A MODELING APPROACH FOR VERIFICATION OF IEC1499
FUNCTION BLOCKS USING NET CONDITION/EVENT

SYSTEMS

Vyatkin, V., Hanisch, H.-M.
Institute for Automation Technology (IFAT), Dept. of Electrical Engineering
Otto-von-Guericke University of Magdeburg, PO-Box 4120, D-39016 Magdeburg, Germany
phone:+49-391-6712747; fax: +49-391-6711191, E-mail:{vyatkin hami}@hamlet.et.uni-magdeburg.de

Abstract- This paper presents a preliminary report on verification of discrete control applica-
tions defined by a new wnternational standard draft IEC 1499. As a first step to verification, the
structures presented in the IEC1499 are modeled with Net Condition/Fuent Systems, for which there
exist formal methods and tools of proofing various qualitative and quantitative properties. The paper
tlustrates the methodology of modeling and outlines further steps towards the full-scale verification

of execution control of IEC1499 applications.
1 Introduction

The soon-to-be-revealed international standard ITEC-
1499 provides a new event-driven framework of soft-
ware development for measurement and control sys-
tems. It follows the way paved by the previous stan-
dard on programming languages for programmable
logic controllers (PLCs) TEC1131-3 [2] extending it
according to the new requirements of distributed con-
trol systems.

According to the draft of TEC 1499 [1], the generic
structure of an application is a function block, which
can be either basic or composite. Application, which
is defined as a collection of function blocks, con-
nected by event and data flows, can be distributed
over multiple devices. For example, a control ap-
plication may include a function block, implement-
ing the controller itself, as well as a block respon-
sible for operator interface (displaying current state
of the system and processing human interactions),
and a block which would implement a locking con-
troller or supervisor. All these may be supplied by
some standard or user defined blocks implementing
communication interface of devices where the blocks
reside. For instance, the controller may be placed in
one device (let us say a PLC), the operator interface
in another device (PC), and the supervisor in a third
device (another PLC).

The standard offers an extensive framework to
describe system architecture on the logic level, which
includes the notions of system, device, resource, sub-
application, composite and basic function blocks. This
logic architecture can be mapped onto various phys-
ical hardware structures to provide means of porta-
bility and better software reusability.

The TEC1499 defines a framework for processing
events, which includes as the notion of execution con-
trol for a single function block, as well as collection
of predefined blocks performing basic logic opera-
tions over events. Those can be used in definition
of composite function blocks along with other user
defined blocks, implementing thereby a quite com-

plicated logic of the blocks activation.

Since the standard is especially dedicated to the
software reusability issue, stressing on such means
as modularity, encapsulation, and inheritance, there
is an obvious need for a theoretical ground, which
would enable development and investigation of ap-
plications by formal methods.

An inherent feature of present real-time systems
development is their formal verification. Theoreti-
cally it is based on the works of E. Clarke [8], J. Os-
troff [12, 13], Z. Manna and A. Pnueli [11], R. Alur et
al. [5, 6]. In particular, verification of PLC programs
(within TEC1131) was studied in [7, 17, 10]. Emerg-
ing of the new programming concept of TEC1499
requires to adjust and extend the verification tech-
niques according to the new realities.

A typical framework for verification includes some
kind of formal model for the system that is stud-
ied. Usually, finite state machines, Petri nets, Timed
transition systems, etc. are used for this purpose.
The properties which ensure validity or invalidity
of the system are formally expressed as a predicate
(static property) or an expression in Temporal Logic
(dynamic property). Once the properties have been
expressed in the formal language, they are checked
by means of some ”verification engine”, which usu-
ally attempts to build the whole space of reachable
states of the system and check the validity of required
properties for all of them.

Although the theory is quite well developed, some
additional aspects have to be taken into considera-
tion if one deals with practical control applications.
The most significant are:

1. Industrial control systems are usually designed
and implemented by engineers. Their main
task is to come up with a control system which
actually has to perform some specific tasks such
as controlling a manufacturing system, a pro-
cess system, etc. Formal methods for model-
ing and verification should support the design
and implementation process, but dealing with

the theory of formal modeling and verification
cannot be the central part of daily business of
an engineer. Hence, the formalisms of mod-
els and methods have to be adapted smoothly
to the practical needs, and, more than this,
they should be encapsulated and hidden as far
as possible. That means that these methods
should establish an optional support in improv-
ing the quality of a design but not a must in
the design which requires detailed background
knowledge of formal methods and eventually
delays the design process significantly. Other-
wise, an engineer would not accept the methods
in his daily business.

2. A model is not the system itself but always
an abstraction reflecting some properties of the
system which are of interest for a particular
question. It must be ensured that the model
really copes with the aspects which are of inter-
est. This means that a proper modeling formal-
ism should be chosen to meet the requirements
of the application, and that a formal or semi-
formal methodology of model building should
be suggested.

3. Formal methods give answers to formal ques-
tions in terms of the formal model. Questions
and answers have to be mapped to properties of
the real system. According to our experience it
is extremely useful if the modeling formalism is
as close as possible to the real system for this
purpose. Each transformation causes a need
for establishing a re-transformation and there-
fore more formal overhead and possibly loss of
relevant information.

4. The modeling formalism as well as the veri-
fication engine should successfully cope with
the state explosion problem, which is unavoid-
able for the realistic-size applications. At least
efficient construction and simulation of rather
large models should be possible.

Keeping these requirements in mind when trying
to come up with models for function blocks according
to TEC1499, a suitable model must be chosen or even
developed.

The remainder of our paper deals with some ba-
sic considerations on how to establish a formal model
at least for a part of function block specification,
namely the execution control. For this purpose, we
first consider the general structure and behavior of
function blocks following IEC 1499. We then illus-
trate a way of modeling which seems to significantly
meet the requirements stated above from our point
of view. An outlook of further work that needs to be
done concludes the paper.

Event inputs Event outputs

Instance identifier

Event flow * | Execution " Event flow
—»> (Cé(_)(’ratrog — P
9 idden
| [
Type identifier
| Algorithms
Data flow (hidden) Data flow
—>] — —
|| Internaldata ||
? (hidden) ?

Data inputs Data outputs

Resource capabilities
(Scheduling, communication mapping, process mapping)

Figure 1: Characteristics of function block.

2 Structure of IEC1499 function
blocks

A general diagram of a function block is shown in
Figure 1. Functionality of a basic function block in
TEC1499 1s provided by means of algorithms, which
process input and internal data and generate output
data. The block consists of head and body, where
head is connected to the event flow, and the body
- to the data flow. The algorithms included in the
block are programmed in terms of IEC1131.

Causal behavior of the block (i.e. sequencing of
algorithms’ calls) is organized in TEC1499 by means
of Execution Control (EC), which is a state machine,
connecting event inputs with algorithms and event
outputs. Execution Control is defined by Execution
Control Charts (ECCs), whose notation is simplified
from the Sequential Function Charts of IEC1131-3.

The significant difference of this new approach in
contrast to IEC 1131 is that a collection of interact-
ing function blocks may be distributed over several
control devices, and there is no more a sequential
control function for interacting function blocks as it
would be the case in IEC 1131. The execution con-
trol of function blocks is distributed as well and is
established by event interconnections among several
function blocks.

The draft of TEC1499 states that ECC consists
of EC states, EC transitions, and EC actions, which
shall be represented and interpreted as follows:

1. The ECC shall be included in an execution con-
trol block section of the function block type
declaration, encapsulated by the control block
construct.

2. The ECC shall contain exactly one EC ini-
tial state, represented graphically as a round
or rectangular, double-outlined shape with an
associated identifier. The EC initial state shall

have no associated EC actions. The ECC shall

contain one or more EC states, represented graph-

ically as round or rectangular, single-outlined
shapes, each with an associated identifier.

3. The ECC can utilize (but not modify) event
input (EI) variables, and utilize and /or modify
event output (EO) variables. Also, the ECC
can utilize but not modify Boolean variables
declared in the function block type specifica-
tion.

4. An EC state can have zero or more associated
EC actions. The association of the EC actions
with the EC state shall be expressed in graph-
ical or textual form. The algorithm associated
with an EC action, and the event to be issued
on completion of the algorithm, shall be ex-
pressed in graphical or textual form.

5. An EC transition shall be represented graphi-
cally or textually as a directed link from one
EC state to another (or to the same state).
Each EC transition shall have an associated
Boolean condition, equivalent to a Boolean ex-
pression utilizing one or more event input vari-
ables, input variables, output variables, or in-
ternal variables of the function block.

Figure 4-a illustrates the type declaration of a
function block on the example of INTEGRAL-REAL
function block borrowed from the draft of IEC 1499
(Table 2.2.1 and Annex H), and Figure 4-b shows
its Execution Control Chart and internal algorithms,
illustrating the rules stated above. Functionality of
the block is quite trivial - it integrates the function
given by the value of the input XIN (of type REAL)
driven by the event input EX, providing the result
as an output XOUT. Initial value 0 is set to XOUT
by the algorithm INIT, which is called driven by the
signal INIT, and then every occurrence of EX event
adds to XOUT value of XIN integrated over the time
interval DT.

Thanks to the simple functionality, we use this
example to illustrate the rules of transformation of
function blocks to the model. The same rules can
obviously be applied to blocks with much more so-
phisticated behavior.

As far as the IEC1499 function blocks concerned,
we are interested in verification of temporal and qual-
itative liveness and safety properties expressed in
terms of timing and sequencing of input and output
signals, resource sharing, etc. Especially in compos-
ite function blocks, where total execution control 1is
defined as a net of component ECCs, verification of
the behavior is far from being trivial.

Figure 2: Example of NCES in two states: transition t;
forces t2 to fire by means of event arc.

3 Net Condition-Event Systems

Net Condition/Event Systems (abbr. NCES) have
been developed in our prior work [14, 15]. Tt is a for-
malism for modeling of discrete event systems, based
on Petri nets augmented by information and sig-
nal exchange capabilities (condition and event arcs),
which provide a certain data exchange and synchro-
nization between modules without exchange of to-
kens.

We illustrate briefly behavior of NCES without
giving a rigorous definition of the evaluation rules
on a trivial example given in Fig. 2. The net has as
usual components of Petri nets: places p; — p4, two
transitions ¢1,%> and arcs (p1,1), (t1,p2), (ps,t2),
(t2,p4) as well as specific NCES parts: event link
from the transition ¢; to transition ¢,, and condition
link from the place p3 to transition ¢;. The event
arc (t1,t2) forces transition ¢, to fire simultaneously
with ¢; if it is enabled. In general, a transition having
several incoming event arcs fires (when it is enabled)
when at least one of the event inputs is true (one
of the driving transitions fires). Firing of such de-
pendent transitions occurs simultaneously, which 1is
called as transition step. In the example the transi-
tion step is TR = [t1, 2]

The condition arc (ps, 1) adds an additional con-
dition on the enableness of ¢; - along with marking
in p1, marking of ps is also required to make ¢; en-
abled. So, in the state, described by the marking
P = {p1,p3} (state is defined by the set of places,
having non-zero marking) the net exhibits the follow-
ing behavior: spontaneous transition ¢; is enabled,
since both p; and ps are marked. Transition 9 1s
enabled but cannot fire spontaneously because of in-
coming event arc. However, when #; fires, it drives
ty to fire too. So the next state of the net would
be P = {ps,pa} which is terminal, since no more
enabled transitions exist.

A timing mechanism for NCES is described in
[3]. Tt is based on Petri nets with timed arcs as pre-
sented in [16]. In the Timed NCES (TNCES) each
arc leading from a place to a transition may have
an attached ”permeability” time interval [DL, DR],
where DL stands for the lower, and DR - for the
upper limit, which are also called delay and perme-

ability of the arc. In this case the arc is called timed.
A timed arc forces transition to fire if it becomes en-
abled within the permeability intervals of all of its
incoming timed-arcs. If even a single arc 1s timed,
the whole net becomes timed. In this case we assume
that all non-timed arcs have the permeability interval
[0, 00] and the net would have no really spontaneous
transitions, which means that even a non-timed and
not event-driven transition fires as soon as it becomes
enabled. This provides a good framework for model-
ing synchronous objects, in particular programs such
as Execution Control Charts.

A possible modeling framework might include not
only the TNCES model of a function block (say a
controller), but also model of uncontrolled plant be-
havior. In this case use of timing in the net brings a
certain duality: on one hand it allows to make more
precise model, which would provide better check of
some quantitative properties, but on the other hand
would hamper the check of some qualitative prop-
erties because of elimination of spontaneous transi-
tions. However, it preserves non-determinism of the
net which is especially important for many qualita-
tive estimations.

As for the formal verification engine, the TNCES
are supported by the tool SESA developed in Hum-
boldt University of Berlin [9], and by the simulator,
developed in Magdeburg University. SESA allows
to perform quite sophisticated analysis of TNCES,
which in particular includes:

1. Analysis of the integrity, liveness and bound-
ness of the net (in terms of Petri nets);

2. Building the reachability graph of the net and
its processing, such as finding paths which sat-
isfy a predicate over states of the net, finding
the shortest path, and the path with minimal
time duration;

3. Checking the temporal logic properties of the
net’s evolution, expressed in the Computation

Tree Logic (CTL) [8];

Using SESA it is possible, for example, to find
fragments of dead code (which is never activated),
answer whether the modeled system passes through
a certain state or a sequence of states, measure short-
est or longest time between specified events (say re-
sponse of the controller). However, at the current
stage of the work major progress in the application of
all these abilities of SESA to verification of IEC1499
function blocks is yet to be achieved.

gradually extending the modeling framework to the
whole applications and systems. We mostly concen-
trate on the execution control issues described by the
Execution Control Charts and by the structure of
event interconnections. Thus we pay little attention
to the modeling of the internal algorithms as long as
they do not strongly concern the execution logic of
the block. Calls of the algorithms can be modeled by
the corresponding time delays when such a timing is
essential.

This agrees with the practical view on modeling
- to get more or less valuable results we need to con-
centrate only on the important issues sacrificing the
neglectable ones.

Concerning the variety of data types admitted by
the standard, we divide them on the four categories:
event signals, which are modeled mainly by event
arcs of NCES; Boolean variables which can be mod-
eled by marking of a place in the NCES model and
by condition signals, which convey the value of vari-
able without affecting tokens flow of the net; time
parameters, which are mapped onto corresponding
permeability intervals of some NCES arcs, and other
numerical data which are not precisely modeled as
far as it does not concern the logic of execution.

Based on the analysis of the TEC1499 draft we
conclude that model of a basic function block should
include the following components:

1. Event input state machine (EI-SM) implemen-
tation module (one for each event input).

2. Event input variables storage (EIVS) models
(one for each event input).

3. Model of EC operation state machine (ECO-
SM).

4. Module implementing ECC (ECC model), in-
cluding the sub-modules implementing actions
and algorithms (optional).

5. Event output variables (EOV) models (one for
each event output).

According to the standard, information about events

is transmitted between function blocks by means of
event variables. For each event input (EI) shall be
maintained an EI variable plus a storage, which ex-
hibits the behavior defined by the state machine,
given in the draft in Figure and Table 2.2.2.2-1. The
state machine along with its NCES model is shown
in Fig.3-a. Its transition arcs are marked both with
conditions of transitions and with operations, exe-
cuted upon the transitions as listed in Table 1. The
operations consist of issuance of event signals ”In-

4 Modeling of IEC 1499 by TINCES voke ECC” at 1 and ”set Event Input variable” at

The hierarchy of structures provided in the standard
implies the corresponding way of modeling - we go-
ing to start from the simplest basic functional blocks,

t3.

In our model, we implement the behavior of event
input and event input variables by two NCES pre-
sented in Figure 3-ab.

event

t2 input
mapped

Event Input State Machine

sample
data

set El
variable

set

clear:

b)

Event input (EI)
variable

False

True

issue output
events

no transitions
clear

EC operation State Machine

S0

|

-4

SO0

]

invoke ECC

confirm input(s)
mapped

0 not El S1 evaluate
lr:r\\lglt?;r:i transitions (ECC)
ECC
invocation t3 S1-2 a transition
request clear EI /J‘f clears
set EO O+ 1 schedule
P E e algonlthtmz S2 © algorithms
C) complete

Figure 3: a)Event input state machine and its NCES model; b) Event input variable model; c)Operation of execution control

state machine modeled by NCES.

Operation of the Execution Control Chart 1s de-
scribed in the IEC1499 by means of the state machine
shown in Figure and Table 2.2.2.2-2 of the draft. It is
represented by the NCES model in Figure 3-c. Sim-
ilar to the event input state machine, the state ma-
chine of execution control also defines a Mealey au-
tomaton with input and output symbols associated
with arcs. The table of conditions and operations
1s presented in Table 2. It requires some comments
since there are multiple operations associated with
some transition arcs. Sequence of the operations and
their timing seem to be important. Thus transition
t1 is driven by the event ”Invoke ECC” and has the

following associated operations:

1. Set EI variables and sample associated vari-
ables;

2. Confirm input(s) mapped;
3. Evaluate transitions;

First operation sends an event signal to the model of
corresponding event input variable, second - to the
state machine implementing the corresponding event
input, and the third sends activation signal to the
NCES model of Execution Control Chart. It is essen-
tial to ensure that the latter signal is issued after the
first operation has been completed, because value of
event input variable might be used for evaluation of
transitions in the model of ECC. To ensure this func-
tionality we initiate the first operation in the model
of event input (EI-SM). By means of event arc ”Set
EI” 1t forces transition in the Event Input Variable
Storage, which, in turn invokes the ECO-SM model.
Finally, the latter issues the signal ” Evaluate transi-
tions”. Though basic structure of ECO-SM model is
similar to the original ECO SM (places S0,51,52 cor-
respond to the states 50,51,52), we introduce an ad-
ditional ”transitional” place in the ECO-SM model
(marked S0 — 1), which ensures that variable setting
is completed before the transition evaluation. Since
the transition from S0 —1 to S1 is not forced by any
event, and the net is assumed to be timed, it fires
as soon as S0 — 1 becomes marked. The same role

plays the place S1—2 - it ensures that new transition
evaluation 1s done after the event variables used in
the previously cleared transition have been reset.

For structural clearness we connect the correspond-
ing EI-SM and EIVS modules by the event arc ”Set
EI” though originally this operation was initiated by
the state machine ECO-SM (the following behavior
is defined in the standard: first event X occurs and
forces transition of EI-SM from S0 to S1, then it is-
sues ”Invoke ECC” which is input of ECO-SM. The
latter must issue the ”Set EI” for the event input
variable X). Implementing exactly this requirement
would need one ECO-SM model for each event input.
Instead, we change the sequence of the transitions as
follows: first event X occurs, then EI-SM issues ”Set
EI” event signal which forces transition in the EIVS
of X, and the latter invokes ECO-SM.

Building the NCES model for execution control
chart is described in the next section.

5 Model of Execution Control

The draft of IEC1499 states that ”the operation of
the ECC shall be functionally equivalent to the rules
of evolution for Sequential Function Charts (SFCs)
given in subclause 2.6.5 of IEC 1131-3”.

The ECC is a simplified sequential function chart
(SFC), where the only initial state is present, and
each transition has exactly one source and target
state. As a consequence, in ECC only one active
state can be present at every time instance.

The execution control chart is transformed into
an NCES model, which consists of the corresponding
”modules” for each state, action, and transition, and
has an additional module, named Transition Evalu-
ation Monitor (further abbr. TEM), which insures
the issuance of either of the output signals ” A tran-
sition clears” or ”No transitions clear”, required by
the EC state machine.

Transition Condition Operation
t0 map input none
t1 event arrives ECC invocation request
t2 event arrives implementation dependent

t3 map input set EI variable

Table 1: Conditions and actions associated with
transitions of the Event Input state machine.

Transition Condition Operation
t1 invoke ECC set EI variables
confirm input mapping
evaluate transitions
t2 no transition clears issue events
t3 a transition clears schedule algorithms

t4 algorithms complete clear EI variables
set EO variables
evaluate transitions

Table 2: Conditions and actions associated with
transitions of the ECC operation state machine.

5.1 Transitions

The standard sets the following rules concerning tran-
sitions between states of EC:

1. Each EC transition shall have an associated
Boolean condition, equivalent to a Boolean ex-
pression utilizing one or more event input vari-
ables, input variables, output variables, or in-
ternal variables of the function block.

2. Evaluation of an EC transition condition is dis-
abled until ALL the algorithms associated with
its predecessor EC state have completed their
execution.

3. 7Evaluation of transitions” consists of evalu-
ating the conditions at all the EC transitions
following the active EC state and clearing the
first EC transition (if any) for which a TRUE
condition is found. ”Clearing the EC transi-
tion” consists of deactivating its predecessor
EC state and activating its successor EC state.
The order in which the EC transitions follow-
ing an active EC state are to be evaluated may
be provided by software tools.

The model has event input ” Evaluate transitions”
and 1is also connected to the event input variable
modules. Input signal ”Evaluate transitions” is con-
nected to every transition of ECC. The latter are
transformed into NCES transitions with condition
input from the Boolean expression. (Implementation
of Boolean expressions in NCES was in detail illus-
trated in [3]). Besides, a transition has an event out-
put, which is connected to the ”Transition Clears”
input of TEM. The main purpose of TEM 1is to de-
tect a situation when no ECC transition clears in

EVENT —INIT INITO|-g—— EVENT
EVENT —&{EX EXO}——— EVENT
1 [

INTEGRAL_REAL
8- HOLD XOUT |—&-— REAL

REAL —¢+1 XIN

REAL —5-1 CYCLE

’ INIT }*’ INI‘TIINITO ‘

v
INIT MAIN

ALGORITHM INIT IN ST:
XOUT := 0.0 ;

’MAIN ‘—{MAI‘[\I‘ EXO ‘

ALGORITHM MAIN IN ST:
F NOT HOLD THEN
DT XOUT + XIN * DT;
TIME_TO_REAL(CYCLE) ;
END_ALGORITHM

b)

Figure 4: Type declaration of INTEGER-REAL function

block (a), its execution control chart (b).

response to the forcing signal ” Evaluate transitions”
and to issue the corresponding signal.

Figure 5-a shows an example of TEMs binding to
the NCES model of ECC. Structure of the TEM is
shown in detail in Figure 5-b. Places in the TEM
have the following meaning:

p1 - ECC isready to ”Evaluate transitions”
pz - Transitions are being evaluated;

ps - No transition cleared so far;

pa - A transition cleared,

Transitions in the TEM have the following nota-
tion:

t1 - TEM turns into evaluation mode;

ts - Transition clears, return to the initial state;
ts - Clearance is established;

ty - No clearance of transition is proved;

The input signal ” Evaluate transitions” is directly
connected to every transition which models an ECC
transition. Every such a transition has a single out-
put event link, all of which are merged at the tran-
sition t3 of TEM. In our example all the transitions
have the conditions expressed only in terms of con-
dition variables.

In case if any of such transitions clears, it imme-
diately forces t3 to fire and moves the token from
pa to ps. Simultaneously, the token of p; moves to
p2 driven by the original ”Evaluate transition” sig-
nal. Thus, in the next state places p, and pz will
be marked and transition ts becomes enabled and is
forced to fire by the arc from ps. Therefore, it will
fire, issuing event TransitionClears and returning a
token to the initial state.

evaluate no transitions
transitions clear
a transition
EX - clears .

INIT

Schedule algorithms

Schedule INIT
Schedule MAIN

ol

o

INIT completed
MAIN completed

Algorithms complete
Set EO

Set INITO
Set EXO

a)

i% 1%

a transition
clears

1
I
1
evaluate |
transitipns '
1
| e
no transitions

78]
a transition
clears

Figure 5: NCES model of the Execution Control Chart of
the INTEGRAL-REAL function block (a) and NCES imple-

mentation of the Transition Evaluation Monitor (b)

Otherwise, if the initial signal ”Evaluate Tran-
sitions” causes no subsequent firing of ECC transi-
tions, a token moves from p; to ps, but another token
remains in pyg. It will cause ¢4 to fire and issue the
signal ”No transitions clear”.

5.2 States

An EC state can have zero or more associated EC ac-
tions. Each action can have an associated algorithm
and an associated output event, which is issued upon
completion of the algorithm.

Figure 5-a shows a NCES model for the ECC of
INTEGER-REAL function block (Fig. 4-b). The
module consisting of places p; — ps and transitions
ty — tq corresponds to the ECC itself. Fragment
pa — ps,ts — tg models state INIT with call of INIT
algorithm. Module pg,ty is responsible for the is-
sue of INITO output event. Correspondingly, mod-
ule pg — p7,t7 — tg models state MAIN, and module
P, t1p 1ssues output event EXO.

In the case if no actions associated with a state
(like in case of the START state), the correspond-
ing 7 Algorithm completed” condition is always true.

| STATE |—|ACTION1 |SIGNAL-1 |

C |ACTIONn SIGNAL-n

Schedule algorithms

o
Schedule ACTION-1 &</
Schedule ACTION-n </

ACTION-1completed &
ACTION-ncompleted B

Algorithms complete <</ A
o—

yb

Set EO

b) LJ>0Set SIGNALn

Figure 6: Example of ECC state with n actions (a), and its
NCES implementation (b)

This 1s modeled by the module pyg,11 which issues
the signal ” Algorithms complete” provided the signal
”Schedule algorithms” is issued.

If more than one action is associated with a state,
then their execution follows the evaluation rules for
SFC given by TEC1131-3. Since the notion of action
qualifier is not mentioned in TEC1499, we assume
that each action has the null qualifier (N), which
means that all the actions have to be started simul-
taneously.

A model of such a state is shown in Figure 6-a,b.
Models of each action can be further detailed using
definition of its particular algorithm. In the NCES in
Figure 6-b it is assumed, that conditions ” ACTTION-
¢ completed” are issued by the corresponding NCES
models of algorithms. If detailed models of algo-
rithms are not available, they can be substituted by
simple ”bi-stable” models having two states: ” Algo-
rithm active” and ” Algorithm idle” | and two transi-
tions: one (Idle to Active) forced by the ”Schedule
ACTION-¢”, and the other (Active - Idle) being a

(pseudo-) spontaneous one.

6 Example of the model

To illustrate the above-stated ideas of modeling we

consider a simple example of function block INTEGRAL-

REAL, the type declaration of which was given in
Figure 4-a. The resulting NCES model is presented

in Figure 6.

Interconnection of the modules within the model
is implemented by means of event and condition arcs.
Connection of several function blocks in a composite
function block can be realized in a similar way.

Let us consider a simple verification example, check-

ing how the model responds to the event input EX.
Assume the model to be in the initial state sg =

{p17p37p57p77p97p147p177p187p217p237p247p267p277p297p31}

as shown in Figure 6. First, the event signal EX
forces to fire the following set of transitions: TRq =
[te,t12,113]. The following sequence of states and
transition steps unfolds then:

S0 — TRO — 51

{P1,P4,P5, P8, P10, P14, P17, P18, P21, P23, P24, P26, P27, P29, P31 }

51 =+ TRy = [t14,%4, %20, t23] — 52 :

{P1,P3,P5, P8, P11, P15, P16, P20, P21, P23, P24, P26, P27, P29, P31}

s2 =+ TRy = [tase,t15,t27] — 53 :

{pl7p37p57p87p13727147]7177p207p217p237p257p267p277p297p31}
Algorithm MAIN completed:

s3 = TRa = [t2g,t16,131, 134, t11] —+ 54 :
{p1,p2,P5,P7,P12,P14, P17, P20, D21, P23, P24, P26, P27, P30, P21
s4 = TRy = t17,120,t25,t19] = 5 :
{p1,p2,P5,P8,P11,P15,P16, P18, D21, P23, P24+ P26, P27, P30, P21
ss = TRs = [tze,t15,t37,t16] — S6 :
{p1,p2,P5,P8,P12,P14, P17, P18, D21, P23, P24, P26, P27, P30, P21
s¢ — TRy = [t17,t20] — 57 ¢

{p1,p2,P5,P8,P11,P15,P17, P18, D21, P23, P24, P26, P27, P30, P21
s7 = TRe = [t21,t18,135] — 53 :

{p17p37p57p87p97p147p177p187p217p237p247p267p277p297p31}
Output event £ X O issued;

Thus sg = sg, so the initial state is reached again,
and the output signal £XO has been generated in
the sequence of 9 states. This proves that the block
correctly responds to the event input EX. Such a
result could be easily obtained using the SESA, for
example as result of checking a temporal logic prop-
erty, stating that in every path of the reachability
graph the initial state is eventually reached.

7 Conclusion and outlook

Thus, our preliminary study of NCES suitability for
TEC1499 function blocks modeling shows, that there
are no obstacles in expressing in this formalism the
rules of function blocks execution control. It gives us
a hope on the successful realization of the following
goals:

e Express the event-function blocks of TEC1499,

which implement basic event operations, by means

of NCES.

e Develop formal rules of transformation of IEC1499

function blocks into NCES.

e Implement real examples of distributed con-
trol algorithms by means of IEC1499 function
blocks.

e Verify their properties using transformation of

function blocks into NCES and the tool SESA.

Among other goals, which we regard as the most
important are formulation of validity conditions for
the function blocks and their translation into Com-
putation Tree Logic form, which is the input lan-

guage for SESA.

8 Acknowledgement

The work is supported by the Deutsche Forschungs-
gemeinschaft under the reference Ha 1886/10-1.

References

[1] Function Blocks for Industrial Process Measurement and
Control Systems International FElectrotechnical Com-
mission, Tech.Comm. 65, Working group 6, Committee

draft

[2] International Standard IEC 1131-3, Programmable Con-
trollers - Part 3, Bureau Central de la Commission Elec-
trotechnique Internationale, 1993, Geneva, Suisse

[3] H.-M. Hanisch, J. Thieme, A. Liider, O. Wienhold. Mod-
eling of PLC Behavior by Means of Timed Net Condi-
tion/Event Systems International conference on Emerg-
ing Technologies and Factory Automation (ETFA’97),
September 1997, Los Angeles, USA

[4] H.-M. Hanisch, A. Liider. On the mutual Dependency of
Safety Controllers and Procedural Controllers Interna-
tional Symposium on Industrial Electronics (ISIE’98),
Pretoria, South Africa, July 1998, Proceedings, pp.622—
627

[5] Alur, R., C. Courcoubeitisand D.L.Dill. Model checking
for real-times. In Proc 5th Annual IEEE Symposium on
Logics in Computer Science, Philadephia, 1990.

[6] Alur, R., T.A. Henzinger and P.H.. Ho. Automatic sym-
bolic verification of embedded systems. IEEE Trans
Software Engineering, 1996, 22,181-201

[7] Aygalinc, P. and J.P.Denat. Validation of functional
Grafcet models and performance evaluation of the as-
sociated systems using Petri Nets. Automatic Control
Production Systems A.P.1.1.,1993, 27,81-93

[8] Clarke, E., E.A. Emerson and A.P. Sista. Automatic
verification of finite state concurrent systems using tem-
poral logic. ACM Trans. on Programming Languages
and Systems., 8,244-263.

[9] S.Roch, P.H.Starke. INA - Integriert Netz Analysator,
Version 2.1, Hanbuch Humboldt- Universitat zu
Berlin, 1998, (in German)

[10] De Loor, P. J.Zaytoon and G.Villerman-Lecolier. Ab-
straction and heuristics for the validation Grafcet con-
trolled systems Furopean Journal of Automation, 1997,
31, 561-580

[11] Manna, Z. and A. Pnueli. The temporal Logic of reactive
and concurrent systems. Springer, Berlin, 1992

[12] Ostroff, J.S. Temporal Logic for real-time systems. Wi-
ley, London, 1989
[13] Ostroff, J.S. Verification of safety-critical systems using

TTM/RTTL In L.N.C.5., 1991, Vol. 600, pp 573-602,
Springer, Berlin

(14]

15]

(16]

(17]

M. Rausch and H.-M. Hanisch. Net condition/event sys-
tems with multiple condition outputs. Symposium on
Emerging Technologies and Factory Automation, Paris,
France, October 1995, Proceedings volume 1, pp 592—
600, INRIA /IEEE, 1995.

M. Rausch. Modulare Modellbildung, Synthese und
Codegenerierung ereignisdiskreter Steuerungssysteme.
PhD Thesis, Otto-von-Guericke-University of Magde-
burg, Dept. of Electrical Engineering, 1996.

H.-M. Hanisch. Analysis of Place/Transition Nets with
Timed Arcs and its Application to Batch Process Con-
trol. Lecture Notes in Computer Science, Vol. 691, pp.
282-299, Springer-Verlag, 1993.

J.E. Reich, B.H. Krogh, I.D. Baxter. Symbolic
Simulation-Based Techniques for Debugging Discrete
Control Programs. 13th IFAC World Congress, San
Francisco, USA, 1996, Preprints, Vol. J, pp. 413-418.

“[0T)UOD UONNIIXS }00[q UONdUNY TYHY-TVIDLNI Y JO [9pow SON :£ o1

So[qeLIBA
ndinQo judayg

[9POIN
ey [0JU0)) UOIINIIXH

auryoew
ae1s DI

So[qeLIBA
induy juaayg

QUIYOBIA 18IS
nduy juaayg

e19|d

so|geuen |
pejeloosse |
ajdwies O

p1o|d

NI 3|

VIN §

oo 1INI
oo NIVIN

INPaYos
npayos

so|qeleA |
pajeloosse |

el

ajdwes ¢ suonislien
JUaAS om 3 geneA
indno |
: OLINI
““““““““““““““““ S|UEeS|0
uonisyely e

3|NPOJA UOEN|eAT uonIsuel |

<

