
Control Engineering Practice] (]]]])]]]–]]]
Contents lists available at SciVerse ScienceDirect
Control Engineering Practice
0967-06

http://d

n Corr

E-m

Pleas
distr
journal homepage: www.elsevier.com/locate/conengprac
Transformation of Simulink models to IEC 61499 Function Blocks
for verification of distributed control systems
Chia-han Yang n, Valeriy Vyatkin

University of Auckland, Electrical and Computer Engineering, Level 2, Science Centre, 38 Princes Street, Auckland 1041, New Zealand
a r t i c l e i n f o

Article history:

Received 17 May 2010

Accepted 20 June 2012

Keywords:

Simulation

Distributed systems

IEC 61499

MATLAB Simulink

Function Blocks
61/$ - see front matter & 2012 Elsevier Ltd. A

x.doi.org/10.1016/j.conengprac.2012.06.008

esponding author.

ail address: cyan034@aucklanduni.ac.nz (C.-h

e cite this article as: Yang, C., & Vya
ibuted control systems. Control Engi
a b s t r a c t

In this paper, a new model-based engineering approach is introduced by bridging MATLAB Simulink

with IEC61499 Function Block models. This is achieved by a transformation between the two block-

diagram languages. The transformation supported by the developed tools sets the cornerstone of the

verification and validation framework for IEC 61499 Function Blocks in closed-loop with the models of

the plant. The framework also paves the way to running distributed simulations of complex hybrid (i.e.,

continuous-discrete) closed-loop plant-controller systems and building complex models using the

efficient object instantiation techniques of IEC 61499.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The new market demands for flexibility and reconfigurability in
manufacturing and process industries motivate the transition from
centralised automation systems to the systems with distributed
intelligence (Chokshi & Mcfarlane, 2008; Felcht, Darton, Prince, &
Wood, 2003; Yang & Vyatkin, 2008). This approach relies on
decentralised control architecture which includes multiple control
units and each of which controlling a device or a sub-section of the
entire system. These controllers may communicate and collaborate
with each other through some communication channels, (i.e., Ether-
net, Fieldbus, etc.). Although it is possible to implement distributed
intelligence using traditional Programmable Logic Controllers (PLC)
connected via some communication channels, however, software
development for distributed systems using the PLC-oriented centra-
lized software paradigm is cumbersome for a number of reasons, as
discussed, for example in Vyatkin (2007a).

Fig. 1 To address these issues, the International Electrotechnical
Commission (IEC) in the IEC61499 standard (2005) has defined a
new reference software architecture for designing distributed control
and automation systems. The standard continues using the event-
driven module ‘‘Function Blocks’’ (FBs), which originates from IEC
61131-3 standard. The event-driven execution of components pro-
vides for transparent design of distributed systems. It can improve
the flexibility and efficiency of system design on account of solutions’
re-use. Function Blocks offer a higher level of abstraction than the
artefacts of the PLC based software architecture. The modularity
concept is the key for easier reconfiguration and software re-usability
ll rights reserved.

. Yang).

tkin, V. Transformation of S
neering Practice (2012), http
which are not easily achievable in the traditional IEC 61131-3
compliant PLCs, where re-writing or re-structuring the program code
is often needed even in a simple scenario (Vyatkin, 2007b). Even
though the modularity concept with FBs is already introduced in IEC
61131-3, the new standard offers completely different design archi-
tecture, and it can provide much easier process in reconfiguration,
maintenance and deployment process of distributed systems. This
new standard sets the common criterion in the implementation of
distributed control, allowing the design to be vendor-independent
while achieving flexibility in terms of both software and hardware.

However, distributed intelligence systems are difficult to
validate and verify (Kshemkalyani & Singhal, 2008) in order to
ensure their correctness and robustness. The testing complica-
tions originate in the fundamental features of distributed sys-
tems, such as lack of global clocks, impossibility of establishing
global state and the difficulty to synchronize processes. Even
though the control design is more manageable through the
software module concept of Function Blocks, it is still challenging
to grasp the overall behaviour of the distributed system without
computer-aided verification process, especially when each con-
troller in the system network is designed by a different developer.
Another challenge comes from the system engineering side. In
order to be used in industry, the perceived switching cost to this
new Function Blocks approach needs to be less than the perceived
benefit. The costs of the change can be very substantial especially
in restructuring and retraining to familiarise with the new design
approach and new design tools (Peltola, Christensen, Sierla, &
Koskinen, 2007). This problem leads to an idea of linking existing
tools and languages with Function Blocks. Therefore improving
validation and verification by using existing tools can increase the
industrial adoption of distributed automation.
imulink models to IEC 61499 Function Blocks for verification of
://dx.doi.org/10.1016/j.conengprac.2012.06.008

www.elsevier.com/locate/conengprac
www.elsevier.com/locate/conengprac
dx.doi.org/10.1016/j.conengprac.2012.06.008
dx.doi.org/10.1016/j.conengprac.2012.06.008
dx.doi.org/10.1016/j.conengprac.2012.06.008
mailto:cyan034@aucklanduni.ac.nz
dx.doi.org/10.1016/j.conengprac.2012.06.008
dx.doi.org/10.1016/j.conengprac.2012.06.008
dx.doi.org/10.1016/j.conengprac.2012.06.008
dx.doi.org/10.1016/j.conengprac.2012.06.008

Fig. 1. An example of a Simulink block.

C. Yang, V. Vyatkin / Control Engineering Practice] (]]]])]]]–]]]2
System simulation using closed-loop plant-controller model-
ling is a standard technique in control engineering and is getting
recognized in industrial automation as a way of testing and
debugging of automation software (Vyatkin, Hanisch, Pang, &
Yang, 2009). So far the Function Blocks architecture of IEC 61499
has been used mainly for implementation of distributed control-
lers rather than models of the plant. In the authors’ view,
however, the ability to integrate plant and model in a single
execution and development framework is one of the benefits of
IEC 61499 architecture. The Model-View-Control (MVC) design
pattern has been introduced in the Function Block domain as a
way to validate and verify the design (Christensen, 2000). Using
this pattern, one can combine simulation model and controller
into one component, and the connection of such components
results in a working simulation model of the entire distributed
system. It has been demonstrated in a number of publications
(Black & Vyatkin, 2008; Vyatkin, 2007b; Christensen, 2000), that
using Function Blocks as a modelling language is feasible and
beneficial. However, the question left is how to obtain these
models in a cost-efficient way.

The answer to this question leads to the proposed model
transformation approach, where the required models can be
obtained by transforming existing models from other popular
modelling software tools such as MATLAB Simulink. In this work,
MATLAB Simulink is chosen as it is a powerful and well-known
tool in the modelling and simulation domain. Also Simulink
follows the block-diagram modelling approach which is very
close to the modular approach of Function Blocks.

Under assumption of a particular FB execution semantics, the
FB standard can be considered as an executable specification for
distributed control systems enabling system-level design of dis-
tributed controllers with capability of direct deployment, while
modelling tools such as MATLAB Simulink are good only for
simulation and analysis of control systems.

This paper addresses the formal side of the model transforma-
tion method whose idea was earlier presented by the authors in
Yang and Vyatkin (2010).

The rest of the paper is organised as follows. Section 2
summarizes the reasons for developing the model-transformation
method. Section 3 explains the proposed method in detail. Section
4 discusses the equivalence of the transformation results with the
original models. A comparison of the output results from both
transformed model and the original Simulink model is presented
in Section 5. Finally Section 6 discusses the future direction of this
research and Section 7 concludes the paper.
2. Motivation of model transformation

The proposed model transformation aims at providing the
necessary plant (and, possibly, controller) models to be used in
the simulation environment for validation of distributed systems
compliant with IEC 61499. There are also other reasons why the
model transformation to Function Block domain is useful:

Easier re-use in FB form: In Simulink, if a same block is used
throughout the system many times, and for some reason it
requires modification, then this is to be done in its every
occurrence. Function Blocks, on the other hand, can be mod-
ified more easily and updated to all block instances. In this
Please cite this article as: Yang, C., & Vyatkin, V. Transformation of S
distributed control systems. Control Engineering Practice (2012), http
scenario, Function Block tools have advantage from the soft-
ware reusability perspective.
Potential to improve performance: The distributed nature of
FBs implies the ability to run models in parallel on distributed
computers. There is a third-party distributed toolbox for
MATLAB/Simulink that enables concurrent simulation on sev-
eral communicating computers, which justifies the importance
of distributed simulation. Translation of MATLAB models to
the FB environment allows for more control over the con-
current model execution. In FB one can take advantage of
highly efficient compilers of IEC 61499 (Yoong, Roop, Vyatkin,
& Salcic, 2009b) and of execution platforms with hard real-
time guarantees (Zoitl, 2009).
Reduce the conflict in the nature of the execution between two
models: One may argue that the simplest way to connect the
two modelling environment can be achieved by a standard
communication channel such as UDP or TCP connections, such
as the approach introduced in Maturana, Ambre, Staron,
Carnahan, and Loparo (2011) where synchronization between
MATLAB and SoftPLC is performed. This option was investi-
gated by the authors in Yang and Vyatkin (2008) for IEC 61499
implementation, and it can be a better option for some design
scenarios. While, in general, it works and allows for co-
simulation of Function Block controllers with plant models in
Simulink, there are some limitations and overheads. The
execution semantics of both languages is different (and there
are variations between different FB implementations), so one
has to build a communication channel that does not depend on
these differences.

Another important reason for model transformation is to
support model-based control design methods, such as model-
predictive control (MPC), control by estimation, etc. These are
common and advanced control techniques in process industries
such as chemical plants and oil refineries automation. The
transformation approach can provide an easier way of obtaining
necessary models that can assist in making control decisions.

Industrial practices show the great need for comprehensive
system level simulation frameworks. Such established modelling
frameworks as MATLAB, LabView and PS-CAD provide mechan-
isms for code generation and deployment as a part of the
engineering workflow. What is proposed and investigated in this
paper enables a similar block diagram modelling approach, but
based on an open international standard and with native support
of distributed architectures. This would enable a very smooth
pathway to the deployment of distributed control code upon the
validation with less disturbances than in the code generation, e.g.,
from MATLAB.
3. Model transformation method

The syntax and semantics of both MATLAB Simulink and
Function Blocks must be understood, formally defined and taken
into consideration before transforming the models between the
two. It must be done in a way that the behaviour of the models
remains the same after switching to another platform. To ensure
the semantic equivalence, a formal mapping between both
languages will be established in this section. First, Simulink and
Function blocks objects will be defined using some mathematical
notation and then the mapping will be described.

3.1. MATLAB Simulink

Simulink is a software package from Mathworks Inc., which
provides an environment for simulation and model-based design
imulink models to IEC 61499 Function Blocks for verification of
://dx.doi.org/10.1016/j.conengprac.2012.06.008

dx.doi.org/10.1016/j.conengprac.2012.06.008
dx.doi.org/10.1016/j.conengprac.2012.06.008
dx.doi.org/10.1016/j.conengprac.2012.06.008

Fig. 3. Memory block allows closed-loop connection in Simulink.

C. Yang, V. Vyatkin / Control Engineering Practice] (]]]])]]]–]]] 3
of dynamic control or embedded systems. It is tightly integrated
with MATLAB. Simulink has a library storing many standard
blocks that are often used in modelling.

The syntax and semantics of Simulink and Stateflow have
already been defined and well-documented in Clawz (2003) and
Mathworks, 2010. Further it will be defined using the following
mathematical notation, which will be used throughout the paper.

A Simulink block can be defined as a tuple SB¼(MInterface,M-
Func,MIV), where MInteface is the data interface of the Simulink
block, MFunc defines the behaviour of the block as a function, and
MIV defines the internal parameters of the block:

MIV¼{miv1,miv2,miv3,y} is a set of internal variables;
MInterface¼(MDI,MDO), where
MDI¼{mdi1,mdi2,mdi3,y}¼ is a set of data inputs
MDO¼{mdo1,mdo2,mdo3,y}¼ is a set of data outputs

MFunc :
Y

mdiAMDI

DomðmdiÞ

�
Y

mivAMIV

DomðmivÞ-
Y

mdoAMDO

DomðmdoÞ

where Dom(x) represents the domain of variable x.
Stateflow is one of such packages that allows specifying custo-

mized blocks with finite state machine (FSM) diagram. Stateflow is an
interactive graphical design tool that works with Simulink to model
and simulate event-driven systems. Fig. 2(a) shows an example of a
Stateflow block, and the encapsulated state charts are shown in
Fig. 2(b). It allows modelling event-driven systems in a State Chart
dialect whose syntax and semantics is extended from the traditional
Finite State Machines (FSM) by allowing hierarchical charts, parallel
states, and using temporal logic to schedule events.

So, instead of having MFunc as in a Simulink block, Stateflow
has a FSD, which represents the Finite State Diagram. Therefore, if
SFB is a single Stateflow block, then SFB is determined by:

SFB¼(MInterface,MIV,FSD),where:
FSD¼(MState,MTrans,Func,MCond) is finite state diagram of a

Stateflow block,
Func¼{f0,f1,f2,f3,y}is a set of functions (i.e., algorithms),
MState¼{ms0,ms1,ms2,ms3,y} is a set of states, where s0 is

the initial state,
MTrans¼MState�MState is a set of transition between states,
MCond is a set of the conditions for the transition to take

place, where:

MCond : MTrans-
Y

meiAMEI

DomðmeiÞ �
Y

mdiAMDI

DomðmdiÞ

"

�
Y

meoAMEO

DomðmeoÞ �
Y

mivAMIV

DomðmivÞ-true, false

#

Modelling in Simulink is done by creating a network of
‘‘blocks,’’ stored in the Simulink library. Simulink supports
Fig. 2. (a) An example of a Stateflow block. (b) The finite state chart inside the

Stateflow block.

Please cite this article as: Yang, C., & Vyatkin, V. Transformation of S
distributed control systems. Control Engineering Practice (2012), http
hierarchical structuring of models by grouping the related blocks
into ‘‘subsystems.’’ However the subsystem layout only groups
the selected blocks together for the better display purpose only. It
does not affect the order of blocks’ execution.

Simulink supports simulation for discrete, continuous and
even hybrid systems through its corresponding solvers which
compute the states of the system at successive time steps over a
specified time span (Ray, 2007). These time steps can be of fixed
or variable duration. The fixed-step simulation solver calculates
the states of the system at fixed time intervals. The variable-step
simulation relies on the solver to determine the length of the time
steps, and the time steps will vary over time. When the para-
meters are changing rapidly, the step size will be decreased, and
vice versa. The solvers are generally categorised into continuous
solvers and discrete solvers. Continuous solvers compute the state
of a system in the current time step by using numerical integra-
tion from the state of the system in the previous time step and the
state derivatives. Discrete solvers primarily solve only discrete
models. They rely on the model blocks to update the discrete
states of the models. There is no single method that can solve all
types of models.

Simulink automatically assigns execution priority of the blocks,
based on a set of fundamental rules. These rules state that a block
generally has a higher priority than the one where its output data
is connecting to. But sometimes there are exceptions where some
Simulink blocks automatically have higher priority than other
blocks (i.e., Integrator, etc.). It also allows assignment of user-
defined priorities to each block in order to determine execution
order as long as the fundamental rules are not breached. But if the
priority is not defined, the system automatically assigns priority to
each single block. State of each block (i.e., input and output values
of the block) will be updated during a single time step of execution,
in the order following the priority.

Sometimes Simulink prohibits closed-loop data connection
because it is not able to determine the execution priority in this
case. The recommendation is to add a ‘‘Memory’’ block to break
down the loop (see Fig. 3).

Despite the extensive description of Simulink syntax and
semantics, there is still one concern related to determining the
Fig. 4. An exception case for the priority order.

imulink models to IEC 61499 Function Blocks for verification of
://dx.doi.org/10.1016/j.conengprac.2012.06.008

dx.doi.org/10.1016/j.conengprac.2012.06.008
dx.doi.org/10.1016/j.conengprac.2012.06.008
dx.doi.org/10.1016/j.conengprac.2012.06.008

C. Yang, V. Vyatkin / Control Engineering Practice] (]]]])]]]–]]]4
execution order. For example, in the situation shown in Fig. 4, the
Transfer Fcn block actually has a higher priority than Product
block. This is because blocks such as Transfer Fcn have non-direct
feedthrough inputs, and therefore this block may be placed
anywhere in the execution order. This affects the decision on
the priority order in the transformation process. The priority
order information is determined by Simulink and this information
cannot be automatically extracted, therefore the transformation
software has to determine the priority on its own. Models, which
contain these blocks having non-direct feedthrough inputs, can-
not be sorted in the same order as the Simulink model, and a
manual adjustment has to be performed.

More details about MATLAB Simulink and its packages can
be found in Mathworks’ official documentation and website
(Mathworks, 2010).

3.2. Function Blocks of IEC 61499

3.2.1. Introduction

The IEC 61499 standard introduces Function Blocks as a new
modular and event-driven way of designing controllers and
modelling distributed control systems. It is believed that model-
ling systems with Function Blocks will improve the flexibility,
software reusability and reconfigurability in distributed control
systems design from both software and hardware perspective
(Vyatkin, 2007b).

The IEC 61499 standard defines a few design artefacts, such as
basic and composite Function Blocks. A basic Function Block is a
single event-driven module whose logic is specified by Execution
Control Chart (ECC)—a kind of finite-state machine. Therefore the
structure of a basic Function Block is very similar to a single
MATLAB Stateflow block. ECC describes the conditions of transi-
tions between states and algorithms associated with each state.
An example of a basic Function Block and ECC can be found in
Fig. 5. A Function Block system can be hierarchically organized
through the use of the ‘‘composite Function Blocks,’’ which
describe a subsystem of the whole Function Block network.
However all the Function Blocks inside a composite Function
Block have exactly the same priority status comparing to the ones
at the same hierarchy level as the composite Function Block. This
is different to the hierarchy of subsystems in Simulink therefore it
would require special attention in the transformation.

There are numerous works on verification and validation of IEC
61499 based systems, which can be classified in three categories:
simulation, formal verification and specification compliance.
Implementation of simulation in FB environment was demon-
strated in Christensen (2000). The specification compliance at an
abstract level before actual design and implementation can be
done by bridging Function Blocks with UML or SysML, e.g.,
Thramboulidis (2004), Dubinin and Vyatkin (2008), Dubinin,
Fig. 5. Interface and ECC of t

Please cite this article as: Yang, C., & Vyatkin, V. Transformation of S
distributed control systems. Control Engineering Practice (2012), http
Vyatkin, and Pfeiffer (2005), Panjaitan (2008), Christensen
(2000) and Hirsch (2010). The formal verification of Function
Blocks is done through their modelling in various formal lan-
guages, such as NCES, Timed automata, State charts, etc. which
can be verified using model-checkers such as SESA, ViVe, SMV,
(Cheng & Vyatkin, 2008; Hagge & Wagner, 2005; Vyatkin,
Hanisch, & Pfeiffer 2003, Cengic & Akesson, 2010, Gerber &
Hanisch, 2010).

3.2.2. Formal definition

The formal notation of IEC 61499 from Dubinin and Vyatkin
(2008) is followed in this paper, according to which a Basic Function
Block is determined by a tuple FB¼(Interface, ECC, ALG, IV), where:

ALG¼{alg1,alg2,alg3,y} is a set of algorithms, and it is
possible that ALG¼ QUOTE .

Interface¼(EI,EO,DI,DO,IA,OA), where:
EI {ei1,ei2,ei3,y} is a set of event inputs, where

8ei A EI½DomðeiÞ ¼ true, false�,
EO¼{eo1,eo2,eo3,y} is a set of event outputs,
DI¼ di1,di2,di3,. . . is a set of data inputs,
DO¼ do1,do2,do3,. . . is a set of data outputs,
IV¼{iv1,iv2,iv3,y} is a set of internal variables.
IA is a set of input event/data associations, where IADEI�DI

and VI\IA¼|.
OA¼a set of output event/data associations, where OADEO�

DO and VO\OA¼|.
ECC is the execution control chart of a basic Function Block,

and it is determined by tuple (ECState, ECAction, ECTransition,
ECCondition).

ECState¼ s0,s1,s2,s3,. . .:¼a set of states, where s0 is the
start state.

ECTransition¼ECState�ECState¼a set of transition between
states.

ECAction : ECState\s0-ALGxEO[ALG[EO:

ECCondition is a set of the transition conditions. A transition
condition is a predicate over event and data inputs, where:

ECCondition : ECTransition-½
Y

eiAEI

DomðeiÞ �
Y

diADI

DomðdiÞ

�
Y

eoAEO

DomðeoÞ �
Y

ivA IV

DomðivÞ-true, false�

Execution of Function Blocks is achieved by compiling them
into executable code which works in conjunction with some pre-
defined libraries. The code generation model plus the libraries are
commonly referred to as a run-time environment. One of its
important tasks is to dispatch events among Function Blocks.
Currently, there are several different run-time environments
which are implemented with different execution models. In
the current exercise, the Function Block Run Time (FBRT) and
he basic Function Block.

imulink models to IEC 61499 Function Blocks for verification of
://dx.doi.org/10.1016/j.conengprac.2012.06.008

dx.doi.org/10.1016/j.conengprac.2012.06.008
dx.doi.org/10.1016/j.conengprac.2012.06.008
dx.doi.org/10.1016/j.conengprac.2012.06.008

Fig. 6. A Stateflow block is transformed into a basic FB.

C. Yang, V. Vyatkin / Control Engineering Practice] (]]]])]]]–]]] 5
Function Block Development Kit (FBDK) (Holobloc, 2009) are used
for demonstration purposes. The Function Block Run Time (FBRT)
has the longest history in the IEC61499 community. It uses ‘‘direct
function calls’’ execution semantics where an output event
triggers the successive Function Blocks in a single thread. How-
ever, this mechanism may result in stack overflow in case of event
feedback loop, or in starvation of some blocks because the
execution process of the caller block will be halted until all other
Function Blocks along the event propagation path have completed
execution. There is one solution to this problem by the use of
LOOP_END block, which will be described later in the paper. FBRT
is written in Java, and is the built-in run-time of FBDK.
3.3. Block-to-block mapping principle

The main concept of this transformation methodology is
through a block-to-block mapping. The transformation must be
done in a way that preserves structural properties of the
original model.

For every Simulink block (SB) a corresponding FB is created.
The model transformation method is defined as a function M,
where:

M : SB-FB

There is one-to-one correspondence between input sets of
both blocks, i.e.,:

8mdiAMDI 3 !MðmdiÞ ¼ diADI

In this model, internal variables are included as a part of data
input because it is not easy to modify internal variables in the
current Function Block development tools. This may be changed
to be mapped directly to IV in the Function Block side.

8mivAMIV 3 !MðmivÞ ¼ diADI

This only changes the interface so that:Y
mdiAMDI

DomðmdiÞ �
Y

mivAMIV

DomðmivÞ ¼
Y

diADI

DomðdiÞ

�
Y

ivA IV

DomðivÞ

In order to implement the logic of algorithms’ invocation, the
ECC of FB is created as:

ALG¼{alg1,alg2}, where alg1 handles initialisation and
alg2¼MFunc;

ECState¼{S0,S1,S2}, S0 is the initial state
Two pairs of event inputs and outputs are added. INIT and

INT0 handle the initialisation, while REQ and CNF handle the
execution of the blocks:

EI¼ INIT,REQ and EO¼ INIT0,CNF

All data is associated with EI and EO: IA¼EI�DI,OA¼EO�DO
After the initialisation, FB is activated when:

REQ ¼ true) CNF¼ true\½alg2

:
Y

diADI

DomðdiÞ �
Y

ivA IV

DomðivÞ-
Y

doADO

DomðdoÞ�

But on the Simulink side,

MFunc :
Y

mdiAMDI

DomðmdiÞ

�
Y

mivAMIV

DomðmivÞ-
Y

mdoAMDO

DomðmdoÞ:
Please cite this article as: Yang, C., & Vyatkin, V. Transformation of S
distributed control systems. Control Engineering Practice (2012), http
Since MFunc¼alg2, if t denotes an instance of time where
tAR\tZ0,

8t : DOt
¼

Y
doADOt

DomðdoÞ ¼
Y

mdoAMDOt

DomðmdoÞ ¼MDOt,

where t¼1, 2, 3, y, n (for discrete-time state).
A single Stateflow block is transformed into a basic Function

Block. Fig. 6 shows the interfaces of both blocks.
Instead of MFunc mapping in a normal Simulink block, actually

it is possible to directly map SFD to ECC as follows:

M : FSD-ECC,M : MState-ECState,M : MCon

-ECCondition,M : Func-ALG,M : MTrans-ECTransition

Transforming Stateflow diagram from Simulink to the ECC of
the basic Function Blocks is almost straightforward as long as the
classic Stateflow semantics is used, that only takes one transition
at each simulation time step. Fig. 7(a) presents an example of
such a transformation. Each ECC transition is ‘‘clocked’’ with an
input event REQ that is connected to the tick generator imple-
menting an equivalent of the Simulink’s time step. Upon one
execution the FB emits CNF event which can be connected to the
REQ of next FB in the row. Another possible semantic option of
Stateflow is known as ‘‘super step’’ in which case the execution of
SFD continues as long as there are enabled transitions. In the
corresponding ECC this may involve visiting several EC states
after invocation by REQ, but CNF needs to be emitted once in the
end of this execution chain. For this semantic option another ECC
pattern is suggested as shown in Fig. 7(b). Each SFD state MStatei
is mapped onto two ECC states Si and tSi. To enable a series of
state visits, another event output REP is introduced which is
looped back to the same FB’s input CHK. If MStatei is the last state
in such a series, the ECC would stop its run in tSi. Other Simulink
semantics options and FSD features (e.g., hierarchical states) can
be addressed in a similar way through the development of the
corresponding ECC patterns.

The algorithm inside Stateflow’s FSM is written in MATLAB
code, which needs to be translated into a language that can be
recognized by the Function Block tools. The MATLAB program-
ming language is fairly similar to the Structured Text (ST)
language used in PLC programming and in algorithms of Function
Blocks. In this work, a simple algorithm translator has been
developed, which can translate basic equivalence statements,
math equations and IF statement. Mathworks (2011) provides
‘‘Simulink PLC Coder’’ allowing generation of hardware indepen-
dent IEC 61131-3 ST code from Simulink blocks and Stateflow
blocks. However, due to the difference in the execution of FBs in
the IEC 61131-3 and IEC 61499 standards, the usability of this
generated ST code requires extensive investigation to work
properly in the IEC 61499 context.

A subsystem of Simulink is be mapped to a composite Function
Block. Eventually the Simulink model will be transformed into a
Function Block application. Fig. 8 presents a simple example of
imulink models to IEC 61499 Function Blocks for verification of
://dx.doi.org/10.1016/j.conengprac.2012.06.008

dx.doi.org/10.1016/j.conengprac.2012.06.008
dx.doi.org/10.1016/j.conengprac.2012.06.008
dx.doi.org/10.1016/j.conengprac.2012.06.008

Fig. 7. Stateflow’s FSM is mapped to FB’s ECC: (a) classic semantics; (b) ‘‘super step’’ semantics.

Fig. 8. The transformed Function Block System.

Table 1
Data types mapping between Function Blocks (in FBDK) and MATLAB Simulink.

Data

type

Comment Memory

space

FBDK

support

MATLAB

support

Both

supported

Byte Short integer 8 bits SINT Int8 Yes

Int Integer 16 bits INT Int16 Yes

Int Double integer 32 bits DINT Int32 Yes

Short Unsigned short

integer

8 bits USINT Uint8 Yes

Int Unsigned integer 16 bits YUBT Uint16 Yes

Long Unsigned double

integer

32 bits UDINT Uint32 Yes

Single 32 bits REAL Single Yes

Boolean 8 bits BOOL Boolean Yes

Double 64 bits LREAL Double Yes

String Variable

size

WSTRING – No

Byte Unsigned 8 bits BYTE – No

Fig. 9. FB implementation of a discretized computation of a continuous function F

given its derivative dF.

C. Yang, V. Vyatkin / Control Engineering Practice] (]]]])]]]–]]]6
model transformation, following the block-to-block transforma-
tion approach. In order to implement the cyclic execution order of
Simulink in the Function Blocks model, a ‘‘LOOP_END’’ block is
introduced in FBDK environment with all the other Function
Blocks connected in a sequential order (also see Fig. 8). This
LOOP_END acts just like the E_DELAY Function Block but with
zero delay time. Because of the threading effect of the E_DELAY
block, it manages to set a break between function calls and
therefore allows events to be connected in closed-loop in FBDK.
3.4. Data handling

Table 1 shows the data types mapping between Function
Blocks (in FBDK) and MATLAB Simulink/Stateflow at this stage
of development.
Please cite this article as: Yang, C., & Vyatkin, V. Transformation of S
distributed control systems. Control Engineering Practice (2012), http
In general, control systems use both discrete and continuous
data. A system may contain discrete operations (such as on and
off switches) as well as continuous control (such as movement or
flows of objects). Such systems are also known as ‘‘hybrid’’ (Lunze,
2002). In process industry, a batch processing is one example of
such a system. The process in the batch process reactor, for
example, can be described by both continuous variables (e.g.,
temperature) and discrete variables (e.g., switches). Modelling,
verification and validation of hybrid systems, i.e., continuous and
discrete dynamics, executing intelligent control algorithms in
imulink models to IEC 61499 Function Blocks for verification of
://dx.doi.org/10.1016/j.conengprac.2012.06.008

dx.doi.org/10.1016/j.conengprac.2012.06.008
dx.doi.org/10.1016/j.conengprac.2012.06.008
dx.doi.org/10.1016/j.conengprac.2012.06.008

C. Yang, V. Vyatkin / Control Engineering Practice] (]]]])]]]–]]] 7
decentralised nodes, are known to be computationally hard. This
again shows the importance of software environment linking the
Function Block design with MATLAB Simulink which has readily
validation and verification tools.

Some Simulink blocks are associated with the sampling time of
the system execution especially in the continuous time model-
ling. The transformed Function Block model must use the same
‘‘time step,’’ which can be achieved by setting the ‘‘dT’’ parameter
of model FBs. It is illustrated in Fig. 9. The model FB is activated by
an external ‘‘clock’’ signal. If simulation in real time is required
(e.g., for animation of some processes) then the E_CYCLE or
RT_E_CYCLE Function Blocks, as suggested in Zoitl (2009), can
be used as the clock generator. However, in the scenario using
sequential event connection (with scheduler if necessary) it is
enough for achieving model-time simulation.

For these types of blocks, the ‘‘dT’’ input parameter must be
given for their corresponding Function Blocks. Simulink supports a
variable time-step solver and a so-called continuous solver. Thus in
this case, these data must be discretised in order to perform the
matching solution in the Function Block domain. The ‘‘dT’’ para-
meter indicates the discretisation rate (or sampling rate).
4. Transformation equivalence

In this section, a proof of semantic equivalence of the gener-
ated FB model with original Simulink model is provided. Two
blocks are equivalent if they produce equal output values at all
discrete time moments. One unit of time, t, is defined as the time
period when all blocks are executed exactly once. The following
assumptions are made:

The same algorithm expression will produce exactly the same
output from both models.
Simulink is assumed to be executing in a sequential and cyclic
order with certain priorities assigned to each block.
The Function Block models are forced to execute in a sequen-
tial and cyclic order by the use of event connections, despite
the original execution semantics (i.e., after the last FB is
executed, the next cycle starts by executing the first block
with all the updated data I/Os.)
Data types are all mapped properly.
Descretization is handled properly causing no difference to the
Simulink model.

The proof of equivalence resulting from the model transforma-
tion is done by mathematical induction. For a single block, there is
no proof required since the matching is already done by the above
Fig. 10. Mapping for a system with two blocks.

Please cite this article as: Yang, C., & Vyatkin, V. Transformation of S
distributed control systems. Control Engineering Practice (2012), http
rules and assumptions. So the base of induction can start with
two blocks (see Fig. 10). By the previous block-to-block mapping
in Section 2.4:

DIt
1 ¼MDIt

1) DOt
1 ¼MDOt

1,8tAR\tZ0

Assuming sb1 is always executed before sb2 in Simulink
model, and mo denotes a set of data outputs connected to sb1:

MDIt
2 ¼mo[mc[mk, where mo MDOt

1,mk MDOt�1
2

and mc is a subset of constantsfb1 and fb2 are forced to be
executed in the same order by:

EIt
2 ¼ EOt

1:

Since all data are associated with all events in the block-to-
block mapping,

DIt
2 ¼ o[c [k,

where oDDOt
1, kDDOt�1

2 and c is a set of constants
But the transformation is making:
o¼mo, k¼mk , and c¼mc,

‘DIt
2 ¼mo[mc[mk¼MDIt

2:

Again, by the block-to-block mapping:

DIt
2 ¼MDIt

2DOt
2 ¼MDOt

2:

Now the proof of equivalence is required for the case with N

numbers of blocks (see Fig. 11). Assuming the equivalence is true
for N blocks, by the block-to-block mapping:

DIt
N ¼MDIt

N) DOt
N ¼MDOt

N ,8tAR\tZ0:

Assuming sbN is always executed before sbNþ1 in Simulink
model, and mo denotes a subset of data outputs connected to
sbN:

MDIt
Nþ1 ¼mo[mc[mk, where moDMDOt

1,mkDMDOt�1
2

and mc is a set of constants
Assuming Function Block models are now all executed in a

sequential order, forcing fbN executed before fbNþ1 (like the
order in Simulink side) by using events:

EIt
Nþ1 ¼ EOt

N :
Fig. 11. Mapping for system with Nþ1 blocks.

imulink models to IEC 61499 Function Blocks for verification of
://dx.doi.org/10.1016/j.conengprac.2012.06.008

dx.doi.org/10.1016/j.conengprac.2012.06.008
dx.doi.org/10.1016/j.conengprac.2012.06.008
dx.doi.org/10.1016/j.conengprac.2012.06.008

C. Yang, V. Vyatkin / Control Engineering Practice] (]]]])]]]–]]]8
Since all data are associated with all events,

DIt
Nþ1 ¼ o[c[k,where oDDOt

N ,kDDOt�1
2 and c is a set of constants:

But the transformation rules are making:
o¼mo,k¼mk and c¼mc,

‘DIt
Nþ1 ¼mo[mc[mk¼MDIt

Nþ1:

Again, by the block-to-block mapping:

DIt
Nþ1 ¼MDIt

Nþ1DOt
Nþ1 ¼MDOt

Nþ1

‘the equivalence still holds for Nþ1 blocks.
5. Implementation results

The model transformation has been implemented in Java and
FBDK is chosen as the target Function Block development envir-
onment in this work, even though its execution semantics has
known issues (Cengic, Ljungkrantz, & Akesson, 2006). However it
is sufficient enough for academic demonstration, at such early
stage of the development. The required modifications for other
semantic models are expected to be minor.

The developed software implementation of the transformation
can be categorized into three phases (see Fig. 12). The first phase
is a model translator that is able to convert all the relevant
elements of the Simulink models into software objects, referred as
Fig. 12. The phases of the model transfor

Fig. 13. Metamodel mapping betwee

Please cite this article as: Yang, C., & Vyatkin, V. Transformation of S
distributed control systems. Control Engineering Practice (2012), http
the ‘‘Simulink Parser.’’ The second one is the translator that can
construct the Function Block models from software objects in a
specific format, referred as the ‘‘Function Block Model Generator.’’
The last one acts like a middle-ware that reconstructs the soft-
ware objects from the first translator into the specific format that
can be imported to the second translator.

The mapping between the two models can be represented
using the corresponding meta-models, shown in Fig. 13. The
Function Block meta-model is inherited from the meta-model of
basic Function Block presented in Hussain (2006).

A motor Simulink model (Fig. 14) provided by an industrial
partner has been experimented with this transformation
approach. The motor example is composed of a controller and a
motor driving a fan. The sensor readings from the motor and the
fan are collected by the controller before passing the resultant
control command to the motor.

The output result from the motor Simulink model can be seen
in Fig. 15. The most important output here is the EMF reading
from the motor. In this particular motor design, this data indicates
the desired behaviour expected from the motor. The sine wave
signal is the main voltage just for reference purpose. The pulse-
like signal is the output signal from controller to the motor.

The Simulink model of the motor has been successfully
transformed into a Function Block model that can be executed
under FBDK. The resultant Function Block model after the trans-
formation can be seen in Fig. 16. The execution order of the
mation in software implementation.

n Simulink and Function Block.

imulink models to IEC 61499 Function Blocks for verification of
://dx.doi.org/10.1016/j.conengprac.2012.06.008

dx.doi.org/10.1016/j.conengprac.2012.06.008
dx.doi.org/10.1016/j.conengprac.2012.06.008
dx.doi.org/10.1016/j.conengprac.2012.06.008

Fig. 14. An example of motor Simulink model.

Fig. 15. Output results from the motor Simulink model.

Fig. 16. The transformed FB System.

C. Yang, V. Vyatkin / Control Engineering Practice] (]]]])]]]–]]] 9
resultant transformed Function Block model may differ from the
one in the original Simulink model due to the exception cases
mentioned previously. Therefore some modification to the order
of blocks is required before producing the desired results.

An experiment has been set up to feed exactly the same data
input to both the original Simulink model and the transformed
Please cite this article as: Yang, C., & Vyatkin, V. Transformation of S
distributed control systems. Control Engineering Practice (2012), http
model. The output result from the transformed FB model is
illustrated in Fig. 17. From the visual inspection, the results
(EMF readings) are fairly identical.

There are still some slight differences in the results, even with
matching execution order and semantics. In order to explain this
difference, a simple experiment with the derivative Function Block in
imulink models to IEC 61499 Function Blocks for verification of
://dx.doi.org/10.1016/j.conengprac.2012.06.008

dx.doi.org/10.1016/j.conengprac.2012.06.008
dx.doi.org/10.1016/j.conengprac.2012.06.008
dx.doi.org/10.1016/j.conengprac.2012.06.008

Fig. 17. Output results from the transformed Function Block model.

Fig. 18. Result comparison of the derivative block in Simulink and FBDK.

C. Yang, V. Vyatkin / Control Engineering Practice] (]]]])]]]–]]]10
the motor model has been conducted using a comparator block.
Fig. 18 shows the difference in the outputs of the derivative blocks.
Simulink model produces a smooth output, while the output from
FBDK results in some spikes. This is an expected influence of the
discretization. This may be improved with more advanced modelling
techniques or some averaging operation, when constructing the
corresponding Function Blocks library. This exercise also demon-
strated the importance of the execution priority. The result varies (i.e.,
out of phase) if the block are executed in a different order.

Although this methodology is based on a hypothesis that the
behaviour of each basic Function Block used in the transformation is
identical in execution to its corresponding Simulink block (i.e., the
outputs are the same when provided exactly the same input at a
specific time stamp), this is not fully true in this exercise. This is why
the output results may seem to be slightly different. Some continuous
blocks such as ‘‘Derivative’’ block and ‘‘Transfer Function’’ block can
be created by more sophisticated modelling techniques. The source
code of the library Simulink blocks is not publicly available, therefore
the corresponding Function Block can only be created based on the
behaviour expected and observed in simulation. This can surely be
overcome by an expert in the field of control system modelling to
create block in industrially acceptable standard. However in this
exercise, these blocks are constructed in a simplified way that is
sufficient and fairly close the ‘‘original’’ blocks from Simulink and are
able to generate acceptable results for the proof-of-concept purpose.
6. Future work

Three future work directions are envisaged. First, it will
include experiments with other Function Block tools, run-times
Please cite this article as: Yang, C., & Vyatkin, V. Transformation of S
distributed control systems. Control Engineering Practice (2012), http
and compilers, in order to expand the usage of this new approach
with the proposed simulation environment. In particular, this
approach will be applied in the model-predictive control scenar-
ios, when the model is to be executed along with the controller on
embedded devices. An example of such ‘‘embedded modelling’’
was provided by Yan and Vyatkin (2011). The embedded model-
ling has great potential, for example, for implementing unobser-
vable control parameters as virtual sensors. Another direction of
the work consists in building libraries of basic Function Blocks
equivalent to various standard MATLAB/Simulink packages. And,
finally, distributed simulation methods will be further developed,
both from methodological and tool support perspectives.

One of such new FB implementation is ‘‘synchronous compi-
ler’’ (Yoong et al., 2009b) that compiles Function Blocks into C
code. This compiler is based on the synchronous execution model
and is proven to be very efficient in terms of the target code
performance (Yoong, Roop, & Salcic, 2009a). It can be very useful
in the context of distributed control where the model can some-
times be big in size and resource consuming in simulation. Such
models can be transformed to the open IEC 61499 form and to be
run efficiently on distributed or centralized platforms.

Secondly, the authors’ research group is developing a cyclic
execution Function Block run-time (Tata and Vyatkin, 2009). This
cyclic nature of execution immediately eliminates the stack
overflow problem with FBDK. This is executed under FBench,
which is another Function Block development tool (FBench).

The open nature of IEC 61499 allows application of the
proposed simulation environment with any compliant IEC
61499 tool/runtime. The potential targeted tools are nxtControl
(Nxtcontrol.COM., 2010) and 4DIAC (4DIAC, 2010). These Func-
tion Block development tools are based on FORTE runtime,
imulink models to IEC 61499 Function Blocks for verification of
://dx.doi.org/10.1016/j.conengprac.2012.06.008

dx.doi.org/10.1016/j.conengprac.2012.06.008
dx.doi.org/10.1016/j.conengprac.2012.06.008
dx.doi.org/10.1016/j.conengprac.2012.06.008

C. Yang, V. Vyatkin / Control Engineering Practice] (]]]])]]]–]]] 11
following a First-In-First-Out (FIFO) sequential execution order
(PROFACTOR). The proposed transformation approach would
immediately provide a simulation add-on to these tools. ISaGRAF
(IsaGRAF) is yet another company that is developing Function
Block tools based on IEC61499 standard. However, ISaGRAF has
own specification of the Function Block syntax, so a converter
from the standard XML to ISaGRAF format would be required
when performing the model transformation.
7. Conclusion

In this paper a mathematically rigorous transformation
method from MATLAB Simulink for IEC61499 Function Blocks
has been described. This method aims to help in design of
complex distributed systems by allowing to take advantage of
the simulation and analysis capability of MATLAB Simulink. The
proposed approach has been validated on a number of industrial
use-cases.

Main benefits of the proposed approach are:
– Automated model transformation reduces time and effort on

model development and greatly helps in validating the designs
based on IEC61499 Function Blocks.

– Embedded models extend the developers capabilities in
implementation of model-predictive controls in the IEC 61499
environment;

These and other motivations listed in Section 2 can make the
use of the proposed method attractive as a part of IEC 61499
commercial development environments.
Acknowledgements

This work was supported in part by the research grants of the
University of Auckland: FRDF 3622763 and PRESS account of the
University of Auckland.

References

2005.Function blocks: Internatinal Standard IEC61499. International Electrotech-
nical Commission. 4DIAC. 2010. Available: /http://www.fordiac.org/S.

Black, G., & Vyatkin, V. (2008). Intelligent component-based automation of
baggage handling systems with IEC 61499. IEEE Transactions on Automation
Science and Engineering, 7(2), 337–351.

Cengic, G., & Akesson, K. (2010). On formal analysis of IEC 61499 applications, Part
A: Modeling. Industrial Informatics, IEEE Transactions on, 6, 136–144.

Cengic, G., Ljungkrantz, O., & Akesson, K. Formal modeling of Function Block
applications running in IEC 61499 execution runtime. Emerging technologies
and factory automation, 2006. ETFA ‘06. IEEE Conference on, 2006. pp. 1269–
1276.

Cheng, P., & Vyatkin, V. 2008. Automatic model generation of IEC 61499 Function
Block using net condition/event systems. 6th IEEE International Conference on
Industrial Informatics.

Chokshi, N., & Mcfarlane, D. C. (2008). A distributed coordination approach to
reconfigurable process control. Berlin ; London, Berlin ; London: Springer.

Christensen, J.H. 2000. Design patterns for systems engineering with IEC 61499.
In: DÖSCHNER, C. (editor) Verteilte Automatisierung—Modelle und Methoden für
Entwurf, Verifikation, Engineering und Instrumentierung. Magdeburg, Germany.

Clawz (2003). The Semantics of Simulink Diagrams. Lemma 1 Ltd.
Dubinin, V., & Vyatkin, V. (2008). On definition of a formal Semantic model for IEC

61499 Function Blocks. EURASIP Journal of Embedded Systems, 2008, 10.
Dubinin, V., Vyatkin, V., & Pfeiffer, T. 2005. Engineering of validatable automation

systems based on an extension of UML combined with Function Blocks of IEC
61499. Proceedings of the 2005 IEEE International Conference on Robotics and
Automation.
Please cite this article as: Yang, C., & Vyatkin, V. Transformation of S
distributed control systems. Control Engineering Practice (2012), http
Fbench. FBench Project: Open Tool for IEC 61499 Function Block Engineering [Online].
FBench Project Team, . Available: http://www.ece.auckland.ac.nz/�vyatkin/
fbench/.

Felcht, U. H., Darton, R. C., Prince, R. G. H., & Wood, D. G. (2003). The future shape of
the process industries. Chemical engineering: visions of the world. Amsterdam:
Elsevier Science B.V..

Gerber, C., & Hanisch, H. M. (2010). Does portability of IEC 61499 mean that once
programmed control software runs everywhere?. 10th IFAC Workshop on
Intelligent Manufacturing Systems Lisbon, Portugal

Hagge, N., & Wagner, B. 2005. Java code patterns for Petri net based behavioral
models. 3rd IEEE International Conference on Industrial Informatics.

Hirsch, M. 2010. Systematic Design of Distributed Industrial Manufacturing Control
Systems Logos Verlag Berlin.

Holobloc, I. 2009. Function Block Development Kit [Online]. Holobloc inc., http://
www.holobloc.com. Available: http://www.holobloc.com.

Hussain, T. & FREY, G. 2006. UML-based Development Process for IEC 61499 with
Automatic Test-case Generation. Emerging Technologies and Factory Automa-
tion, 2006. ETFA ‘06. IEEE Conference on.

Isagraf. ICS Triplex ISaGRAF Inc.—leading IEC 61131 and IEC 61499 software [Online].
Available: http://www.isagraf.com.

Kshemkalyani, A. D., & Singhal, M. (2008). Distributed computing: principles,
algorithms, and systems. Cambridge University Press.

Lunze, J. (2002). What is a hybrid system? Lecture notes in control and information
science 279: modelling, analysis, and design of hybrid systems. Berlin Heidelberg:
Springer-Verlag.

Mathworks. 2011. Simulink PLC Coder [Online]. Available: http://www.mathworks.
com/products/sl-plc-coder/.

Mathworks, T. 2010. The MathWorks—MATLAB and Simulink for Technical Comput-
ing [Online]. Available: http://www.mathworks.com.

Maturana, F., Ambre, R., Staron, R., Carnahan, D., & Loparo, K. 2011. Simulation-
based environment for modeling distributed agents for smart grid energy
management. Emerging Technologies & Factory Automation (ETFA), 2011 IEEE
16th Conference on.

Nxtcontrol.COM. 2010. Available: http://www.nxtcontrol.com/.
Panjaitan, S. D. 2008. Development Process for Distributed Automation Systems based

on Elementary Mechatronic Functions, Shaker Verlag GmbH, Germany.
Peltola, J., Christensen, J., Sierla, S., & Koskinen, K. 2007. A migration path to IEC

61499 for the batch process industry. 5th IEEE International Conference on
Industrial Informatics, 2007 Vienna, Austria.

Profactor. 4DIAC-RTE (FORTE): IEC 61499 Compliant Runtime Environment [Online].
PROFACTOR Produktionsforschungs GmbH, Available: http://www.fordiac.org.

Ray, R. 2007. Automated Translation of MATLAB Simulink/Stateflow Models to an
Intermediate Format in HyVisual. M.Sc. Degree, Chennai Mathematical Insitute.

Tata, P., & Vyatkin, V. 2009. Proposing a novel IEC61499 runtime framework
implementing the Cyclic Execution semantics. 7th IEEE International Conference
on Industrial Informatics (INDIN 2009). Cardiff UK.

Thramboulidis, K. C. Using UML in control and automation: a model driven
approach. Industrial informatics, 2004. INDIN ‘04. 2004 2nd IEEE International
Conference on, 2004. pp. 587–593.

Vyatkin, V. 2007a. IEC 61499 Function Blocks for embedded and distributed control
systems design, Instrumentation Society of America.

Vyatkin, V. 2007b. IEC 61499 Function Blocks for embedded and distributed control
systems design, Research Triangle Park, NC, ISA-Instrumentation, Systems, and
Automation Society.

Vyatkin, V., Hanisch, H. M., Pang, C., & Yang, C.-H. (2009). Closed-loop modeling in
future automation system engineering and validation. Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 39, 17–28.

Vyatkin, V., Hanisch, H. M., & Pfeiffer, T. 2003. Object-oriented modular place/
transition formalism for systematic modeling and validation of industrial
automation systems. Industrial Informatics, 2003. INDIN 2003. Proceedings. IEEE
International Conference on.

Yan, J., & Vyatkin V. Distributed Execution and Cyber-Physical Design of Baggage
Handling Automation with IEC 61499. 9th International IEEE Conference on
Industrial Informatics (INDIN’11), 2011 Lisbon, Portugal.

Yang, C.-H., & Vyatkin, V. Model transformation between MATLAB simulink and
Function Blocks. Industrial Informatics (INDIN), 2010 8th IEEE International
Conference on, 13–16 July 2010 2010. pp. 1130–1135.

Yang, C.-H., & Vyatkin, V. 2008. Design and validation of distributed control with
decentralized intelligence in process industries: A survey. 6th IEEE Interna-
tional Conference on Industrial Informatics, 2008. INDIN 2008. Daejeon, Korea.

Yoong, L. H., Roop, P. S., & Salcic, Z. 2009a. Efficient implementation of IEC 61499
Function Blocks. IEEE International Conference on Industrial Technology (ICIT).
Gippsland.

Yoong, L. H., Roop, P. S., Vyatkin, V., & Salcic, Z. (2009b). A synchronous approach
for IEC 61499 Function Block implementation. IEEE Transactions on Computers,
58, 1599–1614.

Zoitl, A. (2009). Real-Time Execution for IEC, 61499 ISA.
imulink models to IEC 61499 Function Blocks for verification of
://dx.doi.org/10.1016/j.conengprac.2012.06.008

http://www.fordiac.org/
dx.doi.org/10.1016/j.conengprac.2012.06.008
dx.doi.org/10.1016/j.conengprac.2012.06.008
dx.doi.org/10.1016/j.conengprac.2012.06.008

	Transformation of Simulink models to IEC 61499 Function Blocks for verification of distributed control systems
	Introduction
	Motivation of model transformation
	Model transformation method
	MATLAB Simulink
	Function Blocks of IEC 61499
	Introduction
	Formal definition

	Block-to-block mapping principle
	Data handling

	Transformation equivalence
	Implementation results
	Future work
	Conclusion
	Acknowledgements
	References

