
Design of Controllers for  
Plug-And-Play Composition of Automated Systems from 

Smart Mechatronic Components 
 

Valeriy Vyatkin* and Hans-Michael Hanisch**  
*The University of Auckland,  

New Zealand 
v.vyatkin@auckland.ac.nz  

 
**Martin Luther University of Halle-Wittenberg, 

Halle, Germany 
hans-michael.hanisch@iw.uni-halle.de

 
Abstract - This paper discusses two heuristic 
approaches to the design of distributed controllers 
appropriate for plug-and-play integration of 
mechatronic systems. The first approach is based on 
the Master-Slave relationship between the 
mechatronic objects. The second approach relies on a 
constraint-based protocol, when controllers 
permit/block the actions of other controllers. 

1 INTRODUCTION 
The development of automated systems and machines 
from the ready-made blocks, known as mechatronic 
components, aims at rapid engineering and re-
engineering of automated manufacturing systems. This, 
in turn, implies that the mechatronic components have 
most of their operations “pre-automated” by their 
vendors. A system integrator (or a machine designer) 
puts the mechatronic components together and designs 
the overall control of the system re-using the existing 
controllers of the mechatronic components.  
Then, the resulting control code is deployed either on a 
single control device (for instance, a Programmable 
Logic Controller) or on a distributed network of such 
devices.  
The described engineering approach gives rise to a 
number of questions, like:  
- Is there a standard interface or interfaces for “gluing” 

the controller components into the controller of the 
system with minimum effort and in a systematic 
way? 

- Can the inheritance concept be applied to the 
controllers of mechatronic systems, so the controller 
of an object with more options can be built 
incrementally extending the controller of a simpler 
object? 

- What are the limitations of execution platforms (e.g. 
PLCs or distributed embedded devices) for 
implementing the controllers that are composed using 
such standard interfaces? 

In this paper we present two approaches to decentralized 
logic control design that do not assume any coordinating 
master controller of the whole system. The system is 
supposed to implement a production goal by implicit 
collaboration of the local controllers of its components.  
The first approach relies on the Master-Slave relationship 
between the mechatronic components and their 
processes. In this case the controller of the master object 
gives explicit commands to the controller of the slave. 
The relationship is determined by the physical properties 
of the plant and by the roles of each mechatronic 
component in the process.  
The second approach assumes the objects to be of the 
same tier. Their communication is based on imposing 
constraints to the behaviour of other parties. The paper is 
structured straightforward according to these approaches.  

2 MASTER-SLAVE CONTROLLERS 

2.1 Layered architecture of controllers  
Our intention is to investigate the approaches that would 
allow more flexibility in building systems from 
mechatronic units like from the blocks with autonomous 
control. For that we propose application of a layered 
architecture with three layers as presented in Figure 1. 

 
Figure 1. Layers of the distributed control architecture. 

The layers have the following functionality: 
1. The application layer includes sequential centralized 
or local decentralized controllers, implementations of 
agent algorithms, etc. 

mailto:v.vyatkin@auckland.ac.nz
mailto:hans-michael.hanisch@iw.uni-halle.de


2. The operations layer implements a set of operations 
defined for mechatronic units along with their 
implementation sequences.  
3. The sensors/actuators layer provides direct access to 
sensors and actuators of the controlled object.  
The functions of the higher levels use services of the 
lower ones. If the operations layer controller is present it 
can encapsulate also the sensor/actuator layer.  

2.2 Illustrative example 
The layered design is illustrated by means of the 
following example. The object shown in Figure 2 
consists of two pneumatic cylinders moving back and 
forth. Each cylinder is controlled by signals move1 and 
move2 correspondingly. Cylinder 2 is mounted on the tip 
of the cylinder 1 and is directed orthogonally. On the tip 
of the cylinder 2 there is a platform for a work piece. 
Cylinder 1 is different from cylinder 2 in that it has an 
additional sensor of middle position.  
 

 
Figure 2. System of two cylinders.   

Initially both cylinders are retracted and the LED is lit. 
That means the system is ready.  
The desired behaviour is as follows:  
 
Extend the cylinder 2 to the middle position and then 
start extending the cylinder 2 simultaneously with the 
cylinder 1. When both cylinders are extended, the 
operation of work piece delivery is over. The button’s 
LED goes on and a next push to the button shall return 
both cylinders to the retracted position.  
This behaviour is captured in the time-state diagram 
shown in Figure 3.  

 
Figure 3. Timing diagram of the  

Cylinder system with Master-Slave control. 

We are going to design a distributed controller of this 
system that will consist of three parts as follows: 

1. Controller of the button and LED; 
2. Controller of cylinder 1 – slave to the button; 
3. Controller of cylinder 2 – slave to the cylinder 1; 

2.3 Interfaces of a controller in the Master-
Slave controller relation 

In the remainder of this paper we are assuming that a 
controller may use (i.e. implement) several interfaces.  
In our approach, the most basic interface every controller 
needs is the interface with the plant. For example, our 
cylinder controller requires the following plant interface.  

 
Figure 4. Interface for interaction with plant. 

The plant interface is determined by the available 
sensors and actuators of the physical plant. In the 
graphical notation for interfaces we assume two different 
kinds of inputs and outputs: data (represented by 
quadrant boxes) and events (represented by rhombus 
boxes).  
Plant interfaces usually have only data inputs and outputs 
that correspond to the traditional implementation with 
Programmable Logic Controllers (PLCs) which are 
connected to the plant by means of logic level signals. 
Besides, a controller may be used as a slave in 
connection with other controllers or can be a master with 
respect to other controllers. For supporting this 
relationship, interfaces are needed for both interactions 
with the master and with slaves. The interface shown in 
Figure 5 serves for interaction with a master controller.   
 

 
Figure 5. Slave interface for communication with a 

master controller. 

The master and slave interfaces can be less dependent on 
a particular plant than the plant interface. For example, 
the interface for interaction with a slave controller can be 
quite generic as illustrated in Figure 6.  
 

 
Figure 6. Master interface for interaction with a slave 

This interface assumes that the slave can perform two 
operations, which are invoked by the output events 
SL_OP1, SL_OP2. The slave reports on either 



operation’s completeness by an event sent to the event 
input SLAVE_CNF.  When the slave is ready for 
performing either of the operations it sets the 
SLAVE_READY condition to TRUE. 
The layered architecture leads then to the stack of 
interfaces for each particular controller. This will be 
illustrated in the next section.  

2.4 Bottom-up development of controllers  
In this section we introduce a methodology of systematic 
controller development that follows the bottom-up 
direction - from simpler controllers to more complex 
ones. The increase in complexity and functionality is 
driven by the need to implement more interfaces.  
We show, that if controllers of components are designed 
according to this methodology, they can be combined to 
the controllers of more complex systems in a plug-and-
play way.  
We are using the following notation. The controller’s 
semantic is represented by State Charts which is a way to 
combine the expressiveness and clarity with the 
formality. State Charts are encapsulated in a box, to 
which we add the interfaces the controller implements.   

2.4.1 Step1: Design the plant level controller  
The first step of the process is to design a controller of 
the lowest level, i.e. the plant level. A controller of this 
level interacts only with sensors and actuators of the 
plant.  

 
Figure 7. The controller of the cylinder of the plant level. 

Such a controller can be obtained by transformation of a 
State Chart of the desired behaviour of the plant, 
attaching the corresponding sensor values to the 
transitions and control signals assignments to the states. 
An example of the plant level controller of a cylinder is 
shown in Figure 7.  

2.4.2 Add implementation of the slave interface 
(operations layer). 

In Figure 8 some new arcs and underlined operators are 
added to implement the new interface. Thus, both 
interfaces coexist in the new state chart.  

 
Figure 8. Controller of the cylinder implementing the 
plant level control and the slave functionality of the 
command level.  

2.4.3 Implement master level interface 
If the controller is a master with respect to other 
controllers, then it has to implement the master interface. 
The master interface is a mirror to the slave interface.  

 
Figure 9. Controller of the cylinder that implements 

master interface.  

The controller of cylinder 1 has additional input MID if 
compared to the original controller from Figure 7. The 
sequences needed to implement the master interface are 
outlined in the boxes and placed in parallel branches.  

 
Figure 10. Controller of a button with LED. 



Finally, let us consider the implementation of the 
controller of the button in Figure 10 that implements two 
interfaces: plant and master. The resultant distributed 
controller is shown in Figure 11. 

3 SAME TIER CONTROLLERS 
For illustration we will use a simple model of a 
manufacturing system called “Distribution Station” 
(Figure 12) that consists of two mechatronic units: a 
feeder unit with a magazine of workpieces and a pusher; 
and a simple manipulator (transfer unit) that takes 
workpieces from the feeder (left position) and brings 
them to the opposite position (called next position or 
right position), where they are supposed to be taken by 
other automated machines.  

 
Figure 12. Mechatronic system for work piece storage 

and transfer [5]. 

Actually, the “Distribution Station” is a part of a bigger 
manufacturing system model, which is a chain of several 
stations representing different stages of a manufacturing 
process. 
In addition to the mechatronic models of machines, the 
station includes a small panel with buttons RESET, 
START, STOP, and ACK(nowledge). The buttons have 
no memory, so each button generates a logical one 
(TRUE) value as long as it is pressed and zero otherwise. 

Thus, a short push on a button generates a pulse. The 
buttons are lit underneath by LEDs that also can be 
controlled, i.e. whose can be set/reset by the control 
device as needed. The highlighted buttons may indicate 
that they are enabled. 

  
Figure 11. Distributed controller of two cylinders with a button. 

The State Chart of a (centralized) controller of the 
distribution station is shown in Figure 13. The State 
Chart can be quite trivially converted to the executable 
code in one of the standard programming languages of 
Programmable Logic Controllers , such as Ladder Logic 
or Sequential Function Charts, defined in the IEC 61131-
3 Standard [6]. 

 
Figure 13. State Chart of the centralized controller [5]. 

 
As it is clear from the state activity diagram presented in 
Figure 14, the process includes well separatable 
sequences of actions of the feeder and of the transfer 
units. The processes are partially concurrent.  
As applied to the example discussed above, the idea of 
distribution consists of “splitting” of the centralized 
control State Chart onto two controllers of the feeder and 
the transfer respectively, and adding synchronisation of 
the processes.  
 



 
Figure 14. Process activity diagram [5]. 

For illustrative purposes of this paper we suggest a 
simple inter-object interface and protocol that is as 
follows. 
Each controller is designed so that it attempts to perform 
operations as soon as they are not blocked by the 
controllers of other objects. This implies that the 
controllers have to be aware of other objects around and 
of the operations they perform.  
The interface is based on the mutually exclusive access 
to the areas where mechanical parts can clash. Usually 
these are the areas where the material transfer occurs.  In 
our example such an area is the "End position" of the 
FEEDER unit where the workpiece is picked up by the 
TRANSFER unit. 
Access to such shared areas can be implemented by 
standard mutual exclusion algorithms, such as 
semaphore-based central algorithm, or distributed Ricart 
and Agrawala algorithm [3]. In this paper, for the sake of 
simplicity, we are using a simpler mechanism based on 
passing Boolean permission or blocking conditions from 
one controller to the other.  
The controllers’ interface is illustrated in Figure 16. The 
operation of each mechatronic unit is essentially 
autonomous, but some actions have guard conditions 
“allowed by left/right neighbour” (LEFT OK/RIGHT 

OK). The permission or blocking conditions are set by 
the controllers of the neighbours on the right/left (if any). 
This approach assumes a linear order of connections of 
mechatronic units in the production process. Process 
systems with arbitrary structure require more 
sophisticated interaction mechanisms that are under 
development. 

 

 
Figure 16. Signal interface of distributed controllers in 

the permit/block protocol [5]. 

As seen from Figure 16, this approach also fits well to 
the hierarchical structure of mechatronic systems. Our 
sample system has a neighbour on its right side that is 
“Sorting Station”. The stations interface each other 
exactly same way as their components, i.e. using 
permissions from their left/right neighbours. As it is seen 
from Figure 16, the permission from the right neighbour 
is passed down to the component controller of the 
transfer station which is physically interacting with the 
Sorting Station. If the neighbour station is not present, 
then the permission is set to the constant “TRUE” as it is 
the case in our example for the left neighbour of the 
distribution station and the Feeder unit. 
The detailed implementation of the Distribution Station 
controller that consists of FEEDER and TRANSFER 
controllers communicating via common Boolean 
variables is presented in form of concurrent state charts 

 

 
Figure 15. A distributed algorithm that uses the permit/lock protocol via common variables [5]. 



in Figure 15.  Confronting the controllers with the layers 
description in Figure 1, one sees that the controllers 
implement the application layer functionality directly 
interacting with the sensor/actuator layer. 

4 IMPLEMENTATION 
For demonstration of the concept the decentralized 
controllers were implemented in IEC 61499 function 
blocks [2] and simulated in FBDK/FBRT execution 
environment [4] with minor modifications.  
Here we briefly discuss the controller of the Feeder-
Transfer system. More complete discussions can be 
found in [5] 
A simplified interconnection of the function block 
controllers is shown in Figure 17. The inter-controller 
communication is implemented via passing event and 
data signals. Thus, event output OUT_CMD of the 
FEEDER controller is connected to the event input 
IN_CMD of the TRANSFER controller and vice versa. 
The data inputs LEFT_OK, RIGHT_OK are associated 
with event IN_CMD, and the data outputs 
ALLOW_LEFT, ALLOW_RIGHT are associated with 
event OUT_CMD. The output event needs to be issued 
anytime one controller changes the block/permit 
variables. 
The “permit/block” protocol is implemented as follows. 
Both controller function blocks have (Boolean) inputs 
LEFT_OK, RIGHT_OK, and outputs ALLOW_LEFT, 
ALLOW_RIGHT following the pattern presented in 
Figure 16.  

 
Figure 17. Interacting controllers of FEEDER and 

TRANSFER encapsulated in function blocks (process 
interface is omitted) [5].  

The ALLOW_RIGHT output of the FEEDER is 
connected to the LEFT_OK input of the TRANSFER, 
and the ALLOW_LEFT output of the TRANSFER is 
connected to RIGHT_OK input of the FEEDER.  
The controllers’ State Charts are implemented as ECCs 
of the corresponding function blocks (for example, the 
Feeder’s controller is shown in Figure 18). The variables 

are set in the algorithms, most of which set/reset just one 
variable. The algorithms have self-explanatory names, 
for example the algorithm TO_MGZ1 consists of one 
operator: TO_MGZ:=true; and TO_MGZ0 of: 
TO_MGZ:=false;  

 
Figure 18. Controller of the Feeder in the ECC form [5]. 

5 CONCLUSION 
In this paper we presented a heuristic methodology for 
designing autonomous controllers of mechatronic 
objects. Once the corresponding objects are put into a 
production system, the system could start its operation 
without any master controller coordinator.  

Certainly this approach is of limited applicability in 
industry in its pure form. However, we believe that some 
of its elements can be effectively used as building blocks 
of autonomous self-configured controllers.  

6 REFERENCES 
1. IEC61131 - International Standard IEC 1131-3, 

Programmable Controllers - Part 3, International 
Electrotechnical Commission, 1993, Geneva, 
Switzerland  

2. IEC61499 - Function blocks for industrial-process 
measurement and control systems - Part 1: 
Architecture, International Electrotechnical 
Commission, Geneva, 2005 

3. G. Couloris, J. Dollimore, T. Kindberg, Distributed 
System: Concept and Design, Addison-Wesley, 2005 

4. Function block development kit (FBDK) – Online - 
www.holobloc.com  

5. Vyatkin V., IEC 61499 Function Blocks for 
Embedded and Distributed Control Systems Design, 
271 p., Instrumentation Society of America, 2006  

http://www.holobloc.com/

	Introduction
	Master-slave Controllers
	Layered architecture of controllers
	Illustrative example
	Interfaces of a controller in the Master-Slave controller re
	Bottom-up development of controllers
	Step1: Design the plant level controller
	Add implementation of the slave interface (operations layer)
	Implement master level interface


	Same Tier Controllers
	Implementation
	Conclusion
	References

