
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 1

Abstract.-This paper deals with refactoring of execution

control charts of IEC 61499 basic function blocks as a

means to improve the engineering support potential of the

standard in development of industrial control applications.

The main purpose of the refactoring is removal of arcs

without event inputs. Extended refactoring, proposed in

the paper, also helps to get rid of potential deadlock states.

The ECC refactoring is implemented as a set of graph

transformation rules. A prototype has been implemented

using the AGG software tool. The refactoring can help in

implementing equivalent transformation of control

programs without introducing errors.

Index terms – IEC 61499, refactoring, software

engineering, graph grammars

I. INTRODUCTION

The international standard IEC 61499 [1] defines a

component-based architecture for the new generation of

distributed component control systems. This standard is

considered by many researchers and practitioners as the key

enabler for improving flexibility and reconfigurability of

automated manufacturing systems. The standard introduces

modern component and visual programming ideas to the

industrial automation world. In particular, the standard

promotes the idea of using communicating state machines for

programming automation systems. The main construct of the

standard’s architecture is function block (FB). The Execution

Control Chart (ЕСС) is a state machine determining sequence

of operations in a basic FB.

After the final approval by the International

Electrotechnical Commission in 2005, the IEC 61499 standard

is vigorously finding its way to the industrial automation

practice. There are several commercial and academically

developed tools, along with a reasonable number of pilot

installations [11]. Size and complexity of control programs

implemented in function blocks has grown significantly, and

the problem of design support by efficient computer-aided

engineering tools is of paramount importance.

System engineering with function blocks has much in

common with object- and component-oriented design in the

V. Vyatkin is with the Department of Electrical and Computer

Engineering, University of Auckland, Auckland 1142, New Zealand (e-mail:

v.vyatkin@auckland.ac.nz)

V. Dubinin is with the Department of Computer Science, University of

Penza, Penza, Russia (e-mail: victor_n_dubinin@yahoo.com)
This work was supported, in part, by the research grant FRDF 3622763 /

9573 of the University of Auckland.

general software engineering and many ideas and concepts

aiming at the code quality improvement can be borrowed from

there. One such technique that has become important in

software engineering in the recent years is refactoring [2].

Refactoring changes program structure without changing its

semantics. Refactoring is a technique supporting evolution of

software systems, which can be applied to different abstraction

levels of software models – from low-level code up to high

level models.

Model Driven Engineering – (MDE) is one of the state-of-

the-art software engineering technologies, and it operates with

models and their transformations [3]. The Object Management

Group (OMG) [4] has proposed the Model Driven

Architecture (MDA) for integration of various MDE tools. For

definition of models and metamodels the OMG consortium has

developed popular standards MOF and UML. In [5] an

approach, called Model-Integrated Computing (MIC) for

expanding MDA into the field of domain-specific modelling

languages, is proposed. In particular, the MIC-approach was

applied in [6] in the area of mechatronic systems.

Graph transformations [7] are a promising technique of

implementing model transformations, as confirmed by its

application in MDE, e.g. [8]. They also can be used for

refactoring of program structures represented by graphs. This

becomes especially important with the progress of visual

programming methods. A good introduction to refactoring

using graph transformations can be found in [9].

According to us, this approach is also appropriate for use

in engineering of function block systems [10]. Main artefacts

of the standard’s architecture, such as composite FBs,

applications and subapplications, can be represented in an

abstract graph form. This also applies to basic FBs whose

Execution Control Chart can be naturally represented as a

graph.

One problem constantly present in discrete control design

is deadlock avoidance. A poorly designed controller can come

to a deadlock state that it cannot leave at any further input. The

state-machine based programming approach of IEC 61499

provides an opportunity to solve this problem, at least

partially, by applying model-transformation techniques. It does

not make obsolete other approaches, such as formal

verification based on reachability analysis (addressed by many

researchers, from [12] to the recent [13]), but the latter are

capable of only detection but not correction of deadlocks, and

are a lot more complicated for use by control systems

developers.

The importance of deadlock (or livelock, i.e. infinite loop)

avoidance has been recognized by the practitioners. Thus the

latest version of the FBDK software tool [14] recognizes and

Refactoring of Execution Control Charts in Basic

Function Blocks of the IEC 61499 Standard
Valeriy Vyatkin, Senior Member, IEEE, and Victor Dubinin, non-member

1

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 2

prohibits creation of ECCs with simple loops of eventless

transitions. This simple measure, however, cannot guarantee

complete avoidance of incorrect situations in ECC.

In this paper we develop graph transformations-based

refactoring methods aiming to get rid of ECC arcs having no

event conditions. This leads to a technique of ECC

improvement allowing the removal of (conditionally) dead

states. We present and classify graph transformation rules for

the ECC refactoring. The prototype refactoring system is

implemented in the graph transformation tool AGG [15, 16].

The paper is structured as follows. Section II presents a

motivating example from industrial automation domain. In

Section III, a formal model of ECC syntax is introduced.

Section IV discusses ECC execution rules to the extent

relevant to this paper. The concept of ECC refactoring is

defined in Section V. Section VI presents the idea of

refactoring implementation by means of graph transformations,

and Section VII discusses transformation rules in detail.

Section VIII shows how the system of transformation rules was

implemented using the AGG software tool. Section IX

presents evaluations of the developed refactoring technique.

The paper is concluded with a short summary of the presented

work, outlook and references.

II. ILLUSTRATIVE EXAMPLE

For illustration of the deadlock problem and of the proposed

solution we will use a simple example - pneumatic cylinder

with some control buttons and light curtain safety device, as

presented in Figure 1,A. Controller of this system is

implemented as an IEC 61499 function block “cylinder”. Its

interface is shown in Figure 1, B, and the control logic,

implemented as a state machine (ECC), in Figure 1, C.

The operation is as follows. The cylinder shuttles back and

forth either from the left to the middle position or from the left

to the end position depending on the selected mode of

operation. The mode is selected by pressing the button

“MODE” which has two fixed positions, one corresponding to

the value 0 and the other to the value 1. When any object

crosses the safety light curtain the operation has to stop until

the object leaves the safety zone.

The light curtain signal is connected to a specific input port

of the control device that generates interrupt at every change

of the value. In terms of function blocks, the interrupt is

translated to the event input LGHT of the “cylinder” FB.

This FB has six logic inputs, corresponding to START and

MODE buttons, 3 discrete position values (HOME, MID,

END) and the logic status of the light curtain (ON). Also there

are 4 event inputs. The INIT is used for the FB initialisation.

The BTN event input indicates a change in a button state

(pressed/released), the SENS event input is raised when the

cylinder arrives to one of the three discrete positions. The

LGHT event input indicates a change in the light curtain

status.

Output signals of the “cylinder” FB are: actuators LEFT

and RIGHT, and two indicators: LED for lighting the button

START in those times of operation when it needs to be

“sensitive” to a hit, and OPMODE, used to display current

operation mode (i.e. zone 0 or 1).

The controller state machine in Figure 1,C combines the

sequential logic (implementing the back and forth movement)

and reaction to interrupts. Substantial parts of control logic are

encapsulated into the algorithms executed in ECC states. For

example CTL0 and CTL1 algorithms (states ZONE0 and

Figure 1. Pneumatic cylinder-based control system (A); interface of the controller function block (B); ECC of the controller function block (C).

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 3

ZONE1) are written in the Ladder Diagrams language. Their

code is not presented here for the sake of brevity, but their

main function is to recalculate actuators’ logic outputs.

One should note that there is no established designed

methodology for design of such event driven state-machine

based controllers, so this particular design cannot be regarded

as anyhow typical. It represents a design effort of an average

engineer.

It comes at no surprise that this state machine has some

deadlock states. For example, after an interruption from the

light curtain occurs (as a result of an “invasion” while the shaft

is still in Zone 0), the ECC goes through the state trace

WAIT→S0→S1→BLOCK→WAIT, setting the internal

variable BLK to the value TRUE (this value is supposed to be

checked if the operator changes the MODE to 1). However,

after the invading object has been removed, the ECC will go

through WAIT→S0→S1 and stop in S1 forever, even though

ON=1. This happens because the arc S0→S1 has higher

priority than S0→UNBLK.

It is quite obvious that real automated machines may

include dozens of the processes similar to the cylinder’s

operation, so their controller state machines will be a lot more

complex and it will be even more difficult to find and fix them

manually.

III. MODEL OF EXECUTION CONTROL CHART

To explain our refactoring approach we need to introduce

some formal notation of ЕСС that is simplified from the more

comprehensive model of [17].

An ЕСС can be defined as a tuple:

ECC = (S, R, E, C, A, D, fE, fС, fA, fP), where

S = {s1, s2, …, sn} is a set of vertices representing EC-states;

R ⊆ S × S is a set of arcs representing EC-transitions;

E={e1,e2,…,em} is a set of event inputs;

C={c1,c2,…,ck} is a set of guard conditions defined over input,

internal and output variables of a basic FB;

A={a1,a2,…,ap} is a set of EC-actions’ sequences.

D ⊆ A × C is a relation, defining dependency of transition

conditions on the results of EC-actions, (ai,cj)∈D, if the

execution of ai can change the evaluation of cj. It should be

noted that, as the practice shows, the dependence of guard

conditions on EC-actions happens quite seldom.

The set of arcs R is divided into three classes: RE - event,
RC – conditional, RT - unconditional arcs, such that:

R= RE ∪ RC ∪ RT; RE ∩ RC ∩RT=∅.

The syntax of EC-transition conditions is defined as: Event

input | Guard condition w/out event inputs | Event input &

Guard condition.

In our model, an EC transition is represented by an arc of

one of the following types: an event arc (E-arc) represents EC-

transition with event input in its condition; a conditional arc

(C-arc) represents an EC-transition without event input whose

guard condition is not constantly TRUE; and unconditional arc

(T-arc) represents an EC transition without event input and

with the constantly TRUE guard condition. In the graphical

notation, Е- and T-arcs will be depicted by a solid line and C-

arcs by a dashed line. When necessary, in drawings we shall

put symbol “t” above T-arcs and symbol “e” above E-arcs.

fE: RE→E – the function assigning event inputs to E-arcs;

fС: RE ∪ RC→C – the function assigning guard conditions to Е-

and C-arcs;

fA: S→A - the function assigning sequences of EC-actions to

the states.

fP: R→{1,2,…,}- the function assigning normalized priorities

of arcs, defined for the whole ECC as U
Ss

s

PP ff
∈

= , where

fP
s
:R

s
→{1,2,…,|R

s
|} is the function of prioritization for the

vertex s, and R
s
 is the set of all arcs which are starting in the

vertex s. The priority of an arc r1 is higher than of r2 if

R(r1)<R(r2).

It must be noted that in ЕСС of IEC 61499 priorities of

EC-transitions are not defined explicitly, instead, the priority is

based on the location of the transition in the textual

representation of the function block (in the XML format).

IV. MODELS OF ЕСС EXECUTION

The IEC 61499 defines some rules of ЕСС interpretation.

The ECC interpreter is activated by an input event and

continues evaluation of ECC until no EC-transition can clear

(i.e. evaluate to TRUE). This process may include several EC-

transitions and is called a single run of FB, and the sequence

of actions executed during a single run is called a trace of the

ECC. However, as it was noted in [18, 19], the definition of

ECC interpretation in the standard is incomplete and, thus,

ambiguous. For example, it admits two different approaches to

evaluation of EC-transitions without events.

According to the first approach, an EC-transition without

events can be cleared only if it is not first in the run, but

follows some other EC transition with an event name in its

condition. The second approach does not link EC-transition to

any concrete event. In this case enableness of the EC-transition

is determined only by the value of its guard condition. We

shall name an eventless guard condition passive in the first

case and active in the second case. Both approaches were

studied in the literature. The first approach is presented in

[19], and the second is presented in the work introducing the

sequential model of FB execution [18]. In the following we

shall consider only the first model of ЕСС realization that

represents a more compelling case for the proposed refactoring

of ЕСС.

Further we define some essential concepts in a semi-formal

way as follows:

Definition 1. An ECC state is called potentially deadlock (PD)

state if all its outgoing arcs are conditional.

Definition 2. Two ЕССs are called functionally equivalent

(within the limits of a particular model of ECC execution), if

in any initial state and at any sequence of input events and

corresponding values of input variables, both ЕССs produce

same traces, i.e. execute same sequences of EC-actions.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 4

V. REFACTORING AND IMPROVEMENT OF ECC

The goals of ECC refactoring are to get rid of C-arcs and PD-

states completely, if possible, or, at least, to minimize the

number of C-arcs and to delete PD-states emerging as a result

of this minimization. According to these goals we will

introduce two types of refactoring (type 1 and 2 respectively).

Refactoring-1 can help the developer to have a different point

of view on the developed ЕСС that in some cases can help to

rethink and redesign it. Refactoring-2 goes further and

improves the ECC by removing potential deadlocks. It is

applied on top of the refactoring-1.

Let us name as CT-network of an ЕСС a subgraph

containing arcs only from RC ∪ RT, but not from RE. In general,

such a graph may not necessarily be connected. Accordingly,

as T-network of ЕСС we shall name a subgraph containing

only the arcs from RT.

It is assumed that the initial CT-network is acyclic.

Presence of cycles in the CT-network tells about incorrectness

of the ЕСС. Although in the general-purpose programming

cyclic structures are of wide use, in ECCs of function blocks it

is recommended to implement iterative procedures in

algorithms rather than in ECC.

Let us introduce ES = {(s, s’)∈RE|∃(s’, s”)∈ RC ∪ RT} –

the set of E-arcs having a С- or T-arc as a ‘successor’. These

arcs, referred to as sources, will be the main starting points of

the refactoring actions introduced further. The general idea of

removing C-arcs from ECC is as follows. Let (s0, s1) ∈ ES be

an E-arc followed by the path s1, s2, …, sk in the CT-network.

For each EC-state si (i=1,…, k) there is a sequence of

associated EC-actions ai. An example is given in Figure 2,

where the path w.l.o.g. consists of C-arcs only.

Figure 2. A path consisting of a source arc followed by C-arcs.

In case when transitions’ conditions are independent on their

preceding EC-actions in a single run, this path can be

substituted by one E-arc (s0,sk) with guard condition being a

conjunction of the guard conditions of arcs ci, (i=1,…, k) and

of the condition q, called condition of the state preservation

(Figure 3).

Figure 3. An E-arc representing the path from Figure 2.

The sequence of EC-actions executed in the target state sk, is

derived as a concatenation of all EC-actions’ sequences across

the vertices forming the path. The condition q of a state sk

preservation is defined as a conjunction of the guard

conditions’ negations across the outgoing C-

arcs:),(
),(

& jkC
Rss

ssf
Cjk ∈

. For example, for the state sk Figure 3

the condition of the state preservation is equal to

nkkk ccс ++ &...&& 1 .

If there are more incoming arcs to the final state sk of the

path s0, s1, …, sk, then the path needs to be substituted by two

arcs (s0, sk-1) and (sk-1, sk), first of which is identical to the E-arc

from Figure 3, the second being a T-arc. This is illustrated in

Figure 4. The second arc is needed since it would not be

correct to assign the whole sequence of actions a1+a2+…+ak to

sk, due to other paths possibly ending there. Instead, we assign

almost the whole sequence of actions (but the last ak) to the

vertex sk-1, further referred to as a proxy of the vertex sk.

Figure 4. Е-and the T-arcs representing the path from Figure 3.

For a given arc r=(si,sj)∈ES we introduce binding operation

with an arbitrary vertex sk from the CT-network. The operation

consist in finding all paths from sj to sk in the CT-network, and

in substituting them by E-arcs (or by (Е, T) pairs of arcs) as

described above and illustrated in Figure 4. In general, the

outcome of such an operation is a so called hammock graph as

the one in Figure 5. All E-arcs going out of si have the same

event input name in their condition fE(si, sj) (fE(si, sj)=em in the

Figure). It must be noted, however, that the binding operation

is not always applicable.

Figure 5. Outcome of binding a source arc and a vertex of the CT-network.

The binding of an arc ri∈ES with all vertices of the CT-

network will be referred to as binding of this arc by the CT-

network. For complete removal of C-arcs from ЕСС, it is

necessary to bind all arcs from the ES set with the

corresponding CT-network and then to delete all C-arcs.

It is possible to prove that any acyclic CT-network without

dependencies between EC-actions and guard conditions (i.e. at

D=∅) can be made C-arcs free as a result of such

transformations. The resulting T-network in combination with

E-arcs can be called reachability graph of the EC-actions’

sequences in the original CT-network. The ECC, obtained as a

result of such transformations, is, obviously, functionally

equivalent to the original ECC.

When doing refactoring, it is important not only to obtain

new ECC structure, guard conditions and EC-actions’

sequences, but also to determine priorities of arcs in the

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 5

resulting ECC. We present the method for determining arcs’

priorities on example of an ЕСС having a binary tree form

(Figure 6). We will refer to C-arcs by their guard conditions.

Figure 6. An example of ЕСС in the binary tree form.

The initial (normalized) priorities annotate the

corresponding arcs. It is obvious, that the path c1, c3 has the

highest priority, as it will be chosen by the ECC interpreter if

all the conditions c1, …,c6 are TRUE. The path c2, c6 – has the

lowest priority. It will be chosen only if conditions c2 and c6

are TRUE, and all others are FALSE. From this example one

can derive an idea of a simple rule for priorities assignment

such that the influence of an arc on the overall path priority is

the higher the nearer the arc is located to the path’s beginning.

Based on this, we propose to use composite priorities (formed

as a tuple) with the lexicographic order defined on them. The

composite priority is formed as a concatenation of arcs’

priorities in a path from its initial vertex up to the end. The

resulting assignment of composite priorities is presented in

Figure 7, the priorities are written under the corresponding

arcs.

Figure 7. Converted ЕСС (from the ECC in Figure 6) with composite priorities

of arcs.

VI. IMPLEMENTATION OF REFACTORING BY GRAPH

TRANSFORMATIONS

In the following, we present a mechanism for implementation

of the proposed refactoring methods based on equivalent

transformations of ECC using a typed attributed graph

rewriting system. One equivalent transformation can consist, in

general, in application of several transformation rules.

There are several approaches to graph rewriting, one of

which is the algebraic approach. The algebraic approach is

divided into three sub-approaches: the double-pushout

approach (DPO), the single-pushout approach (SPO), and the

pullback approach [7,20]. We briefly consider the first ones

mainly because of using AGG tool [15] as an implementation

platform for the refactoring.

Let us briefly introduce some terminology from the theory

of graphs’ transformations according to SPO [7]. Let L and R

be labelled graphs. A graph production rule is a morphism

p:L→R. A direct graph transformation G⇒tH (of graph G to

graph H) is a pair t=(p,m), consisting of a graph production

rule p:L→R and an injective graph morphism (called match)

m:L→G. Given a direct graph transformation (i.e. the pair of

two morphisms p and m), it is possible to derive the

morphisms m’:R→H and p’:G→H, as illustrated in the

pushout diagram in Figure 8 . In practical terms, the p’

morphism is the one, needed to generate graph H being the

result of the transformation.

Figure 8. Schematic representation of a direct graph transformation.

A sequence G0⇒G1⇒ … ⇒Gn of direct graph

transformations is termed as a graph transformation and is

designated G0⇒
*
Gn.

The condition of non-applicability (NA-condition) of a rule

p is a graph morphism nac:L→L’. A direct graph

transformation G⇒ (p,m)H satisfies a NA-condition if there is no

graph morphism m’:L’→G exists such that mnacm =o' . In

simple words, the NA-condition is a graph which determines a

forbidden graph structure. One transformation rule can have

several associated NA-conditions. In this case, a rule is

applicable if all the NA-conditions are satisfied.

An attributed graph is a graph, whose vertices and arcs are

marked by abstract data types. In case of attributed graphs, for

applicability of a transformation rule the fulfilment of

conditions on attributes of vertices and arcs is also required (if

there any). When a rule is applied, values of attributes in a

certain part of the resulting graph can be recalculated. More

detailed information on transformation of typed attributed

graphs can be found in [20].

VII. TRANSFORMATION RULES

Basic transformation rules of a refactoring system

transform a pair of adjacent arcs (si,sj) and (sj,sk) to a new

direct arc, leading to the state sk or to its “proxy”. In our

refactoring ECC system, most of the rules aim at construction

of a set of EC-action sequences reachable by paths of length 2

at an occurrence of some event. The arcs, entering and going

out of the vertices si, sj and sk (except the two arcs (si,sj) and

(sj,sk)), represent the context of the rule’s application.

The proposed ECC refactoring system consists at the

moment of 35 rules that can be divided into the following

classes:

1) rules of preliminary graph correction;

2) rules of graph increment; and

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 6

3) rules of graph clearing.

The algorithm of the rule based ECC transformation is

quite straightforward:

1. First, rules of the first class are applied as long as it is

possible. For that a match is being sought between the

source ECC and the left part of each rule. If the match

is found, the corresponding subgraph of the ECC will

be transformed into the subgraph in the right-hand side

of the rule.

2. Then, rules of the second class are applied in the same

manner.

3. Finally rules of the third class are applied.

Rules of the first class are needed to remove some obsolete

arcs from the source ЕСС. Examples of this type of rules are

presented in Figure 9-11. The rule of parallel C-arcs merge

removes the presence of several unidirectional C-arcs between

the pairs of EC-states (Figure 9).

Figure 9. The rule of merging parallel C-arcs.

The rule of dead E-arcs removal eliminates the arcs going

out of an EC-state being the origin of at least one T-arc (Figure

10). These E-arcs will never be passed, otherwise the ЕСС will

immediately jump from the source EC-state to the target EC-

state of the T-arc.

Figure 10. The rule of deleting dead E-arcs.

The rule in Figure 11 deletes a T-arc which is dead because

it has a lower priority than another T-arc going out of the same

EC-state. Priorities of arcs are designated as pr. The condition

of the rule’s application is written above the arrows connecting

the left and the right parts of the rule, e.g.: x<y.

Figure 11. The rule of removal of a dead T-arc with a lower priority.

Rules of the second group (graph increment) perform the

main part of ECC transformation. They include not only

removal of arcs, but also adding of new nodes and arcs and

modification of nodes’ and arcs’ attributes.

In Figure 12-16 some rules of this class are illustrated. One

should note that rules of this class are subdivided into

subgroups based on similar functionality. Inside each subgroup

the rules differ only by their context. We will refer to the

whole subgroups as R1, R2,…, but will illustrate only one rule

from each subgroup.

The graphical notation is as follows. Context states are

represented by smaller circles. The type of context arcs is not

specified. The cross on a context arc in the left part of a rule

means that the arc is prohibited. This way NA-conditions are

concisely represented. The dash on an arc in the right side of a

rule means that the arc has been used and will be removed.

Two conditions are calculated for an E-arc: 1) condition of

reaching a target state (including also the name of the

corresponding event input), and 2) a condition of signal

propagation beyond the target state. The first condition is

written above, and the second one under the arc. The complete

current condition for an E-arc is defined as a conjunction of

the first condition and of the negation of the second condition.
The second condition is omitted if its value is false.

The goal of the rule R1 (Figure 12) is to remove condition

arc (s2,s3) that follows an event arc. This is achieved by adding

direct arc (s1,s3), modifying condition under (s1,s2), and

transferring the actions of s2 to s3. This rule can be applied to

such ECC parts where s2 and s3 vertices have no incoming arcs

(as indicated by the context arcs with cross in the left part of

the rule).

Figure 12. Rule of an event propagation on a linear section (R1).

Rule R2 (Figure 13) has a similar goal, but can be applied

to ECC’s parts in which s3 has incoming arc. To avoid

conflicts, that can potentially arise when actions are

“transferred” to this vertex from different paths, an

intermediate state s4 is introduced, where the actions of s2 are

assigned to.

Figure 13. Rule of entrance into a connector (R2).

The goal of the rule R3 is to make a “clear path” between

two vertices (s1 and s3), i.e. get rid of the arc coming into the

intermediate node between these vertices.

Figure 14. Rule of a connector bypass (R3).

As a rule, a newly created (daughter) arc has two parents –

the pairs of adjacent arcs. Thus the priority of the daughter arc

is defined as a concatenation of the parent arcs’ priorities in

the order following the order of parents.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 7

The application condition for the rules R1, R2, and R4

shown in Figures 12, 13, and 15, respectively, is absence of

dependencies between actions and EC-transition conditions,

i.e. (a2,c1)∉D.

In the rule removing inverse C-arcs (Figure 15), the right

side, unlike most of other rules, contains two daughter arcs (s1,
s3) and (s1, s2), having equal priority, same as the priority x of

their parent arc. The priorities do not matter in this case as

these arcs are mutually exclusive w.r.t. the condition c1.

Figure 15. Rule of inverse C-arc removal (R4).

Unlike the rules of the first and second groups, the rules of

graph clearing are specific to each of the refactoring types. For

example, the rules of an E-arc removal and of an isolated

vertex removal are shown in Figure 16 a) and b) respectively.

Figure 16. Rules of deleting a) an E-arc (R5); b) an isolated vertex (R6).

According to the first rule, an E-arc (s1,s2) is deleted IF it

has been used for generation of other arcs AND is not incident

to other E-arc AND there is no reversed T-arc (s2,s1).

To illustrate the process of refactoring we consider

transformation of a simple ЕСС in Figure 17,(a). In a

simplified form, the refactoring-1 process is defined by the

sequence of rules R1, R1. The simplification (introduced to

facilitate understanding) consists in eliminating C-arcs directly

in the rule R1 (instead of applying a separate rule). The first

application of R1 results in an intermediate ЕСС, functionally

equivalent to the original ECC (Figure 17,(b)). The next R1

application produces the result of the refactoring-1 (Figure

17,(c)) which is also semantically equivalent to the initial

ЕСС. In the resulting ЕСС the PD-states are presented in the

form of deadlock vertices s1 and s2.

Figure 17.a)A sample ECC; b) Intermediate result of ЕСС transformation;

c)The result of refactoring-1; d) The result of refactoring-2.

Refactoring-2 is done by additional application of rules R5

and R6. The resulting ЕСС for this case is presented in Figure

17,(d). This ЕСС is not semantically equivalent to the initial

ЕСС as it does not have PD-states s1 and s2. As a result,

starting from the initial state s0 at event e1 and when c1=TRUE

and c2=FALSE (i.e., 211 && cce), no EC-actions will be

executed in the resulting ЕСС, while the original ECC would

execute the sequence of actions a1 and a2 and then would

freeze. In spite of the fact that initial and resulting ЕССs are

not equivalent, the resulting ЕСС in Figure 17,(d) most likely

matches the intentions of the developer. In this particular case,

the original specification (or intention of the designer) may

have been to wait until event e1 occurs, then execute a1, then

wait until c1 is true and execute a2, and so on. Results of the

refactoring show that the designed ECC does not achieve this

goal. The spotted deadlock states may have appeared because

of imprecise understanding by the designer of the ECC

semantics that is different from the general finite automata

semantics. Priorities in the example in Figure 17 do not matter

due to the mutually exclusive guard conditions.

Application of even some of the refactoring rules can have

practical importance. Thus, if the merger of consecutive C-arcs

is applied to the ECC of the “cylinder”
2
, the result will be free

from the deadlock states s1, s2 as shown in Figure 18.

2 This group of rules is not illustrated in the paper due to the lack of space.

Figure 18. Application of the C-arcs merger rule to the ECC of “cylinder”

FB helps to get rid of deadlock states S1 and S2.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 8

VIII. IMPLEMENTATION OF REFACTORING IN THE GRAPH

TRANSFORMATION ENVIRONMENT AGG

A software prototype of the ЕСС refactoring system has been

developed using the graph transformation environment AGG.

AGG is a rule-based visual programming environment, based

on the use of the algebraic single push-out approach to graphs

transformation [15, 16]. The rules of graph transformation can

contain NA- and application conditions. AGG supports

specification of typed graphs with cardinality and attributes.

Types of attributes are borrowed from the Java programming

language.

As shown in Figure 19, the metamodel of ECC, used in the

refactoring system prototype, consist of a single node of S type

(EC-state) and four loops, representing E-, C-, T-arcs, and p-

arcs correspondingly. The arcs of type p are auxiliary and used

usually for linking parent node and newly created daughter

node. The metamodel is represented in the form of type graph

and used in AGG as a tool for control of correctness of graph

transformation. An EC-state has the following attributes: name

- a name of EC-state, acts - a list of associated EC-actions, lp -

the list of arc pairs used in the generation of arcs through the

given vertex. Some attributes are common for all arcs, but

there are some specific attributes. All arcs have the following

common attributes: id – a unique identifier, u - an indication of

usage (u=1 - the arc has been used, u=0 - not used), pr -

priority. С- and T-arcs have the attribute atran - an indication

of transmission of actions on the arc (atran=1 – actions were

passed, atran=0 – not passed). The attribute cond of a C-arc

defines its guard condition. For an E-arc, two conditions are

attached: a condition of reaching the arc’s target state

(attribute rcond), and a condition of leaving the target state

(attribute lcond). As a rule, the guard condition of an E-arc is

formed as a conjunction of rcond and negation of lcond. To

simplify implementation of the composite priorities

mechanism, it is assumed that they are of a character type. For

deriving the composite priority, the concatenation of the

strings is used. The relation of lexicographic order is

implemented by the operation of strings comparison in the

Java language.

Three types of auxiliary nodes are used in the system. The

node of type NumS is used for indexing of newly created

vertices, the node of type NumA - for indexing newly created

arcs, and the node of type ACdependencies contains pre-

defined “database” of existing Action-Condition dependencies.

The refactoring system comprises some 35 rule divided

into 5 layers. In Figure 20 the AGG implementation of the rule

from Figure 13 is shown. The left part of the rule is presented

in the middle pane, and the right part in the rightmost pane.

One of the NA-conditions is presented in the left part of the

window, there are 4 more NA-conditions which are not shown.

The shown rule has the following application conditions

expressed in Java: 1) w.indexOf (“(“+p+”,”+q+”)”) < 0; 2)

!My.isdep(x,b,z). The first condition enables the rule if the arcs

6 and 7 have not been used earlier for generation of another

arc. The second condition determines absence of dependences

between EC-actions from x and guard conditions from b in the

existing AC-dependencies z. Here My is an user-defined Java

class and isdep is a method of this class implementing the

check.

Graph transformations artefacts in the AGG system are

saved in a special XML-based format (GGX-format). To use

AGG in the FB tool chain we have developed two convertors

from/to the standardized XML representation of function

blocks into AGG format GGX. With these convertors one can

import a function block into AGG, apply refactoring and then

export the result back to XML. The converters can help to

integrate refactoring into the corresponding IEC61499

software engineering tools.

Another implementation idea for the developed method

may rely on re-implementation of the transformation rules in

advanced system engineering tools for IEC 61499. For

example, there are several open-source projects aiming at the

development of such tools, e.g. 4DIAC-IDE [23] and FBench

[24], which can facilitate integration of refactoring into the

system engineering practice. The role of AGG in this scenario

would be to develop and verify transformation rules. Once the

rules are re-implemented in an engineering support

environment, the environment can provide a user – friendly

way of rules’ application, say with an option of seeing the

result of a transformation and accepting/undoing it. This way

an advice can be given to the engineer on how to improve the

code and even make it deadlock free.

Figure 19. ECC metamodel. Figure 20. The rule of event propagation (R1, Figure 13), presented in AGG.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 9

IX. EVALUATION

The visual (graph-based) representation of rules and

transformed systems is the most intuitive form that helps to

avoid errors. However, the main advantage of using graph

transformations for refactoring is that properties of graph

transformation systems have been well studied theoretically.

As our system makes a particular case, many of the existing

theoretical results are directly applicable.

When analyzing the developed refactoring system, such

properties as complexity, completeness, correctness, and

confluence are of interest.

The computational complexity of the graph rewriting

application, in general, is high, since it is based on matching of

subgraphs which is a known NP-complete problem. However,

in our case the sub-graphs in the left part of the rules are quite

small. Moreover, node and edge labels, as well as directed

edges drastically reduce the search space for isomorphic

subgraphs.

The system of refactoring rules considered in this paper

has been tested using more than 30 ECCs representing various

typical structures. Results of some tests are presented in Table

1. The tests were created empirically, following basic graph

topologies, such as linear sequence, branching, connector,

each-to-each, etc. We tried to exclude topologies similar one

to another, e.g. triangle is similar to rectangle, so it was

excluded from the test set. Some of the tests represent regular

structures in the graph algebra, so different basic features can

be combined into more complex ones. However, we also tested

irregular structures, and they proven to be more

computationally complex.

For each test, three measurements were taken. The mean

value of execution time (Time) and the number of executed

rules (Nrules) are presented for each test in Table 1. As it can

be seen, refactoring in AGG is quite slow, which can be

explained by the fact that AGG is implemented in Java and is

Table 1. Some of the conducted refactoring tests and their performance: Time is average test completion time in AGG (taken across 3 measurements,

standard deviation of 6%), and Nrules is the number of rules applied.

1. ECCC-chain: a sequence of an Е-arc followed by C-arcs. The

dependency of arc conditions on preceding EC – actions is taken into

account (shown as dot-dash arc:).

Time = 11.2 sec; Nrules = 13.

 �

6. Irregular structure1 #1. Time = 27 sec; Nrules = 35.

 �

2. Dotted_line: a sequence of an E-arc, followed by intermittent C- and T-

arcs. Time = 14.5 sec; Nrules = 33

 �

7. c_Irregular1: irregular structure that includes a state with one C-arc and

one E-arc. Time = 23.0 sec; Nrules = 32.

 �

3. Common_chain of two C-arcs used to relay signal from two different E-

arcs. Time = 13.5 sec; Nrules = 29.

 �

8. Square with closed loop of E-arcs. Time = 23.8 sec; Nrules = 35.

 �

4. Tuft of an Е-arc followed by branching C-arcs.

Time = 10.4 sec; Nrules = 14.

 �

9. Double_Square with two closed loops of E-arcs sharing one such arc.

Time = 35.2 sec; Nrules = 49.

�
5. Each_to_Each: consists of “states’ layers”, where each state of a

preceding layer is connected to each state of the following layer, first by E-

arc and then by C-arcs. Time = 21.5 sec; Nrules = 28.

 �

10. Linear2 – Linear C-arcs chain with E-arcs bridges;

Time = 70.6 sec; Nrules = 117.

 �

Legend: - E-arc, - T-arc; - C-arc;

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 10

intended for research use. Re-implementation of the

transformation rules in C can bring 20-times speedup, which

will make application of the most of the rules practical as a

part of an IDE.

To check the performance dependency on the dimension

of ECC, sets of tests with different dimensions were generated.

In Figure 21, results of two such tests are presented: Linear,

similar to that of Figure 2, and Linear2 from Table 1 (#10).

For Linear, refactoring time seems to be a linear function of

ECC size, and for Linear2 the dependency seems to be

polynomial.

The termination of graph rewriting is undecidable in

general (but the termination can be preserved if the

transformation rules meet certain criteria) [22]. Thus,

termination of the refactoring problem is, in general,

undecidable too. In practical terms, there can be a situation,

when refactoring takes long time and it is impossible to predict

upfront whether it will ever terminate. However, all our tests

do terminate.

We have checked the compliance of our refactoring

system with the termination criterion using AGG. It turned out,

however, that the criterion is not satisfied. Indeed, an infinite

derivation in case of a cyclic CT-network of an ECC is

possible, but as we have mentioned above, such ECCs are

beyond the scope of our consideration. But it should be noted

that the AGG analysis does not take into account deep off-

stage dependencies among attributes expressed in user-defined

Java-classes.

On the other hand, our graph transformation approach is

a particular case of graph rewriting systems, which, in turn,

belong to the general class of systems based on production

rules. Many problems of graph rewriting systems are known

inherited problems of such systems, but nevertheless,

production rule-based reasoning is very popular, for example

in various knowledge representation systems.

Completeness of the system of rules means that it would

be possible to guarantee achieving a particular refactoring goal

(say absence of deadlocks) with the developed system of rules

in any source ECC. Our system of refactoring rules is created

empirically. We have not attempted so far to prove formally,

whether our system is complete. However, all conducted tests

meet the completeness property.

The practical role of confluence is to ensure same result

if the rules’ are applied in different order. Here we rely on the

result of [21] stating that typed attributed graph transformation

system is locally confluent if all critical pairs of rules are

confluent. By definition from [9, 21] a critical pair of rules

(p1, p2) exists if the application of p1 disables that of p2 or,

vice versa. The AGG system can do the critical pair analysis

for a given system of rules. The set of discovered critical pairs

represents precisely all potential conflicts. Using AGG we

have discovered and fixed some mistakes in the rules of our

refactoring system. However, the process of critical pair

analysis is computationally complex and slow in the current

AGG implementation. To test confluence we ran each of our

tests several times and always obtained same results, thus

confirming the property experimentally.

X. CONCLUSION

In this paper a graph-transformation approach to refactoring of

Execution Control Charts of basic Function Blocks is

presented. This approach is extended to the correction of

ECCs by removal of deadlock states.

Future work in this direction is envisaged along the

following lines:

• Properties of the developed system of rules will be further

investigated, in particular their completeness and

confluence.

• The system of refactoring rules can be further extended to

take into account particular execution semantics of

function blocks.

• Refactoring can be applied not only to basic FBs, but also to

FB networks. Possible ideas may include substitution of

an arbitrary sub-network of FBs by the equivalent

composite FB, or substitution of multiple connections

between FBs by adapter connections.

The IEC 61499 standard presents a novel visual programming

approach to the design of automation systems and refactoring

undoubtedly can be a very useful feature of the corresponding

engineering tools. Refactoring can be especially important in

industrial automation applications which are facing problems

of software lifecycle adaptability, same as business software

applications, but a lot more sensitive to software faults.

Application of the proposed refactoring technique can help to

avoid introduction of new errors during the process of software

modifications.

XI. ACKNOWLEDGEMENT

The authors thank nxtControl GmbH for providing the

function block editing tool nxtStudio used for preparation of

the test example in Figures 1 and 18.

Figure 21.Number of executed refactoring rules for the tests Linear (NR1)

and Linear2 (NR2) as a function of ECC states’ number.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 11

XII. REFERENCES

1. Function blocks for industrial-process measurement and control

systems - Part 1: Architecture, International Electrotechnical

Commission, Geneva, 2005

2. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.,

“Refactoring: Improving the Design of Existing Code”,

Addison-Wesley, 1999

3. Sendall, S., Kozaczynski, W., “Model transformation: The heart

and soul of model-driven software development”, IEEE Software,

Special Issue on Model-Driven Software Development. - 2003.20

(5), p.42-45

4. Object Management Group (OMG) Web-site http:// www.omg.org

5. Ledeczi, et al., “Composing Domain-Specific Design

Environments”, Computer, Nov. 2001, pp. 44-51

6. Thramboulidis K., “Model-integrated mechatronics - Toward a

New Paradigm in the Development of Manufacturing Systems”,

IEEE Trans on Industrial Informatics, 1(1), 2005

7. Ehrig, H., et al., “Handbook of Graph Grammars and Computing

by Graph Transformations” - World Scientific, 1999- v.1

8. Grunske, L., et al., “Graph Transformation for Practical Model

Driven Software Engineering”, in: Model-driven Software

Development. - Springer, 2005. p. 91-118

9. Mens, T., “On the Use of Graph Transformations for Model

Refactoring”, Lecture Notes in Computer Science: Generative

and Transformational Techniques in Software Engineering -

2006. vol. 4143. - p.219-257

10. Dubinin, V., Vyatkin V., “Building of search and transformation

systems for support of component-based industrial automation

systems design”, Proc. of IEEE Conf. AIS’05, Divnomorskoe,

Sept, 2005, vol.2, p.30-35

11. Zoitl, A., et al. “The Past, Present, and Future of IEC 61499”,

Lecture Notes In Artificial Intelligence; Vol. 4659, Proceedings

of the 3rd International Conference on Industrial Applications of

Holonic and Multi-Agent Systems: Holonic and Multi-Agent

Systems for Manufacturing, Regensburg, Germany, 2008

12. Vyatkin, V., Hanisch, H.-M. „Verification of Distributed Control

Systems in Intelligent Manufacturing”, Journal of International

Manufacturing, 14, (1), p. 123-136, 2003

13. Gengic, G., “On Formal Methods in Development of Control

Logic Using IEC 61499”, Doctoral thesis, Chalmers University

of Technology, 2009, ISBN 978-91-7385-241-8

14. Function Block Development Kit, Online: www.holobloc.org

15. Taenzer, G., “AGG: A Tool Environment for Algebraic Graph

Transformation”, Lecture Notes in Computer Science vol.1779,

Springer, 2000, p.481-490

16. AGG Web-site http: //tfs.cs.tu-berlin.de/agg

17. Dubinin, V., Vyatkin, V., “Towards a Formal Semantics of IEC

61499 Function Blocks”, 4th IEEE Conference on Industrial

Informatics (INDIN’06). - Singapore, 2006, p.6-11

18. Vyatkin, V., Dubinin, V., “Sequential Axiomatic Model for

Execution of Basic Function Blocks in IEC 61499”, 5th IEEE

Conf. on Industrial Informatics (INDIN’07), Vienna, 2007-

pp.1183-1188

19. Sünder, C. et al., “Usability and Interoperability of IEC 61499

based distributed automation systems”, 4th IEEE Conference on

Industrial Informatics (INDIN’06). - Singapore, 2006

20. Ehrig H., Prange U., Taenzer G., “Fundamental theory for typed

attributed graph transformation”, In: Graph Transformation:

Second International Conference, ICGT’04, Lecture Notes in

Computer Science, Springer-Verlag, 2004, pp.161-177
21. Heckel,R., Malte Küster J., Taentzer G., Confluence of Typed

Attributed Graph Transformation Systems, in: Proc. ICGT 2002.

Volume 2505 of LNCS, Springer, 2005

22. Ehrig H., Ehrig K., Lara J., Taentzer G., Varro D., and Varro-

Gyapay S., „Termination Criteria for Model Transformation“,

LNCS, vol. 3442/2005, Berlin-Heidelberg

23. 4DIAC-IDE web-site: http://www.fordiac.org/9.0.html
24. FBench website: http://www.ece.auckland.ac.nz/~vyatkin/fbench/

Valeriy Vyatkin -- (SM’04) graduated

with a Diploma degree in applied

mathematics in 1988, received the the

Ph.D. degree in 1992 and Dr. Sci.

degree in 1998 from Taganrog State

University of Radio Engineering

(TSURE), Taganrog, Russia, and the Dr.

Eng. Degree from the Nagoya Institute

of Technology, Nagoya, Japan, in 1999.

Currently, he is Senior Lecturer at the Department of Electrical

and Computer Engineering at the University of Auckland,

Auckland, New Zealand. His previous faculty positions were

with Martin Luther University of Halle-Wittenberg in

Germany (Assistant Professor, 1999–2004), and with TSURE

(Senior Lecturer, Professor, 1991–2002). He is Program

Director of Software Engineering and the Head of the

infoMechatronics and IndusTRial Automation lab (MITRA).

His research interests are in the area of industrial informatics,

including software engineering for industrial automation

systems, distributed software architectures (e.g. IEC 61499),

multi-agent systems, methods of formal validation of industrial

automation systems, and theoretical algorithms for improving

their performance.

Victor N. Dubinin received the Diploma

in computer science and the Ph.D. degree

from the University of Penza, Russia, in

1981 and 1989, respectively. From 1981

to 1989 he was a re-searcher and from

1989 to 1995 he was a senior lecturer at

the same University. Since 1995 he is an

associate professor in the Department of

Computer Science at the same University.

In 2003 and 2006 he has been awarded DAAD-grants to work

as a guest scientist at Martin-Luther-University Halle-

Wittenberg, Germany. His research interests include formal

methods for specification, verification, synthesis and

implementation of distributed and discrete event systems.

