

Using Visual Specifications in Verification of
Industrial Automation Controllers

Valeriy Vyatkin*, Gustavo Bouzon** and Hans-Michael Hanisch***
*Department of Electrical and Computer Engineering, University of Auckland, Auckland, New Zealand
**Automation Engineer Controle Soluções em Mecatrônica Ltda., Rua Mauro Nerbass, 72, CEP 88024-420 Lages/SC Brazil
***Institute of Computer Science, Martin Luther University Halle–Wittenberg, 06099, Halle, Germany

This paper deals with further development of a graphical specification language resembling timing-diagrams and allowing
specification of partially ordered events in input and output signals. The language specifically aims at application in modular
modelling of industrial automation systems and their formal verification via model-checking. The graphical specifications are
translated into a model which is connected with the original model under study.

Copyright © 2007, Valeriy Vyatkin, Gustavo Bouzon and Hans Michael Hanisch. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

1. INTRODUCTION
Formal verification of industrial automation systems
requires three constituent components: a model of the
controller, a model of the uncontrolled plant and a
specification of desired or forbidden plant behaviour.
Generation of the two first elements can be facilitated by
application of modular modelling approaches and from
automatic model-generation as described in [1].

However, languages commonly used for specification,
such as temporal logic, are still rarely familiar to control
engineers. So, the engineers would benefit from having
user-friendly means of specifying the desired or forbidden
behaviour of a model.

Inspired by the timing diagram specifications explored
in the domain of digital systems design (e.g. by K. Fisler
[3], N. Amla et al., [4], R. Schlör [5]), a graphical language
for describing the dependency of interface signal changes
was proposed in [6], and some of its implementation issues
were developed in [7].

In this paper we harmonize the earlier developed
specification and implementation techniques aiming at a
solution that can be a part of an integrated verification
framework. The underlying modelling language of the
framework is the modular formalism of Net
Condition/Event Systems (NCES) described in [8], [9].
The proposed visual language specifies the behaviour of
NCES models and the verification technique also relies on
the use of NCES. We suggest two procedures for
translation and checking of visual specifications: one for
verifying the output behaviour, and the other for combined
input-output behaviour. The paper is organized as follows.
Net Condition/Event Systems are briefly introduced in
Section 2. Timing Diagrams as a means for specifying
desired or forbidden behaviour of NCES models of
automation systems are defined in Section 3. The
transformation of Timing Diagrams to NCES modules is

subject of Section 4. Section 5 describes the
implementation of the method in a software prototype.
Some conclusions are presented in Section 6.

2. NET CONDITION/EVENT SYSTEMS
The formalism of Net Condition/Event Systems (NCES)
was introduced by Rausch and Hanisch in [8] as a modular
extension of Signal/Net Systems (SNS) – a place-transition
formalism for discrete state, discrete time modelling. The
idea of Signal/Net Systems is described as follows.

2.1. Definition of SNS

A Signal/Net System is a tuple
(P,T,F,V,B,W,S,M,m0,eft,lft), where P is a non-empty finite
set of places; T is a non-empty finite set of transitions
disjoint with P; F is the set of flow arcs, where F ك (P × T)
 → V maps a weight to every flow arc and V : F ;(T × P) ׫
Գ; B is the set of condition arcs, which carry condition
signals and B ك P × T; W maps a weight to every condition
arc and W : B → Գ; S is the set of irreflexive event arcs,
which convey event signals and S ك T × T; M maps a
event-processing mode (AND or OR) to every transition,
M : T → { ר m0: P → Գ0 ;{ ש , is the initial marking of
SNS, where for each place p א P, there are np א Գ0 tokens;
eft maps the earliest firing time to every pre-arc [p, t] א F,
eft: F ∩ (P × T) → Գ0; and, lft maps the latest firing time
to every pre-arc [p, t] א F, lft: F ∩ (P × T) → Գ0 ׫ {ω},
where ω א Գ and 0 ≤ eft(p, t) ≤ lft(p, t) ≤ ω. The interval
[eft(p, t), lft(p, t)] is called the permeability interval.

A state of SNS model is determined by a) m – vector of
marking of its places, i.e. allocation of tokens across the
places; and b) u – vector of clock values.

An example of SNS is presented in Figure 1. The model
consists of four places and five net transitions. Places p1

2 EURASIP Journal on Embedded Systems

and p3 have tokens at the initial marking. Besides ten token
flow arcs, the transition t2 is connected to t4 via an event
arc, and place p2 is connected to t5 via condition arcs.

Figure 1. Signal/Net System.

2.2. State of SNS model
Places bear integer clocks whose values are denoted as u:
P → Գ0, where for each place p א P, the clock reading in
the place is denoted as up א Գ0. All clocks have zero value
at the initial state of the model. The clock of a place resets
to zero anytime marking of the place changes.

A state in timed SNS is defined as a pair z=[m, u], where m
is a marking of P and u is the vector of the clock positions,
such that u(p) > 0→m(p) > 0. Evolution of a SNS consists
of changing its states. A state change (also called state
transition) can consist in changing net’s marking, or
changing values of clocks (elapsing of time).

In every state there could be some enabled net transitions.
If there are no enabled transitions then the clocks count
(increment they value by 1) in all marked places and the
SNS transitions to a new state. Otherwise, i.e. if there are
some enabled transitions, then it is said that one or several
enabled transitions fire that leads to the change of marking
as explained by the firing rules. The set of simultaneously
firing transitions is called step. In a given state there could
be several different steps ready to fire, meaning that a state
of SNS can have several successor states.

2.3. Firing rules

Let St denote the set of incoming event arcs of
transition t: St ؔ ሼt’|ሾt', tሿ א Sሽ. If St is empty, which
indicates that no incoming event arc is associated with
transition t, then t is spontaneous, otherwise it is forced.
Firing of a forced transition is caused by firing of some
other transition connected to it by an event arc. Both are
included in the same step, i.e. fire simultaneously. Enabled
spontaneous transitions can fire regardless of other
transitions. For example, the transition t4 in Figure 1 is
forced and other transitions are spontaneous. Accordingly,
the transition set T in can be subdivided on two disjoint
sets: ܶ ൌ ݐ݊݋݌ܵ ׫ where ,ܿݎ݋ܨ Spont is the set of all
spontaneous transitions of the SNS, and Forc denotes the
set of all forced transitions of the SNS.

For any transition t, there can be three kinds of
markings: the marking on incoming flow arc t-, the
marking on outgoing flow arc t+, and the marking on
incoming condition arc ̂ݐ, defined as follows:

ሻ݌ሺିݐ ؔ ൜ܸሺ݌, ,ሻݐ if ሾ݌, ሿݐ א ,0ܨ else

ሻ݌ାሺݐ ؔ ൜ܸሺݐ, ,ሻ݌ if ሾݐ, ሿ݌ א ,0ܨ else

ሻ݌ሺݐ̂ ؔ ൜ܹሺ݌, ,݌ሻ, if ሾݐ ሿݐ א ܤ
0, else

For any subset s ك T, the marking s- and s+ denote the
sum of markings t- and t+ respectively, and ̂ݏ represents the
union of markings ̂ݐ for t ك s.

The firing of a spontaneous transition is determined by
the three factors listed below:

1. Token concession: A transition is said to have a
token concession or is token-enabled when all the
flow arcs from its pre-places are enabled. More
specifically, a flow arc is enabled when the token
number in its source place is not less than its
weight, i.e. m(p) ൒ V(p, t). For example, given the
marking m, transition t is token-enabled if t- ൑ m.
Transitions which have no pre-places are always
marking-enabled.

2. Permeability interval: The permeability interval
defines the time constraints applied to the input
flow arcs of transitions. A transition t: ∃ (p, t)∈F is
time-enabled only when clocks of all its pre-places
have a time u(p) within permeability interval of the
corresponding place-transition arc: eft(p, t) ≤ u(p) ≤
lft(p, t).

3. Incoming condition signals: A spontaneous
transition may have incoming condition arcs. It is
considered condition-enabled when all the
condition signals on its incoming condition arcs are
true, i.e. ̂ݐ ൑ ݉.

A spontaneous transition is eligible to fire only when it is
token-enabled, time-enabled, and condition-enabled.

2.4. Step and state transitions
SNS is executed in steps, meaning that for each state

transition there is a unique set of concurrently firing
transitions ݏ ك ܶ. A state is dead if no further step is
enabled or will be enabled by elapsing time. For non-dead
states, the delay D(m,u) denotes the minimum amount of
elapsed time before a step is enabled.

A step is referred as executable at the state [m, u] if all
of its constituent transitions fire after D(m,u). The
execution of an executable step s at state [m, u] is
accomplished by first elapsing D(m,u) amount of time and
then firing s.

The new state [m', u'] led by the execution of step s is
determined by:

݉ᇱ ൌ ݉ െ ିݏ ൅ ା, andݏ

ሻ݌ᇱሺݑ ൌ׷ ቐ
ሻ݌ሺݑ ൅ ,ሺ݉ܦ ,ሻݑ ݂݅ ݉ሺ݌ሻ ൐ 0 ר ݉ᇱሺ௣ሻ ൐ 0

ר ݌ ב ሺݏܨ ׫ ,ሻܨݏ
 0, otherwise

Subsequent step executions from the initial state
construct the reachability graph of the SNS model, which
illustrates the relationship of all realizable states within the
state space. The reachability graph of a timed SNS can be
represented as a 3-tuple:

ܩܴ ൌ ሺܼ, ܴ, z଴ሻ,
where Z is a finite set of reachable states, R is a finite set of
state transitions, and z0 is the initial state [m0, u0].

For any subsequent states [mi, ui] and [mi+1, ui+1] א Z,
there is a state transition τ א R, such that [mi+1, ui+1] is

V.Vyatkin, G.Bouzon and H.-M. Hanisch 3

reachable from [mi, ui] via state transition τ. This state
transition is also denoted as ሾ݉, ሿݑ

ఛ
՜ ሾ݉′, .ሿ′ݑ

A. Adding modularity to SNS

A Net Condition/Event System [8], [9] is defined as a SNS
augmented by interface elements: condition and event
inputs and outputs, which can be connected by event and
condition arcs to SNS transitions and places. NCES having
no inputs is SNS.

Figure 2. An example of a modular composition.

The NCES concept provides a basis for a
compositional approach to build larger models from
smaller components. According to the rules presented in
[17], the composition is performed by connecting inputs of
one module with outputs of another module as depicted in
Figure 2. The modularity, introduced in NCES does not
bring any semantic consequences - the model analysis is
applied to the SNS resulting from the composition of
several NCES modules.

The result of the composition of two NCES N1 and
N2 is an NCES N1+2 obtained as a union of the
components. The result of the composition again can be
represented as a new module. Inputs and outputs of the
"composition" are unions of the components' inputs and
outputs, except for those which are interconnected to each
other, and hereby "glued", i.e. substituted by the
corresponding condition and event arcs. If the resulting
NCES from Figure 2 is considered standalone, its
condition input can be neglected making it semantically
equivalent to the SNS from Figure 1.

The reachability graph of the model from Figure 2 is
shown in Figure 3, assuming that the input ci1 of the
Module1 is not assigned. The transitions are shown as arcs
of the graph, and are marked by names of NCES
transitions simuntaneously occurred. Observing values of
model parameters along a certain path in the reachability
graph one can draw a timing diagram, like the one shown
in the right part of Figure 3 for some outputs of the NCES
modules from Figure 2 (some of which are inputs to
another module).

NCES attempts to enhance the structured model
development using place-transition nets. NCES models can
precisely follow the structure of popular block diagram
modelling and implementation languages, such as
Stateflow of Matlab/Simulink and the function blocks of

the IEC61499 standard – new reference architecture [15]
used for modelling and implementation of distributed
automation systems.

NCES were successfully used for modelling of
traditional automation systems built using Programmable
Logic Controllers (PLCs), as presented, for example in [1],
[2], and of distributed embedded control systems following
IEC61499 systems, as explained in [18].

The trend to improve structuring and composition
potential of formal languages based on Petri net is seen in
other dialects of Petri nets, as reported in [10] and [11].

Figure 3. Reachability graph describing the complete behaviour
of the model from Figure 2 and timing diagram in one of possible
traces.

2.5. Integrated tools for model creation, editing and
analysis

The timing diagram specification technique explained in
this paper is a part of the tool chain for integrated
modelling and verification of automation systems. The tool
chain, described in more details in [16] consists of:
1) A graphical editor of NCES models;
2) The integrated environment for Model Assembly and

Checking (VisualVerifier) that inputs model type
files and is capable of assembling a composite,
hierarchically organized model from modules
contained in different libraries and translating the
model into a “flat” NCES with the through
numbering of places and transitions.

Thus, module boundaries are removed and the model-
checking tools can be applied. In particular, the translator
generates files in the input format of SESA model-checker
[13].

Model-checkers like SESA prove properties of desired
or prohibited behaviour of NCES models in their
reachability space. A reachability graph like the one in
Figure 3 is generated, and the properties are checked in its
states or trajectories. Properties of single states can be
captured in form of predicates, and properties of
trajectories are usually defined in temporal logic
languages, like CTL – Computation Tree Logic.

3. TIMING DIAGRAMS
3.1. Idea of use for specification

Capturing trajectory relevant properties in some formal
language like CTL is quite difficult for control engineers.
The idea of using timing diagrams for specification is to
draw a specification graphically and then ask the model
checker: if inputs behave like shown in the input diagram
will outputs behave like in the output diagram? However, a
single timing diagram describes only a single scenario.

4 EURASIP Journal on Embedded Systems

Sometimes it is desirable to define a class of input
scenarios with certain properties and then check if certain
output patters are observed among all or any trajectories in
the reachability graph. The idea is illustrated in Figure 4.
The diagram consists of two parts: the upper (if) part
presents the “input” part of guaranteed signals and the
lower part is the “conjecture” to prove. In this example
there is conditional restriction added between the rising
edge of M1.co1 (event e2) and the falling edge of M2.co1
(event e3) – the restriction says that e3occurs after e2. Note
that the signal M1.co1 belongs to both parts. In the “input”
part it is specified by a single wavefront change that is
simultaneous with the event M1.eo1. The waveform of the
same signal in the “output” diagram is more complicated.

Figure 4. Timing diagram specification

Comparing the “then” part of the specification with the
timing diagram of real behaviour in Figure 3 one sees that
the specification holds in the given path. The idea of this
paper is to enable such a check automatically using model
checkers.

3.2. Definitions
The use of Timing Diagrams (TD) as a method of formal
specification requires the definition of a graphical
specification and its semantics.

In a diagram, sequences of changes in signal
specification values are assigned to condition and event
signals. Given the subsets outin EEE ∪⊆ and

outin CCC ∪⊆ , a specification for a signal set CEA ∪= is
described as a tuple),,(gfAS = , where ce fff ∪=
defines sequences of specification values: *: ee Ef Σ→ with

{ }alwaysmaybenoevente ,,=Σ specifies sequences for event
inputs and outputs, while *: cc Cf Σ→ with

{ }onestableanyzeroc ,,,=Σ defines values for condition
signals.

The partial function () ()),,(NN: ≠=>→××× AfAfg
assigns an ordering operator (precedence, simultaneity or
non-simultaneity) between signal changes from different
signals, in such a way that g(ai,m,aj,n) indicates an
ordering restriction between the m-th signal change of ai
and the n-th signal change of aj.

A graphical description of a specification is illustrated
in Figure 5 (for a model with outputs “FAILURE”,
“RESUME” and “SENS”). Signal changes at the beginning
or ending of the diagram are implicitly simultaneous.
Nevertheless, no further ordering is determined by the
horizontal position of signal changes - therefore a timing
diagram usually specifies a partial ordering among signal
changes.

The semantics associated to the diagram is as follows:
when the set of levels specified at the beginning of the

diagram is achieved, it is required that the sequence of
changes of the signals does not violate the partial ordering
specified in the diagram, until a final state is reached.

Figure 5. Specification including two event inputs, one condition

output and a simultaneity operator.

3.3. Specified Signals
In order to describe specifications of NCES models, TDs
must provide different representations for event and
condition signals. Thus, we define the following
possibilities of specification:
• in the case of a condition signal, the specification may

have one of four possible levels: zero, corresponding to a
logical zero; any, representing the situation where the
signal might assume any logical value which can change
at any state transition; stable, which also means
undefined value, however assuming that the signal
remains at a single level; or one, corresponding to the
logical one;

• event signals are specified in two possible levels: no
event, in the case where the occurrence of the event is
forbidden, and maybe, meaning that the event might
occur. It is also possible to specify an obligatory
occurrence of the event signal (always), but in this case
only as a single pulse, because of the instantaneous
nature of an event signal.

We define a diagram event as: any level change specified
at a condition signal; a level change from no event to
maybe or vice-versa, at an event-signal; or a specification
of an obligatory occurrence of an event (always peak at an
event signal).

3.4. Event Ordering at Different Signals
If a partial ordering semantics is assumed, no prior
ordering of events on different signals is implicit. In other
words, although each signal presents an ordering of its
events, two events of different signals may occur at any
sequence, except when special operators explicitly define
their sequence. On the other hand, it is also possible to
assume that the ordering of all events is defined through
their position at the visual description. In this case, we are
talking about a strict or sequential ordering.

Although more intuitive, adopting a sequential ordering
would limit the representational capabilities of a diagram.
Therefore, we adopt a partial ordering semantics for the
TD language. In this case, the same TD represents a set of
possible behaviours of the system, each one represented by
a different event chain on the modelled system. Each chain
is called scenario, and the set of scenarios defined by the
diagram is named diagram language.

In Figure 6 (A) we observe the specification of two
signals s1 and s2. Had we adopted a sequential ordering
semantics, only one scenario would compose the diagram
language: s2

+s1
-s2

-. As the temporal dependence among
events from different signals is not predefined (assumed
partial ordering semantics) the same figure represents a TD
with the following scenarios: (s2

+,s1
-)s2

-; s2
+(s1

-,s2
-); s1

-s2
+s2

-

V.Vyatkin, G.Bouzon and H.-M. Hanisch 5

and s2
+s2

-s1
-. Figure 6(B) indicates the timing diagram that,

based on the adopted semantics, accepts as its only
scenario s2

+s1
-s2

-, by introducing operators that indicate the
obligatory ordering among events from different signals.
The meaning of these operators will be stated in the next
section.

Figure 6. Temporally independent signals (a) and

event ordering (b).

In order to constrain the ordering of two events from
different signals, we define the following precedence
operators:

≠ : events are not allowed to occur simultaneously;
= : events must be simultaneous;
> : event from the first signal must occur prior to the

event from the second signal.

3.5. Specification of Finite Behaviour
The TD represents a finite behaviour that must be satisfied
by the model. The satisfaction of a TD is evaluated from
the moment when all specified signals are in their initial
levels and some of them execute an initial transition, as
indicated at the beginning of the diagram. The verification
process ends when all signals achieve their final state,
indicated in the end of the diagram. The initial part of the
diagram, denominated precondition, corresponds to a
condition, whose satisfaction by the model indicates that
we must start comparing the model’s behaviour with the
remaining part of the TD. The comparison ends up when
the final part of the diagram, called postcondition, is
reached. Both pre- and postcondition are highlighted at the
diagram (Figure 7).

When a TD specifies a finite behaviour, different
interpretations are possible:

Existence of a scenario (from the diagram language):
here we require that at least one of the specified scenarios
will occur at the model. In other words, there is a path at
the state tree of the model, where the precondition is
satisfied and the behaviour of the model does not
contradict the specification.

Existence of all scenarios: the existence of each
scenario must be tested inside the state space of the model.

Generality of a single scenario: here a single scenario,
from the set of scenarios specified at the diagram, must be
recognized in every path, indicating a situation that has to
occur in the future, regardless of which path is taken by the
model.

Generality of the diagram’s language: the behaviour
specified at the diagram will eventually occur, no matter
which scenario, in each path from the state tree of the
model. Notice that, in this case, the existence of a path

with no occurrence of the precondition would already be a
counter-example.

Satisfaction of a single scenario: every satisfaction of
the precondition must be followed by the satisfaction of
the same scenario, among those that are possible according
to the specification. This corresponds to an assume-
guarantee clause, where the precondition plays the role of
an assumption that, when fulfilled, guarantees the
occurrence of a given sequence of events.

Satisfaction of the diagram: the specified behavior
must not be contradicted, which means that every
occurrence of the precondition at the model leads to a
behaviour that is accepted by the diagram language. As a
particular case, a model that presents no occurrence of a
given precondition satisfies every specification starting
with this precondition. The following topics will be based
on this interpretation of the TD.

3.6. Specification of infinite behaviour
The timing diagram could also correspond to a
specification to be satisfied from the time when the
precondition occurs, without the need to specify a
postcondition. In this case, the final state specified at the
diagram would correspond to a restriction that must not be
violated.

Figure 7. Pre- and postcondition.

The absence of a specification for the precondition
could indicate that the initial state of the model should
comply with the levels specified at the beginning of the
diagram. Although these two approaches also present a
practical appeal, the absence of postcondition or
precondition will not be issued in the work, as a matter of
simplicity.

In order to allow the translation of the timing diagram
into a formal model, some requirements have to be done in
respect to the events presented in each signal. Diagrams
satisfying the requirements are said to be feasible.

4. NCES MODEL OF TIMING DIAGRAMS
When verifying autonomous NCES models without inputs,
each signal specification is translated into a NCES
supervisor module comprising two basic submodules: an
event generator creates sequences of transitions, one for
each change of level specified for the signal. Each
transition stimulates, through an event arc, the
corresponding event input of a signal generator, which
causes the output of the signal generator to recreate the
signal according to the input stimulated. Ordering
operators are translated into special places and transitions
that create interdependency of event generators.

The verified module is then connected through event
arcs to the event generators of the corresponding signals, in
such a way that every change of signal in the first is
reported to the latter. Along with the translation of the

6 EURASIP Journal on Embedded Systems

specification into NCES modules, a set of automatically
generated temporal-logic statements is created. The
composite module is then model-checked against these
statements to verify if each transition at the supervisor
always fires whenever the corresponding transition at the
verified module is fired.

The graphical specification also provides automatic test
possibilities for input/output behaviour or non-autonomous
NCES modules. In this case, the NCES supervisor modules
that describe input signals are used for generating the
specified sequences of input signal changes, while the
output signals are again verified as described before. The
components of the NCES model of the timing diagram are
detailed in the following sections.

4.1. Event Generator
The main part of the NCES model for the specification is
called event generator and consists of a set of parallel
processes (sequences of transitions and places), started
simultaneously by the firing of a transition denoted tstart.
Each process is responsible for reproducing the behavior
specified for one signal. Events on the signals are
translated into transitions at the processes.

For each signal i, there is a place pnotstart,i which is a
preplace of tstart and postplace of the last transition of the
corresponding process. The transition tstart indicates the
beginning of the timing diagram. The situation where the
diagram language is not being executed corresponds to the
marking pnotstart,i=1 for every signal i.

In the case that at least a signal j has the marking
pnotstart,j=0, the marking pnotstart,i=1 for a signal i indicates
that this signal has already achieved the last level specified
at the diagram.

The precedence relationships among events of different
signals are mapped to special interconnections among the
corresponding processes, as shall be detailed in the
following section.

Figure 8. Translation of a single specification for a condition

output, and linking to the verified model.

4.2. Signal Generation Module
For each specified signal, we create a signal generator
module which reproduces, at its output, the possible values
for the signal, according to the level specification
stimulated at its input. Each event on the timing diagram
(modelled by the firing of a transition at the event
generator) stimulates, by an event arc, the corresponding
change at the signal generator, which guarantees that the
NCES module, resulting from the combination of the event

generator with the signal generators, will reproduce at its
output the diagram language. The idea is illustrated in
Figure 8. To each condition signal included at the
specification is assigned a signal generator module with
four event inputs, corresponding to the four possible
specification levels, and two condition outputs, indicating
the two possible values assumed by the condition signal
(zero or one).
Figure 9 shows the structure of a signal generator for a
condition signal.

Figure 9. Generator of condition signals.

The transitions tozero, toone, tostable and toany receive
event arcs, respectively, from the zero, one, stable and
any event inputs.

Firing one of these transition means that the
corresponding signal has changed its specification level to,
respectively, zero, any, stable or one – in other words, a
diagram event has occurred. The condition outputs
not_signal and signal are linked to the internal places
zero_p and one_p. The remaining transitions and places
implement the desired non-deterministic behaviour - after
the firing of tostable and toany, the marking of places
zero_p and one_p should be non-deterministic, and may
change randomly in the latter case, until another input
event is stimulated. The place p2 always has a conflict
with respect to transitions t5 and t1 leading to non
deterministic choice in case of the signal ‘to stable’ (i.e.
the stable value can be assigned either to 0 or to 1).

Figure 10 presents the internal structure of a signal
generator for an event signal.

Figure 10. Generator of event signals.

Event signals are represented by modules with three
event inputs, corresponding to the three possible
specification values, and an event output, whose firing
corresponds to the generation of the event. Internally, this
generation corresponds to the firing of the result
transition.

The transitions to_noev# (1 and 2), to_maybe# (1 and
2) and to_always# (1 and 2) are fired by stimulating the
no_event, maybe and always inputs respectively. Every
diagram event leads to the firing of at least one of these

V.Vyatkin, G.Bouzon and H.-M. Hanisch 7

transitions – actually, an always peak at the specification,
followed by the specification of a new level, implies that
both the result and the transition that leads to the new
level specification (to_noev# or to_maybe#) will be
enforced to fire.

Figure 11. User interface of the TDE tool and file formats
adopted for data storage

5. PROGRAM IMPLEMENTATION
The Timing Diagram Editor (TDE) is an application
developed with the aims of providing the following
functionalities:

- create, edit, save and load specifications of function
blocks whose internal logic is specified by means of a
NCES. These specifications are generated and visualized
graphically as timing diagrams, while each signal at the
timing diagram may be of one of the following types:
event signals and condition signals; the signal levels
allowed for each type of signals that were presented
above.

- translate the combination of a function block and the
behaviour specified for it into a composite finite state
model (NCES) and temporal propositions written in the
eCTL [12] format, in such a way that the composite
model, and consequently the original function block, can
be verified formally with the aid of the SESA tool [14].
If all the generated eCTL propositions evaluate to true
with regard to the composite model, we conclude that the
behaviour of the original model satisfies the
specification.

The TDE tool uses XML as a storage format for both
timing diagrams and NCES models and converts them to
the input formats of the SESA model checker as illustrated
in Figure 11.

CONCLUSION
The paper presented the idea of visual specification
language to be used with modular discrete models, in
particular of plant-controllers systems. Future work will
include integration of this language to the visual
verification framework [16].

ACKNOWLEDGEMENTS
The work of some authors was supported in part by the
cooperative project VAIAS funded by the German

Ministry for Education and Research (BMBF) and
industry, and by the Deutsche Forschungsgemeinschaft
under the reference Ha 1886/10-2 and Ha 1886/12-2 and
by the University of Auckland (grant UARC 3607207).

REFERENCES
[1] H.-M. Hanisch, J. Thieme, A. Lüder, O.Wienhold, Modeling

of PLC Behaviour by Means of Timed Net Condition/Event
Systems, 6th IEEE Conference on Emerging Technologies
and Factory Automation, Los-Angeles, 1997

[2] H.-M. Hanisch, A. Lobov, J. L. Martinez Lastra, R. Tuokko
and V. Vyatkin: Formal Validation of Intelligent Automated
Production Systems towards Industrial Applications,
International Journal of Manufacturing Technology and
Management, Volume 8 No. 1/2/3, 2006

[3] Fisler, K.: Timing diagrams: Formalization and algorithmic
verification. Journal of Logic, Language, and Information,
8(7), July 1999.

[4] Amla, N., Emerson, E., Kurshan, R., and Namjoshi, K:
Model checking of synchronous timing diagram, Conf. on
Formal Methods in Computer Aided Design, Nov. 2000

[5] Schlör, R., Allara, A. and Comai, S.: System Verification
using User-Friendly Interfaces. In Design, Automation and
Test in Europe, pp. 167-172. IEEE Comp. Soc. Press, 1999

[6] Vyatkin, V. and Hanisch, H.-M.: Application of Visual
Specifications for Verification of Distributed Controllers,
Proc. of IEEE Systems, Man, and Cybernetic Conf, pp. 646-
651, Tucson, 2001

[7] G. Bouzon, V. Vyatkin, H.-M. Hanisch: Timing Diagram
Specifications in Modular Modelling of Industrial
Automation Systems, IFAC World Congress, Prague, 2005

[8] Rausch M. and Hanisch H.-M.: Net condition/event systems
with multiple condition outputs. Symposium on Emerging
Technologies and Factory Automation, Paris, France,
October 1995, Proc., Vol.1, pp. 592-600, INRA/IEEE

[9] Hanisch, H.-M. and Lüder, A.: Modular Modelling of Closed-
Loop Systems, Colloquium on Petri Net Technologies for
Modelling Communication Based Systems, Berlin, Germany,
October 21-22, 1999, Proc, pp. 103-126

[10] L. Gomes, J. P. Barros, “Structuring and Composability
Issues in Petri Nets Modeling”, IEEE Trans. on Industrial
Informatics, Vol. 1, No. 2, pp.112-123, 2005

[11] N. Hagge, B. Wagner, “A New Function Block Modeling
Language Based on Petri Nets for Automatic Code
Generation”, IEEE Trans on Industrial Informatics, 1-4, 2005

[12] Roch, S.: Extended Computation Tree Logic, in Proc. of
Workshop on Concurrency, Specification and Programming,
Berlin, 2000

[13] P. Starke, S. Roch, K. Schmidt, H.-M. Hanisch, and A.
Lüder, Analysing Signal-Event Systems, Technical report,
Humbold,[Online]:http://www.ece.auckland.ac.nz/~vyatkin/t
ools/modelchekers.html

[14] SESA – Signal/Net System Analyzer, [Online]. Available:
http://www.ece.auckland.ac.nz/~vyatkin/tools/modelchekers.html

[15] Function Blocks for Industrial Process Measurement and
Control Systems, International Electrotechnical Commission,
Part 1: Architecture, Geneva, 2005

[16] Visual Verification Framework, [Online],
http://www.fb61499.com/valid.html

[17] Thieme, J. Symbolische Erreichbarskeitanalyse und
automatische Implementierung struktuirter, zeitbewerter
Steuerungsmodelle, Dissertation zur Erlagung des Grades
Dr.-Ing., Berlin: Logos Verl., 2002

[18] Vyatkin, V. and Hanisch H.-M.: Verification of Distributed
Control Systems in Intelligent Manufacturing, Journal of
Intelligent Manufacturing, special issue on Internet Based
Modelling in Intelligent Manufacturing, vol.14, N.1, 2003,
pp.123-136

Model to be verified
(XML)

Specification
 (XML)

Composite model
(verifed model +

specification model)

Composite model
 (XML)

Model under SESA format
.pnt file (SNS model)
.in (script / eCTL formulas)

