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Abstract.-This paper deals with refactoring of execution 

control charts of IEC 61499 basic function blocks as a 

means to improve the engineering support potential of the 

standard in development of industrial control applications. 

The main purpose of the refactoring is removal of arcs 

without event inputs. Extended refactoring, proposed in 

the paper, also helps to get rid of potential deadlock states. 

The ECC refactoring is implemented as a set of graph 

transformation rules. A prototype has been implemented 

using the AGG software tool. The refactoring can help in 

implementing equivalent transformation of control 

programs without introducing errors. 

 

Index terms – IEC 61499, refactoring, software 

engineering, graph grammars 

I.  INTRODUCTION 

The international standard IEC 61499 [1] defines a 

component-based architecture for the new generation of 

distributed component control systems. This standard is 

considered by many researchers and practitioners as the key 

enabler for improving flexibility and reconfigurability of 

automated manufacturing systems. The standard introduces 

modern component and visual programming ideas to the 

industrial automation world. In particular, the standard 

promotes the idea of using communicating state machines for 

programming automation systems. The main construct of the 

standard’s architecture is function block (FB). The Execution 

Control Chart (ЕСС) is a state machine determining sequence 

of operations in a basic FB.  

After the final approval by the International 

Electrotechnical Commission in 2005, the IEC 61499 standard 

is vigorously finding its way to the industrial automation 

practice. There are several commercial and academically 

developed tools, along with a reasonable number of pilot 

installations [11]. Size and complexity of control programs 

implemented in function blocks has grown significantly, and 

the problem of design support by efficient computer-aided 

engineering tools is of paramount importance.  

System engineering with function blocks has much in 

common with object- and component-oriented design in the 
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general software engineering and many ideas and concepts 

aiming at the code quality improvement can be borrowed from 

there. One such technique that has become important in 

software engineering in the recent years is refactoring [2]. 

Refactoring changes program structure without changing its 

semantics. Refactoring is a technique supporting evolution of 

software systems, which can be applied to different abstraction 

levels of software models – from low-level code up to high 

level models. 

Model Driven Engineering – (MDE) is one of the state-of-

the-art software engineering technologies, and it operates with 

models and their transformations [3]. The Object Management 

Group (OMG) [4] has proposed the Model Driven 

Architecture (MDA) for integration of various MDE tools. For 

definition of models and metamodels the OMG consortium has 

developed popular standards MOF and UML. In [5] an 

approach, called Model-Integrated Computing (MIC) for 

expanding MDA into the field of domain-specific modelling 

languages, is proposed. In particular, the MIC-approach was 

applied in [6] in the area of mechatronic systems. 

Graph transformations [7] are a promising technique of 

implementing model transformations, as confirmed by its 

application in MDE, e.g. [8]. They also can be used for 

refactoring of program structures represented by graphs. This 

becomes especially important with the progress of visual 

programming methods. A good introduction to refactoring 

using graph transformations can be found in [9].  

According to us, this approach is also appropriate for use 

in engineering of function block systems [10]. Main artefacts 

of the standard’s architecture, such as composite FBs, 

applications and subapplications, can be represented in an 

abstract graph form. This also applies to basic FBs whose 

Execution Control Chart can be naturally represented as a 

graph.  

One problem constantly present in discrete control design 

is deadlock avoidance. A poorly designed controller can come 

to a deadlock state that it cannot leave at any further input. The 

state-machine based programming approach of IEC 61499 

provides an opportunity to solve this problem, at least 

partially, by applying model-transformation techniques. It does 

not make obsolete other approaches, such as formal 

verification based on reachability analysis (addressed by many 

researchers, from [12] to the recent [13]), but the latter are 

capable of only detection but not correction of deadlocks, and 

are a lot more complicated for use by control systems 

developers.  

The importance of deadlock (or livelock, i.e. infinite loop) 

avoidance has been recognized by the practitioners. Thus the 

latest version of the FBDK software tool [14] recognizes and 
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prohibits creation of ECCs with simple loops of eventless 

transitions. This simple measure, however, cannot guarantee 

complete avoidance of incorrect situations in ECC. 

In this paper we develop graph transformations-based 

refactoring methods aiming to get rid of ECC arcs having no 

event conditions. This leads to a technique of ECC 

improvement allowing the removal of (conditionally) dead 

states. We present and classify graph transformation rules for 

the ECC refactoring. The prototype refactoring system is 

implemented in the graph transformation tool AGG [15, 16]. 

The paper is structured as follows. Section II presents a 

motivating example from industrial automation domain. In 

Section III, a formal model of ECC syntax is introduced. 

Section IV discusses ECC execution rules to the extent 

relevant to this paper. The concept of ECC refactoring is 

defined in Section V. Section VI presents the idea of 

refactoring implementation by means of graph transformations, 

and Section VII discusses transformation rules in detail. 

Section VIII shows how the system of transformation rules was 

implemented using the AGG software tool. Section IX 

presents evaluations of the developed refactoring technique. 

The paper is concluded with a short summary of the presented 

work, outlook and references. 

II.  ILLUSTRATIVE EXAMPLE 

For illustration of the deadlock problem and of the proposed 

solution we will use a simple example - pneumatic cylinder 

with some control buttons and light curtain safety device, as 

presented in Figure 1,A. Controller of this system is 

implemented as an IEC 61499 function block “cylinder”. Its 

interface is shown in Figure 1, B, and the control logic, 

implemented as a state machine (ECC), in Figure 1, C. 

The operation is as follows. The cylinder shuttles back and 

forth either from the left to the middle position or from the left 

to the end position depending on the selected mode of 

operation. The mode is selected by pressing the button 

“MODE” which has two fixed positions, one corresponding to 

the value 0 and the other to the value 1. When any object 

crosses the safety light curtain the operation has to stop until 

the object leaves the safety zone. 

The light curtain signal is connected to a specific input port 

of the control device that generates interrupt at every change 

of the value. In terms of function blocks, the interrupt is 

translated to the event input LGHT of the “cylinder” FB. 

This FB has six logic inputs, corresponding to START and 

MODE buttons, 3 discrete position values (HOME, MID, 

END) and the logic status of the light curtain (ON). Also there 

are 4 event inputs. The INIT is used for the FB initialisation. 

The BTN event input indicates a change in a button state 

(pressed/released), the SENS event input is raised when the 

cylinder arrives to one of the three discrete positions. The 

LGHT event input indicates a change in the light curtain 

status.  

Output signals of the “cylinder” FB are: actuators LEFT 

and RIGHT, and two indicators: LED for lighting the button 

START in those times of operation when it needs to be 

“sensitive” to a hit, and OPMODE, used to display current 

operation mode (i.e. zone 0 or 1).  

The controller state machine in Figure 1,C combines the 

sequential logic (implementing the back and forth movement) 

and reaction to interrupts. Substantial parts of control logic are 

encapsulated into the algorithms executed in ECC states. For 

example CTL0 and CTL1 algorithms (states ZONE0 and 

 

Figure 1. Pneumatic cylinder-based control system (A); interface of the controller function block (B); ECC of the controller function block (C). 
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ZONE1) are written in the Ladder Diagrams language. Their 

code is not presented here for the sake of brevity, but their 

main function is to recalculate actuators’ logic outputs. 

One should note that there is no established designed 

methodology for design of such event driven state-machine 

based controllers, so this particular design cannot be regarded 

as anyhow typical. It represents a design effort of an average 

engineer.  

It comes at no surprise that this state machine has some 

deadlock states. For example, after an interruption from the 

light curtain occurs (as a result of an “invasion” while the shaft 

is still in Zone 0), the ECC goes through the state trace 

WAIT→S0→S1→BLOCK→WAIT, setting the internal 

variable BLK to the value TRUE (this value is supposed to be 

checked if the operator changes the MODE to 1). However, 

after the invading object has been removed, the ECC will go 

through WAIT→S0→S1 and stop in S1 forever, even though 

ON=1. This happens because the arc S0→S1 has higher 

priority than S0→UNBLK.  

It is quite obvious that real automated machines may 

include dozens of the processes similar to the cylinder’s 

operation, so their controller state machines will be a lot more 

complex and it will be even more difficult to find and fix them 

manually.  

III.  MODEL OF EXECUTION CONTROL CHART  

To explain our refactoring approach we need to introduce 

some formal notation of ЕСС that is simplified from the more 

comprehensive model of [17].  

An ЕСС can be defined as a tuple: 

ECC = (S, R, E, C, A, D, fE, fС, fA, fP), where  

S = {s1, s2, …, sn} is a set of vertices representing EC-states; 

R ⊆ S × S is a set of arcs representing EC-transitions; 

E={e1,e2,…,em} is a set of event inputs; 

C={c1,c2,…,ck} is a set of guard conditions defined over input, 

internal and output variables of a basic FB; 

A={a1,a2,…,ap} is a set of EC-actions’ sequences. 

D ⊆ A × C is a relation, defining dependency of transition 

conditions on the results of EC-actions, (ai,cj)∈D, if the 

execution of ai can change the evaluation of cj. It should be 

noted that, as the practice shows, the dependence of guard 

conditions on EC-actions happens quite seldom. 

The set of arcs R is divided into three classes: RE - event, 
RC – conditional, RT - unconditional arcs, such that: 

R= RE ∪ RC ∪ RT; RE ∩ RC ∩RT=∅.  

The syntax of EC-transition conditions is defined as: Event 

input | Guard condition w/out event inputs | Event input & 

Guard condition.  

In our model, an EC transition is represented by an arc of 

one of the following types: an event arc (E-arc) represents EC-

transition with event input in its condition; a conditional arc 

(C-arc) represents an EC-transition without event input whose 

guard condition is not constantly TRUE; and unconditional arc 

(T-arc) represents an EC transition without event input and 

with the constantly TRUE guard condition. In the graphical 

notation, Е- and T-arcs will be depicted by a solid line and C-

arcs by a dashed line. When necessary, in drawings we shall 

put symbol “t” above T-arcs and symbol “e” above E-arcs. 

fE: RE→E – the function assigning event inputs to E-arcs; 

fС: RE ∪ RC→C – the function assigning guard conditions to Е- 

and C-arcs; 

fA: S→A - the function assigning sequences of EC-actions to 

the states. 

fP: R→{1,2,…,}- the function assigning normalized priorities 

of arcs, defined for the whole ECC as U
Ss

s

PP ff
∈

= , where 

fP
s
:R

s
→{1,2,…,|R

s
|} is the function of prioritization for the 

vertex s, and R
s
 is the set of all arcs which are starting in the 

vertex s. The priority of an arc r1 is higher than of r2 if 

R(r1)<R(r2).  

 

It must be noted that in ЕСС of IEC 61499 priorities of 

EC-transitions are not defined explicitly, instead, the priority is 

based on the location of the transition in the textual 

representation of the function block (in the XML format).  

IV.  MODELS OF ЕСС EXECUTION 

The IEC 61499 defines some rules of ЕСС interpretation.  

The ECC interpreter is activated by an input event and 

continues evaluation of ECC until no EC-transition can clear 

(i.e. evaluate to TRUE). This process may include several EC-

transitions and is called a single run of FB, and the sequence 

of actions executed during a single run is called a trace of the 

ECC. However, as it was noted in [18, 19], the definition of 

ECC interpretation in the standard is incomplete and, thus, 

ambiguous. For example, it admits two different approaches to 

evaluation of EC-transitions without events.  

According to the first approach, an EC-transition without 

events can be cleared only if it is not first in the run, but 

follows some other EC transition with an event name in its 

condition. The second approach does not link EC-transition to 

any concrete event. In this case enableness of the EC-transition 

is determined only by the value of its guard condition. We 

shall name an eventless guard condition passive in the first 

case and active in the second case. Both approaches were 

studied in the literature. The first approach is presented in 

[19], and the second is presented in the work introducing the 

sequential model of FB execution [18]. In the following we 

shall consider only the first model of ЕСС realization that 

represents a more compelling case for the proposed refactoring 

of ЕСС. 

Further we define some essential concepts in a semi-formal 

way as follows: 

Definition 1. An ECC state is called potentially deadlock (PD) 

state if all its outgoing arcs are conditional. 

Definition 2. Two ЕССs are called functionally equivalent 

(within the limits of a particular model of ECC execution), if 

in any initial state and at any sequence of input events and 

corresponding values of input variables, both ЕССs produce 

same traces, i.e. execute same sequences of EC-actions. 
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V.  REFACTORING AND IMPROVEMENT OF ECC  

The goals of ECC refactoring are to get rid of C-arcs and PD-

states completely, if possible, or, at least, to minimize the 

number of C-arcs and to delete PD-states emerging as a result 

of this minimization. According to these goals we will 

introduce two types of refactoring (type 1 and 2 respectively). 

Refactoring-1 can help the developer to have a different point 

of view on the developed ЕСС that in some cases can help to 

rethink and redesign it. Refactoring-2 goes further and 

improves the ECC by removing potential deadlocks. It is 

applied on top of the refactoring-1.  

Let us name as CT-network of an ЕСС a subgraph 

containing arcs only from RC ∪ RT, but not from RE. In general, 

such a graph may not necessarily be connected. Accordingly, 

as T-network of ЕСС we shall name a subgraph containing 

only the arcs from RT.  

It is assumed that the initial CT-network is acyclic. 

Presence of cycles in the CT-network tells about incorrectness 

of the ЕСС. Although in the general-purpose programming 

cyclic structures are of wide use, in ECCs of function blocks it 

is recommended to implement iterative procedures in 

algorithms rather than in ECC.  

Let us introduce ES = {(s, s’)∈RE|∃(s’, s”)∈ RC ∪ RT} – 

the set of  E-arcs having a С- or T-arc as a ‘successor’. These 

arcs, referred to as sources, will be the main starting points of 

the refactoring actions introduced further. The general idea of 

removing C-arcs from ECC is as follows. Let (s0, s1) ∈ ES be 

an E-arc followed by the path s1, s2, …, sk in the CT-network. 

For each EC-state si (i=1,…, k) there is a sequence of 

associated EC-actions ai. An example is given in Figure 2, 

where the path w.l.o.g. consists of C-arcs only. 

 

 

Figure 2. A path consisting of a source arc followed by C-arcs. 

In case when transitions’ conditions are independent on their 

preceding EC-actions in a single run, this path can be 

substituted by one E-arc (s0,sk) with guard condition being a 

conjunction of the guard conditions of  arcs ci, (i=1,…, k) and 

of the condition q, called condition of the state preservation 

(Figure 3). 

 

 

Figure 3. An E-arc representing the path from Figure 2.  

The sequence of EC-actions executed in the target state sk, is 

derived as a concatenation of all EC-actions’ sequences across 

the vertices forming the path. The condition q of a state sk 

preservation is defined as a conjunction of the guard 

conditions’ negations across the outgoing C-

arcs: ),(
),(

& jkC
Rss

ssf
Cjk ∈

. For example, for the state sk Figure 3 

the condition of the state preservation is equal to 

nkkk ccс ++ &...&& 1 .  

If there are more incoming arcs to the final state sk of the 

path s0, s1, …, sk, then the path needs to be substituted by two 

arcs (s0, sk-1) and (sk-1, sk), first of which is identical to the E-arc 

from Figure 3, the second being a T-arc. This is illustrated in 

Figure 4. The second arc is needed since it would not be 

correct to assign the whole sequence of actions a1+a2+…+ak to 

sk, due to other paths possibly ending there. Instead, we assign 

almost the whole sequence of actions (but the last ak) to the 

vertex sk-1, further referred to as a proxy of the vertex sk. 

 

 

Figure 4. Е-and the T-arcs representing the path from Figure 3. 

For a given arc r=(si,sj)∈ES we introduce binding operation 

with an arbitrary vertex sk from the CT-network. The operation 

consist in finding all paths from sj to sk in the CT-network, and 

in substituting them by E-arcs (or by (Е, T) pairs of arcs) as 

described above and illustrated in Figure 4. In general, the 

outcome of such an operation is a so called hammock graph as 

the one in Figure 5. All E-arcs going out of si have the same 

event input name in their condition fE(si, sj) (fE(si, sj)=em in the 

Figure). It must be noted, however, that the binding operation 

is not always applicable. 

 

Figure 5. Outcome of binding a source arc and a vertex of the CT-network. 

The binding of an arc ri∈ES with all vertices of the CT-

network will be referred to as binding of this arc by the CT-

network. For complete removal of C-arcs from ЕСС, it is 

necessary to bind all arcs from the ES set with the 

corresponding CT-network and then to delete all C-arcs.  

It is possible to prove that any acyclic CT-network without 

dependencies between EC-actions and guard conditions (i.e. at 

D=∅) can be made C-arcs free as a result of such 

transformations. The resulting T-network in combination with 

E-arcs can be called reachability graph of the EC-actions’ 

sequences in the original CT-network. The ECC, obtained as a 

result of such transformations, is, obviously, functionally 

equivalent to the original ECC. 

When doing refactoring, it is important not only to obtain 

new ECC structure, guard conditions and EC-actions’ 

sequences, but also to determine priorities of arcs in the 
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resulting ECC. We present the method for determining arcs’ 

priorities on example of an ЕСС having a binary tree form 

(Figure 6). We will refer to C-arcs by their guard conditions. 

 

 

Figure 6. An example of ЕСС in the binary tree form. 

The initial (normalized) priorities annotate the 

corresponding arcs. It is obvious, that the path c1, c3 has the 

highest priority, as it will be chosen by the ECC interpreter if 

all the conditions c1, …,c6 are TRUE. The path c2, c6 – has the 

lowest priority. It will be chosen only if conditions c2 and c6 

are TRUE, and all others are FALSE. From this example one 

can derive an idea of a simple rule for priorities assignment 

such that the influence of an arc on the overall path priority is 

the higher the nearer the arc is located to the path’s beginning. 

Based on this, we propose to use composite priorities (formed 

as a tuple) with the lexicographic order defined on them. The 

composite priority is formed as a concatenation of arcs’ 

priorities in a path from its initial vertex up to the end. The 

resulting assignment of composite priorities is presented in 

Figure 7, the priorities are written under the corresponding 

arcs. 

 

Figure 7. Converted ЕСС (from the ECC in Figure 6) with composite priorities 

of arcs.  

VI.  IMPLEMENTATION OF REFACTORING BY GRAPH 

TRANSFORMATIONS 

In the following, we present a mechanism for implementation 

of the proposed refactoring methods based on equivalent 

transformations of ECC using a typed attributed graph 

rewriting system. One equivalent transformation can consist, in 

general, in application of several transformation rules.  

There are several approaches to graph rewriting, one of 

which is the algebraic approach. The algebraic approach is 

divided into three sub-approaches: the double-pushout 

approach (DPO), the single-pushout approach (SPO), and the 

pullback approach [7,20]. We briefly consider the first ones 

mainly because of using AGG tool [15] as an implementation 

platform for the refactoring. 

Let us briefly introduce some terminology from the theory 

of graphs’ transformations according to SPO [7]. Let L and R 

be labelled graphs. A graph production rule is a morphism 

p:L→R. A direct graph transformation G⇒tH (of graph G to 

graph H) is a pair t=(p,m), consisting of a graph production 

rule p:L→R and an injective graph morphism (called match) 

m:L→G. Given a direct graph transformation (i.e. the pair of 

two morphisms p and m), it is possible to derive the 

morphisms m’:R→H and p’:G→H, as illustrated in the 

pushout diagram in Figure 8 . In practical terms, the p’ 

morphism is the one, needed to generate graph H being the 

result of the transformation. 

 

 

Figure 8. Schematic representation of a direct graph transformation. 

A sequence G0⇒G1⇒ … ⇒Gn of direct graph 

transformations is termed as a graph transformation and is 

designated G0⇒
*
Gn. 

The condition of non-applicability (NA-condition) of a rule 

p is a graph morphism nac:L→L’. A direct graph 

transformation G⇒ (p,m)H satisfies a NA-condition if there is no 

graph morphism m’:L’→G exists such that mnacm =o' . In 

simple words, the NA-condition is a graph which determines a 

forbidden graph structure. One transformation rule can have 

several associated NA-conditions. In this case, a rule is 

applicable if all the NA-conditions are satisfied. 

An attributed graph is a graph, whose vertices and arcs are 

marked by abstract data types. In case of attributed graphs, for 

applicability of a transformation rule the fulfilment of 

conditions on attributes of vertices and arcs is also required (if 

there any). When a rule is applied, values of attributes in a 

certain part of the resulting graph can be recalculated. More 

detailed information on transformation of typed attributed 

graphs can be found in [20]. 

VII.  TRANSFORMATION RULES 

Basic transformation rules of a refactoring system 

transform a pair of adjacent arcs (si,sj) and (sj,sk) to a new 

direct arc, leading to the state sk or to its “proxy”. In our 

refactoring ECC system, most of the rules aim at construction 

of a set of EC-action sequences reachable by paths of length 2 

at an occurrence of some event. The arcs, entering and going 

out of the vertices si, sj and sk (except the two arcs (si,sj) and 

(sj,sk)), represent the context of the rule’s application. 

The proposed ECC refactoring system consists at the 

moment of 35 rules that can be divided into the following 

classes:  

1) rules of preliminary graph correction;  

2) rules of graph increment; and  
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3) rules of graph clearing.  

The algorithm of the rule based ECC transformation is 

quite straightforward:  

1. First, rules of the first class are applied as long as it is 

possible. For that a match is being sought between the 

source ECC and the left part of each rule. If the match 

is found, the corresponding subgraph of the ECC will 

be transformed into the subgraph in the right-hand side 

of the rule. 

 

2. Then, rules of the second class are applied in the same 

manner.  

3. Finally rules of the third class are applied.  

Rules of the first class are needed to remove some obsolete 

arcs from the source ЕСС. Examples of this type of rules are 

presented in Figure 9-11. The rule of parallel C-arcs merge 

removes the presence of several unidirectional C-arcs between 

the pairs of EC-states (Figure 9).  

 

Figure 9. The rule of merging parallel C-arcs.  

The rule of dead E-arcs removal eliminates the arcs going 

out of an EC-state being the origin of at least one T-arc (Figure 

10). These E-arcs will never be passed, otherwise the ЕСС will 

immediately jump from the source EC-state to the target EC-

state of the T-arc. 

 

 

Figure 10. The rule of deleting dead E-arcs. 

The rule in Figure 11 deletes a T-arc which is dead because 

it has a lower priority than another T-arc going out of the same 

EC-state. Priorities of arcs are designated as pr. The condition 

of the rule’s application is written above the arrows connecting 

the left and the right parts of the rule, e.g.: x<y. 

 

Figure 11. The rule of removal of a dead T-arc with a lower priority. 

Rules of the second group (graph increment) perform the 

main part of ECC transformation. They include not only 

removal of arcs, but also adding of new nodes and arcs and 

modification of nodes’ and arcs’ attributes.  

In Figure 12-16 some rules of this class are illustrated. One 

should note that rules of this class are subdivided into 

subgroups based on similar functionality. Inside each subgroup 

the rules differ only by their context. We will refer to the 

whole subgroups as R1, R2,…, but will illustrate only one rule 

from each subgroup.  

The graphical notation is as follows. Context states are 

represented by smaller circles. The type of context arcs is not 

specified. The cross on a context arc in the left part of a rule 

means that the arc is prohibited. This way NA-conditions are 

concisely represented. The dash on an arc in the right side of a 

rule means that the arc has been used and will be removed. 

Two conditions are calculated for an E-arc: 1) condition of 

reaching a target state (including also the name of the 

corresponding event input), and 2) a condition of signal 

propagation beyond the target state. The first condition is 

written above, and the second one under the arc. The complete 

current condition for an E-arc is defined as a conjunction of 

the first condition and of the negation of the second condition. 
The second condition is omitted if its value is false. 

The goal of the rule R1 (Figure 12) is to remove condition 

arc (s2,s3) that follows an event arc. This is achieved by adding 

direct arc (s1,s3), modifying condition under (s1,s2), and 

transferring the actions of s2 to s3. This rule can be applied to 

such ECC parts where s2 and s3 vertices have no incoming arcs 

(as indicated by the context arcs with cross in the left part of 

the rule). 

 

Figure 12. Rule of an event propagation on a linear section (R1). 

Rule R2 (Figure 13) has a similar goal, but can be applied 

to ECC’s parts in which s3 has incoming arc. To avoid 

conflicts, that can potentially arise when actions are 

“transferred” to this vertex from different paths, an 

intermediate state s4 is introduced, where the actions of s2 are 

assigned to.  

 

Figure 13. Rule of entrance into a connector (R2). 

The goal of the rule R3 is to make a “clear path” between 

two vertices (s1 and s3), i.e. get rid of the arc coming into the 

intermediate node between these vertices. 

 
Figure 14. Rule of a connector bypass (R3).  

As a rule, a newly created (daughter) arc has two parents – 

the pairs of adjacent arcs. Thus the priority of the daughter arc 

is defined as a concatenation of the parent arcs’ priorities in 

the order following the order of parents. 
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The application condition for the rules R1, R2, and R4 

shown in Figures 12, 13, and 15, respectively, is absence of 

dependencies between actions and EC-transition conditions, 

i.e. (a2,c1)∉D. 

In the rule removing inverse C-arcs (Figure 15), the right 

side, unlike most of other rules, contains two daughter arcs (s1, 
s3) and (s1, s2), having equal priority, same as the priority x of 

their parent arc. The priorities do not matter in this case as 

these arcs are mutually exclusive w.r.t. the condition c1. 

 

Figure 15. Rule of inverse C-arc removal (R4). 

Unlike the rules of the first and second groups, the rules of 

graph clearing are specific to each of the refactoring types. For 

example, the rules of an E-arc removal and of an isolated 

vertex removal are shown in Figure 16 a) and b) respectively. 

 

Figure 16. Rules of deleting a) an E-arc (R5); b) an isolated vertex (R6).  

According to the first rule, an E-arc (s1,s2) is deleted IF it 

has been used for generation of other arcs AND is not incident 

to other E-arc AND there is no reversed T-arc (s2,s1). 

To illustrate the process of refactoring we consider 

transformation of a simple ЕСС in Figure 17,(a). In a 

simplified form, the refactoring-1 process is defined by the 

sequence of rules R1, R1. The simplification (introduced to 

facilitate understanding) consists in eliminating C-arcs directly 

in the rule R1 (instead of applying a separate rule). The first 

application of R1 results in an intermediate ЕСС, functionally 

equivalent to the original ECC (Figure 17,(b)). The next R1 

application produces the result of the refactoring-1 (Figure 

17,(c)) which is also semantically equivalent to the initial 

ЕСС. In the resulting ЕСС the PD-states are presented in the 

form of deadlock vertices s1 and s2.  

 

Figure 17.a)A sample ECC; b) Intermediate result of ЕСС transformation; 

c)The result of refactoring-1; d) The result of refactoring-2.  

Refactoring-2 is done by additional application of rules R5 

and R6. The resulting ЕСС for this case is presented in Figure 

17,(d). This ЕСС is not semantically equivalent to the initial 

ЕСС as it does not have PD-states s1 and s2. As a result, 

starting from the initial state s0 at event e1 and when c1=TRUE 

and c2=FALSE (i.e., 211  && cce ), no EC-actions will be 

executed in the resulting ЕСС, while the original ECC would 

execute the sequence of actions a1 and a2 and then would 

freeze. In spite of the fact that initial and resulting ЕССs are 

not equivalent, the resulting ЕСС in Figure 17,(d) most likely 

matches the intentions of the developer. In this particular case, 

the original specification (or intention of the designer) may 

have been to wait until event e1 occurs, then execute a1, then 

wait until c1 is true and execute a2, and so on. Results of the 

refactoring show that the designed ECC does not achieve this 

goal. The spotted deadlock states may have appeared because 

of imprecise understanding by the designer of the ECC 

semantics that is different from the general finite automata 

semantics. Priorities in the example in Figure 17 do not matter 

due to the mutually exclusive guard conditions. 

Application of even some of the refactoring rules can have 

practical importance. Thus, if the merger of consecutive C-arcs 

is applied to the ECC of the “cylinder”
2
, the result will be free 

from the deadlock states s1, s2 as shown in Figure 18. 

                                                           
2 This group of rules is not illustrated in the paper due to the lack of space. 

 

Figure 18. Application of the C-arcs merger rule to the ECC of “cylinder” 

FB helps to get rid of deadlock states S1 and S2. 
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VIII.  IMPLEMENTATION OF REFACTORING IN THE GRAPH 

TRANSFORMATION ENVIRONMENT AGG 

A software prototype of the ЕСС refactoring system has been 

developed using the graph transformation environment AGG. 

AGG is a rule-based visual programming environment, based 

on the use of the algebraic single push-out approach to graphs 

transformation [15, 16]. The rules of graph transformation can 

contain NA- and application conditions. AGG supports 

specification of typed graphs with cardinality and attributes. 

Types of attributes are borrowed from the Java programming 

language. 

As shown in Figure 19, the metamodel of ECC, used in the 

refactoring system prototype, consist of a single node of S type 

(EC-state) and four loops, representing E-, C-, T-arcs, and p-

arcs correspondingly. The arcs of type p are auxiliary and used 

usually for linking parent node and newly created daughter 

node. The metamodel is represented in the form of type graph 

and used in AGG as a tool for control of correctness of graph 

transformation. An EC-state has the following attributes: name 

- a name of EC-state, acts - a list of associated EC-actions, lp - 

the list of arc pairs used in the generation of arcs through the 

given vertex. Some attributes are common for all arcs, but 

there are some specific attributes. All arcs have the following 

common attributes: id – a unique identifier, u - an indication of 

usage (u=1 - the arc has been used, u=0 - not used), pr - 

priority. С- and T-arcs have the attribute atran - an indication 

of transmission of actions on the arc (atran=1 – actions were 

passed, atran=0 – not passed). The attribute cond of a C-arc 

defines its guard condition. For an E-arc, two conditions are 

attached: a condition of reaching the arc’s target state 

(attribute rcond), and a condition of leaving the target state 

(attribute lcond). As a rule, the guard condition of an E-arc is 

formed as a conjunction of rcond and negation of lcond. To 

simplify implementation of the composite priorities 

mechanism, it is assumed that they are of a character type. For 

deriving the composite priority, the concatenation of the 

strings is used. The relation of lexicographic order is 

implemented by the operation of strings comparison in the 

Java language. 

Three types of auxiliary nodes are used in the system. The 

node of type NumS is used for indexing of newly created 

vertices, the node of type NumA - for indexing newly created 

arcs, and the node of type ACdependencies contains pre-

defined “database” of existing Action-Condition dependencies. 

The refactoring system comprises some 35 rule divided 

into 5 layers. In Figure 20 the AGG implementation of the rule 

from Figure 13 is shown. The left part of the rule is presented 

in the middle pane, and the right part in the rightmost pane. 

One of the NA-conditions is presented in the left part of the 

window, there are 4 more NA-conditions which are not shown. 

The shown rule has the following application conditions  

expressed in Java: 1) w.indexOf (“(“+p+”,”+q+”)”) < 0; 2) 

!My.isdep(x,b,z). The first condition enables the rule if the arcs 

6 and 7 have not been used earlier for generation of another 

arc. The second condition determines absence of dependences 

between EC-actions from x and guard conditions from b in the 

existing AC-dependencies z. Here My is an user-defined Java 

class and isdep is a method of this class implementing the 

check. 

Graph transformations artefacts in the AGG system are 

saved in a special XML-based format (GGX-format). To use 

AGG in the FB tool chain we have developed two convertors 

from/to the standardized XML representation of function 

blocks into AGG format GGX. With these convertors one can 

import a function block into AGG, apply refactoring and then 

export the result back to XML. The converters can help to 

integrate refactoring into the corresponding IEC61499 

software engineering tools. 

Another implementation idea for the developed method 

may rely on re-implementation of the transformation rules in 

advanced system engineering tools for IEC 61499. For 

example, there are several open-source projects aiming at the 

development of such tools, e.g. 4DIAC-IDE [23] and FBench 

[24], which can facilitate integration of refactoring into the 

system engineering practice. The role of AGG in this scenario 

would be to develop and verify transformation rules. Once the 

rules are re-implemented in an engineering support 

environment, the environment can provide a user – friendly 

way of rules’ application, say with an option of seeing the 

result of a transformation and accepting/undoing it. This way 

an advice can be given to the engineer on how to improve the 

code and even make it deadlock free.  

 

 

Figure 19. ECC metamodel. Figure 20. The rule of event propagation (R1, Figure 13), presented in AGG. 
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IX.  EVALUATION 

The visual (graph-based) representation of rules and 

transformed systems is the most intuitive form that helps to 

avoid errors. However, the main advantage of using graph 

transformations for refactoring is that properties of graph 

transformation systems have been well studied theoretically. 

As our system makes a particular case, many of the existing 

theoretical results are directly applicable. 

When analyzing the developed refactoring system, such 

properties as complexity, completeness, correctness, and 

confluence are of interest.  

The computational complexity of the graph rewriting 

application, in general, is high, since it is based on matching of 

subgraphs which is a known NP-complete problem. However, 

in our case the sub-graphs in the left part of the rules are quite 

small. Moreover, node and edge labels, as well as directed 

edges drastically reduce the search space for isomorphic 

subgraphs.  

The system of refactoring rules considered in this paper 

has been tested using more than 30 ECCs representing various 

typical structures. Results of some tests are presented in Table 

1. The tests were created empirically, following basic graph 

topologies, such as linear sequence, branching, connector, 

each-to-each, etc. We tried to exclude topologies similar one 

to another, e.g. triangle is similar to rectangle, so it was 

excluded from the test set. Some of the tests represent regular 

structures in the graph algebra, so different basic features can 

be combined into more complex ones. However, we also tested 

irregular structures, and they proven to be more 

computationally complex. 

For each test, three measurements were taken. The mean 

value of execution time (Time) and the number of executed 

rules (Nrules) are presented for each test in Table 1. As it can 

be seen, refactoring in AGG is quite slow, which can be 

explained by the fact that AGG is implemented in Java and is 

Table 1. Some of the conducted refactoring tests and their performance: Time is average test completion time in AGG (taken across 3 measurements, 

standard deviation of 6%), and Nrules is the number of rules applied. 

1. ECCC-chain: a sequence of an Е-arc followed by C-arcs. The 

dependency of arc conditions on preceding EC – actions is taken into 

account (shown as dot-dash arc:  ).  

Time = 11.2 sec; Nrules = 13. 

  �   

6. Irregular structure1  #1. Time = 27 sec; Nrules = 35. 

 �  

2. Dotted_line: a sequence of an E-arc, followed by intermittent C- and T-

arcs. Time = 14.5 sec; Nrules = 33 

 �  

7. c_Irregular1: irregular structure that includes a state with one C-arc and 

one E-arc. Time = 23.0 sec; Nrules = 32. 

 �  

3. Common_chain of two C-arcs used to relay signal from two different E-

arcs. Time = 13.5 sec; Nrules = 29. 

 �   

8. Square with closed loop of E-arcs. Time = 23.8 sec; Nrules = 35.  

 �  

4. Tuft of an Е-arc followed by branching C-arcs.  

Time = 10.4 sec; Nrules = 14. 

   �   

9. Double_Square with two closed loops of E-arcs sharing one such arc. 

Time = 35.2 sec; Nrules = 49. 

�   
5. Each_to_Each: consists of “states’ layers”, where each state of a 

preceding layer is connected to each state of the following layer, first by E-

arc and then by C-arcs. Time = 21.5 sec; Nrules = 28. 

 �  

10. Linear2 – Linear C-arcs chain with E-arcs bridges; 

Time = 70.6 sec; Nrules = 117. 

    �   

Legend:  - E-arc,  - T-arc;  - C-arc;  

 



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 10

intended for research use. Re-implementation of the 

transformation rules in C can bring 20-times speedup, which 

will make application of the most of the rules practical as a 

part of an IDE.  

To check the performance dependency on the dimension 

of ECC, sets of tests with different dimensions were generated. 

In Figure 21, results of two such tests are presented: Linear, 

similar to that of Figure 2, and Linear2 from Table 1 (#10). 

For Linear, refactoring time seems to be a linear function of 

ECC size, and for Linear2 the dependency seems to be 

polynomial.  

The termination of graph rewriting is undecidable in 

general (but the termination can be preserved if the 

transformation rules meet certain criteria) [22]. Thus, 

termination of the refactoring problem is, in general, 

undecidable too. In practical terms, there can be a situation, 

when refactoring takes long time and it is impossible to predict 

upfront whether it will ever terminate. However, all our tests 

do terminate.  

We have checked the compliance of our refactoring 

system with the termination criterion using AGG. It turned out, 

however, that the criterion is not satisfied. Indeed, an infinite 

derivation in case of a cyclic CT-network of an ECC is 

possible, but as we have mentioned above, such ECCs are 

beyond the scope of our consideration. But it should be noted 

that the AGG analysis does not take into account deep off-

stage dependencies among attributes expressed in user-defined 

Java-classes.  

On the other hand, our graph transformation approach is 

a particular case of graph rewriting systems, which, in turn, 

belong to the general class of systems based on production 

rules. Many problems of graph rewriting systems are known 

inherited problems of such systems, but nevertheless, 

production rule-based reasoning is very popular, for example 

in various knowledge representation systems.  

Completeness of the system of rules means that it would 

be possible to guarantee achieving a particular refactoring goal 

(say absence of deadlocks) with the developed system of rules 

in any source ECC. Our system of refactoring rules is created 

empirically. We have not attempted so far to prove formally, 

whether our system is complete. However, all conducted tests 

meet the completeness property.  

The practical role of confluence is to ensure same result 

if the rules’ are applied in different order. Here we rely on the 

result of [21] stating that typed attributed graph transformation 

system is locally confluent if all critical pairs of rules are 

confluent. By definition from [9, 21] a critical pair of rules 

(p1, p2) exists if the application of p1 disables that of p2 or, 

vice versa. The AGG system can do the critical pair analysis 

for a given system of rules. The set of discovered critical pairs 

represents precisely all potential conflicts. Using AGG we 

have discovered and fixed some mistakes in the rules of our 

refactoring system. However, the process of critical pair 

analysis is computationally complex and slow in the current 

AGG implementation. To test confluence we ran each of our 

tests several times and always obtained same results, thus 

confirming the property experimentally. 

X.  CONCLUSION 

In this paper a graph-transformation approach to refactoring of 

Execution Control Charts of basic Function Blocks is 

presented. This approach is extended to the correction of 

ECCs by removal of deadlock states.  

Future work in this direction is envisaged along the 

following lines: 

• Properties of the developed system of rules will be further 

investigated, in particular their completeness and 

confluence.  

• The system of refactoring rules can be further extended to 

take into account particular execution semantics of 

function blocks.  

• Refactoring can be applied not only to basic FBs, but also to 

FB networks. Possible ideas may include substitution of 

an arbitrary sub-network of FBs by the equivalent 

composite FB, or substitution of multiple connections 

between FBs by adapter connections. 

 

The IEC 61499 standard presents a novel visual programming 

approach to the design of automation systems and refactoring 

undoubtedly can be a very useful feature of the corresponding 

engineering tools. Refactoring can be especially important in 

industrial automation applications which are facing problems 

of software lifecycle adaptability, same as business software 

applications, but a lot more sensitive to software faults. 

Application of the proposed refactoring technique can help to 

avoid introduction of new errors during the process of software 

modifications. 
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