
On Comparisons of the ISaGRAF implementation of IEC 61499
with FBDK and other implementations

Valeriy Vyatkin1 Senior Member IEEE and Julien Chouinard2 Non-member

1 Department of Electrical and Computer Engineering,
The University of Auckland, Auckland 1142, New Zealand, E-mail: v.vyatkin@auckland.ac.nz

2 ICS Triplex ISaGRAF Inc, Canada, E-mail: jchouinard@icstriplex.ca

Abstract. This paper presents first results of comparison of
ISaGRAF implementation of IEC 61499 with that of
FBDK – the tool traditionally used for experiments with
this standard in the research community.

I. INTRODUCTION

The use of distributed networking controllers becomes a
common place in industrial automation. IEC 61499 [1] is an
architecture for distributed automation software which has
raised many expectations among researchers and automation
practitioners. The expectations are, partially, due to the huge
success of the IEC 61131-3 standard, that defines
programming languages for programmable logic controllers
(PLC). IEC 61499 was perceived as a follow-up to IEC
61131-3, which added to the expectations.

For years IEC 61499 was in focus of research works.
Many research groups worldwide have contributed to
developing case studies and even prototypes of supporting
tools. The main software tool, used in the research
community in the research period was Function Block
Development Kit (FBDK) [2], consisting of a development
environment (FBEditor) and run-time platform (FBRT).
FBDK is written in Java and compiles function blocks to Java
classes, so Java is a strong pre-requisite for using FBRT on
particular embedded targets. However, the use of Java,
although beneficial for portability, by no means is implied by
the standard itself. FBDK was developed by major industrial
automation vendor Rockwell Automation and played very
important role in IEC61499 evaluation, development and
education, but was never intended for application “in the
field” as it lacks many functional features of a modern
automation workbench.

ISaGRAF is the first fully fledged automation product
supporting the complete design chain. Its vendor ICS Triplex
ISaGRAF actively promotes this product on the market.
Being based on the well established IEC 61131 approach, this
solution shows a pathway for the new standard to take up.

The arrival of first commercial implementations of IEC
61499 raises the question of establishing their compliance
with the standard. One can outline the following groups of
issues, which need to be examined:
1) Syntactic compliance can be established by direct
comparison of the syntactic artefacts of the standard with the
constructs of a particular implementation;
2) Semantic compliance can be established by comparison
with the definitions of the standard, and, if they are not
sufficient, with reference implementations.
3) Compliance with application design patterns and work

practices. Although, implementation of IEC 61499 so far was
mostly in research laboratories, a number of design patterns
have been proposed and investigated, e.g. see [7], [8].

In this paper we addressing the question: “How far away
stands ISaGRAF from the ‘letter and spirit’ of IEC 61499”,
thus trying to contribute to a methodology for establishing
standard’s compliance for current and future IEC61499
implementations. Another relevant problem (specifically in
relation to ISaGRAF) addresses migration from cyclic
scanned programmable logic controllers (PLC) of IEC61131-
3 to the event driven controllers conforming to IEC61499. In
particular, it is demonstrated, how the particular details of
ISaGRAF can influence the developer. ISaGRAF is compared
with FBDK in a constructive way: it is shown how some
structures of the ISaGRAF implementation can be mapped to
FBDK implementation and vice versa.

II. FUNCTION BLOCK SEMANTICS OF OTHER
IMPLEMENTATIONS

We will accept for the reference execution model the
definitions of the standard, formulated in an axiomatic form
in [14]. The main features of that model are captured in the
condensed form of four postulates, rather than much larger
text, as follows:
1. A function block (FB) can be in one of the states ‘active’,

‘idle’ or ‘pre-empted’. An FB’s activation, i.e. a transition
from ‘idle’ to ‘active’, can occur only as a consequence of
an event at an event input of the block. For a basic FB
activation means start of its ECC evaluation.

2. A single run of a basic FB cannot be pre-empted by
another function block. It can only be pre-empted by its
execution container (resource) in order to process input
events.

3. A single run of a basic function block is instantaneous or
“relatively short”.

4. An event input variable of a function block clears after
single ECC transition, regardless of was this event used in
the evaluation or not.

Two more postulates determine scheduling of function blocks
in a FB-network. For example, sequential execution model is
achieved by the following postulates:
5. Output events are issued immediately after the

corresponding action is completed.
6. If a function block emits several output events in one state

of execution-control chart (ECC), they are emitted
sequentially.
An alternative, parallel, execution model, proposed in

[15], is based on the modified postulates (5) and (6) and

assumes the possibility of concurrent execution of two or
more blocks, or ensures equivalence of results as if the
execution was concurrent. This model is based on the fact that
in IEC61499 the function blocks distributed across different
resources can run in parallel.

FBDK is the best known among researchers and, in many
aspects, can be regarded as a reference implementation of IEC
61499. Its FB execution model as implemented in FBRT was
called NPMTR in [9]. The NPMTR model is based on the
depth-first scheduling, when an emitted event immediately
causes invocation of the recipient block, even if the emitting
block has more events to emit. While partially compliant with
postulates 1-4, it is different from the two scheduling models
discussed above and cannot be regarded as a reference.

A number of trial run-time platforms, such as FORTE [17]
and FUBER [16] aim at implementation of the event-driven
invocation (EDI) nature of IEC 61499 function blocks
(captured in the postulates 1-3). This model will be referred
further in the text as EDI, and NPMTR can be regarded as a
very close to EDI. The EDI model of FBs has been around for
a few years and has not seen any substantial critique from the
researchers, so we can assume that the FB-research
community in general agrees with it. That is why in this paper
we will compare execution features of ISaGRAF to EDI
rather than to just FBDK/FBRT.

III. REFERENCE EXAMPLE

The ‘LED Chaser’ reference example provided with
ISaGRAF demo kit and discussed in [6] will be used further
in the paper to illustrate differences of this implementation
from its interpretation in FBDK. The demo kit, as shown in
Figure 1, consists of 3 identical devices, each having 2
buttons and four lamps.

Figure 1. LED Chaser system.

Figure 2. LedChaser FB program in ISaGRAF.

The ‘LedChaser’ works as follows. On the start up, the
light begins ‘running’ from the leftmost lamp (LED0) to the
right. When it reaches the rightmost lamp, the direction
changes, and so on. Pressing B1 button on either device
increases the speed of running, and pressing B2 decreases it.
In each moment of time there is only one lit lamp in all three
devices. An FB network controller for this system in the
ISaGRAF version of IEC 61499 function blocks is shown in
Figure 2 The control is decentralised, as pressing a button in
any device will immediately affect the speed of the run even
if the light is currently ‘running’ in another device.

For example, if a button is pressed on the device 3 while
the light is “in one of the lamps” in device 1, the event will go
to the PeriodManagement block, and then the new period will
be transmitted to LedSequence1. As a result the speed (of
light movement in device 1) will change instantaneously.

The program includes six instances of the
‘ButtonManagement‘ FB, one per each button. This FB
detects if the button is pressed, and generates event signal,
which is sent to the ‘PeriodCalc’ FB, that generates the value
of time interval between lighting of two neighbouring LEDs.
This value is passed to the FBs taking care of sending signals
to the lamps within one device, these are three instances of
the ‘LedSequence’FB type. This FB has two input events:
‘Inc’ and ‘Dec’. When Inc is received, the FB sequentially
displays all 5 possible patterns, in binary coding: ‘1000’,
‘0100’, ‘0010’, ‘0001’ and ‘0000’, making delay of the period
duration between each change of the output pattern.

a) The ’LedSequence’ is a basic function block, whose logic is
defined by means of execution control chart (ECC). In
ISaGRAF, ECC is implemented using sequential function
chart (SFC) programming language; the selection of SFC
was made due to the very wide acceptance of the SFC
language in the automation world and because the SFC is a
state machine and hence meets the standard. However, the
SFC language as per the IEC 61131 standard prescribes it
would be `put on hold` after every transition. This would
not have been acceptable as per the 61499 standard.
Therefore the ECC in ISaGRAF, although using the syntax
of the IEC61131 standard, have a bit different semantics, in
accordance with the IEC61499 ECC. If evaluation of a
transition between steps is ended in FALSE, the blocks
execution in this scan ends, otherwise it keeps executing the
ECC.

In the next scan it will be resumed at the same place with
new evaluation of the transition. Consider, for example, SFC
of the ‘LedSequence’ FB, shown in Figure 3.

In the ‘LedSequence’ FB this semantics allows to
program output of all five sequences in one of the branches
T2 – T7 (for running to the right) and T8-T13 (for running to
the left). Each sequence may take considerable time (seconds)
compared to the time scale of the controller (milli- or
microseconds.) Thus, the function block will be entered and
exited many times while a transition, say between S3 and S4,
is FALSE just to check its condition.

IV. CYCLIC INVOCATION OF FUNCTION BLOCKS
IN ISAGRAF

The concept of an IEC 61499 function block in ISaGRAF is
based on the FB concept of IEC 61131. In ISaGRAF, within a
single resource, FB ECCs are invoked in a fixed order set
prior to execution. Presence or absence of events does not
influence the invocation. Upon an invocation, the ECC
recognizes occurrence of events. This is a bit different from
the EDI approach of the standard. In ISaGRAF’s resource, FB
ECC’s are evaluated every scan.

However, ISaGRAF offers a mechanism for using events
in the block’s ECCs. If an event input occurred, it can force
evolution of the ECC and execution of an appropriate
algorithm associated with one of the ECC actions.

Event variables in ISaGRAF are by default implemented
as unsigned integers, whose increment indicates the event.
This implementation is arguably more powerful since no need
to stack the event. The counter can even provide “the amount
of time” the event was waiting for a service.

As a result of the cyclic execution of a resource and the
fact that external events and the corresponding data are read
all at once by the resource at the beginning of it’s cycle
execution, a function block can receive several events
simultaneously. This is quite different from the EDI which
restricts number of “active” input events to one. The standard
even does not allow more than one input event variable name
in a transition condition.

Also, in ISaGRAF there is no implicit ‘event clearing
mechanism’ in basic FBs. The programmer has full freedom
in handling and interpreting events in SFC. When an event is
received, the corresponding integer variable can be compared
to the last event value and if the value has been incremented,
the local event comparator would also be incremented thus
clearing this event.

Within a single resource, a network of function blocks is
evaluated sequencially following specific rules. Values of
upstream function block outputs immediately become

available to other downstream function blocks in the very
same scan. These values otherwise (in the upstream FBs) will
be used in the next scan.

With respect to the postulates 1-4 the following remarks
can be made:
1. ISaGRAF is not completely complying with
Postulate 1, as FB ECCs are invoked every scan. Yet, the
ECC determines whether or not the algorithm should be
executed. The end result is the same; even though the ECC is
invoked every scan, the algorithm execution happens only
with the occurrence of events. Such FBs would have minor
differences from the FBs designed in the FBDK paradigm.
The illustration is provided in Figure 5 by a function block
detecting in which sequence the input events ei1 and ei2
arrive to the function block. The sequence <ei1,ei2> causes
output event R1 and the sequence <e2,e1> - the output event
R2. In Figure 5(a) the ISaGRAF version of the function block
is presented, here special function calls (LocalEventInput)
need to be executed in states S2, S3, S5 in order to detect
input events. In Figure 5(b) the same function is presented as
function block in FBDK paradigm. As one can see, the ECC
states in the EDI solution do not include any specific actions
to detect events, as the events are detected by the resource
prior to FB invocation. However, the intention of ISaGRAF
developers was to implement the event-driven invocation of
algorithms, and this goal has been achieved.
2. ISaGRAF satisfies Postulate 2 – no function block
can be pre-empted by another FB within a resource.
3. ISaGRAF satisfies Postulate 3, since its algorithms
are short in execution, and no waiting is allowed within FBs.

Figure 3. SFC of the LEDSequence FB. Figure 4. Chain of function blocks activation by a “PLC-like” resource.

Figure 5. (a) Event sequence detector in ISaGRAF implementation and (b)
in “FBDK” implementation.

This is achieved by the same means as in IEC 61131.
4. In ISaGRAF events are cleared during the process of
their detection. It is different from the Postulate 4, but does
not contradict to the standard, since this issue is not
rigorously defined there. The event will be “ON” until the
detection of that event will be next time executed, which can
happen either in the next scan, or in the same scan or never
happen at all. In order to implement the Postulate 4 the ECC
developer needs to execute the event detection function right
after the event variable was used in a transition.

A. Equivalent event-driven application

The application equivalent to the ‘LedChaser’, but
implemented in a purely event-driven way using FBDK, is
shown in Figure 4. The main differences with the ISaGRAF
version are:
- The initialisation chain is explicitly introduced, which

required all blocks to have INIT event input and INITO
event output. Having such an initialisation chain is a good
style proved to be beneficial in IEC 61499 programming.
The INIT and INITO event signal as well as any IEC61499
signals can be implemented in the ISaGRAF ECC chart.

- To ensure that the PRD value of the PeriodManagement FB
is delivered to its destination LedSequence instances, the
corresponding FB type has got additional event output CNF,
associated with the PRD data output. The destination FB
type (LedSequence) has got an additional REQ event input
and CNF event output.

As opposite to the ISaGRAF version, in this application
the service interface ButtonManagement FBs ECC are not
forced to execute every scan, but assumed to be activated
only when the corresponding button is pressed.

The logic of the LedSequence basic FB type, however,
cannot be as easily modified to suit the event-driven pattern.

One possible way to implement the SFC logic within the
event-driven FB is to develop an equivalent composite FB, as
it was proposed in [10]. In the following section we consider
another way.

B. Explicit representation of cyclic activation using the
IEC 61499 reference model

The execution model of ISaGRAF can be modelled by the
EDI execution model of IEC 61499 as follows.

In the FBDK/FBRT implementation each FB needs an
additional activation event input (we call it REQ). Upon
execution the block needs to emit an output event (we call it
CNF). All blocks within an execution container (resource)
need to be connected in a cycle-free chain by event
connection arcs: CNF of one block to the REQ of another, as
illustrated in Figure 4. In ISaGRAF these event chains are not
necessary (but can be implemented) as the blocks will be
invoked in every cycle anyway.

In this particular case it is assumed that resources are
aligned sequentially and are given an execution slot one after
another, like in ISaGRAF. The chain is activated by the
WARM event output of the MYSTART FB, an instance of
FB type E_RESTART, which in this case is assumed to emit
WARM event once upon each activation.

For basic FBs, a modification is required to represent
their SFC inside an algorithm of the standard equivalent FB,
as illustrated on example of the LedSequence FB in Figure 6
and is explained as follows.

An internal Boolean variable SFCACTIVE must be
added to the set of internal variables. The SFC needs to be
slightly modified to define explicitly its entry point and exit
points. In the entry point, which is the initial step of the SFC,
the variable SFCACTIVE is set to TRUE, and in the exit
points it is set to FALSE.

The working is as follows. Upon occurrence of either
‘Inc’ or ‘Dec’ event inputs, the ECC jumps to the SFC state
and activates the SFC algorithm. The variable SFCACTIVE
becomes true in the S1 step. For example, in case of ‘Inc’
event, SFC evolves and stops at step S3, since transition T3
awaits the ‘Period’ in the step S3. At this point the SFC
algorithm temporarily ends. The control is passed to the ECC,
which emits the CNF event and remains in the state SFC,
since no transition conditions are TRUE. The block’s
execution ends completely, but states of ECC and of SFC are

Figure 6. Basic function block (in FBDK paradigm) encapsulating SFC. Figure 7. Distributed configuration of the LEDChaser
in the FBDK paradigm.

stored.
The next time the block will be activated by event REQ

(which is dedicated for activation of the function block). Due
to the self-looping transition REQ & SFCACTIVE, the
algorithm SFC will be entered again, and the step S3 will be
active again. The process will repeat itself until the whole
chain of sequences has been outputted to the lamps. The exit
points are inserted after the sequence is completed, i.e. as
steps S13 and S14.

One should note that implementation of this particular
SFC would require a little extension of the IEC 61499 syntax,
to use event variables inside algorithms. Alternatively, the
INC and DEC signals would need to be implemented as data
variables.

C. Distributed systems

The IEC 61499 is developed for distributed automation
systems. Function blocks of one application are supposed to
run in various computing devices. In our example, one can
assume that each of the three LED-buttons devices has an
embedded microcontroller, where some of the FBs would run.
The microcontrollers need to be connected via network to
pass events and data between the FBs.

In the EDI paradigm, communication is implemented in
asynchronous way. Communication function blocks need to
be inserted to the “cutting points” of event and data
connections where they cross the resource boundaries. This is
illustrated in Figure 7. Sending of events and data is
implemented using PUBL FB type and the receiving by
SUBL FB type. This representation with explicit
communication FBs is certainly more complicated thus being
more confusing for end-users.

D. ISaGRAF implementation of distribution

In ISaGRAF, the distribution is done by assigning each
function block instance in the program with identifier of the
resource, in which the block will be executed. Unlike FBDK,
the ISaGRAF workbench does not provide a separate view for
the program parts, allocated to a particular resource. That is
why no communication interface function blocks are provided
in the ISaGRAF standard library, since the communication is
hidden from the user.

However, implementation of distributed systems
inevitably requires insertion of communication functions in
the positions, where event and data connection lines cross the
device boundaries. ISaGRAF’s compiler apparently inserts
the pairs of Send and Receive functions to the code, generated
for each resource and ensures that the data associates with an
event are travels with the event on the message packet
providing the equivalent of the WITH event-data association
of the standard. Communication of ISaGRAF FB application
with other IEC61499 compliant systems is implemented using
specific service interface FBs, currently such an FB is
provided for communication with FBs running on FBRT.

If a device has several communication interfaces, for
example, Ethernet and a fieldbus, such as, Profibus, ASi or
DeviceNet, it must be defined explicitly, through which of

these interfaces the communication will occur. To this end, in
ISaGRAF, the PLC definition file is used and imported for
each configuration and thus the runtime would know on
which communication network the data and event should go.

Specifically in the ISaGRAF execution model, all the
‘Receive’ functions of a resource are executed at the
beginning of the resource activation, before executing all the
FBs. All the ‘Send’ functions are executed at the end of each
resource’s activation, respectively. Such a model guarantees,
that all blocks of the core application part within the resource
will operate over the same input data.

V. ISAGRAF SEMANTICS FROM APPLICATION-DEVELOPER
PERSPECTIVE

The major benefit expected from the event mechanism of IEC
61499 function blocks is in their improved portability and re-
use. Each FB should be considered as an independent and
autonomous entity, “living” in an environment that provides
services enabling the FB to receive and generate events and to
execute control functions with the occurrence of events. The
execution order in a network of FBs shall be determined only
by event flow.

The concept of “event” is crucial for implementation of
this vision, and is the main difference of the IEC61499
function block concept from that of IEC61131-3.
Implementation of the IEC 61499 “event” concept has been
causing many sceptical comments in the past with respect to
determinism of execution (such as “Events can be lost”).

Even minor syntactic differences of an implementation
may imply significant changes in the system behaviour or
correctness. Thus, ISaGRAF’s syntax does not support
explicit event/data associations (WITH-connections between
event and data inputs and outputs). The semantics of
event/data passing between blocks in ISaGRAF assumes that
an event I/O is associated to all corresponding data arcs. This
assumption may result in execution logic different from the
EDI model, in which the associations can be defined with
more freedom.

However, it is our belief, that the most serious
differences in the execution models of FB implementation of
EDI and ISaGRAF may show themselves only in cases of
simultaneous events being handled in one scan. Consider, for
example, the FB network in Figure 8. Here the function block
C issues output event R1 in case if ei1 arrives, R2 in case if
only ei2 arrives, and R3 if both ei1 and ei2 occur

Figure 8. A function block application illustrating that the order of
invocation can impact on the results of the computations.

simultaneously.
In case if both FBs A and B produce events at their

outputs ‘eo’ and the invocation order is A,B,C or B,A,C , the
result of C will be correct: R3. However, in case of the
invocations in the order A, C, B or B, C, A the simultaneity of
ei1 and ei2 would not be detected by C and result will be
either R1 or R2.

Thus, when a network of function blocks is created, it is
good to know, in which order the blocks will be invoked. In
the IEC61499 context it is not always the case. Thus,
mapping of application FBs to resources can be changed
during system’s life cycle, which may immediately impact on
the behaviour.

This particular issue, however, can be quite easily fixed.
Another policy of event signal delivery, based on a delayed
propagation (i.e. signals generated by a function block in the
current scan become available to other FBs only in the next
scan), can fix this problem. Alternatively, two types of event
arcs can be also introduced: one for immediate event delivery
within same scan, and the other for “delayed” event delivery
in the next scan.

In case of the “delayed” event delivery, the FB network
in Figure 8 will be detecting the simultaneity of ei1 and ei2 at
any order of FBs invocation. However, inevitable downside
of such a solution is increased number of scans, needed to
produce the reaction.

It is rather a philosophical question whether function
block networks can allow several events being “ON”
simultaneously. It may be a good programming style to keep
the event flow simple and do not allow several events to be
generated/consumed by FBs within one resource/scan, but the
possibility of this cannot be completely ruled out.

To avoid such problems, function blocks need to be
designed so that their decision making is not relying on
simultaneous arrival of several events to its inputs. As it was
noted in [14], it is implicitly assumed in IEC 61499 (and in
EDI) that an FB is invoked by one event, so no ECC
transition condition can even include two event variables!

VI. CONCLUSION

ISaGRAF v.5.1 represents a practical solution to introduce
gradually the new IEC 61499 standard and combine it with
the popular IEC 61131 standard.

In our view this incremental approach has its benefits,
both for the developer, who did not have to change much the
tool and run-time from the IEC61331-3 version, and for the
end-user, who, arguably, will easier migrate from IEC 61131-
3 to IEC 61499.

There are some syntactic and semantic differences of
ISaGRAF interpretation from others, which illustrate the
importance of the harmonisation work currently conducted by
the OOONEIDA working group on execution models.

Constant CPU load, which is the case in PLC-like control
systems, like ISaGRAF, is admittedly better than sporadic
load of event-driven implementations. The full load is
achieved in the network thus it can not use more bandwidth.
If the network accepts the bandwidth of the distributed

application it always will.
The question of which semantics is better, synchronous,

asynchronous, or hybrid, has not been resolved in the broader
context of distributed computing. The answer largerly
depends on the requirements and technical details of each
particular application.

VII. REFERENCES

[1] Function blocks for industrial-process measurement and
control systems - Part 1: Architecture, International
Electrotechnical Commission, Geneva, 2005

[2] FBDK – Function Block Development Kit, Online:
www.holobloc.com

[3] ICS Triplex ISaGRAF Workbench for IEC 61499/ 61131,
v.5.1,Online:http://www.icstriplex.com/

[4] IEC 61499 Tech Notes, ICS Triplex ISaGRAF Inc, 2006
[5] Hands on IEC 61499 with ISaGRAF, ICS Triplex ISaGRAF

Inc, 2007
[6] J. Chouinard et al., “An IEC 61499 configuration with 70

controllers; challenges, benefits and a discussion on technical
decisions”, 14th IEEE Conference ETFA’07, Patras, 2007

[7] J. Christensen, “Design patterns for systems engineering with
IEC 61499,” in Proc. Verteilte Automatisierung, Magdeburg,
Germany: Otto-von-Guericke-Universität, 2000

[8] Vyatkin V., IEC 61499 Function Blocks For Embedded and
Distributed Control Systems Design, 297p., ISA/O3neida,
USA, 2007

[9] C. Sünder et al.: Usability and Interoperability of IEC 61499
based distributed automation systems, Proc. 4th IEEE Conf.
INDIN06

[10] M. Riedl, C. Diedrich, F. Naumann, “SFC in IEC 61499“, 13th
IEEE Conference on Emerging Technologies and Factory
Automation, Prague., September 20-22, 2006, pp.662-667

[11] J. Chouinard, R. Brennan, Software for Next Generation
Automation and Control, 4th IEEE Intl. Conf. on Industrial
Informatics, Singapore, 2006

[12] J. LM Lastra, L. Godinho, A. Lobov, R. Tuokko, “An IEC
61499 Application Generator for Scan-Based Industrial
Controllers”, in Proc. of the 3rd IEEE Conference on Industrial
Informatics, Proceedings, Perth, Australia, August 2005

[13] L. Ferrarini, M. Romanò, and C. Veber, Automatic Generation
of AWL Code from IEC 61499 Applications, in Proc. of the
4th IEEE Conference on Industrial Informatics, Singapore,
August 2006

[14] V. Vyatkin, V. Dubinin, Sequential Axiomatic Model for
Execution of Basic Function Blocks in IEC61499, 5th IEEE
Conference on Industrial Informatics (INDIN’07), Proc., pp.
1183-1188, Vienna, 2007

[15] V. Vyatkin, V. Dubinin, Ferrarini, L.M., Veber C. Alternatives
for Execution Semantics of IEC61499, 5th IEEE Conference on
Industrial Informatics, Proc., pp. 1151-1156, Vienna, 2007

[16] G. Čengić, O. Ljungkrantz, and K. Ǻkesson, “Formal
Modeling of Function Block Applications Running in IEC
61499 Execution Runtime,” in Proc. of 11th IEEE Conf. ETFA
2006, Prague

[17] C. Sünder, A. Zoitl, J.H. Christensen, M. Colla, T. Strasser
"Execution Models for the IEC 61499 elements Composite
Function Block and Subapplication", In Proceedings of IEEE
Int. Conference on Industrial Informatics, Vienna , 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for export to IEEE PDF eXpress. May 2005. PaperCept.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

