
William Wenbin Dai, wdai005@aucklanduni.ac.nz

Valeriy Vyatkin, v.vyatkin@auckland.ac.nz

Department of Electrical and Computer Engineering

University of Auckland, Auckland, New Zealand

Abstract - The IEC 61499 architecture is a new standard

proposed to replace current PLC technologies. This paper

aims to develop a guide to migrate from IEC 61131 PLC

technologies to IEC 61499 function blocks, especially for

PLC programmers. Multiple PLC platforms are chosen as

examples and transformed function block system is

provided. Beyond migration rules, current limitation and

cautions during migration are discussed on the final section

of this paper.

I. INTRODUCTION

The IEC-61131[[1]] standard for Programmable Logic

Controller (PLC) programming has been widely adopted

by vendors and users of automation technologies.

However, there is growing understanding of the IEC

61131-1 limitations for achieving flexibility and

reconfigurability of automation systems. Thus, although

all major PLC vendors are designing their products

according to IEC-61131 standard, some incompatibility

between different PLC brands is still the case, which

limits flexibility of substituting one brand PLC by

another. The need for decentralized control is ever

growing for many reasons, such as flexibility and

reliability (a centrally controlled system implies single

point of failure in case of a break down in any part of the

system), but PLCs are not good for implementing

distributed control.

The International Electrotechnical Commission (IEC)

has developed a new standard – IEC 61499 [[2]] to

make automation systems reconfigurable, interoperable

and portable. IEC 61499 is based on the concept of

function blocks. The IEC 61499 type function block is

event-driven which differs from IEC 61131 type

function block. IEC 61499 is in early ages of its

adoption by industry, but there is a huge potential of

growth in future.

Nowadays, modularization and reusability are taking the

ever increasing importance in PLC programming.

Especially for medium and small size firms, modularized

code promises more efficiency and less re-work time.

The productivity will be improved significantly by

deploying IEC 61499 function blocks. Small companies

will be able to build their own intellectual properties in

IEC 61499 function blocks into a components library

and allow re-use in future.

The problem of migration from IEC 61131-3 to IEC

61499 has recently attracted attention of researchers, e.g.

works [[3],[4]]. In this paper we continue investigation

of this issue from a practical perspective of material

handling systems automation. Material handling systems

has been considered as a perfect application area for the

new IEC 61499 architecture due to the high modularity

of the machinery. In the works [[5], [6]] the

corresponding function block architecture for MHS was

proposed and investigated. A migration path from one

standard to another could save lots of efforts on

adoption of the new standard thus making it more

attractive to industry. At this stage we address the

problem at rather informal level, more caring about

feasibility of the migration rather than subtle details.

The paper is structured as follows. Fundamental

information of both IEC 61131 Function Block Diagram

and IEC 61499 Function Block are provided in Section

2. Then a case study of a conveyor system will be

introduced. Both IEC 61131 and IEC 61499

implementations are presented in Section 3. And finally

the translation rules summarized from case study are

discussed in Section 4.

II. COMPARISON BETWEEN IEC 61131 FUNCTION

BLOCKS AND IEC 61499 FUNCTION BLOCKS

A. IEC 61131 Function Blocks

As defined in IEC 61131-3, standard programming

languages for PLC are Structured Text (ST), Ladder

Diagram (LD), Instruction List (IL), Sequential Function

Chart (SFC) and Function Block Diagram (FBD). PLC

vendors implement PLC programming languages

according to the IEC 61131-3 standard, but not limited

to it. This causes serious compatibility. For instance,

despite similar look, a ladder diagram from one vendor

is impossible to import to another ladder diagram

designed by another vendor.

The IEC 61131-3 standard’s function block (in FBD) is

a subroutine with parameters and local data. However,

syntax of particular implementations may include many

vendor-specific details. Inside a function block, not all

standard IEC 61131 programming languages are

available, e.g. SFC is not supported in Allen-Bradley

A Case Study on Migration from IEC 61131

PLC to IEC 61499 Function Block Control

Add-on instructions (Rockwell Function Block

Implementation). Also the scope of access to controller

memory is different between vendors. Some PLCs only

support memory/variable/tags associated within the

block (Local tag/memory) but others can access global

variables.

B. IEC 61499 Function Blocks

IEC 61499, introduced by IEC in 2005, is considered as

a next generation enhancement of PLC system

engineering. The basic principle of IEC 61499 is event-

driven function blocks (FB), which are invoked only

when an event arrives to one of their event inputs. The

same time some specified data inputs will be updated.

During rest of the operation time the FB remains idle.

This will significantly improve the efficiency and reduce

computing power consumption and communication

bandwidth. Also, using FBs as the top-level

representation provides a complete system overview

with all devices, communication layouts and programs.

The function blocks projects can be easily ported to

other machines. Encapsulation of functions into function

blocks increases their reusability. As a result, standard

component library of function blocks shall provide

maximum efficiency for saving project re-work time.

For the details of IEC 61499 we refer the reader to [7].

Here we provide only most essential terminology.

There are three types of function blocks: basic,

composite and service interface. A basic function block

is the fundamental element in IEC 61499 function block

system. A basic function block must contain an

Execution Control Chart (ECC) – a state machine with

conditional branches and corresponding algorithms

executed in states. IEC 61499 Function Blocks have two

types of inputs and outputs: events and data. A Function

Block will be only executed when an input event is

triggered. Also data inputs and outputs associated with

that particular input will be updated (association is

shown as a vertical line connecting an event input/output

with data inputs/outputs). As defined in IEC 61499, the

internal algorithms of function block can be written in a

number of languages, such as IEC 61131 programming

languages (ST, LD, IL, SFC and FBD), and high level

programming languages like C or Java.

A network of basic and composite function blocks forms

body of a composite function block. This way

hierarchical structure can be built, increasing reusability

of code. Similar to basic FBs, the IEC 61499 composite

function block has its own interface. The inputs and

outputs of a composite function block can be connected

directly to inputs (outputs) of the component FBs.

Finally, a network of basic and composite FBs forms an

application. System configuration combines the

application logic with device topology, abstract

definition of communication networks and exact

mapping of function blocks to devices.

Service Interface Function Blocks (SIFB) are destined

for wrapping hardware dependencies of applications.

SIFB is considered as a ‘Black Box’. The forms of

definition of SIFBs internal logic are not very restricted

by the standard. A SIFB is defined by a number of event

sequence specifications, describing interaction between

resource (hardware) and the FB. This way of

specification can be useful for documentation of SIFB

functionality, especially if it is hidden or written in a

low-level programming language. SIFBs can be used to

implement various communication protocols, interfaces

to databases or human-machine interfaces (HMI).

C. Programming Tools

There are several IEC 61499 programming tools

available, for example: FBDK[[8]], ISaGRAF[[9], [1],

and FBench [[10]].

FBDK is the world first IEC 61499 programming tool, it

is written in Java and implements function blocks as

Java classes. FBDK is widely used in academia and in

research community. ISaGRAF is the first commercial

PLC programming tool supporting IEC 61499 standard,

with a few thousands of installations of the last version

(v.5) supporting IEC 61499. FBench is an open source

project initiated by OOONEIDA [[11]]. FBench is

capable for IEC 61499 FB design, development,

debugging, run IEC 61499 application, verification etc.

FBench open-source project is continuing by our

research group at the University of Auckland. FBench

aims to be a complete programming tool set, which

supports IEC 61499 and IEC 61131-3 programming

languages.

As defined in IEC 61499, any high level programming

languages such as Java or C can be used for writing

internal FB logic. FBench is fully compatible with IEC

61499 standard and convenient to target to any IEC

61499 controller or runtime supporting IEC 61499. In

this example, FBench is selected as the demo

programming tool. All IEC 61499 software currently

available are more for evaluation propose rather than

for commercial use which means they are lack of

support and not compatible with most PLC controllers.

For this case study, Siemens Step 7 with S7-300 PLC is

selected as PLC demo example and a TCS-NZ

MO’intelligence embedded controller is used to deploy

IEC 61499 function blocks.

III. CONVEYOR CONTROL CASE STUDY

In this paper, a conveyor control example will be used to

illustrate features of new IEC 61499 function blocks.

A. Basic Conveyor Control Concepts and Sample

System Overview

The major components of a general transport conveyor

are conveyor belt, variable frequency drive and photo

eye. To control the conveyor, a series of feedback inputs

and command outputs are required. Also several status

indication signals of the conveyor are produced.

Normally conveyor can run either in auto mode or

manual mode. A control panel consists of switches and

buttons to allow full control of a particular conveyor.

The test bed chosen in this paper is a series of general

transport conveyors, as described in Figure 2.

Conveyors are linked together head to tail. Each

conveyor has an auto/manual control panel attached to

the side. A sounder and beacon for alarm purposes are

installed to indicate warnings or fault alarms.

Control of a single conveyor is initially designed as a

state machine (Figure 3). A general transport conveyor

state machine consists of Off, Startup, Run, Economy

stop, Cascade stop and fault states. Each state has its

own algorithms associated.

Fig.3. Conveyor Control State Machine

Meaning of the states is as follows. The ‘Off’ state is the

initial state of conveyor control routine. As soon as the

test bed’s operation is enabled, the current state shall

jump to startup and generate warning. Once this warning

period is complete, the most downstream conveyor will

start running, followed by upstream ones. When a bag

reaches the end of the conveyor chain, the last conveyor

in the chain shall stop immediately. Rest of belts in the

system will perform cascade stopping when bags hit

each cascade electrical photo eye located at the tail of

Fig.2. Sample Conveyor Test Bed

Fig.4. PLC Implementation of Control Conveyor System

those conveyors. Also when there is no bag detected for

a period of time, for example, 30 seconds, the conveyor

shall turn into economy mode to save power. When a

conveyor is in any state except the ‘OFF’ state, and a

fault occurs, the conveyor will turn into the ‘Fault’ state.

This faulted conveyor shall remain in the ‘Fault’ state

until the physical fault is cleared and reset button is

pressed.

B. Implementation of conveyor control

1) Siemens PLC Platform

Control of the test bed has been implemented in Siemens

Step 7 and simulated on S7-300 PLC. Out of the five

programming languages defined in IEC 61131 and

supported by Siemens Step 7, the Function Block

Diagram is the best top level interface in Siemens

implementation for the conveyor control function. As

seen in Figure 4, the PLC program structure is described

in (4). SFC ((3) in Figure 4) is used inside the conveyor

control function block instances to represent the control

flow chart. Each state in SFC corresponds to a state in

the conveyor control state machine. Transitions between

SFC steps are programmed in ladder logic as shown in

Figure 4, (2). Siemens Function block interface ((1) in

Figure 4) uses input EN to trigger the execution of this

function block and output ENO will be turned on after

the execution concludes. Before executing an algorithm

inside the block, all inputs status shall load into block

internal registers. Other logical statements inside a

function block, for instance, indicator status, alarm

status and emergency stops, are written in IEC 61131

ladder diagram language. All ladder elements are driven

by the conveyor control state machine, only relative

parts of the ladder logic code according to current state

will be executed. In ladder logic, one-shot output is

simply not allowed to appear multiple times in entire

PLC code. If one-shot output is turned on or off several

times in the PLC code, this one-shot output only refers

to last appearance, all previous logics will be ignored. In

order to solve this issue, in case of multiple states setting

a one-shot output the corresponding ladder logic

statements will be grouped together.

2) IEC 61499 FB Implementation of conveyor control

The methodology of designing this conveyor control

system in IEC 61499 is completely different from the

PLC implementation. The top level structure of an IEC

61499 project is system configuration that consists of

several devices populated by function blocks networks.

On the bottom level of the system hierarchy, each

conveyor is represented by a basic function block. The

publisher and subscriber communication function blocks

are used to exchange data between control FBs and HMI

FBs. This communication is based on UDP/IP over

Ethernet.

a) Conveyor Control FB

The conveyor control is designed in basic function block.

Fig.5. IEC 61499 FB implementation of Control Conveyor System.

Instead of SFC or ladder logic, Execution Control Chart

(ECC) is used as internal state machine.

As shown in Figure 5 (3), each execution control state

(EC State) corresponds to a single step in PLC program

or single state in state machine. The algorithms in each

EC State are written in Java. When the input event is

triggered, the associated data inputs to that particular

event will be read into FB and ECC shall change its state

depending on updated event and data inputs. The output

events and data also would be updated once the

algorithm finishes execution.

b) Human Machine Interface

As one of the significant improvements of IEC 61499

function blocks compared to IEC 61131, the Human

Machine Interface (HMI) can be integrated within the

function block networks. Within an IEC61499 function

block, not just only control algorithms, but also data and

HMI are included. Any relevant information of this

physical device can be stored inside the block.

For the example below, a main control panel and

number of control stations for individual conveyors are

built into the function block network to allow clients

control the test bed through HMI created by IEC 61499

runtime. In addition, the graphical demonstration of test

bed is generated by HMI function blocks and the system

can be simulated using FBench. This provides a great

convenience for both simulation and production to the

end users.

c) System overview

The final step of design an IEC 61499 system is to

deploy all basic, composite, HMI and communication

function blocks into control devices.

It is a significant improvement of IEC 61499 that the

application can be easily subdivided into several

distributed devices. Each device is running

independently, and exchange information with other

devices by using communication FBs. This feature offers

improved reconfigurability, redundancy and distribution

as compared to the current PLC world. If a part of the

system is faulty, for instance, a device is in deadlock, the

IEC 61499 system could diagnose faults automatically

and reconfigure system in real-time operation.

IV. TRANSLATION RULES AND LIMITATIONS

A. Summary of Translation Rules

We summarized a list of translation rules using which

programs in IEC 61131 programming languages can be

converted into IEC 61499 function blocks.

(1) The IEC 61131 function block diagram (FBD) can

be placed into an algorithm of IEC 61499 basic function

block with minor changes. One important note is that

when a state change depending on a data input, there

must be an input event associated with that data input.

As the IEC 61499 function blocks are event-driven,

without that additional event input, the ECC inside basic

function will not be executed.

In most implementations of the PLC vendors, nested

function block structures are feasible. To map that, FBD

inside an FB shall transfer to composite function block.

Additionally, complex calculations or looping can be re-

written in high level programming languages like C or

Java rather than ladder logic to simplify the development.

Here is the basic translation rule summary.
IEC 61131 Languages IEC 61499 Format

FBD Basic/Composite FB

LD Basic FB

ST Basic FB

IL Basic FB

SFC ECC*

Fig.6. Translation Rules Table for Programming Languages

*For SFC to ECC discussion please refer to 4.2 and (2) below

(2) The primary premise for converting to ECC from

SFC is that no concurrent state exists in the SFC. As

defined in the IEC 61499 standard, only one EC state

can be in active state at one time. Each EC State in ECC

can map to a transition state in a non-concurrent SFC.

As ECC only exists in basic function block, so when

transfer SFC to ECC, the SFC must have no references

to composite FB constructs.

(3) As there is no global variable in IEC 61499, the

global data can be encapsulated in one function block

and that block needs to be explicitly connected to all

function blocks in the application which may need to

access the data. This SIFB shall provide read and write

access to the memory where the global variables are

stored. Also this SIFB must take the role as arbiter to

ensure always only one function block can update values

at one time.

(4) To reduce the power consumption of entire system,

only the necessary algorithms shall be executed in each

unit of time. This design will minimize the number of

inputs and outputs to be energized in each execution

time. As for large scale of system, to prevent

unnecessary power consumption is critical for system

performance and economy considerations.

(5) In IEC 61131-3, all programs are cyclic tasks, even

if it’s not necessary to run sequentially and periodically

for all tasks. Cyclic task can be also implemented in IEC

61499 as follows: a cycle generating block is required as

initial event trigger to provide a cyclical event. Once the

last function block in the chain finishes its execution, a

“Done” bit is required to pass back to this cyclical event

generator to continue. But scan time in PLC is critical

for all real-time applications. To prevent a long scan

time per cycle, the application must be redesigned in

event-driven manner, so that only minimum compulsory

function blocks will be executed. This is able to improve

application efficiency significantly.

(6) Finally, a table of terminology mapping table is

provided as migration suggestions:
IEC 61131 Terminology IEC 61499 Terminology

Configuration System Configuration

Resource Device

Task Resource

Program Application

Fig.8. Terminology Comparison Table

B. Limitations

Although industrial adoption of IEC 61499 is just a

matter of time, there are still some concerns needed to

be addressed before IEC 61499 can be deployed widely.

First important issue is concurrency. In IEC 61131

implementations, SFC can have multiple states active

simultaneously. But under current definition of IEC

61499, only one state is allowed to be current active

state in ECC. This prevents direct conversion of the

‘old’ FBs to the ‘new’ ones.

Secondly, there is no global memory sharing over the

function blocks. Implementing access to global data via

a “storage” function block makes the design messy and

unreadable.

Also the advantages of distribution and reconfigurable

ability are not benefiting small single processor systems.

In a tiny application, IEC 61499 function block

controller is not cost-effective compared to current

micro PLCs although the benefits are pretty obvious

when the project size scalar multiple times.

Last but not the least, as per IEC 61499, the function

block is only executed once and will not be executed

again until another event input is triggered. In current

PLC setup, when a logic rung is not executed in a scan,

the output of this logic rung will be automatically turned

off. This will not happen in ladder logic encapsulated to

IEC 61499 function blocks. When a different input event

triggered compared to previous scan, the function block

will only update data associated with that event. The

data not associated to that event input will not be

updated and all other irrelevant output data for this scan

may not be updated until some input events rise.

V. CONCLUSIONS

The feasibility of migration from PLC implementation to

IEC 61499 function blocks is analyzed in this paper. A

sample test bed is programmed in both IEC61131 PLC

language and IEC 61499 function blocks. An equivalent

system in IEC 61499 function blocks is introduced under

the new event-driven design concept. So far, only

simulation of IEC 61499 was accomplished and the

transformation from IEC 61131 to IEC 61499 is not

100% equivalent. Some limitations of current IEC

61499 standard are discussed.

This research will be continued towards running the

obtained IEC 61499 codes on the controllers connected

to the real conveyor system. Also improvement of the

current IEC 61499 standard needs to be investigated to

improve efficiency and help migration IEC 61131 code

to IEC 61499 function blocks.

VI. REFERENCES

[1] IEC 61131-3, “Programmable controllers - Part 3: Programming

languages”, International Standard, Second Edition, 2003

[2] IEC 61499, “Function Blocks”, International Standard, First

Edition, 2005

[3] C. Gerber, H.-M. Hanisch, and S. Ebbinghaus, „From IEC

61131 to IEC 61499 for Distributed Systems: A Case Study”,

EURASIP Journal on Embedded Systems, Volume 2008, Article

ID 231630, 8 pages, doi:10.1155/2008/231630

[4] C. Sünder, M. Wenger, C. Hanni, I. Gosetti, H. Steininger, J.

Fritsche, „Transformation of existing IEC 61131-3 automation

projects into control logic according to IEC 61499”, IEEE

International Conference on Emerging Technologies and Factory

Automation, Hamburg, Germany, September, 2008

[5] G. Black, V. Vyatkin, “Intelligent Component – based

Automation of Baggage Handling Systems with IEC 61499”,

IEEE Transactions on Automation Science and Engineering,

vol. 6, 2008, in press

[6] Vyatkin V., Salcic Z., Roop P., Fitzgerald J., “Information

Infrastructure of Intelligent Machines based on IEC61499

Architecture”, IEEE Industrial Electronics Magazine, 2007,

1(4) pp. 17-29

[7] Vyatkin, V., “IEC 61499 Function Blocks for Embedded and

Distributed Control Systems Design”, International Society for

Automation, 2007, Triangle Park, NC, USA

[8] FBDK website: http://www.holobloc.com/

[9] ISaGRAF Website:

http://www.arcom.com/products/pcp/pcp16.htm

[10] FBench website:

http://www.ece.auckland.ac.nz/~vyatkin/fbench/

[11] OOONEIDA website: http://www.oooneida.org

[12] V. Vyatkin, J. Chouinard, “On Comparisons the ISaGRAF

implementation of IEC 61499 with FBDK and other

implementations”, 6th IEEE International Conference on

Industrial Informatics (INDIN’08), Daejeon, Korea, July 2008,

Page(s):289 - 294

