our trial implementation a static
priority discipline of active objects’ selection from the set
of enabled ones was used. The hierarchy of priority levels
is as follows. On the highest level is the data valve
execution that has a higher priority (1) than function block
since it is assumed that data valve's execution is by far
shorter than a function block's execution.
At the function block level we introduce the following
sublevels (in the priority descending order): 2) tran4; 3)
tran1 and tran2; 4) tran3.
A function block is said to be enabled if it has at least one
enabled transition. The selection of a next transition to
fire will be done according to a particular semantic model.
For example, the sequential semantic [7] implies that next
current function block or data valve will be selected from
the corresponding ‘waiting list’. Within the current FB, a
transition is selected with the highest type priority and the
highest priority within the type.

It should be noted that the priority of the third type
transitions is determined by the priority of the
corresponding EI-variable that, in turn, is determined by
the location in the FB’s textual representation (the earlier
appears – the higher priority).

For implementation of complex scheduling strategies
we propose to use dynamically modified multi-level
priorities. In this case the model transition priority is a
tuple (A, B, C), where A is the transition type priority, B is
a FB priority, and C is an EC transition priority inside the
FB. For each model transition type a priority re-
calculation rule must be defined.

10.6 Transition firing rules

The transition firing rules define the operations executed
at the transitions. We define the following operations
performed at the execution of function block systems.
op1 – Input data sampling resulting in a transfer of the
data values to the corresponding input variables
associated with the current event input by WITH
declarations. In case of data valves the data is assigned to
the external data buffer associated with the data valve.
op2 – Reset of all EI-variables of the current FB or data
valve. This operation can be called “clearing the event
channel” that eliminates the “event latching”;
op3 - ЕСС interpreter jumps to the “busy” state;
op4 – Change of the current ECC state;

8 EURASIP Journal of Embedded Systems

op5 – Algorithms’ execution resulting in the modification
of output and internal variables;
op6 – Transfer of signal(s) from event outputs of the
current FB resulting in setting of EI-variables of the FBs
and data valves connected to those event outputs by event
connections; prior to that event channels of those FBs are
getting cleared to avoid “event latching”.
op7 – Transfer of output variable values (associated with
currently issued output events) to the external data buffers.
op8 – Transition of the ECC interpreter to the “idle” state.

In Table 3 all model transitions are represented as
sequences of some of the above defined operations (if the
operation opj, is a possible part of trani then the
corresponding table cell (i,j) is shaded.

 op1 op2 op3 op4 op5 op6 op7 op8

tran1
tran2
tran3
tran4
tran5

Table 3. The model transition operation sequences;

Each action associated with a model transition is performed
as a transaction, i.e. as an atomic non-interrupted action
consisting in a sequence of operations executed in the pre-
defined order.

In addition, to reduce the number of non-essential
intermediate states it can be accepted that:
1) Transition of type 4 can be executed in a chain with
transitions of type 1 or 2 as a single transaction;
2) Operation op6 can be extended by including in it
transmission of output signal from the FB-source to all FB-
receivers through a network of data valves (if any)
including all data sampling operations in all involved data
valves.

11 CONCLUSIONS

The model described in this paper, including the flattening
mechanism, has been implemented in Prolog as described
in [18]. The paper contributes to the formalization of
IEC61499 performed by the workgroup [15] by providing:
• Formal description mechanism of IEC 61499 artifacts;
• Semantic model of function block interfaces;
• Solution of the flattening problem that leads to a simple

model of function block networks yet completely
complying with the semantic of function block interfaces;

• A sample model of a formal semantic for basic function
block;

Once the compliance profile anticipated as an outcome of
the workgroup [15] will be completed, the model of basic
FB developed in this paper will be easily adjusted to it.

REFERENCES

1. Function blocks for industrial-process measurement and
control systems - Part 1: Architecture, International
Electrotechnical Commission, Geneva, 2005

2. Zoitl A., Grabmair G., Auinger F., and Sunder C. Executing
real-time constrained control applications modelled in IEC
61499 with respect to dynamic reconfiguration, 3rd IEEE
Conference on Industrial Informatics, Proc., Perth, 2005

3. C. Sünder, A. Zoitl, J. H. Christensen, V. Vyatkin, R.
Brennan, A. Valentini, L. Ferrarini, K. Thramboulidis, T.
Strasser, J. L. Martinez-Lastra, and F. Auinger: Usability
and Interoperability of IEC 61499 based distributed
automation systems, 4th IEEE Conference on Industrial
Informatics (INDIN 2006), Proceedings, Singapore, 2006

4. L. Ferrarini and C. Veber, Implementation approaches for
the execution model of IEC 61499 applications, 2nd IEEE
Conference on Industrial Informatics, Proc., Berlin, 2004

5. G. Čengić, O. Ljungkrantz, and K. Ǻkesson, “Formal
Modeling of Function Block Applications Running in IEC
61499 Execution Runtime,” in 11th IEEE International
Conference on Emerging Technologies and Factory
Automation (ETFA), Prague, September 2006

6. G. Doukas, K. Thramboulidis, “A Real-Time Linux
Execution Environment for Function-Block Based
Distributed Control Applica-tions”,3rd IEEE International
Conference on Industrial Informatics, Perth, Australia,
August 2005

7. V. Vyatkin, V. Dubinin, Execution Model of IEC61499
Function Blocks based on Sequential Hypothesis, paper
draft, http://www.ece.auckland.ac.nz/~vyatkin/o3fb/vd_seqsem.pdf

8. L. Ferrarini, M. Romanò, and C. Veber, Automatic
Generation of AWL Code from IEC 61499 Applications, 4th
IEEE Conference on Industrial Informatics, Proc.,
Singapore, 2006

9. J. LM Lastra, L. Godinho, A. Lobov, R. Tuokko, An IEC
61499 Application Generator for Scan-Based Industrial
Controllers, 3rd IEEE Conference on Industrial Informatics,
Proceedings, Perth, Australia, August 2005

10. Function Block Development Kit (FBDK),
http://www.holobloc.com/doc/fbdk/index.htm

11. Vyatkin V., Hanisch H.-M. A modelling approach for
verification of IEC1499 function blocks using Net
Condition/Event Systems, Proc. IEEE conference on
Emerging Technologies in Factory Automation (ETFA'99),
Barcelona, Spain, 1999, pp. 261—270

12. H. Wurmus, B. Wagner, IEC 61499 konforme Beschreibung
verteilter Steuerungen mit Petri-Netzen, Conference
Verteilte Automatisierung,, Proceedings, Magdeburg, 2000

13. Stanica P., Gueguen H. Using Timed Automata for the
Verification of IEC 61499 Applications, IFAC Workshop on
Discrete Event Systems (WODES’04), Reims, France, 2004

14. Faure J.M., Lesage J.J., Schnakenbourg C., Towards IEC
61499 function blocks diagrams verification, IEEE Int.
Conference on Systems, Man and Cybernetics (SMC02),
October 6-9, Hammamet, Tunisia, 2002

15. o3neida Workgroup on Execution Semantic of IEC61499:
http://www.oooneida.org/standards_development_Compliance_Prof
ile.html

16. Vyatkin V., IEC 61499 Function Blocks for Embedded and
Distributed Control Systems Design, 297 p., ISA, 2007

17. Handbook of Graph Grammars and Computing by Graph
Transformation, World Scientific Publishing, 1997 - 99, vol.
1 (ed. Grzegorz Rozenberg)

18. V. Dubinin, V. Vyatkin, Towards A Formal Semantics Of
IEC 61499 Function Blocks, 4th IEEE Conference on
Industrial Informatics (INDIN’2006), Singapore, 2006

19. V. Dubinin, V. Vyatkin, “Using Prolog For Modelling And
Verification Of IEC 61499 Function Blocks and
Applications”, 11th IEEE Conference On Emerging
Technologies and Factory Automation (ETFA 2006),
Proceedings, Prague, 2006

20. Vyatkin V.: Modelling and execution of reactive function
block systems with Condition/Event nets, 4th IEEE
Conference on Industrial Informatics (INDIN 2006),
Proceedings, Singapore, 2006

