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1 INTRODUCTION  

In this paper we discuss some challenges of computational 
implementation of systems composed according to the IEC 
61499 standard [1]. The IEC61499 standard is intended to 
provide an architectural model for distributed process 
measuring and control systems, primarily in factory 
automation. The IEC 61499 model is based on the concept 
of function block (FB) that is a capsule of intellectual 
property (IP) captured by means of state machines and 
algorithms. Activated by an input event the encapsulated 
process evolves through several states and emits events, 
passed then to other blocks according to the event 
connections. An application is defined in IEC 61499 as a 
network of function blocks connected via event and data 
connection arcs.  

 The model of IEC 61499 better suits the needs of 
distributed automation systems than other, more universal 
models, for example Unified Modelling Language (UML),  
which is widely used to model various classes of computer 
applications – from embedded networking systems to 
business applications. There are few features giving 
advantage to IEC 61499 in industrial automation 
applications as compared to UML.  First, the scope of IEC 
61499 is much narrower. While UML is a very broad 
design framework, the IEC61499 is a lean executable 
architecture for distributed automation systems. On the 
other hand, IEC 61499 incorporated many relevant ideas 
from UML. In particular it combines in one the dataflow 
model, the component model, and the deployment model. 
Ideally, the IEC 61499 was meant to provide a complete 
and unambiguous semantics for any distributed application.  

In the reality, however, many semantic loopholes of 
IEC 61499 have been revealed and reported, e.g. in [2, 3, 
4]. Due to these loopholes the actual semantics of a 

function block application is not obvious and requires 
investigation through its representation in terms of more 
traditional semantic description mechanisms. The 
semantics shall unambiguously define the sequence of 
function block activation for any input from the 
environment.  

So far there have been different semantic ideas tried 
in research implementations. The NPMTR model (“Non-
Preemptive Multi-Threaded Resource”) is implemented in 
FBDK/FBRT [10]. Sequential semantics was discussed in 
[2, 5, 7], and was implemented in run-time platforms 
μCrons and FUBER respectively. The model used in the 
Archimedes run-time environment [8] is different from 
NPTMR in several features, for example, allowing 
independent event queues for each function block. 
Semantics based on PLC-like scan of inputs followed by 
subsequent re-evaluation of FB – network was developed 
in [8, 9]. The essential difference of these approaches is in 
the way how blocks in the network are activated which 
depends on the way of passing event signals between 
functional blocks. 

The execution models mentioned above were never 
described in any formal way. On the other hand, formal 
models proposed in [11, 12, 13, 14 ] largely aimed at 
formal verification of function block-based applications 
rather than at the function block execution. All those 
works were using some existing formalisms for defining 
the function block semantics. However, referring to other 
formalisms brings all sorts of overheads, from 
implementation to understanding issues. 

A common and comprehensive execution model is 
crucial for industrial adoption of IEC61499. The issue 
however is quite complex. In 2006 o3neida 
(www.oooneida.org) has started the development activity 
[15] aiming at a compliance profile - a document 
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extending the standard by defining such a model. The 
process is ongoing, and there are already a few papers 
published, providing ‘bits and pieces’ of the future model, 
for example [7].  

The goal of this paper is to propose a “stand alone” 
way of describing syntax of such a model using the 
standard notation of the set theory, and its semantics using 
the state-transition approach. The paper assembles together 
elements of such a model, partially presented in [19] and 
fills some gaps between them. The main application area of 
the introduced syntactic and semantic models is the 
development of efficient execution platforms for function 
blocks. The model, proposed in this paper does not 
comprehensively cover all the issues of IEC61499 
execution semantics. However, it is rather intended to be 
used as a description means of such a comprehensive 
model. Indeed, one cannot define formal rules of function 
block execution unless all the artefacts of the architecture 
are defined using mathematical notation.  

The paper also illustrates one possible way of using the 
proposed description language for defining basic block 
semantic. Particular issues considered in this paper are:  
• Implementation of event-data associations in composite 

function blocks, and 
• Transition from hierarchical FB networks to a flat FB 

network.  
The paper is structured in the following way. In Section 2 
we briefly discuss the main features of the IEC61499 
architecture providing simple examples, and in Section 3 
some challenges for the execution semantic of IEC61499 
are listed for basic and composite function blocks 
respectively. In Section 4 we introduce basic notation for 
the types used in definition of function blocks-based 
applications. Section 5 presents formal model notation for 
function block networks. In Section 6 the problem of 
generating system of FB instances is addressed. Section 7 
presents general remarks on the function block model, and 
Section 8 provides semantic model of function block 
interfaces. Application of this model to flattening of 
hierarchical FB networks is presented in Section 9. Section 
10 presents a more detailed semantic model of basic 
function block functioning. The paper is concluded with an 
outlook of problems and future work plans.  

2 FUNCTION BLOCKS 

The IEC61499 architecture is based on several pillars, the 
most important of which is the concept of a function block. 
The concept is analogous to the ideas of component, such 
as software component from software engineering and IP 
capsule used in hardware design and embedded systems. 
IEC61499 is a high level architecture not relying on a 
particular programming language, operating systems, etc. 
The same time it is precise enough to capture the desired 
function unambiguously. The architecture provides the 
following main features: 

2.1 Component with event and data interfaces 

The original desire of the IEC61499 developers was to 
encapsulate the behavior inside a function block with clear 
interfaces between the block and its environment. The idea 
is illustrated in Figure 1 (left side) on example of a function 

block type X2Y2_ST computing on request OUT=X2-Y2. 
Interface of the block consists of event input REQ, data 
inputs X and Y, event output CNF, and data output OUT.  

 
Figure 1. A basic function block type description: interface, 
ECC and algorithm REQ. 

Note the vertical lines, one connecting REQ with X 
and Y, and the other connecting CNF and OUT. These 
lines represent association of events and data. The 
meaning of the association is: only those data associated 
with a certain event will be updated when the event 
arrives.  

2.2 A state machine to define the component’s logic 

State machine is a simple visual yet mathematically 
rigorous way of capturing behavior. It is widely used in 
computer applications. In basic function blocks of 
IEC61499 a state machine (called Execution Control 
Chart, ECC for short) defines the reaction of the block on 
input events in a given state. The reaction can consist in 
execution of algorithms computing some values as 
functions of input and internal variable, followed by 
emitting of one or several output events. In Figure 1 the 
ECC and algorithm are shown in the right side. State REQ 
has one associated action that consists of an algorithm 
REQ and emitting of output event CNF afterwards. The 
algorithm computes OUT:= X2-Y2. 

2.3 Model of a distributed system   

Networks of function blocks are used in IEC61499 as the 
main enabler of distributed systems modeling.   

 
Figure 2. Implementing X2-Y2 as a network of function blocks. 

An example is given in Figure 2. Here the same X2-Y2 
function is implemented as a network of three function 
blocks, doing addition, subtraction and multiplication. 
This network can be encapsulated in a composite function 
block with the same interface as X2Y2_ST from Figure 1.  

The network could also be executed in a distributed 
way. The IEC61499 architecture implies two stage design 
process supported by the corresponding artifacts of the 
architecture: applications and system configurations. An 
application is a network of function block instances 
interconnected by event and data links. It completely 
captures the desired functionality but does not include any 
knowledge of the devices and their interconnections. 
Potentially it can be mapped to many possible 
configurations of devices. A system configuration adds 
these fine details, representing the full picture of devices, 
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connected by networks and with function blocks allocated 
to them.  

3 CHALLENGES OF FUNCTION BLOCKS EXECUTION  

3.1 Basic function blocks 

The Standard [1] (Section 4.5.3) defines the execution of a 
basic function block as a sequence of eight (internal) events 
t1-t8 as follows:  
t1:  Relevant input variable values (i.e., those associated with the event 

input by the WITH qualifier defined in 5.2.12) are made available. 
t2:  The event at the event input occurs. 
t3:  The execution control function notifies the resource scheduling 

function to schedule an algorithm for execution. 
t4:  Algorithm execution begins. 
t5:  The algorithm completes the establishment of values for the output 

variables associated with the event output by the WITH qualifier 
defined in 5.2.1.2. 

t6:  The resource scheduling function is notified that algorithm 
execution has ended. 

t7:  The scheduling function invokes the execution control function. 
t8:  The execution control function signals an event at the event output. 
As pointed out in several publications, for example in [3, 
7], the semantic definitions of the IEC 61499 standard are 
not sufficient for creating an execution model of function 
block. Thus, for basic function blocks the following issues 
(among many others) are defined quite ambiguously: 
• How long an input event lives and how many transitions 

may trigger with a single input event? Options are: it can 
be used in a single transition and if unused clears; it can 
be stored until used at least once, etc. 

• When output events are issued? Options are: after each 
action is completed, after all actions in the state are 
completed, after the function block run is completed.  

The latter issue is connected to the scheduling problem 
within a network of function blocks. Indeed, the ECC of 
one block can continue its evaluation, while another block 
shall be activated by an event issued in one of previous 
states. Some problems related to networks of function 
blocks are listed in the next Section and addressed further 
in the paper. 

3.2 Associations of events and data in composite FBs 

As it was mentioned in Section 2, data inputs and outputs of 
function blocks must be associated with their event inputs 
and outputs. However, interconnection between blocks may 
not follow these associations. An example is shown in 
Figure 3. The event dispatching mechanism has to take in 
account this case. For example, the FBDK/FBRT 
implementation [10] does not care about data sampling at 
all.  

 
Figure 3. “Cross” connection of event and data. 

3.3 Hierarchy of composite function blocks  

Composite function blocks can be nested one to another, 
thus forming hierarchical structures. To define a 
consistent execution model of function block networks 
the hierarchical structures can be reduced to the “flat” 
ones consisting of only basic function blocks. This issue 
will be addressed in Section 9. 

4 BASIC FUNCTION BLOCK TYPE DEFINITION  

In this section we present the mathematical notation of 
function blocks. It is not intended to be known by 
function block users, but without such a notation it would 
be impossible to define rigorously execution models of 
function blocks. We start with some definitions describing 
basic function blocks and networks of function blocks.  

A Basic Function Block type is determined by a 
tuple (Interface, ECC, Alg, V), where Interface and ECC 
– Execution Control Chart are self explanatory.  
Interface is defined by tuple (EI0, EO0, VI0, VO0, IW,OW), 
where:  
EI0 = {ei1

0,ei2
0,…,eik0

0} is a set of event inputs; 
EO0 = {eo1

0,eoi2
0,…,eol0

0} is a set of event outputs; 
VI0  = {vi1

0,vi2
0,…,vim0

0} is a set of data inputs; 
VO0 = {vo1

0,vo2
0,…,von0

0} is a set of data outputs; 
IW⊆ EI0 × VI0 is a set of WITH- (event-data) associations 
for inputs; 
OW⊆ EO0 ×VO0 is a set of WITH-associations for outputs. 

For correctness of an interface the following 
conditions have to be fulfilled:  VI0 \ Pr2 IW= ∅ and  
VO0 \ Pr2 OW= ∅ (where Pr2 C ⊆ A×B is second 
projection, i.e. subset of B containing all y such that 
(x,y)∈ C), meaning that each data input and output has to 
be associated with at least one event. 
Alg={alg1, alg2,…, algf} is a set of algorithm identifiers, 
can be Alg = ∅; V={v1,v2,…,vp} – set of internal 
variables, can be V = ∅; 

For each algorithm identifier algi there exist a 
function falgi, determining the algorithm’s behaviour: 

0 0 0

: ( ) ( ) ( ) ( ) ( )i
v V v Vvi VI vo VO vo VO

falg Dom vi Dom vo Dom v Dom vo Dom v
∈ ∈∈ ∈ ∈

× × → ×∏ ∏ ∏ ∏ ∏
 As one sees from the definition, algorithms can 
change only internal and output variables of the function 
block.  
 For ECC definition we will use the following notation. 
The set of all functions mapping set A to set B will be 
denoted as [A→B]. In unambiguous cases some indices of 
set element can be omitted. Dom(x) denotes the set of 
values of a variable x.  

The ECC diagram is determined as a tuple 
ECC=(ECState, ECTran, ECTCond, ECAction, PriorT, 
s0), where ECState={s0,s1,s2,…,sr} is a set of EC states; 
ECTran⊆ECState×ECState is a set of EC transitions; 

0 0

0

: [ ( ) ( )

( ) ( ) { , }]
ei EI vi VI

v Vvo VO

ECTCond ECTran Dom ei Dom vi

Dom vo Dom v true false
∈ ∈

∈∈

→ × ×

× →

∏ ∏

∏ ∏
 

is a function, assigning the EC transitions conditions in 
the form of Boolean formulas defined over domain of 
input, output and internal variables, and input event 
variables According to the standard, the EC condition can 
contain no more than one EI variable.  
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0[ ( ) { , }]ei EI Dom ei true false∀ ∈ =  - all EI variables are 
Boolean variables; 
ECAction: ECState\{s0}→ECA* is a function, assigning EC 
actions to EC states, where ECA= Alg×EO0∪ Alg∪ EO0 is 
a set of syntactically correct EC actions. The symbol * is 
here used to denote a set of all possible chains built using a 
base set. Each EC state can have zero or more EC actions. 
Each action may include an algorithm and one output event 
reference, or just either of them. According to the standard 
the order of actions’ execution is determined by the location 
of actions in the chain defined by function ECAction; 
PriorT: ECTran → {1, 2, …} is an enumerating function 
assigning priorities to EC transitions. According to the IEC 
61499 standard the transition’s priority is defined by the 
location of the ECC transition in FB type definition. The 
nearer an ECC transition to the top of the list of ECC 
transitions in FB definition, the larger its priority; 
s0∈State is the initial state, which is not assigned any 
actions. 

It is said an ECC is in canonical form if each state has 
no more than one associated action. An arbitrary ECC can 
be easily transformed to the canonical form substituting 
states with several associated actions by chains of states 
with “always TRUE” transitions between them. 
5 FUNCTION BLOCK NETWORKS 

Types of a composite function block and subapplication are 
defined as tuple:   
(Interface, FBI, FBIType, EventConn, DataConn), where 
Interface is an interface as defined above. The specific part 
of subapplication interface is the absence of WITH-
associations, i.e. IW=OW=∅; 
FBI ={fbi1, fbi2,…, fbin} is a set of reference instances 
of other function block types. Each instance fbij∈ FBI is 
determined by a tuple of following four sets: 
EIj ={ei1

j,ei2
j,…,eikj

j} is a set of event inputs; 
EOj ={eo1

j,eoi2
j…,eolj

j} is a set of event outputs; 
VIj ={vi1, 

jvi2
j…,vimj

j} is a  set of data inputs; 
VOj ={vo1

j,vo2
j…,vonj

j }is a set of data outputs. 
FBIType: FBI→ FBType is a function assigning type to 
reference instance. Interface of a function block instance is 
identical to the interface of its respective function block 
type. It should be noted that sometimes in process of top-
down design a function block instance can be assigned to a 
non existing function block type.  
More specifically, the value domain of FBIType for a 
composite function block type is the set BFBType ∪  
CFBType ∪  SIFBType. For a subapplication type this set is 
appended by the set SubApplType, as a subapplication can 
be mapped onto several resources while a composite 
function block resides in one. 

U U
n1j n1j

0j0j EOEIEIEOEventConn
, ,

)()(
∈ ∈

∪×∪⊆  is a set of 

event connections; 
U UU UU

n1j

0

n1j

j

n1j

jj0 VOVIVOVIVIDataConn
, ,,

))(()(
∈ ∈∈

××⊆  

is a set of data connections; 
For the data connections the following condition must hold: 

)]()[(),(),,( qputDataConnuqtp =→=∈∀  that says 

no more than one connection can be attached to one data 
input. There is no such constraint for event connections as 
an implicit use of E_SPLIT and E_MERGE function 
blocks is presumed. 

6 TRANSITION FROM A SYSTEM OF TYPES TO A SYSTEM OF 

INSTANCES 

Networks of function blocks consist of instances referring 
to predefined function block types. To define execution 
semantic of a network we need to get rid of the types and 
deal only with instances. Transition from a system of 
types to the system of instances is done by substitution of 
the corresponding reference instances by the 
corresponding real object instances. Real instances are 
obtained by cloning of the type description corresponding 
to the reference object.  

Syntactically an instance is a copy of its 
corresponding type. Hence we will use the notation 
introduced for the corresponding types.  The hierarchy of 
instances can be determined by the corresponding 
hierarchy tree denoted by the following tuple:  
(F, Aggr, FBITypeA, FBIdA), where:  
F is a set of (real) instances of FBs and subapplications; 
Agg r⊆ F×F is a relation of aggregation; 
FBITypeA: F→FBType is a function associating real 
instances with FB types; 
FBIdA: F→Id is a function marking the tree nodes by 
unique identifiers from the Id domain. 
The recursive algorithm expand(f) instantiates all 
reference instances included in a real instance f and builds 
in this way a sub-system of instances and the 
corresponding hierarchy sub-tree. 
procedure expand(f) 
 if KindOf(f)∈{cfb,subappl,appl} then 
  do forall fbi∈FBIA(FBITypeA(f)) 
   newF=InstanceOf(FBITypeA(f)) 
   Substitute fbi by  newF 
   F=F ∪  {newF} 
   Aggr=Aggr ∪  {(f, newF)} 
   FBITypeA= FBITypeA ∪ {(newF, FBIType(fbi)} 
   FBIdA=FBIdA ∪ {( newF, NewId())} 
   expand(newF) 
  end_forall 
 end_if 
end_procedure 

Figure 4. Recursive algorithm expand(f) 

The algorithm is using the following auxiliary functions: 
InstanceOf forms an instance of a given type. The 
function KindOf determines the kind of the type for given 
instance (bfb – basic FB, cfb - composite FB, subappl – 
subapplication, appl – application), the function FBIA 
determines the set of reference instances for a given type. 
The function NewId creates new unique identifier for a 
created real instance.  

Substitution of a reference instance by the real 
instance is performed in three steps: 
1) add real instance;  
2) embed real instance;  
3) remove reference instance; 

 The embedding of real instance is done be re-wiring 
of all connections from the reference instance to the real 
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instance. Certainly, the interfaces of the reference instance 
and of the real instance have to be identical.  
Construction of the tree of instances starts from some initial 
type fbt0: 

f0=InstanceOf(fbt0); F={f0}; Aggr=∅;  
FBITypeA={(f0, fbt0)};FBId={(f0, NewId())};  
expand(f0) 

It should be noted that transition from a system of types to 
the system of instances can be sufficiently described by 
means of graph grammars [17]. 

7 SOME ASSUMPTIONS ON THE FUNCTION BLOCK SEMANTICS 

In the following we present elements of a function block 
semantic model. The formal model belongs to the state-
transition class models.  This class of models includes finite 
automata, formal grammars, Petri nets, etc.  

The model is rich enough to represent the behavior of a 
real function block system. However we use some 
abstractions simplifying the model analysis, in particular 
reducing model’s state space. Main model’s features are as 
follows:  
1) A model is FB instance rather than FB type oriented. 
2) A model is flat, and the ECCs of basic function blocks 

are in canonical form. Thus, main elements of the model 
are basic FBs and data valves (the latter mechanism will 
be introduced in Section 9). 

3) Timing aspects of are not considered, the model is 
purely discrete state. 

4) There is ЕСС interpreter (called “ECC operation state 
machine” in the standard [1], Section 5.2.2) that can be 
in either idle or busy state. 

5) Evens and data are reliably delivered from block to 
block without losses. 

6) Model transitions are implemented as transactions. A 
transaction is an indivisible action. All operations in a 
single transaction are performed simultaneously 
accordingly operation order. As a result, a signal from 
an event output of function block is delivered to all 
recipients simultaneously. 

The model uses several implementation artefacts not 
directly mentioned in the standard, for example: data 
buffers and data valves. 

8 SEMANTIC MODEL OF INTERFACES 

We are using the following semantic interpretation of 
interface elements:  
1) For each event input of a basic function block there is a 

corresponding event variable. 
2) For each data input of basic or composite FB there is a 

variable of the corresponding type; 
3) For each data output of a basic function block there is 

an output variable and associated data buffer.  
4) For each data output of composite block there is data 

buffer; 
5) No variables are introduced for data inputs and outputs 

of subapplications; 
6) Each constant at an input of a FB is implemented by a 

data buffer; 
In our interpretation, data buffers (of unit capacity) 

serve for storing the data that emitted by function blocks 
using the associated event output.  

For representation of semantic models of interfaces 
we suggest the following graphical notation (Figure 5, a).  
The data buffers of size 1 are represented by circles 
standing next to the corresponding outputs and inputs. A 
black dot shown inside the circle related to event input 
variables indicates the incoming signal. The circles 
corresponding to input and output variables contain 
values of the variables.  

One can note that the values of buffered data are 
included in the state of their respective function blocks or 
data valves instead of being directly included to the global 
network state. This is justified by the fact that a data 
buffer is associated with an output variable of function 
blocks. 

  
a) b) 

Figure 5. a) Semantic model of function block’s interface and of a 
composite function block; and b) Buffers on the data connections. 

Figure 5, b shows the solution of the problem from Figure 
3. The solution uses “buffer” variables for each data 
connection. The working is as follows. At the event 
output EO of FB1 the output variable DO of FB1 is 
copied to the buffer B1. At the event output EO of FB2 
buffer B1 is copied to DI of FB3 and FB3 starts.  

9 FLATTENING OF HIERARCHICAL FUNCTION BLOCK 

APPLICATIONS 

The considered networks are assumed to be “flat”, that is 
not to include hierarchically other composite function 
blocks. Hierarchical structures of function blocks have to 
be transformed to the “flat” ones. For that the composite 
blocks have to be substituted by their content appended 
by data valves implementing data transfer through their 
interfaces.  

The idea of data valves is explained as follows. 
Composite function blocks consist of a network of 
function blocks. However its inputs and outputs are not 
directly passed to the members of the network. They are 
subject to the “data sampling on event” rule. When 
translation of hierarchical composite blocks to a flat 
network is done, the data cannot just flow between the 
blocks of different hierarchical levels without taking into 
account the buffers. Illustration is provided in Figure 6.  
One may think that the nested network of blocks in the 
upper part of Figure 6 is equivalent to the network 
obtained by ‘dissolving’ boundaries of the blocks FB6 
and FB7. This is not true and the reason is explained as 
follows. As illustrated in Figure 7, the composite function 
blocks FB6 and FB7 have event/data associations that 
determine sampling of the data while they are passed 
from block to block.  
The event/data association, that can be arbitrary and not 
following the associations within the composite block, 
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need special treatment when borders of the composite block 
are dissolved in the process of flattening.  

 
Figure 6. Nested composite blocks cannot be “flattened” 
without taking into account inputs and outputs associations 

 
Figure 7. Interconnection between composite function blocks FB6 and 

FB7 with event-data associations shown.  

For dealing with this problem we use the concept of data 
valves with buffers was, illustrated in Figure 8, a) and b) 
respectively.  

a) b)  
Figure 8. a) Input is copied to the output of the valve when the event 
input arrives; b) compact notation of data valves. 

A data valve is functional element having one input and one 
output event and more than zero data inputs and outputs. 
Number of data inputs has to be equal to the number of data 
outputs. The syntactic model of subapplication’s interface 
can be taken to represent the data valves.  

 
Figure 9. The function block obtained as a result of one step of 

‘flattening’ with data valves 

Each outgoing and incoming event input (with their 
respective data associations) of a composite function block 
is resulted in a data valve. For the example presented in 
Figure 6 the result of one step of “flattening” with data 
valves implementing the “border issues” is presented in 

Figure 9. We do not represent the valves in the function 
block notation as we regard them to be a step towards 
lower level implementation of function blocks. 

10 SEMANTIC FUNCTION BLOCK MODEL 

10.1 Common information 

A state of a flat function block network is determined by a 
tuple S=(S1,S2,…,Sn), where Si – is the state of i-th (basic) 
FB or data valve. As can be derived from Section V, the 
state of the i-th FB is determined as Si=(csi, osmi, ZEIi, 
ZVIi ,ZVOi, ZVVi, ZBUFi), where csi is a current state of 
ECC diagram, osmi is a current state of ECC operation 
state machine (ECC interpreter), ZEIi – is a function 
indicating values of event inputs, ZVIi, ZVOi and ZVVi – 
functions of values of input, output and internal variables 
correspondingly, ZBUFi- function of data buffers’ values 
(of unit capacity). The state of the j-th data valve is 
determined only by the function ZBUFj.  

One can note that the values of buffered data are 
included in the state of their respective function blocks or 
data valves instead of being directly included to the global 
network state. This is justified by the fact that a data 
buffer is associated with an output variable of function 
blocks. 

In the following part of this Section we make some 
assumptions about the execution semantic of function 
blocks. We are not specifically considering distributed 
configurations. Thus, modelling of resources and devices 
is beyond the scope of this paper.  

For the time being, we limit our consideration to 
"closed" networks of function blocks that do not receive 
events from the environment through the service interface 
function blocks (SIFB). Later on we show how the 
proposed model can be extended to cover the case of 
execution initiation from the environment. 

This interpretation of the function block semantic is 
quite consistent and relies on the assumptions that a) 
function block is activated by an external event; b) 
execution of every algorithm is "short".  

Although, real interpreters of function blocks may 
have slightly different behaviour, the assumptions made 
above considerably reduce the number of intermediate 
states and determine the details of a legitimate 
implementation. Execution of a network of function 
blocks is activated by the start event that is issued only 
once. The start event leads to the action op6 as described 
below.  

So, we can assume that a FB network transitions 
from state to state as a result of model transitions: 

S0[tp→S1[tq→… [tm→Sn 
Note that the proposed FB model can be combined 

with another state transition models such as Petri nets, 
NCES [2], etc. For this purpose it would be necessary to 
develop an interface for two kinds of models and rules of 
its functioning. 

10.2 Types of model transitions 

In the context of this paper, an ЕСC transition is said to 
be primary if its condition includes an event input (EI) 
variable. Otherwise, if it includes only a guard condition, 
it is said to be secondary.  
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The proposed model is a state-transition model. The 
model has five types of its state transitions (of the model, 
not of a function block’s ECC!):  
tran1 –  firing of a primary ЕС transition; 
tran2 –  firing of a secondary EC transition; 
tran3 –  special processing of input event in an unreceptive 

state of FB; 
tran4 – transition of the ЕСС interpreter to initial (idle) 

state; 
tran5 –  working of a data valve; 

The basic transitions determining the functioning of 
function block systems are the transitions of types 1 and 2. 
Transitions of the first type correspond to the almost 
complete cycle of ECC interpreter work (except the 
interpreter transition to the initial state s0), namely the 
chain s0→t1→s1→t3→s2→t4→s1 (in terms of the ECC 
operation state machine in Section 5.2.2). Transitions of the 
second type represent the cycle s1→t3→s2→t4→s1. 
Transitions of the third type correspond to the reaction on 
an incoming event and the corresponding sampling of the 
associated data variable in case when the ECC interpreter is 
idle, but the arrived event won't force any ECC transition. 
This type of transitions corresponds to the chain 
s0→t1→s1→t2→s0. Transition of the fourth type models 
transition of the ECC interpreter from state s1 to the initial 
state s0. Transition of the type tran5 models data sampling 
in a composite function block. 

10.3 Transition enabling rules 

The transition enabling rules are summarized in Table 1. 
 

Type of 
transition 

ECC 
interpreter 

state 

Other conditions Priority 

tran1 Idle 1) The source state of the EC 
transition is the current state of 
the (parent) function block; 
 
2) The EC transition condition 
evaluates to TRUE; 

 
 
 
3 tran2 Busy 

tran3 Idle There is a signal at the event 
input (having WITH 
association(-s)) 

4 

tran4  busy There are no enabled EC 
transitions  

 
2 

tran5 n/a This transition is enabled if 
there is a signal at the event 
input of the data valve 

1 
(highest) 

Table 1. Conditions enabling the model transitions 

10.4 Compatibility and mutual exclusion of model 
transitions 

Within the model of one function block some transitions are 
compatible (can be enabled simultaneously) and some are 
mutually exclusive. Based on the introduced above 
transition enabling rules, we can build the relation of their 
compatibility/exclusion, presented in Table 2. 

 tran1 tran2 tran3 tran4 
tran1 + - + - 
tran2 - + -  
tran3 + - + - 
tran4 - - - - 

Table 2. Table of model transitions’ compatibility. 

In Table 2 the "+" symbol designates that the transitions 
are compatible, while "-" shows that they are mutually 
exclusive. Thus, transitions of the tran2 type are 
incompatible with tran1 and tran3 as they occur in 
mutually excluding states of the ECC interpreter. The 
tran4 excludes any other transition by definition, and 
since data sampling in the "busy" interpreter state is 
impossible. 

10.5  Firing transition selection rules 

Firing transition selection rules define the order of 
enabled transition firing. Varying the firing transition 
selection rules it is possible to obtain different execute 
semantics of FBs. In our trial implementation a static 
priority discipline of active objects’ selection from the set 
of enabled ones was used. The hierarchy of priority levels 
is as follows. On the highest level is the data valve 
execution that has a higher priority (1) than function block 
since it is assumed that data valve's execution is by far 
shorter than a function block's execution. 
At the function block level we introduce the following 
sublevels (in the priority descending order): 2) tran4; 3) 
tran1 and tran2; 4) tran3. 
A function block is said to be enabled if it has at least one 
enabled transition. The selection of a next transition to 
fire will be done according to a particular semantic model. 
For example, the sequential semantic [7] implies that next 
current function block or data valve will be selected from 
the corresponding ‘waiting list’. Within the current FB, a 
transition is selected with the highest type priority and the 
highest priority within the type. 

It should be noted that the priority of the third type 
transitions is determined by the priority of the 
corresponding EI-variable that, in turn, is determined by 
the location in the FB’s textual representation (the earlier 
appears – the higher priority). 

For implementation of complex scheduling strategies 
we propose to use dynamically modified multi-level 
priorities. In this case the model transition priority is a 
tuple (A, B, C), where A is the transition type priority, B is 
a FB priority, and C is an EC transition priority inside the 
FB. For each model transition type a priority re-
calculation rule must be defined. 

 

10.6 Transition firing rules 

The transition firing rules define the operations executed 
at the transitions. We define the following operations 
performed at the execution of function block systems. 
op1 – Input data sampling resulting in a transfer of the 
data values to the corresponding input variables 
associated with the current event input by WITH 
declarations. In case of data valves the data is assigned to 
the external data buffer associated with the data valve.  
op2 – Reset of all EI-variables of the current FB or data 
valve. This operation can be called “clearing the event 
channel” that eliminates the “event latching”; 
op3 - ЕСС interpreter jumps to the “busy” state; 
op4 – Change of the current ECC state; 
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op5 – Algorithms’ execution resulting in the modification 
of output and internal variables;  
op6 – Transfer of signal(s) from event outputs of the 
current FB resulting in setting of EI-variables of the FBs 
and data valves connected to those event outputs by event 
connections; prior to that event channels of those FBs are 
getting cleared to avoid “event latching”.  
op7 – Transfer of output variable values (associated with 
currently issued output events) to the external data buffers. 
op8 – Transition of the ECC interpreter to the “idle” state. 

In Table 3 all model transitions are represented as 
sequences of some of the above defined operations (if the 
operation opj, is a possible part of trani then the 
corresponding table cell (i,j) is shaded.  

 
 op1 op2 op3 op4 op5 op6 op7 op8 

tran1         
tran2         
tran3         
tran4         
tran5         

Table 3. The model transition operation sequences; 

Each action associated with a model transition is performed 
as a transaction, i.e. as an atomic non-interrupted action 
consisting in a sequence of operations executed in the pre-
defined order.  

In addition, to reduce the number of non-essential 
intermediate states it can be accepted that: 
1) Transition of type 4 can be executed in a chain with 
transitions of type 1 or 2 as a single transaction;  
2) Operation op6 can be extended by including in it 
transmission of output signal from the FB-source to all FB-
receivers through a network of data valves (if any) 
including all data sampling operations in all involved data 
valves. 

11 CONCLUSIONS 

The model described in this paper, including the flattening 
mechanism, has been implemented in Prolog as described 
in [18]. The paper contributes to the formalization of 
IEC61499 performed by the workgroup [15] by providing: 
• Formal description mechanism of IEC 61499 artifacts; 
• Semantic model of function block interfaces; 
• Solution of the flattening problem that leads to a simple 

model of function block networks yet completely 
complying with the semantic of function block interfaces; 

• A sample model of a formal semantic for basic function 
block; 

Once the compliance profile anticipated as an outcome of 
the workgroup [15] will be completed, the model of basic 
FB developed in this paper will be easily adjusted to it. 
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